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Probabilistic Automata (PAs) are a widely-recognized mathematical framework for the

specification and analysis of systems with non-deterministic and stochastic behaviors. This

paper proposes Abstract Probabilistic Automata (APAs), that is a novel abstraction model

for PAs. In APAs uncertainty of the non-deterministic choices is modeled by may/must

modalities on transitions while uncertainty of the stochastic behavior is expressed by

(underspecified) stochastic constraints. We have developed a complete abstraction theory

for PAs, and also propose the first specification theory for them. Our theory supports both

satisfaction and refinement operators, together with classical stepwise design operators. In

addition, we study the link between specification theories and abstraction in avoiding the

state-space explosion problem.

 2013 Elsevier Inc. All rights reserved.

1. Introduction

One of the main research areas in computer science consists in studying new specification formalisms for reasoning on

system’s behaviors. Among existing such formalisms one finds the one of Transition Systems (TS). In TS, the behavior of the

system is represented by states modeling the current values of the variables, and a relation between states, called transitions,

representing the evolution of the system, i.e., update of variables. Transitions are often labeled with actions representing the

possibly non-deterministic decisions taken at a given moment of time to govern this evolution. TSs are acknowledged to be

a simple but elegant formalism powerful enough to capture the control-flow of programming languages; the formalism is

used in most of existing formal validation techniques proposed in the literature [3].

As systems become more and more complex, it is necessary to add new features to TSs. Such features can be used

either to capture new phenomena such as continuous evolution, or to reason on new properties of the system such as

energy consumption. Particularly, as soon as systems include randomized algorithms, probabilistic protocols, or interact

with physical environment, probabilistic models are required to reason about them. This is exacerbated by requirements

for fault tolerance, when systems need to be analyzed quantitatively for the amount of failure they can tolerate, or for

the delays that may appear. As Henzinger and Sifakis [4] point out, introducing probabilities into design theories allows

assessing dependability of IT systems in the same manner as commonly practiced in other engineering disciplines.

✩ This paper is based on [1] and [2], that have appeared in the 12th International Conference on Verification, Model Checking, and Abstract Interpretation

and the 11th International Conference on Application of Concurrency to System Design, respectively.
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Fig. 1. Examples of PA, APA and abstraction.

Probabilistic Automata (PAs) constitute a mathematical framework for the specification and analysis of non-deterministic

probabilistic systems. PAs are TSs whose evolution depends not only on non-deterministic actions but also on a probability

distribution that, together with the action, drives the choice of the successor state. PAs have been developed by Segala

and Lynch [5] to model and analyze asynchronous, concurrent systems with discrete probabilistic choices in a formal and

precise way. PAs are akin to Markov decision processes (MDPs). A detailed comparison with models such as MDPs, as well

as generative and reactive probabilistic transition systems is given in [6]. PAs are recognized as an adequate formalism for

randomized distributed algorithms and fault tolerant systems. They are used as semantics model for formalisms such as

probabilistic process algebra [7] and a probabilistic variant of Harel’s statecharts [8]. An input–output version of PAs is the

basis of PIOA and variants thereof [9,10]. PAs have been enriched with notions such as weak and strong (bi)simulations [5],

decision algorithms for these notions [11] and a statistical testing theory [12]. This paper brings two new contributions to

the field of probabilistic automata: the theories of abstraction and of specification.

As a first main contribution, we propose several abstraction techniques for PAs. Abstraction is pivotal to combating

the state space explosion problem in the modeling and verification of realistic systems such as randomized distributed

algorithms. It aims at model reduction by collapsing sets of concrete states to abstract states, e.g., by partitioning the

concrete state space. This paper presents a three-valued abstraction of PAs. The main design principle of our model, named

Abstract Probabilistic Automata (APAs), is to abstract sets of distributions by constraint functions. This generalizes earlier work

on interval-based abstraction of probabilistic systems [13–15]. To abstract from action transitions, we introduce may (?) and

must (⊤) modalities in the spirit of modal transition systems [16]. If all states in a partition p have a must transition on

action a to some state in partition p′ , the abstraction yields a must transition between p and p′ . If some of the p-states

have no such transition while others do, it gives rise to a may transition between p and p′ . Our model can be viewed as a

combination of both Modal Automata [17] and Constraint Markov Chains (CMC) [18,19] that are abstractions for transition

systems and Markov Chains, respectively. APAs can further be abstracted by merging their states or by simplifying their

corresponding constraints. We shall see that those abstractions introduce new behaviors in the corresponding PAs, but that

their precision can be controlled. Concretely, the PA of Fig. 1a gives the choice between two non-deterministic actions a

and b, both of them inducing a probability distribution on the set of successor states. In addition, all states are equipped

with sets of atomic propositions. Assuming that both states 1 and 2 belong to the same partition B and that states 0 and

3 are mapped to partitions A and C , respectively, we obtain the APA given in Fig. 1b. Notice that, in order to merge states

1 and 2 into a single state B , one has to consider sets of sets of atomic propositions. There one can see that there is a

must transition from A to B as any state in A goes to a state in B with action a. However, the transition from B to A is a

may transition as there are states in B (here state 2) for which action a does not lead to a state in A. The case of action b

illustrates the use of constraints to match the original distributions starting from states in B .

As a second major contribution, we also propose a new specification theory for PAs. Our study is motivated by the obser-

vation that several industrial sectors involving complex embedded systems have recently experienced deep changes in their

organization, aerospace and automotive being the most prominent examples. In the past, they were organized around verti-

cally integrated companies, supporting in-house design activities from specification to implementation. Nowadays, systems
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are tremendously big and complex, and it is almost impossible for one single team to have the complete control of the

entire chain of design from the specification to the implementation. In fact, complex systems now result from the assem-

bling of several components. These many components are in general designed by teams, working independently but with

a common agreement on what the interface of each component should be. Such an interface specifies the behaviors ex-

pected from the component as well as the environment in which it can be used. The main advantage is that it does not

impose any constraint on the way the component is implemented, hence allowing for independent implementation. Ac-

cording to state of practice, interfaces are typically described using Word/Excel text documents or modeling languages such

as UML/XML. We instead recommend to follow a more mathematical approach relying most possibly on mathematically

sound formalisms, thus best reducing ambiguities. Our new theory is equipped with all essential ingredients of a composi-

tional design methodology: a satisfaction relation (to decide whether a PA is an implementation of an APA), a consistency

check (to decide whether the specification admits an implementation), a refinement (to compare specifications in terms

of inclusion of sets of implementations), logical composition (to compute the intersection of sets of implementations), and

structural composition (to combine specifications). Our framework also supports incremental design [20]. To the best of our

knowledge, the theory of APAs is the first specification theory for PAs where both logical and structural compositions can

be computed within the same framework.

Our notions of refinement and satisfaction are, as usual, characterized in terms of inclusion of sets of implementations.

Our notion of satisfaction is a compatible extension of the classical notion of probabilistic bisimulation [5,21]. More precisely,

one can show that two PAs that are probabilistic bisimilar satisfy exactly the same APAs. One of our other important

theorems shows that for the class of deterministic APAs, refinement coincides with inclusion of sets of implementations.

This latter result is obtained by a reduction from APAs to CMCs, for which a similar result holds. Hence, APAs can also be

viewed as a specification theory for Markov Chains (MCs). The model is as expressive as CMCs, and hence more expressive

than other theories for stochastic systems such as Interval Markov Chains [13,22,14].

Our last contribution is to propose several abstraction-based methodologies that allow to simplify the behavior of APAs

with respect to the refinement relation—as we pointed above, abstraction is crucial to avoid state-space explosion. We show

that our abstraction preserves refinement, and that refinement is a pre-congruence with respect to parallel composition.

These results provide the key ingredients to allow compositional abstraction of PAs. Consider again the APA N of Fig. 1b.

This APA can be further abstracted by merging partitions B and C , which leads to the APA N ′ given in Fig. 1c. Since there

must be an a transition from A to B in N , there is a must a transition from A to (B,C) in N ′ . Inversely, since only one

state out of two in (B,C) requires a b transition to B or C , the abstracted state (B,C) will allow but not require this b

transition. The consequence of this abstraction is not only the reduction of the state space, but also a simplification of the

constraint associated to action b in state (B,C). Another way of abstracting the APA of Fig. 1b is to simplify the constraints

by approximating them with intervals, as illustrated in Fig. 1d.

Organization of the paper. In Section 2, we introduce the concepts of PAs and APAs as well as several of their properties.

Section 3 is concerned with several notions of refinements and abstractions as well as the relation between satisfaction

and probabilistic bisimulation. Section 4 introduces the notion of consistency and structural composition (aka conjunction),

while Section 5 proposes a compositional reasoning theory based on APAs. Section 6 studies the strong link between APAs

and CMCs and proposes results for the class of deterministic APAs. Since all the previous results are obtained for APAs with

equal sets of actions and atomic propositions, Section 7 presents a methodology for extending sets of actions and atomic

propositions, showing that all our results carry over to APAs with dissimilar alphabets. Finally, Section 8 concludes the

paper. For clarity of the presentation, some repetitive proofs have been lifted to Appendices A–I.

2. Specifications and implementations

In this section, we present the basic notions used in our formalism. We first introduce the definitions of Labeled Tran-

sition Systems (LTS) and Markov Chains (MC), which are classical notions of implementations, and then present Probabilistic

Automata (PA), that unify LTSs and MCs. We then introduce Modal Transition Systems and Constraint Markov Chains, two clas-

sical notions of specification theories for LTS and MC respectively. Finally, we present a new notion of Abstract Probabilistic

Automata (APA), a finite representation for a possibly infinite set of PAs. APAs will act as a specification theory for PAs. Let

Act be a universe of actions.

Implementations. Labeled transition systems are usually used to represent non-stochastic systems. We first introduce their

definition.

Definition 1 (Labeled transition system). A Labeled Transition System is a tuple (S, A, L, AP , V , s0), where S is a finite set of

states with initial state s0 ∈ S , A ⊆ Act is a finite set of actions, L: S × A × S → B2 is a two-valued transition function, AP

is a finite set of atomic propositions, and V : S → 2AP is a state-labeling function.

The set B2 = {⊥,⊤} denotes a lattice with the ordering ⊥ < ⊤ and meet (⊓) and join (⊔) operators. The transition

function L identifies the transitions of the automaton: L associates (1) the value ⊤ to a triple (s,a, s′) whenever there is
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Fig. 2. Examples of LTS and MC.

Fig. 3. A PA with a single transition to a distribution [0,0.3,0.2,0.5].

a transition from state s to state s′ labeled with action a, and (2) ⊥ otherwise. An example of a LTS T is given in Fig. 2a,

where transitions with value ⊥ are left out of the picture.

When moving to the stochastic setting, the simplest notion of implementation is the one of Markov Chain.

Definition 2 (Markov Chain). A Markov Chain is a tuple (S,π , AP , V , s0), where S is a finite set of states with initial state

s0 ∈ S , π : S → Dist(S) is a probability transition function:
∑

s′∈S π(s)(s′) = 1 for all s ∈ S , AP is a finite set of atomic

propositions, and V : S → 2AP is a state-labeling function.

We use Dist(S) to denote a set of probability distributions on the finite set S . An example of a MC M is given in Fig. 2b,

where transitions with probability 0 are left out of the picture.

A PA [5] resembles a LTS, but its transitions target probability distributions over states instead of single states. Hence,

PAs can be seen as a combination of MCs and LTSs.

Definition 3 (Probabilistic Automata). A probabilistic automaton (PA) is a tuple (S, A, L, AP , V , s0), where S is a finite set of

states with initial state s0 ∈ S , A ⊆ Act is a finite set of actions, L: S × A ×Dist(S) → B2 is a two-valued transition function,

AP is a finite set of atomic propositions, and V : S → 2AP is a state-labeling function.

We write s
a

→ μ meaning L(s,a,μ) = ⊤. In the rest of the paper, we assume that PAs are finitely branching, i.e., for any

state s, the number of pairs (a,μ) such that s
a

→ μ is finite. The labeling function V indicates the propositions (or properties)

that are valid in a state. Hence a Markov Chain, as defined previously, is a PA with a single action and a single outgoing

transition from each state, i.e. for each s ∈ S there exists exactly one triple (s,a,μ) such that L(s,a,μ) = ⊤. Without loss of

generality, we assume in the rest of the paper that Act ∩ AP = ∅ for all PAs.

Example. Fig. 3 presents a PA with L(s1,a,μ) = ⊤, where μ(s2) = 0.3, μ(s3) = 0.2, and μ(s4) = 0.5. We adopt a notational

convention that represents L(s1,a,μ) = ⊤ by a set of arrows with tails located close to each other on the boundary of s1 ,

and heads targeting the states in the support of μ.

Specifications. We now introduce Abstract Probabilistic Automata, that is a specification formalism for PAs. APAs are the

combinations of Modal Transition Systems and Constraint Markov Chains—specification formalisms for labeled transition

systems and Markov Chains, respectively. We first briefly introduce Modal Transition Systems and Constraint Markov Chains,

and then move to APAs.

A Modal Transition System (MTS) [23,16] is an automaton whose transitions are typed with may and must modalities.

Informally, a must transition is available in every model of the specification, while a may transition may be absent in some

design.

Definition 4 (Modal Transition System). A Modal Transition System is a tuple (S, A, L, AP , V , s0), where S is a finite set of

states with initial state s0 ∈ S , A ⊆ Act is a finite set of actions, L: S × A × S → B3 = {⊥,?,⊤} is a three-valued transition
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Fig. 4. Examples of MTS and CMC.

function, AP is a finite set of atomic propositions, and V : S → 2AP is a state-labeling function. Transitions (s,a, s′) with

L(s,a, s′) =? are called may transitions, and transitions (s,a, s′) with L(s,a, s′) = ⊤ are called must transitions.

Here, B3 = {⊥,?,⊤} denotes a lattice with the ordering ⊥ < ? < ⊤ and meet (⊓) and join (⊔) operators. An example

of a MTS N is given in Fig. 4a. There, and throughout the paper, may transitions are represented by dashed arrows and

must transitions by plain ones. One can easily see that LTS T given in Fig. 2a is an implementation of N . Indeed, the must

transition from state 0 to state 1 with action a in N is present in T , while the transition from state 0 to state 3 with action

c in T corresponds to a may transition in N and all state labels are matching.

A ConstraintMarkov Chain (CMC) [18,19] is a MC equipped with a constraint on the next-state probabilities from any state.

Roughly speaking, an implementation of a CMC is a MC, whose next-state probability distributions satisfy the constraint

associated with each state. A constraint function ϕ : Dist(S) → {0,1} represents a set of distributions on S . Let Sat(ϕ)

denote the set of distributions μ that satisfy constraint function ϕ (i.e. such that ϕ(μ) = 1), and C(S) the set of constraint

functions defined on state space S .

Definition 5 (Constraint Markov Chain). A Constraint Markov Chain is a tuple C = (S,ψ, AP , V , s0) where S is a finite set

of states with initial state s0 ∈ S , ψ : S → C(S) is a state-constraint function, AP is a set of atomic propositions, and

V : S → 22
AP

is a state labeling function.

For each state s ∈ S , the state-constraint function ψ is such that, for all distributions π on S , ψ(s) is a constraint

function as defined above. Intuitively, ψ(s)(π) = 1 iff distribution π is allowed in state s. The function V labels each state

with a subset of the powerset of AP, which models a disjunctive choice of possible combinations of atomic propositions,

thus allowing a higher level of abstraction w.r.t. implementations.

An example of a CMC C is given in Fig. 4b. Remark that the MC M given in Fig. 2b is an implementation of C . Indeed, the

distribution μ outgoing from state 0 in M agrees with the constraint ϕ specified in C and the sets of atomic propositions

in M are included in the labels specified in C .

A CMC whose constraints are of the form l � μ � r, where l, r are constant vectors and μ is a probability distribution

over the state space is called an Interval Markov Chain (IMC) [13].

We now present the central definition of the paper:

Definition 6 (Abstract Probabilistic Automata). An Abstract Probabilistic Automaton (APA) is a tuple (S, A, L, AP , V , s0) where S ,

A, AP are finite sets of states, actions, and atomic propositions respectively, s0 ∈ S is the initial state, L : S × A × C(S) → B3

is a three-valued state-constraint function, and V : S → 22
AP

maps a state onto a set of admissible valuations.

A CMC is thus an APA, where for each s ∈ S , there exists exactly one triple (s,a,ϕ) such that L(s,a,ϕ) = ⊤. The labeling

L(s,a,ϕ) identifies the “type” of the constraint function ϕ ∈ C(S): ⊤, ? and ⊥ indicate a must, a may and the absence

(forbidden) of a constraint function, respectively. Without loss of generality, we assume in the rest of the paper that Act ∩

AP = ∅ for all APAs.

In practice, as will be seen in later definitions, a lack of value for given argument is equivalent to the ⊥ value, so we will

sometimes avoid defining ⊥-value rules in constructions to avoid clutter, and occasionally will say that something applies if

L takes the value of ⊥, meaning that it is either taking this value or it is undefined.

We occasionally write Must(s) for the set of actions a such that there exists ϕ , so that L(s,a,ϕ) = ⊤, and write May(s)

for the set of actions b such that there exists ϕ , so that L(s,b,ϕ) = ⊥. Remark that in our formalism, Must(s) ⊆ May(s). This

implies that we do not allow inconsistencies at the level of modalities, i.e. required but not allowed transitions.

We could have limited ourselves to constraints denoting unions of intervals. However, as for CMCs, polynomial constraints

are needed to support both conjunction and parallel composition [19]. Later, we shall see that almost all APAs whose states
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Fig. 5. An APA N with two transitions: may to constraint ϕy and must to ϕz .

are labeled with a set of subsets of atomic propositions can be turned into an equivalent (in the sense of implementations

set) APA whose states are labeled with a set that contains only a single subset of atomic propositions.

Finally, observe that a PA is an APA in which every transition (s,a,ϕ) is a must transition with |Sat(ϕ)| = 1, and each

state-label consists of a single set of propositions.

Example. Consider the APA N given in Fig. 5. State s′1 has two outgoing transitions: a may a-transition (s′1,a,ϕy) and a

must a-transition (s′1,a,ϕz). The ϕy and ϕz constraints are shown under the automaton in the figure.

The constraints allow that each of the automaton’s two transitions can cover multiple transitions in a concrete imple-

mentation PA. As an example, the a-transition (s1,a, (0,0.3,0.2,0.5)) of the PA given in Fig. 3 matches the must a-transition

(s′1,a,ϕz): if we write z4 = 0.2 + 0.5 the sum of all probabilities going to states whose valuations are in the set specified

in s′4 , and z5 = 0.3 the sum of all probabilities going to states whose valuations are in the set specified in s′5 , then we

can verify that z′4 + z′5 = 1, hence satisfying ϕz . In order to avoid clutter, the transitions that do not admit any positive

probabilities are not represented in the figures.

In the rest of the paper we distinguish the class of deterministic APAs. The distinction will be of particular importance

when comparing APAs in Section 3.1. We first present the definition of determinism for CMCs and MTS, as introduced

in [18,19]. We say that a CMC C = (S,ψ, AP , V , s0) is deterministic if and only if for all states s, s′, s′′ ∈ S , if there exists

π ′ ∈ Dist(S) such that (ψ(s)(π ′) ∧ (π ′(s′) = 0)) and π ′′ ∈ Dist(S) such that (ψ(s)(π ′′) ∧ (π ′′(s′′) = 0)), then we have that

V (s′) ∩ V (s′′) = ∅.

We say that a MTS N = (S, A, L, AP , V , s0) is deterministic if and only if there is at most one outgoing transition for

each action in all states, i.e. ∀s ∈ S , ∀a ∈ A, |{s′ | L(s,a, s′) = ⊥}| � 1.

In APAs, the non-determinism can arise due to sets of valuations in states, like for CMCs, or due to actions that label

transitions, like for MTS. Informally, an APA is (1) action-deterministic if there is at most one outgoing transition for each

action in all states; and (2) valuation-deterministic if two states with overlapping atomic propositions can never be reached

with the same transition. Remark that the definition for valuation-determinism is similar to the notion of determinism for

CMCs presented above.

Definition 7 (Determinism). An APA N = (S, A, L, AP , V , s0) is

• action-deterministic if ∀s ∈ S , ∀a ∈ A, |{ϕ ∈ C(S) | L(s,a,ϕ) = ⊥}| � 1.

• valuation-deterministic if ∀s ∈ S , ∀a ∈ A, ∀ϕ ∈ C(S) with L(s,a,ϕ) = ⊥:

∀μ′,μ′′ ∈ Sat(ϕ), s′, s′′ ∈ S,
(
μ′

(
s′
)
> 0∧ μ′′

(
s′′

)
> 0 ⇒ V

(
s′
)
∩ V

(
s′′

)
= ∅

)
.

An APA N is deterministic if and only if it is action-deterministic and valuation-deterministic.

Satisfaction. We relate APA specifications to PAs implementing them by extending the definitions of satisfaction for proba-

bilistic systems introduced in [13]. In this section, we only consider PAs/APAs with equal sets of actions and equal sets of

atomic propositions. The case of dissimilar alphabets is treated in Section 7.

The following notion of simulation characterizes equivalent distributions according to a given relation on sets of states.

This definition is similar to the one given in [13]. In Section 3.2, we show how this notion of simulation and the subsequent

notion of satisfaction are related to the classical notion of probabilistic bisimulation for probabilistic automata [5].

Definition 8 (Simulation). Let S and S ′ be non-empty finite sets of states. Given μ ∈ Dist(S), μ′ ∈ Dist(S ′), a function δ : S →

(S ′ → [0,1]), and a binary relation R ⊆ S × S ′ , μ is simulated by μ′ with respect to R and δ, denoted μ⋐δ
R μ′ , if and only

if
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Fig. 6. A simulation between distributions μ1 and μ2 with respect to relation R= {(1, A), (2, B), (3, B), (3,C), (4,C)} and a correspondence function δ.

1. for all s ∈ S , if μ(s) > 0, then δ(s) ∈ Dist(S ′),

2. for all s′ ∈ S ′ ,
∑

s∈S μ(s)δ(s)(s′) = μ′(s′), and

3. for all s, s′ ∈ S , if δ(s)(s′) > 0, then (s, s′) ∈ R .

In the rest of the paper, we write μ ⋐R μ′ whenever there exists a function δ such that μ ⋐δ
R μ′ . Such δ is called a

correspondence function.

Example. Simulation is illustrated in Fig. 6, where distribution μ1 is simulated by distribution μ2 with respect to the

relation R= {(1, A), (2, B), (3, B), (3,C), (4,C)}. In the picture, the correspondence function δ is represented by the labeled

dashed arrows.

We now define a satisfaction relation between PAs and APAs. Remark that this definition is a mix between the notion of

satisfaction for MTS [23,16] and the notion of satisfaction for CMCs [18,19].

Definition 9 (Satisfaction relation). Let P = (S, A, L, AP , V , s0) be a PA and N = (S ′, A, L′, AP , V ′, s′0) be an APA. R ⊆ S × S ′

is a satisfaction relation if and only if, for any (s, s′) ∈ R , the following conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S ′), if L′(s′,a,ϕ′) = ⊤, then ∃μ ∈ Dist(S): L(s,a,μ) = ⊤ and ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ ,

2. ∀a ∈ A, ∀μ ∈ Dist(S), if L(s,a,μ) = ⊤, then ∃ϕ′ ∈ C(S ′): L′(s′,a,ϕ′) = ⊥ and ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ , and

3. V (s) ∈ V ′(s′).

P satisfies N , denoted P |� N , if and only if there exists a satisfaction relation relating s0 and s′0 . If P |� N , P is called an

implementation of N .

Thus, a PA P is an implementation of an APA N if and only if any must transition of N is matched by a must transition

of P that is simulated by one of the probability distributions specified by the constraint, and reversely, P does not contain

must transitions that do not have a corresponding (may or must) transition in N . The set of implementations of N is

denoted by [[N]] = {P | P |� N}.

Example. The relation R = {(s1, s
′
1), (s2, s

′
5), (s3, s

′
4), (s4, s

′
4)} is a satisfaction relation between the PA P (Fig. 3) and the

APA N (Fig. 5). Indeed, all pairs (s, s′) ∈ R have matching valuations, and the outgoing must transition from s′1 is matched

by the outgoing transition from s1 (see previous example).

Single valuation normal form. As for CMCs [18,19], a large class of APAs whose states are labeled with a set of subsets of

atomic propositions can be turned into an equivalent APA (in terms of sets of implementations) whose states are labeled

with sets that contain a single subset of atomic propositions. The latter are called APAs in single valuation normal form. Single

valuation normal form makes the manipulation of satisfaction/refinement relations easier. However, as we shall see, building

the single valuation normal form of a given APA may lead to an exponential blowup in the number of states.

Definition 10 (Single valuation normal form). An APA N = (S, A, L, AP , V , s0) is in single valuation normal form (SVNF) iff all

its admissible valuations sets are singletons, i.e. ∀s ∈ S , |V (s)| = 1.

It turns out that any APA with a single valuation in the initial state can be turned into an APA in single valuation normal

form that admits the same set of implementations. This transformation is called normalization.

We introduce it with an example, first. Consider the APA N in Fig. 5. Since the valuation of state s′4 is not a singleton,

N is not in SVNF. In the normalization process we translate each state of the original APA into a collection of states—one per
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Fig. 7. Normalization N (N) of the APA N presented in Fig. 5.

each valuation. This mapping is captured by a normalization function; the following function N is the normalization function

for our example. Note that the only interesting case is for state s′4:

s′1 �→
{
s′′1

}
, s′2 �→

{
s′′2

}
, s′3 �→

{
s′′3

}
, s′4 �→

{
s′′4, s

′′
5

}
, s′5 �→

{
s′′6

}
.

Subsequently, each probability distribution constraint targeting a split state, needs to be rewritten, so that the sum of

the split probabilities, substituted for the original value, still satisfies the constraint. Applying the normalization to N results

in the APA N (N) given in Fig. 7. State s′4 of N is split into states s′′4 and s′′5 in N (N). The combined probability of reaching

these states in N (N), namely w4 + w5 , is substituted for z4 in ϕz—the original probability of reaching s′4 in N .

Definition 11 (Normalization). Let N = (S, A, L, AP , V , s0) be an APA. Let S ′ be a set of states and let N : S → 2S ′
be a

function such that:

1. S ′ =
⋃

s∈S N (s),

2. for all s1, s2 ∈ S such that s1 = s2 , N (s1) ∩N (s2) = ∅,

3. for all s ∈ S , |N (s)| = |V (s)|.

If |V (s0)| = 1, then the normalization of N , denoted N (N), is the APA N (N) = (S ′, A, L′, AP , V ′,N (s0)) such that:

1. for all s′ ∈ S ′ , |V ′(s′)| = 1,

2. for all s ∈ S , V (s) =
⋃

s′∈N (s) V
′(s′),

3. for all s ∈ S , for s′1, s
′
2 ∈N (s), s′1 = s′2 ⇔ V ′(s′1) = V ′(s′2), and

4. for all s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥, then for all s′ ∈N (s), L′(s′,a,ϕ′) = L(s,a,ϕ) for

ϕ′ ∈ C(S ′) such that Sat(ϕ′) = {μ′ ∈ Dist(S ′) | μ : s �→
∑

u∈N (s) μ
′(u) ∈ Sat(ϕ)}.

Remark 1. In the above definition, a set S ′ and a function N always exist. However, when |V (s0)| = 1, any normalization of

N would need to have several initial states, which we do not consider here.

Clearly, N (N) is an APA in single valuation normal form.

The following theorem asserts that normalization preserves implementations.

Theorem 12. For any APA N = (S, A, L, AP , V , s0) with |V (s0)| = 1, [[N]] = [[N (N)]].

Proof. Let N = (S, A, L, AP , V , s0) be an APA such that |V (s0)| = 1, and let N (N) = (S ′, A, L′, AP , V ′,N (s0)) be the nor-

malization of N , given the function N : S → 2S ′
. We prove the two directions separately.

• [[N]] ⊆ [[N (N)]]: Let P = (S P , A, LP , AP , V P , sP0 ) be any PA such that P ∈ [[N]] with satisfaction relation R ⊆ S P × S . We

show that P ∈ [[N (N)]]. Let R′ ⊆ S P × S ′ be the relation such that pR′s′ iff (V P (p) ∈ V ′(s′)) and (pRN−1(s′)), where

N−1(s′) is the unique state s such that s′ ∈N (s). We prove that R′ is a satisfaction relation relating sP0 and N (s0).

Let p ∈ S P and s′ ∈ S ′ be such that pR′s′ , and let s = N−1(s′). We show that R′ satisfies the axioms of a satisfaction

relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(s′,a,ϕ′) = ⊤. By the definition of N (N), there must exist a constraint ϕ ∈ C(S)

such that L(s,a,ϕ) = ⊤ and for all μ′ ∈ Sat(ϕ′), the distribution μ : t �→
∑

u∈N (t) μ
′(u) is in Sat(ϕ).

Since P |� N , there exists μP ∈ Dist(S P ) such that LP (p,a,μP ) = ⊤ and ∃μ ∈ Sat(ϕ) such that μP ⋐R μ. We will now

show that ∃μ′ ∈ Sat(ϕ′) such that μP ⋐R′ μ′ .

Let δ : S P → (S → [0,1]) be the correspondence function witnessing μP ⋐R μ. Let δ′ : S P → (S ′ → [0,1]) be such that

δ′(q)(t) = δ(q)(N−1(t)) if V P (q) ∈ V ′(t), and 0 otherwise.
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Let μ′ be the distribution on S ′ such that μ′(t) =
∑

q∈S P
μP (q)δ′(q)(t). The following hold:

(a) Let q ∈ S P be such that μP (q) > 0. By R, we have that δ(q) is a distribution on S . Let r ∈ S be such that δ(q)(r) > 0.

By construction of N (N), there exists a single t ∈ S ′ such that t ∈ N (r) and V (q) ∈ V (t). As a consequence, for all

r ∈ S ,
∑

t∈N (r) δ′(q)(t) = δ(q)(r). Thus, we have
∑

t∈S ′ δ′(q)(t) =
∑

r∈S δ(q)(r). Finally δ′(q) is also a distribution on

S ′ .

(b) By construction, we have that for all t ∈ S ′ ,

μ′(t) =
∑

q∈S P

μP (q)δ′(q)(t).

(c) Let q ∈ S P and t ∈ S ′ be such that δ′(q)(t) > 0. By construction of δ′ , we have that (1) δ(q)(N−1(t)) > 0 and

(2) V (q) ∈ V (t). By (1), we have that qRN−1(t). As a consequence, by the definition of R′ and (2), we have qR′t .

Thus μP ⋐R′ μ′ . We now prove that μ′ ∈ Sat(ϕ′). Let μ0(r) =
∑

t∈N (r) μ
′(t). By the definition of μ′ , we have

μ0(r) =
∑

t∈N (r)

μ′(t) =
∑

t∈N (r)

∑

q∈S P

μP (q)δ′(q)(t)

=
∑

q∈S P

μP (q)
∑

t∈N (r)

δ′(q)(t)

=
∑

q∈S P

μP (q)δ(q)(r) = μ(r).

Thus μ0 = μ ∈ Sat(ϕ) and by the definition of ϕ′ , we have μ′ ∈ Sat(ϕ′).

Finally, there exists μP ∈ Dist(S P ) such that LP (p,a,μP ) = ⊤ and there exists μ′ ∈ Sat(ϕ′) such that μP ⋐R′ μ′ .

2. Let a ∈ A and μP ∈ Dist(S P ) be such that LP (p,a,μP ) = ⊤. By a similar argument, there exists ϕ′ ∈ C(S ′) such that

L′(s,a,ϕ′) = ⊥ and there exists μ′ ∈ Sat(ϕ′) such that μP ⋐R′ μ′ .

3. By construction of R′ , we know that V P (p) ∈ V ′(s′).

We conclude that sP0R
′N (s0), since V P (sP0 ) ∈ V (s0) = V ′(N (s0)) and sR0RN−1(N (s0)) which is equivalent to saying that

sP0Rs0 .

• [[N]] ⊇ [[N (N)]]: Let P = (S P , A, LP , AP , V P , sP0 ) be any PA such that P ∈ [[N (N)]] with satisfaction relation R′ ⊆ S P × S ′

with sP0Rs0 . We show that P ∈ [[N]]. Let R ⊆ S P × S be the relation such that pRs iff there exists s′ ∈ N (s) such that

pR′s′ . By a similar reasoning as in the previous case, R is a satisfaction relation and sP0Rs0 , thus P |� N . ✷

In the rest of the paper, we sometimes require that APAs are in single valuation normal form in order to make the

manipulation of satisfaction/refinement relations easier. By the above theorem, there is no loss of generality in making this

assumption when the initial state is already in single valuation normal form. When it is not, it is equivalent to consider a

set of APAs with initial states in single valuation normal form, one for each valuation of the original initial state.

3. Refinement, bisimulation and abstraction

Being able to compare specifications is central to stepwise design. Systematic comparison enables simplification of

specifications (abstraction) and adding details to specifications (elaboration). Usually, specifications are compared using a

refinement relation. In this section, we first introduce several notions of refinement for APAs and study their ordering. Then

we show that our formalism is backward-compatible with the classical notion of bisimulation for PA [5,21]. Finally, we

propose two notions of abstraction for APAs.

3.1. Refinement

A refinement compares APAs with respect to their sets of implementations. More precisely, if APA N refines APA N ′ , then

the set of implementations of N should be included in the one of N ′ . The ultimate refinement relation that can be defined

between APAs is thus Thorough Refinement that exactly corresponds to inclusion of sets of implementations.

Definition 13 (Thorough refinement). Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs. N thoroughly refines

N ′ , denoted N �T N ′ , iff [[N]] ⊆ [[N ′]].

For most specification theories, it is known that deciding thorough refinement is computationally intensive (see for

example [24]). For many models such as Modal automata or CMCs, one can partially avoid the problem by working with a

syntactical notion of refinement. This definition, which is typically strictly stronger than thorough refinement, is easier to
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check. The difference between syntactic and semantic refinements resembles the difference between simulations and trace

inclusion for transition systems.

We consider three syntactic refinements. These relations extend two well known refinement relations for CMCs and

IMCs by combining them with the refinement defined on modal automata. By tweaking the alternation of quantifiers in the

associated formulas, one can define several syntactical notions of refinements with different expressivity. For the sake of

completeness, we define all three notions and compare their granularity. We start with the strong refinement.

Definition 14 (Strong refinement). Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs. R ⊆ S × S ′ is a strong

refinement relation if and only if, for all (s, s′) ∈ R , the following conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S ′), if L′(s′,a,ϕ′) = ⊤, then ∃ϕ ∈ C(S): L(s,a,ϕ) = ⊤ and there exists a correspondence function

δ : S → (S ′ → [0,1]) such that ∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) with μ⋐δ
R μ′ ,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s,a,ϕ) = ⊥, then ∃ϕ′ ∈ C(S ′): L′(s′,a,ϕ′) = ⊥ and there exists a correspondence function

δ : S → (S ′ → [0,1]) such that ∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) with μ⋐δ
R μ′ , and

3. V (s) ⊆ V ′(s′).

We say that N strongly refines N ′ , denoted N �S N ′ , if and only if there exists a strong refinement relation relating s0
and s′0 .

Observe that strong refinement imposes a “fixed-in-advance” correspondence function δ in the simulation relation be-

tween distributions. In this way, it strongly resembles the notion of satisfaction presented in Definition 9. This assumption

is lifted with the definition of weak refinement:

Definition 15 (Weak refinement). Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs. R ⊆ S × S ′ is a weak

refinement relation if and only if, for all (s, s′) ∈ R , the following conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S ′), if L′(s′,a,ϕ′) = ⊤, then ∃ϕ ∈ C(S): L(s,a,ϕ) = ⊤ and ∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ ,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s,a,ϕ) = ⊥, then ∃ϕ′ ∈ C(S ′): L′(s′,a,ϕ′) = ⊥ and ∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ ,

and

3. V (s) ⊆ V ′(s′).

We say that N weakly refines N ′ , denoted N � N ′ , if and only if there exists a weak refinement relation relating s0 and s′0 .

Weak weak refinement weakens the assumption even more by allowing to choose, for each solution of the left constraint,

both a different correspondence function and a different constraint (transition) to which it will be linked:

Definition 16 (Weak weak refinement). Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs. R ⊆ S × S ′ is a

weak weak refinement relation if and only if, for all (s, s′) ∈ R , the following conditions hold:

1. ∀a ∈ A, ∀ϕ′ ∈ C(S ′), if L′(s′,a,ϕ′) = ⊤, then ∃ϕ ∈ C(S): L(s,a,ϕ) = ⊤ and ∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ ,

2. ∀a ∈ A, ∀ϕ ∈ C(S), if L(s,a,ϕ) = ⊥, then ∀μ ∈ Sat(ϕ), ∃ϕ′ ∈ C(S ′): L′(s′,a,ϕ′) = ⊥ and ∃μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ ,

and

3. V (s) ⊆ V ′(s′).

We say that N weakly weakly refines N ′ , denoted N �W N ′ , if and only if there exists a weak weak refinement relation

relating s0 and s′0 .

It is easy to see that the above definitions are combinations of the definitions of strong and weak refinement of CMCs

with the modal refinement of Modal Automata. Hence algorithms for checking weak weak, weak, and strong refinements for

APAs can be obtained by combining existing fixed-point algorithms for CMCs [19] and Modal Automata [17]. For the class

of polynomial-constraint APAs, the upper bound for deciding weak/strong refinement is thus exponential in the number of

states and doubly-exponential in the size of the constraints [19]. Notice that all three refinement relations are preorders on

the set of APAs.

Weak weak, weak, and strong refinements all imply inclusion of sets of implementations. However, the converse is not

true. The following theorem classifies the refinement relations.

Theorem 17. Thorough refinement is strictly finer than weak weak refinement, weak weak refinement is strictly finer than weak

refinement, and weak refinement is strictly finer than strong refinement. That is,

(�T ) � (�W ) � (�) � (�S).
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Fig. 8. APAs N1 and N2 such that N1 �W N2 , but not N1 � N2 .

Proof. We first prove the inclusions, and then show that all of them are strict.

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S ): By a swap of quantifiers in the definitions, it is obvious that strong refinement implies

weak refinement, and that weak refinement implies weak weak refinement. We prove that weak weak refinement implies

thorough refinement. Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs such that N �W N ′ with a weak

weak refinement relation R′ ⊆ S × S ′ .

If [[N]] = ∅, we have [[N]] ⊆ [[N ′]]. Otherwise, let P = (S P , A, LP , AP , V P , sP0 ) be a PA such that P |� N . Then there exists

a satisfaction relation R′′ ⊆ S P × S such that sP0R
′′s0 .

Let R ⊆ S P × S ′ be the relation such that uRw iff there exists v ∈ S such that uR′′v and vR′w . The proof that R is a

satisfaction relation is standard and follows the same lines as the proof of Theorem 12. We give the key arguments of this

proof and report the details to Appendix A.

Let u ∈ S P and w ∈ S ′ be such that uRw , and let v ∈ S be such that uR′′v and vR′w .

• Let a ∈ A′ and ϕ′ ∈ C(S ′) be such that L′(w,a,ϕ′) = ⊤. By R′ , there exists ϕ ∈ C(S) such that L(v,a,ϕ) = ⊤ and

∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ ⋐R ′ μ′ . Moreover, by R′′ , there exist μP ∈ Dist(S P ) such that LP (u,a,μP ) = ⊤

and μS ∈ Sat(ϕ) such that μP ⋐R ′′ μS .

Let μS ∈ Dist(S) and μ′ ∈ Dist(S ′) be such that μP ⋐R ′′ μS and μS ⋐R ′ μ′ . Let δ′′ : S P → (S → [0,1]) and δ′ : S → (S ′ →

[0,1]) be the correspondence functions witnessing μP ⋐δ′′

R ′′ μS and μS ⋐
δ′

R ′ μ
′ respectively. The correspondence function

for R is δ : S P → (S ′ → [0,1]) such that δ(s)(t) =
∑

r∈S δ′′(s)(r)δ′(r)(t). It follows that μP ⋐δ
R

μ′ .

• Let a ∈ A and μP ∈ Dist(S P ) be such that LP (u,a,μ) = ⊥. By R′′ , there exists ϕ ∈ C(S) such that L(v,a,ϕ) = ⊥ and

∃μS ∈ Sat(ϕ) such that μP ⋐R ′′ μS . Moreover, by R′ , we have that for all μ ∈ Sat(ϕ), there exist ϕ′ ∈ C(S ′) such that

L′(w,a,ϕ′) = ⊥ and μ′ ∈ Sat(ϕ′) such that μ⋐R ′ μ′ .

Let μS ∈ Dist(S) be such that μP ⋐R ′′ μS . Let ϕ′ ∈ Dist(S ′) be such that L′(w,a,ϕ′) �? and let μ′ ∈ Sat(ϕ′) be

such that μS ⋐R ′ μ′ . Let δ′′ : S P → (S → [0,1]) and δ′ : S → (S ′ → [0,1]) be the correspondence functions witness-

ing μP ⋐δ′′

R ′′ μS and μS ⋐δ′

R ′ μ′ respectively. The correspondence function for R is δ : S P → (S ′ → [0,1]) such that

δ(s)(t) =
∑

r∈S δ′′(s)(r)δ′(r)(t). It follows that μP ⋐δ
R

μ′ .

Thus R is a satisfaction relation. Moreover, since sP0R
′′s0 and s0R

′s′0 , we have that sP0Rs′0 , and we conclude that P ∈

[[N ′]], therefore N �T N ′ .

• �W =�: We show that for APAs N1 and N2 , given in Fig. 8, we have N1 �W N2 , but N1 � N2 .

• N1 �W N2: We show that R = {(s1, s
′
1), (s2, s

′
2), (s3, s

′
3), (s4, s

′
4), (s5, s

′
5)} is a weak weak refinement relation. By con-

struction, the pairs (s2, s
′
2), (s3, s

′
3), (s4, s

′
4) and (s5, s

′
5) satisfy the axioms of a weak weak refinement relation. We now

show that the pair of initial state (s1, s
′
1) also satisfies the axioms of a weak weak refinement relation. For distributions

μ ∈ Sat(ϕx) such that μ(s2) > 0 or μ(s3) > 0 we choose the constraint ϕy , and for other distributions we choose ϕz . It

is then clear that

∀μ ∈ Sat(ϕx), ∃ϕ′ ∈ {ϕy,ϕz}, ∃μ′ ∈ Sat
(
ϕ′

)
: μ⋐R μ′.

• N1 � N2: There exists no constraint ϕ′ ∈ C(S ′) such that L′(s′1,a,ϕ
′) = ⊥ and ∀μ ∈ Sat(ϕx), ∃μ′ ∈ Sat(ϕ′): μ⋐R μ′ .

• �=�S : We now show that for the APAs N3 and N4 , given in Fig. 9, we have N3 � N4 , but N3 �S N4 .

• N3 � N4: We show that R = {(s1, s
′
1), (s2, s

′
2), (s3, s

′
3), (s3, s

′
4), (s4, s

′
5)} is a weak refinement relation. Again, the pairs

(s2, s
′
2), (s3, s

′
3), (s3, s

′
4) and (s4, s

′
5) all satisfy the axioms of a weak refinement relation by construction. We now show

that the pair of initial states (s1, s
′
1) also satisfies the axioms of a weak refinement relation.
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Fig. 9. APAs N3 and N4 such that N3 � N4 , but not N3 �S N4 .

There is a constraint function ϕx ∈ C(S) such that L(s1,a,ϕx) =? and a constraint function ϕy ∈ C(S ′) such that

L(s′1,a,ϕy) =?. We now show that ∀μ ∈ Sat(ϕx), ∃μ′ ∈ Sat(ϕy): μ ⋐R μ′ . Let μ ∈ Sat(ϕx) and let δ : S → (S ′ → [0,1])

be given as

(
s1, s

′
1

)
�→ 1,

(
s2, s

′
2

)
�→ 1,

(
s3, s

′
3

)
�→ γ ,

(
s3, s

′
4

)
�→ 1− γ ,

(
s4, s

′
5

)
�→ 1,

where γ =
0.7−μ(s2)

μ(s3)
, if μ(s2) � 0.7, and γ =

0.8−μ(s2)
μ(s3)

otherwise.

1. By the definition of δ, for each s ∈ S , δ(s) is a distribution on S ′ .

2. Assume that μ(s2)� 0.7. For s′3, s
′
4 ∈ S ′ , we have

∑

s∈S

μ(s)δ(s)
(
s′3

)
= μ(s3)

0.7 − μ(s2)

μ(s3)
= 0.7− μ(s2),

∑

s∈S

μ(s)δ(s)
(
s′4

)
= μ(s3)

(
1−

0.7− μ(s2)

μ(s3)

)
= μ(s3) − 0.7+ μ(s2).

Using this observation, μ′ : S ′ → [0,1], given by s′1 �→ μ(s1), s
′
2 �→ μ(s2), s

′
3 �→ 0.7−μ(s2), s

′
4 �→ μ(s3)− 0.7+μ(s2),

and s′5 �→ μ(s4), is a distribution on S ′ , μ′ ∈ Sat(ϕy), and μ⋐δ
R μ′ . The proof is similar if μ(s2) > 0.7.

3. Pairs (s, s′) for which δ(s)(s′) > 0 are related by R by construction.

For valuations in s1 and s′1 , respectively, it holds that {{l}} ⊆ {{l}}.

• N3 �S N4: Suppose that there exists a satisfaction relation R′ , and let δ′ be the correspondence function witnessing

relation of s1 and s′1 . The valuations require that δ′ must be of the same type as δ above with γ � 0 (here γ is

constant). Consider the following two distributions over S , μ1 and μ2 given by

μ1: s1 �→ 0, s2 �→ 0.6, s3 �→ 0.1, s4 �→ 0.3,

μ2: s1 �→ 0, s2 �→ 0.8, s3 �→ 0.1, s4 �→ 0.1.

The 2 following properties must hold: (1) ∃μ′
1 ∈ Dist(S ′), ∀s′ ∈ S ′:

∑
s∈S μ1(s)δ(s)(s

′) = μ′
1(s

′) and (2) ∃μ′
2 ∈ Dist(S ′),

∀s′ ∈ S ′:
∑

s∈S μ2(s)δ(s)(s
′) = μ′

2(s
′). However, (1) requires that γ = 1, and (2) requires that γ = 0, which shows that

such a strong refinement relation cannot exist.

• �T =�W : Finally, we show that for the APAs N5 and N6 , given in Fig. 10, we have N5 �T N6 , but N5 �W N6 .

• N5 �T N6: It is easy to see that any PA satisfying N5 will also satisfy N6 .

• N5 �W N6: Consider the pair (s2, s
′
2). Sat(ϕx) = {μ1,μ2}, where μ1(s3) = 1 and μ2(s4) = 1. Let μ′

2 be the distribution

over N6 assigning probability 1 to s′4 . A correspondence function δ such that μ2 ⋐
δ
R

μ′
2 cannot exist, since such a δ

will satisfy that δ(s4)(s
′
4) = 1 and this pair cannot be related because {{o}} � {{n}}. The same applies for (s2, s

′
3). This

implies that N5 �W N6 . ✷

We have just seen that, in general, thorough refinement is strictly finer than any syntactical refinement. In Section 6.2,

we will show that the thorough, weak weak, weak, and strong refinement coincide on the class of deterministic APAs. In the

rest of this paper, each time that we show that a refinement relation holds, we prove it for the strongest possible version

of refinement.
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Fig. 10. APAs N5 and N6 such that N5 �T N6 , but not N5 �W N6 .

3.2. Bisimulation

In this section, we first introduce the classical notion of bisimulation for PAs [21]. Then, we show that the specification

theory we propose in this paper is backward-compatible, in the sense that bisimilar PAs satisfy the same specifications. The

section is structured as follows. First, we recap the definition of bisimulation for PAs. Then, in Theorem 20, we propose

a characterization of bisimulation based on the notion of satisfaction. Finally, Theorem 22 presents the main result of the

section, i.e. bisimilar APAs satisfy the same specifications. Detailed proofs of the theorems are given in Appendix B.

The following definition presents the classical notion of bisimulation proposed in [21].

Definition 18 (Bisimulation). Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs with no unreachable states.

We say that R⊆ S × S ′ is a bisimulation relation iff whenever (s, s′) ∈R, the following hold:

• V (s) = V ′(s′), and

• ∀a ∈ A, ∃μ ∈ Dist(S) such that L(s,a,μ) = ⊤ if and only if there exists μ′ ∈ Dist(S ′) such that L′(s′,a,μ′) = ⊤ and, for

each equivalence class T ∈ (S ∪ S ′)/R∗ , μ(T ) = μ′(T ), where R∗ denotes the reflexive, symmetric, transitive closure of

R on (S ∪ S ′).

P and P ′ are bisimilar, written P ≃ P ′ , if and only if there exists a bisimulation relation R such that s0Rs′0 .

Characterization. We now propose a methodology that uses the satisfaction relation and a lifting algorithm from PAs to

APAs in order to decide whether two given PAs are bisimilar. This methodology and the subsequent Theorem 20 will be of

particular interest for proving backward compatibility.

It turns out that bisimulation between two given PAs holds whenever, when lifted to APAs, they admit the same imple-

mentations. In the following, we first formally define the lifting from PAs to APAs. We then propose a formal syntactical

characterization of bisimilar PAs.

Definition 19 (Lifting). Let P = (S, A, L, AP , V , s0) be a PA. We define the lifting of P , denoted P̃ = (S, A, L̃, AP , Ṽ , s0) as

the APA where

• for all s ∈ S , a ∈ A, and ϕ ∈ C(S), L̃(s,a,ϕ) = ⊤ if and only if there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ and

Sat(ϕ) = {μ}, and

• for all s ∈ S , Ṽ (s) = {V (s)}.

Informally, the lifting P̃ of P extends state valuations to sets containing only the original valuations, and contains only

single-solution constraints based on the original distributions of P .

We propose the following theorem:

Theorem 20. Let P and P ′ be PAs. We have that P ≃ P ′ ⇔ P |� P̃ ′ .

Proof. We give a sketch of the proof, while a detailed version is given in Appendix B.1. Let P = (S, A, L, AP , V , s0) and

P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs, and let P̃ ′ = (S ′, A, L̃′, AP , Ṽ ′, s′0) be the lifting of P ′ .
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• P ≃ P ′ ⇒ P |� P̃ ′: Assume that P ≃ P ′ with relation Rb . It happens that Rb is a satisfaction relation such that P |� P̃ ′ .

• P ≃ P ′ ⇐ P |� P̃ ′: Assume that P |� P̃ ′ with satisfaction relation R. We prove that P ≃ P ′ .

Let R∗ denote the reflexive, transitive, symmetric closure of the relation R over S ∪ S ′ , and let Rb ⊆ S × S ′ be the

relation such that sRbs
′ iff sR∗s′ . It follows that Rb is a bisimulation relation and that s0Rbs

′
0 . We thus conclude that

P ≃ P ′ . ✷

Backward compatibility. We now move to the main result of the section: bisimilar PAs satisfy the same APAs. We first relate

lifting and refinement.

Lemma 21. Let P be a PA and let N be an APA. The following holds:

P |� N ⇔ P̃ � N.

Proof. • P |� N ⇒ P̃ � N: Let P = (S, A, L, AP , V , s0) be a PA and let N = (S ′, A, L′, AP , V ′, s′0) be an APA such that P |� N

with relation Rs . Let P̃ = (S, A, L̃, AP , Ṽ , s0) be the lifting of P . It happens that Rs is also a weak refinement relation

between P̃ and N . The proof is standard and reported in Appendix B.2.

Since R is a weak refinement relation and, by construction, s0Rs′0 , we conclude that P̃ � N .

• P |� N ⇐ P̃ � N: Let P = (S, A, L, AP , V , s0) be a PA, let P̃ = (S, A, L̃, AP , Ṽ , s0) be the lifting of P and let N =

(S ′, A, L′, AP , V ′, s′0) be an APA such that P̃ � N with relation Rr . Again, Rr is also a satisfaction relation between P

and N . The proof is standard and given in Appendix B.2.

Since R is a satisfaction relation and, by construction, s0Rs′0 , we conclude that P |� N . ✷

Observe that, by the two previous results, we obtain that the lifting of two bisimilar PAs have equal sets of implementa-

tions:

P ≃ P ′ ⇔ [[ P̃ ]] = [[ P̃ ′]].

We now present the main result of the section, that is that bisimilar PAs satisfy the same specifications.

Theorem 22. Let P and P ′ be PAs such that P ≃ P ′ . For all APA N, it holds that P |� N ⇔ P ′ |� N.

Proof. Let P and P ′ be PAs such that P ≃ P ′ , and let N be an APA such that P |� N . Consider the liftings P̃ and P̃ ′ of P

and P ′ . By Lemma 21, we have P̃ � N . Moreover, by Theorem 20, we have P ′ |� P̃ . Since weak refinement implies imple-

mentation set inclusion, we thus have that P ′ |� N . By symmetry, we thus have that for all APA N , P |� N ⇔ P ′ |� N . ✷

3.3. Abstraction

We now propose two different notions of abstraction. The first notion, called state-based abstraction amounts to grouping

sets of states into single abstract states. The aim of state-based abstraction is to reduce the complexity of APAs by reducing

their state space. The second notion, called constraint-based abstraction, amounts to abstracting complex constraints into

the smallest interval constraints that encompass all their solutions. The aim of constraint-based abstraction is to reduce the

complexity of the constraints. Indeed, as shown in [22], manipulating interval constraints allows for less complex algorithms

in general. Observe that both notions of abstraction can be combined.

State-based abstraction. The aim of this abstraction is to partition the state space, i.e., group (disjoint) sets of states into

a single abstract state. Let N and M be APAs with state space S and S ′ , respectively. An abstraction function α : S → S ′

is a surjection. The inverse of abstraction function α is the concretization function γ : S ′ → 2S . The state α(s) denotes the

abstract counterpart of state s while γ (s′) represents the set of all (concrete) states that are represented by the abstract

state s′ . Abstraction is lifted to distributions as follows. The abstraction of μ ∈ Dist(S), denoted α(μ) ∈ Dist(S ′), is uniquely

defined by α(μ)(s′) = μ(γ (s′)) for all s′ ∈ S ′ . Abstraction is lifted to sets of states, or sets of distributions in a pointwise

manner. It follows that ϕ′ = α(ϕ) if and only if Sat(ϕ′) = α(Sat(ϕ)). The cartesian product of two abstraction functions is

given as follows: (α1 × α2)(s1, s2) = (α1(s1),α2(s2)). These ingredients provide the basis to define the state abstraction of

an APA.

Definition 23 (State-based abstraction). Given APA N = (S, A, L, AP , V , s0), the abstraction function α : S → S ′ induces the

APA α(N) = (S ′, A, L′, AP , V ′,α(s0)), where for all a ∈ A, s′ ∈ S ′ and ϕ′ ∈ C(S ′):
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Fig. 11. APA N and its state abstraction α(N).

L′(s′,a,ϕ′) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⊤
if ∀s ∈ γ (s′): ∃ϕ ∈ C(S): L(s,a,ϕ) = ⊤, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ (s′)×C(S):L(s,a,ϕ)=⊤ Sat(ϕ))
(a)

?
if ∃s ∈ γ (s′): ∃ϕ ∈ C(S): L(s,a,ϕ) � ?, and

Sat(ϕ′) = α(
⋃

(s,ϕ)∈γ (s′)×C(S):L(s,a,ϕ) =⊥ Sat(ϕ))
(b)

⊥ otherwise (c)

and

V ′(s′) =
⋃

∀s∈γ (s′)

V (s).

Item (a) asserts that if there are must transitions (s,a,ϕ) from all states s ∈ γ (s′), then the must transition (s′,a,ϕ′)

represents their total behavior. Item (b) asserts that a may a-transition emanating from s′ represents the total behavior of

all may and must transitions (s,a,ϕ) for all s ∈ γ (s′). Item (c) asserts that if no state in γ (s′) has an a-transition, then s′

also does not have an a-transition.

The result of abstracting APA N is the APA α(N) that is able to mimic all behaviors of N , but possibly exhibits more

behavior.

Example. Consider the APA N = (S, A, L, AP , V , s0) depicted in Fig. 11a. Let the abstraction function α : S → S ′ be given

by α(s1) = s′1 , α(s2) = α(s3) = s′23 , α(s4) = s′4 , α(s5) = s′5 , and α(s6) = s′6 . The APA α(N) obtained following Definition 23

is depicted in Fig. 11b. State s′1 has a single outgoing must a-transition, corresponding to the outgoing must a-transition

of s1 , where target states are collapsed and the constraint is simplified accordingly. State s′23 has two outgoing transitions:

(1) a must a-transition because both s2 and s3 have must a-outgoing transitions (item (a) of Definition 23), with a constraint

that represents the union of the constraints of the original must transitions; and (2) a may a-transition because s2 has a

may a-transition (item (b) of Definition 23), with a constraint that represents the union of the constraints of all outgoing

a-transitions of s2 and s3 .

Observe that the abstract version of an APA is always weaker in term of refinement than the original APA.

Lemma 24. For all APA N and abstraction function α, N �S α(N).

Proof. Let N = (S, A, L, AP , V , s0) be an APA and let α : S → S ′ be an abstraction function. Consider the state abstraction

α(N) = (S ′, A, L′, AP , V ′,α(s0)). Let R ⊆ S × S ′ be the relation such that sRs′ iff s′ = α(s). The proof that R is a strong

refinement relation is standard. The key point of this proof is to use the following correspondence functions: δ : S →
(S ′ → [0,1]) such that δ(u)(v) = 1 if α(u) = v , and 0 otherwise. For the sake of completeness, the full proof is reported

in Appendix C. ✷

Observe that by the ordering of refinement relations given in Theorem 17, it also holds that N � α(N), N �W α(N) and

N �T α(N).

Constraint-based abstraction. Given a constraint ϕ ∈ C(S), we say that ϕ is an interval constraint if there exist closed inter-

vals {I
ϕ
s | s ∈ S} such that ∀μ, μ ∈ Sat(ϕ) ⇔

∧
s∈S (μ(s) ∈ I

ϕ
s ). If, for all s ∈ S , a ∈ A, and ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥, it

holds that ϕ is an interval constraint, then we call N an Interval Probabilistic Automaton (IPA).

The following notion of abstraction abstracts an APA with the smallest IPA encompassing all its implementations.
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Definition 25 (Constraint-based abstraction). Let N = (S, A, L, AP , V , s0) be an APA. The constraint-abstracted APA χ(N) =

(S, A, L′, AP , V , s0) is defined such that for all states s ∈ S and a ∈ A, if there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥, then

L′(s,a,ϕ′) = L(s,a,ϕ) for ϕ′ ∈ C(S) defined as

Sat
(
ϕ′

)
=

{
μ′ ∈ Dist(S)

∣∣∣
∧

s′∈S

μ′
(
s′
)
∈ I

ϕ
s′

}
,

where {I
ϕ
s′

| s′ ∈ S} are the smallest closed intervals such that ∀μ ∈ Sat(ϕ):
∧

s′∈S μ(s′) ∈ I
ϕ
s′
.

As expected, constraint-based abstraction is an abstraction with respect to strong refinement.

Lemma 26. For any APA N, it holds that N �S χ(N).

Proof. Let N = (S, A, L, AP , V , s0) be an APA and let χ(N) = (S, A, L′, AP , V , s0) be the constraint-abstraction of N . Let

R= S × S be the identity relation. The proof that R is a strong refinement relation is standard. The key point of this proof

is to use identity correspondence functions. For the sake of completeness, the full proof is given in Appendix D. ✷

We now show that if N is a valuation-deterministic APA in SVNF, then χ(N) is the smallest IPA in SVNF abstracting

N with respect to weak refinement. However, when N and χ(N) are not in SVNF, it is possible to abstract N in different

ways by grouping states with different valuations, leading to abstractions that cannot be compared with χ(N) using the

refinement relations.

Theorem 27. For any valuation-deterministic APA N in SVNF and IPA N ′ in SVNF, N � N ′ implies χ(N) � N ′ .

Proof. Let N = (S, A, L, AP , V , s0) be a valuation-deterministic APA, and let N ′ = (S ′, A, L′, AP , V ′, s′0) be an IPA, both in

SVNF, such that N � N ′ with a weak refinement relation R. Let χ(N) = (S, A, L′′, AP , V , s0) be the constraint abstraction

of N . Let R′ :=R. Although R and R′ are equal, we chose to use two different notations to stress the fact that the former

is a weak refinement relation between N and N ′ while the latter is a relation between χ(N) and N ′ . We prove that R′ is

a weak refinement relation such that χ(N) � N ′ . Let s ∈ S and s′ ∈ S ′ be such that sR′s′ . We show that R′ satisfies the

axioms of a weak refinement relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(s′,a,ϕ′) = ⊤. By R, there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊤ and ∀μ ∈

Sat(ϕ) ∃μ′ ∈ Sat(ϕ′): μ ⋐R μ′ . By construction of χ(N), there exist ϕI ∈ C(S) (the constraint-abstraction of ϕ) such

that L′′(s,a,ϕI ) = ⊤ and Sat(ϕI ) = {μ′′ ∈ Dist(S) |
∧

s′′∈S μ′′(s′′) ∈ I
ϕ
s′′

} with {I
ϕ
s′′

| s′′ ∈ S} the smallest closed intervals

such that ∀μ ∈ Sat(ϕ):
∧

s′′∈S μ(s′′) ∈ I
ϕ
s′′
.

Define R′(s1) = {s′1 ∈ S ′ | s1R
′s′1} for all s1 ∈ S . Observe that for all s1 = s2 , ϕ ∈ C(S), and a ∈ A such that L(s,a,ϕ) = ⊥,

if there exist μ1,μ2 ∈ Sat(ϕ) with μ1(s1) > 0 and μ2(s2) > 0, then, since N is valuation-deterministic and N ′ is in

SVNF, R′(s1) ∩R′(s2) = ∅ (observation A).

Let {I
ϕI
s1 = [ls1 ,us1 ] | s1 ∈ S} be the intervals associated with ϕI , and let {I

ϕ′

s′1
= [l′

s′1
,u′

s′1
] | s′1 ∈ S} be the intervals associ-

ated with ϕ′ . Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊥. Let s1 ∈ S . By minimality of the interval constraints in

χ(N), there exists μ ∈ Sat(ϕ) such that μ(s1) = ls1 . Since sRs′ , there exists δ : S → Dist(S ′) such that

∀s′1 ∈ S ′:
∑

s2∈S

μ(s2)δ(s2)
(
s′1

)
= μ′

(
s′1

)
,

for some μ′ ∈ Sat(ϕ′), where L′(s′,a,ϕ′) = ⊥.

For δ, we deduce that ∀s′1 /∈R′(s1), δ(s1)(s
′
1) = 0 and ∀s2 = s1 , ∀s′1 ∈R′(s2), δ(s2)(s

′
1) = 0. By the first deduction, ∀s′1 ∈

R′(s1), μ(s1)δ(s1)(s
′
1) � l′

s′1
and by the second,

∑
s′1∈R

′(s1)
μ(s2)δ(s2)(s

′
1) = ls1 . As a consequence, ls1 �

∑
s′1∈R

′(s1)
l′
s′1
,

and similarly, we obtain us1 �
∑

s′1∈R
′(s1)

u′
s′1
.

Let μI ∈ Sat(ϕI ). We now prove that there exists μ′
I ∈ Sat(ϕ′) such that μI ⋐R′ μ′

I . For all s1 ∈ S , define the correspon-

dence function δ′ : S → Dist(S ′) as follows: if μI (s1) = 0, then δ′(s1)(s
′
1) = 0 for all s′1 ∈ S ′ and otherwise,

δ′(s2)
(
s′1

)
=

⎧
⎨
⎩

1
μI (s2)

(
l′
s′1

+
(u′

s′
1

−l′
s′
1

)(μI (s2)−
∑

s′
2
∈R′(s2) l

′
s′
2

)

∑
s′
2
∈R′(s2)(u

′
s′
2

−l′
s′
2

)

)
if s′1 ∈ R′(s2),

0 otherwise.

(1)

Let μ′
I ∈ Dist(S ′) be such that μ′

I (s
′
1) =

∑
s2∈S μI (s2)δ(s2)(s

′
1). We prove that μI ⋐

δ′

R′ μ
′
I .

(a) By construction, if μI (s1) > 0, then
∑

s′1∈S ′ δ′(s1)(s
′
1) = 1.

(b) Let s∗′ ∈ S ′ . By observation A, there exists at most one s∗ ∈ S such that μI (s
∗) > 0 and s∗′ ∈ R′(s∗). There are two

cases:
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• If no such s∗ exists, then l′
s∗′ =

∑
s2∈S μI (s2)δ

′(s2)(s
∗′) = 0 and we have

l′
s∗′ �μ′

I

(
s∗

′)
� u′

s∗′ .

• Otherwise, we have

∑

s2∈S

μI (s2)δ
′(s2)

(
s∗

′)
= μI

(
s∗

)
δ′

(
s∗

)(
s∗

′)

= l′
s∗′ +

(u′
s∗′ − l′

s∗′)(μI (s
∗) −

∑
s′2∈R

′(s∗) l
′
s′2

)
∑

s′2∈R
′(s∗)(u

′
s′2

− l′
s′2

)
.

Since
∑

s′2∈R
′(s2)

l′
s′2
� ls∗ �μI (s

∗), we have that

μ′
I

(
s∗

′)
=

∑

s2∈S

μI (s2)δ
′(s2)

(
s∗

′)
� l′

s∗′ .

Similarly,

μ′
I

(
s∗

′)
=

∑

s2∈S

μI (s2)δ
′(s2)

(
s∗

′)
� u′

s∗′ .

We conclude that ∀s′1 ∈ S ′ , μ′
I (s

′
1) ∈ I ′

s′1
. Thus μ′

I ∈ Sat(ϕ′).

(c) Assume that δ′(s1)(s
′
1) > 0. Then s′1 ∈R′(s1), and s1R

′s′1 .

We conclude that there exists μ′
I ∈ Sat(ϕ′) such that μI ⋐R′ μ′

I .

2. Let a ∈ A and ϕI ∈ C(S) be such that L′′(s,a,ϕI ) = ⊥. By construction, there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥. By

refinement, there exists ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) = ⊥ and ∀μ ∈ Sat(ϕ) ∃μ′ ∈ Sat(ϕ′): μ ⋐R μ′ . Using the same

reasoning as above, we can prove that ∀μI ∈ Sat(ϕI ), there exists μ′
I ∈ Sat(ϕ′) such that μI ⋐R μ′

I .

3. Clearly, V (s) ⊆ V ′(s′), as valuations in N and χ(N) are equal.

This proves that R′ is a weak refinement relation. As s0R
′s′0 , we conclude that χ(N) � N ′ . ✷

Observe that the above theorem does not hold for strong refinement: If N ′ is an IPA in SVNF such that N �S N ′ , then we

have χ(N) � N ′ but not necessarily χ(N) �S N ′ .

Example. We show that Theorem 27 does not hold when the APA N is not valuation-deterministic. Consider APA N and IPA

N ′ given in Fig. 12a and Fig. 12c respectively. It is easy to see that N is not valuation-deterministic, and that N � N ′ . Let

χ(N) be the constraint-based abstraction of N , as given in Fig. 12b. Consider PA P given in Fig. 12d. It is easy to see that

P |� χ(N), but P |� N ′ . Thus, by Theorem 17, χ(N) � N ′ .

Notice that Theorem 27 holds regardless whether N is action-deterministic. It turns out that if N is not action-

deterministic, then the theorem holds for weak refinement, but not for weak weak refinement. Fig. 13 illustrates a counter

example. This is not surprising as, because of the swap of quantifiers in its definition, weak weak refinement can take more

advantage of action non-determinism than weak refinement.

Although state-based abstraction and constraint-based abstraction are both abstractions, they cannot be compared in

general in terms of refinement. This statement is illustrated in the following example.

Example. Consider APA N given in Fig. 14a. Fig. 14b illustrates the state-based abstraction of N where state s2 and s3 are

grouped, and Fig. 14c illustrates the constraint-abstraction of N . It is easy to see that α(N) � χ(N). Indeed, state s′2 cannot

refine either state s′′2 or s′′3 , because their valuations do not coincide. Also χ(N) � α(N), because their constraints do not

match.

4. Consistency, pruning and conjunction

We now turn our attention to deciding whether there exist implementations satisfying one or several specifications.

When considering only one specification, this problem is called consistency. In the following subsection, we first formally

define consistency and then propose an algorithm to decide if a given APA is consistent. We then move to the problem

of deciding whether several APAs admit a common implementation. We propose an operation, called conjunction, that

combines requirements of several APAs into a single APA whose implementations are exactly those implementations that

satisfy all original APAs.
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Fig. 12. Example that constraint abstraction does not preserve � for non-valuation-deterministic APAs.

Fig. 13. Example that Theorem 27 does not hold for weak weak refinement with a non-action-deterministic APA.

4.1. Consistency and pruning

Definition 28 (Consistency). An APA N is consistent if and only if it admits at least one implementation, i.e. [[N]] = ∅.

We say that a state s is consistent if V (s) = ∅ and L(s,a,ϕ) = ⊤ ⇒ Sat(ϕ) = ∅. An APA is locally consistent if all its

states are consistent. It is easy to see that a locally consistent APA is consistent. However, inconsistency of a state does

not imply inconsistency of the specification. In order to decide whether a specification is consistent, we proceed as usual

and propagate inconsistent states with the help of a pruning operator β that filters out distributions leading to inconsistent
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Fig. 14. α(N) and χ(N) cannot be compared in terms of refinement.

Fig. 15. APAs N , β(N) and β2(N) = β∗(N).

states. This operator is applied until a fixed point is reached, i.e., until the specification does not contain inconsistent states

(it is locally consistent). We now formally define the pruning operator.

Definition 29 (Pruning). Let N = (S, A, L, AP , V , s0) be an APA with λ /∈ S and let T ⊆ S be the set of inconsistent states

in N . Let ν : S → {λ} ∪ S \ T be defined by ν(s) = λ if s ∈ T , and ν(s) = s otherwise. Let β be a pruning function defined by:

If ν(s0) = λ, then β(N) is the empty APA. Otherwise, β(N) = (S ′, A, L′, AP , V ′, s0) with S ′ = S \ T , and for all s ∈ S ′ , a ∈ A,

p ∈ AP and ϕ ∈ C(S ′),

L′(s,a,ϕ) =

{
⊥ if ϕs,a = ∅,⊔

ϕ∈ϕs,a L(s,a,ϕ) otherwise,

V ′(s) = V (s),

where ϕs,a is the set of constraints on S , reachable from state s with label a, that match ϕ when restricted to S ′ . More

formally,

ϕs,a =
{
ϕ ∈ C(S)

∣∣ L(s,a,ϕ) = ⊥ and μ ∈ Sat(ϕ) iff ∃μ ∈ Sat(ϕ) s.t.

∀s ∈ S ′, μ(s) = μ(s), and ∀t ∈ T , μ(t) = 0
}
.

All states in T are mapped onto λ and are removed from APA N . APA β(N) obtained by pruning may still contain

inconsistent states. Therefore, we repeat pruning until a fixpoint is reached such that βn(N) = βn+1(N), where n represents

the number of iterations. The existence of this fixpoint is guaranteed as N is finite. Some of the operations (conjunction and

composition) may introduce inconsistent states, and are succeeded by a pruning phase to remove such states.

Example. Consider APA N given in Fig. 15a. State s3 of N is inconsistent because of an empty valuation. The first round of

pruning thus removes state s3 and yields APA β(N) given in Fig. 15b. Since state s3 has been removed, transitions that used

to lead to s3 now have the constraint false, which admits no solution. The outgoing must transition of state s4 thus becomes

inconsistent. As a consequence, the next round of pruning removes state s4 and yields APA β2(N) given in Fig. 15c. Since

there are no more inconsistencies, it follows that β∗(N) = β2(N).

Pruning preserves the set of implementations, as formalized in the following theorem.

Theorem 30. For any APA N, it holds that [[N]] = [[β(N)]].
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Proof. Let N = (S, A, L, AP , V , s0) be an APA. Let T be the set of inconsistent states of N and let β(N) be the corresponding

APA using the pruning operator of Definition 29. The result is trivial if β(N) is empty. Otherwise, suppose that β(N) =
(S ′, A, L′, AP , V ′, s0), and let P = (Q , A, LP , AP , V P ,q0) be a PA. We prove that P |� N ⇔ P |� β(N).

• P |� N ⇒ P |� β(N): Suppose that P |� N , and let R ⊆ Q × S be the corresponding satisfaction relation. Define the

relation R′ =R∩ (Q × S ′). The proof that R′ is a satisfaction relation is standard. The key argument relies on the fact that

all the states s ∈ S such that there exists q ∈ Q with qRs are consistent, i.e. s /∈ T . Thus, considering the restriction of the

relation R to S \ T preserves implementations. For the sake of completeness, the detailed proof is given in Appendix E.

• P |� N ⇐ P |� β(N): Suppose that P |� β(N), and let R′ ⊆ Q × S ′ be the corresponding satisfaction relation. By construc-

tion, the extension R of R′ to Q × S is a satisfaction relation such that q0Rs0 . Thus P |� N . ✷

Observe that the above theorem only holds for thorough refinement. Indeed, any syntactic notion of refinement between

N and β(N) fails because some (potentially reachable) states of N are removed, and thus find no counterpart in β(N).

4.2. Conjunction

Conjunction, also called logical composition, allows combining two specifications into a single specification that has the

conjunctive behavior of the two operands. More precisely, a conjuncted specification admits the intersection of sets of

implementations of its constituents. The conjunction operation is a mix between the corresponding operations for modal

automata [25] and CMCs [19]. The main lines of the general conjunction operator that we define hereafter are as follows:

(1) a must transition on one side that has no counterpart on the other side yields an inconsistent transition, (2) a may

transition on one side that has no counterpart on the other side yields no transition, (3) the combination of two transitions

(may or must) yields a may transition to a combination of the constraints, and in addition, (4), (5) a must transition on

one side yields a must transition in the conjunction to a constraint combining the constraint associated to the original must

transition with a disjunction of all admissible constraints on the other side. Notice that, although items (1), (2), (3) are very

close to the definitions of conjunction for modal automata and CMCs, items (4), (5) are more involved. Indeed, the general

definition we present here needs to handle action non-determinism, which is not taken care of in CMCs or modal automata.

In fact a simpler notion of conjunction can be defined for deterministic APAs [1,2].

Notice that conjunction may introduce inconsistent transitions through (1) and should thus be followed by applying the

pruning operator β∗ .

Definition 31. Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs sharing action and proposition sets. Their

conjunction N ∧ N ′ is the APA (S × S ′, A, L̃, AP , Ṽ , (s0, s
′
0)) where Ṽ ((s, s′)) = V (s) ∩ V ′(s′) and

a ∈ (Must(s′) \ May(s)) ∪ (Must(s) \ May(s′))

L̃((s, s′),a, false) = ⊤
, 1 (1)

a ∈ (May(s) \ May(s′)) ∪ (May(s′) \ May(s))

L̃((s, s′),a, ϕ̃) = ⊥
, (2)

a ∈ May(s) ∩ May(s′) L(s,a,ϕ) = ⊥ L′(s′,a,ϕ′) = ⊥

L̃((s, s′),a, ϕ̃) =?
, (3)

where ϕ̃ ∈ C(S × S ′) such that μ̃ ∈ Sat(ϕ̃) if and only if

distribution μ : t →
∑

t′∈S ′ μ̃((t, t′)) is in Sat(ϕ) and

distribution μ′ : t′ →
∑

t∈S μ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s) L(s,a,ϕ) = ⊤

L̃((s, s′),a, ϕ̃⊤) = ⊤
, (4)

where ϕ̃⊤ ∈ C(S × S ′) such that μ̃ ∈ Sat(ϕ̃⊤) if and only if both

the distribution μ : t →
∑

t′∈S ′ μ̃((t, t′)) is in Sat(ϕ), and

there exists ϕ′ ∈ C(S ′) with L′(s′,a,ϕ′) = ⊥ and the distribution μ′ : t′ →
∑

t∈S μ̃((t, t′)) is in Sat(ϕ′).

a ∈ Must(s′) L′(s′,a,ϕ′) = ⊤

L̃((s, s′),a, ϕ̃′ ⊤) = ⊤
, (5)

1 Recall that ∀s, Must(s) ⊆ May(s).
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where ϕ̃′ ⊤ ∈ C(S × S ′) is such that μ̃′ ∈ Sat(ϕ̃′ ⊤) if and only if both

there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥ and the distribution μ : t →
∑

t′∈S ′ μ̃((t, t′)) is in Sat(ϕ), and

the distribution μ′ : t′ →
∑

t∈S μ̃′((t, t′)) is in Sat(ϕ′).

Note that conjunction ∧ is symmetric.

We conclude the section by showing that conjunction is the greatest lower bound with respect to weak weak refinement.

Theorem 32. Let N1 , N2 , and N3 be consistent APAs sharing action and atomic proposition sets. It holds that

• β∗(N1 ∧ N2)�W N1 .

• If N3 �W N1 and N3 �W N2 , then N3 �W β∗(N1 ∧ N2).

Proof. Let N1 = (S1, A, L1, AP , V1, s
1
0) and N2 = (S2, A, L2, AP , V2, s

2
0) and N3 = (S3, A, L3, AP , V3, s

3
0) be three APAs. Let

N1 ∧ N2 = (S1 × S2, A, L̃, AP , Ṽ , (s10, s
2
0)) be the conjunction of N1 and N2 defined as in Definition 31. We prove the claims

separately.

• β∗(N1 ∧ N2) �W N1: Obviously, if N1 ∧ N2 is inconsistent, then β∗(N1 ∧ N2) is empty and refines N1 with the empty

refinement relation. Suppose now that β∗(N1 ∧N2) = (S∧, A, L∧, AP , V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2 , not empty. Define the

relation R⊆ S∧ × S1 such that for all (s, s′) ∈ S∧ and t ∈ S1 , (s, s′)Rt iff s = t . We prove that R is a weak weak refinement

relation. Let (s, s′) ∈ S∧ be such that (s, s′)Rs. We show that R satisfies the axioms of a weak weak refinement relation.

1. Let a ∈ A and ϕ ∈ C(S1) be such that L1(s,a,ϕ) = ⊤. Since (s, s′) ∈ S∧ , we have that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) be

such that μ̃ ∈ Sat(ϕ̃) iff

• the distribution μ : t →
∑

t′∈S2
μ̃((t, t′)) is in Sat(ϕ), and

• there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution μ′ : t′ →

∑
t∈S1

μ̃((t, t′)) is in

Sat(ϕ′).

By the definition of N1 ∧ N2 , we have that L̃((s, s′),a, ϕ̃) = ⊤. Consider now ϕ∧ ∈ C(S∧) the constraint such that

μ∧ ∈ Sat(ϕ∧) iff there exists μ̃ ∈ Sat(ϕ̃) such that ∀r ∈ S∧ , μ∧(r) = μ̃(r) and ∀r ∈ (S1 × S2) \ S∧ , μ̃(r) = 0. According to

Definition 29, L∧((s, s′),a,ϕ∧) =
⊔

ψ∈ϕ∧(s,s′),a L̃((s, s
′),a,ψ). Since ϕ̃ ∈ ϕ∧(s,s′),a , it holds that L∧((s, s′),a,ϕ∧) = ⊤.

Thus there exists ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊤. Moreover, define the correspondence function δ : S∧ →

(S1 → [0,1]) such that δ((r, r′))(r′′) = 1 iff r′′ = r. Let μ∧ ∈ Sat(ϕ∧), μ̃ be the corresponding distribution in Sat(ϕ̃), and

μ the distribution such that μ : r ∈ S1 �→
∑

r′∈S2
μ̃((r, r′)). By definition, μ is in Sat(ϕ) and by construction, we have

μ∧ ⋐δ
R

μ. For the sake of completeness, a detailed proof of this fact is given in Appendix F.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) be such that L∧((s, s′),a,ϕ∧) = ⊥. By the definition of L∧ , there exists ϕ̃ ∈ ϕ∧t,a . Thus,

L̃((s, s′),a, ϕ̃) = ⊥ in N1 ∧ N2 , and a distribution μ∧ satisfies ϕ∧ iff there exists a distribution μ̃ ∈ Sat(ϕ̃) such that

μ∧(r) = μ̃(r) for all r ∈ S∧ and μ̃(r) = 0 for all r ∈ S1 × S2 \ S∧ . Since S∧ contains only consistent states, there exists

μ∧ ∈ Sat(ϕ∧). Let μ̃ ∈ Sat(ϕ̃) be a corresponding distribution in ϕ̃ . There are 3 cases.

• If a /∈ Must(s) and a /∈ Must(s′), then by Definition 31, there exist ϕ ∈ C(S1) and ϕ′ ∈ C(S2) such that L1(s,a,ϕ) = ⊥

and L2(s
′,a,ϕ′) = ⊥. Moreover, ˜̺ ∈ Sat(ϕ̃) iff the distributions ̺ : r ∈ S1 �→

∑
r′∈S2

˜̺ ((r, r′)) and ̺′ : r′ ∈ S2 �→∑
r∈S1

˜̺ ((r, r′)) are respectively in Sat(ϕ) and in Sat(ϕ′). Since μ̃ ∈ Sat(ϕ̃), let μ and μ′ be the corresponding distri-

butions in Sat(ϕ) and Sat(ϕ′). Define the correspondence function δ : S∧ → (S1 → [0,1]) such that δ((r, r′))(r′′) = 1

iff r′′ = r. As above, we have μ∧ ⋐δ
R

μ.

• Otherwise, if a ∈ Must(s) and there exists ϕ ∈ C(S1) such that ϕ̃ is such that ˜̺ ∈ Sat(ϕ̃) iff

– the distribution ̺ : r →
∑

r′∈S2
˜̺ ((r, r′)) is in Sat(ϕ), and

– there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution ̺′ : r′ →

∑
r∈S1

˜̺ ((r, r′)) is in

Sat(ϕ′).

Since μ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the corresponding constraint on S2 such that L2(s
′,a,ϕ′) = ⊥. Let μ and μ′ be

the corresponding distributions in Sat(ϕ) and Sat(ϕ′). Define the correspondence function δ : S∧ → (S1 → [0,1]) such

that δ((r, r′))(r′′) = 1 iff r′′ = r. As above, we have μ∧ ⋐δ
R

μ. The same holds in the symmetric case.

Finally, in any case, there exists ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊥ and there exists μ ∈ Sat(ϕ) such that μ∧ ⋐R μ.

3. By definition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak refinement relation, and we have β∗(N1 ∧ N2)�W N1 .

• if N3 �W N1 and N3 �W N2 , then N3 �W β∗(N1 ∧ N2): Let R1 ⊆ S3 × S1 and R2 ⊆ S3 × S2 be the weak weak refinement

relations such that N3 �W N1 and N3 �W N2 . Obviously, if N1 ∧ N2 is fully inconsistent, then β∗(N1 ∧ N2) is empty. In

this case, there are no consistent APAs refining both N1 and N2 . As a consequence, N3 is inconsistent, which violates

the hypothesis. Suppose now that β∗(N1 ∧ N2) = (S∧, A, L∧, AP , V ∧, (s10, s
2
0)), with S∧ ⊆ S1 × S2 , is not empty. Define

the relation R∧ ⊆ S3 × S∧ such that s′′R∧(s, s′) ∈ S∧ iff s′′Rs ∈ S1 and s′′R′s′ ∈ S2 . We prove that R∧ is a weak weak



B. Delahaye et al. / Information and Computation 232 (2013) 66–116 87

refinement relation. Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 be such that s′′R∧(s, s′). We show that R∧ satisfies the axioms of a

weak weak refinement relation.

1. Let a ∈ A and ϕ∧ ∈ C(S∧) be such that L∧((s, s′),a,ϕ∧) = ⊤. By definition, we have L̃((s, s′),a, ϕ̃) = ⊤ with ϕ̃ ∈

C(S1 × S2) such that μ∧ ∈ Sat(ϕ∧) iff there exists μ̃ ∈ Sat(ϕ̃) such that μ∧(r) = μ̃(r) for all r ∈ S∧ and μ̃(r) = 0

for all r ∈ S1 × S2 \ S∧ . There are 2 cases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊤, and ˜̺ ∈ Sat(ϕ̃) iff

– the distribution ̺ : t →
∑

t′∈S2
˜̺ ((t, t′)) is in Sat(ϕ), and

– there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution ̺′ : t′ →

∑
t∈S1

˜̺ ((t, t′)) is in

Sat(ϕ′).

Since L1(s,a,ϕ) = ⊤ and s′′R1s, there exists ϕ′′ ∈ C(S3) such that L3(s
′′,a,ϕ′′) = ⊤ and ∀μ′′ ∈ Sat(ϕ′′), ∃μ ∈ Sat(ϕ),

such that μ′′ ⋐R1
μ (1).

Since L3(s
′′,a,ϕ′′) = ⊤ and s′′R2s

′ , we have that ∀μ′′ ∈ Sat(ϕ′′), there exist ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and

μ′ ∈ Sat(ϕ′) such that μ′′ ⋐R2
̺′ (2).

Let μ′′ ∈ Sat(ϕ′′). By (1) and (2), there exist μ ∈ Sat(ϕ), ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and μ′ ∈ Sat(ϕ′) such

that μ′′ ⋐R1
μ and μ′′ ⋐R2

μ′ . Since (s, s′) and s′′ are consistent, remark that for all (r, r′) in S1 × S2 \ S∧ , we cannot

have s′′R1r and we cannot have s′′R2r
′ (3).

We now build μ∧ ∈ Sat(ϕ∧) such that μ′′ ⋐R∧ μ∧ .

Let δ and δ′ be the correspondence functions such that μ′′ ⋐δ
R1

μ and μ′′ ⋐δ′

R2
μ′ . Define the correspondence func-

tion δ′′ : S3 → (S∧ → [0,1]) such that for all r′′ ∈ S3 and (r, r′) ∈ S∧ , δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We build μ∧

and prove that μ′′ ⋐δ′′

R∧ μ∧ .

– For all r′′ ∈ S3 , if μ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By (3), we know that for all (r, r′) ∈ S1× S2\ S∧ ,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a consequence, δ′′(r′′) is a distribution on S∧ .

– Define μ∧(r, r′) =
∑

r′′∈S3
μ′′(r′′)δ′′(r′′)((r, r′)). It follows that μ∧ ∈ Sat(ϕ∧). For the sake of completeness, a detailed

proof of this fact is given in Appendix F.

– If δ′′(r′′)((r, r′)) > 0, then by definition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0. As a consequence, r′′R1r and r′′R2r
′ , thus

r′′R∧(r, r′).

Finally, μ′′ ⋐R∧ μ∧ and μ∧ ∈ Sat(ϕ∧). The same holds for the symmetric case.

2. Let a ∈ A and ϕ′′ ∈ C(S3) be such that L3(s
′′,a,ϕ′′) = ⊥. Let μ′′ ∈ Sat(ϕ′′).

Since s′′R1s and s′′R2s
′ , there must exist ϕ ∈ C(S1), μ ∈ Sat(ϕ), ϕ′ ∈ C(S2) and μ′ ∈ Sat(ϕ′) such that L1(s,a,ϕ) = ⊥,

L2(s
′,a,ϕ′) = ⊥, μ′′ ⋐R1

μ and μ′′ ⋐R2
μ′ . As a consequence, L̃((s, s′),a, ϕ̃) = ⊥, with ϕ̃ ∈ C(S1 × S2) such that

˜̺ ∈ Sat(ϕ̃) iff the distributions ̺ : r ∈ S1 �→
∑

r′∈S2
˜̺ ((r, r′)) and ̺′ : r′ ∈ S2 �→

∑
r∈S1

˜̺ ((r, r′)) are respectively in Sat(ϕ)

and in Sat(ϕ′). Moreover, since s′′ and (s, s′) are consistent, there exist ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊥

and ̺∧ ∈ Sat(ϕ∧) iff there exists ˜̺ ∈ Sat(ϕ̃) such that ̺∧(r, r′) = ˜̺ (r, r′) for all (r, r′) ∈ S∧ and ˜̺ (r, r′) = 0 for all

(r, r′) ∈ S1 × S2 \ S∧ .

Let δ and δ′ be the correspondence functions such that μ′′ ⋐δ
R1

μ and μ′′ ⋐δ′

R2
μ′ . Since s′′ and (s, s′) are consistent,

we know that (1) for all (r, r′) ∈ S1 × S2 \ S∧ , we have μ(r) = μ′(r′) = 0 and (2) for all r′′ ∈ S3 and (r, r′) ∈ S1 × S2 \ S∧ ,

we cannot have r′′R1r and we cannot have r′′R2r
′ .

Define the correspondence function δ′′ : S3 → (S∧ → [0,1]) such that for all r′′ ∈ S3 and (r, r′) ∈ S∧ , δ′′(r′′)((r, r′)) =

δ(r′′)(r)δ′(r′′)(r′). We now build μ∧ such that μ′′ ⋐δ′′

R∧ μ∧ and prove that μ∧ ∈ Sat(ϕ∧).

• For all r′′ ∈ S3 , if μ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By (2), we know that for all (r, r′) ∈ S1 × S2 \ S∧ ,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a consequence, δ′′(r′′) is a distribution on S∧ .

• Define μ∧(r, r′) =
∑

r′′∈S3
μ′′(r′′)δ′′(r′′)((r, r′)). As above, we can prove that μ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by definition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0. As a consequence, r′′R1r and r′′R2r
′ , thus

r′′R∧(r, r′).

Finally, there exist ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊥ and μ∧ ∈ Sat(ϕ∧) such that μ′′ ⋐R∧ μ∧ .

3. Since s′′R1s and s′′R2s
′ , we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Thus, R∧ is a weak weak refinement relation between N3 and β∗(N1 ∧ N2). Moreover, we know that s30R1s
1
0 , s

3
0R2s

2
0 ,

and (s10, s
2
0) is consistent. As a consequence s30R

∧(s10, s
2
0) and N3 �W β∗(N1 ∧ N2). ✷

From the above theorem, we can easily deduce that the set of implementations of the conjunction of two given APAs is

exactly the intersection of their sets of implementations.

Corollary 33. For APAs N1 and N2 , it holds that [[β∗(N1 ∧ N2)]] = [[N1]] ∩ [[N2]].

Proof. Let N1 and N2 be APAs. We prove the result by double inclusion.

By Theorem 32, we have that β∗(N1 ∧ N2) �W N1 . By Theorem 17, we thus have [[β∗(N1 ∧ N2)]] ⊆ [[N1]]. By symmetry,

we also obtain that [[β∗(N1 ∧ N2)]] ⊆ [[N2]], and thus [[β∗(N1 ∧ N2)]] ⊆ [[N1]] ∩ [[N2]].
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Fig. 16. APAs N1 , N2 and their conjunction β∗(N1 ∧ N2) such that β∗(N1 ∧ N2) � N2 .

Recall that every PA P can be seen as an APA in SVNF with no may transitions and with only single point constraints.

Moreover, recall that all notions of refinement boil down to satisfaction when the left operand is a PA, i.e. for all PA P and

for all APA N , we have P |� N ⇔ P �W N ⇔ P � N ⇔ P �S N . Let P be a PA such that P ∈ [[N1]] ∩ [[N2]]. By definition, we

have P |� N1 and P |� N2 , and as a consequence P �W N1 and P �W N2 . By Theorem 32, we thus have P �W β∗(N1 ∧ N2)

and as a consequence P |� β∗(N1 ∧ N2). Therefore, we have [[N1]] ∩ [[N2]] ⊆ [[β∗(N1 ∧ N2)]], which concludes the proof. ✷

The above result is surprising. Indeed, in many theories for non-deterministic systems such as modal automata, there is

no syntactical notion of conjunction that allows to compute sets of implementation [26]. Observe also that Theorem 32 holds

for weak weak refinement but neither for weak nor strong refinements. Consider APAs N1 and N2 , and their conjunction

β∗(N1 ∧ N2) given in Fig. 16. It is easy to see that β∗(N1 ∧ N2) cannot refine N2 with a weak refinement relation. Indeed,

the constraint ϕ∧
x present in state (1,1) cannot be redistributed to a given constraint in N2 without knowing in advance

which of its solutions is considered. This again illustrates the power of interleaving constraints and modalities through weak

refinement.

5. Compositional reasoning

We now propose a composition operation mixing the properties of the composition operation on modal transition sys-

tems and the composition operation on CMCs. We then show how composition and abstraction can collaborate to avoid

state-space explosion in a component-wise manner.

In our theory, the composition operation is parametrized with a set of synchronization actions like in CSP. This set allows

to specify on which actions the two specifications should collaborate and on which actions they can behave individually. The

intuition is as follows: synchronizing transitions have the lowest modality of the original transitions, and lead to a constraint

whose solutions are product distributions of solutions of the original constraints; and non-synchronizing transitions keep

their modality and impose that the other component stays in its current state.

Definition 34 (Parallel composition of APAs). Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A′, L′, AP ′, V ′, s′0) be APAs and assume

AP ∩ AP ′ = ∅. The parallel composition of N and N ′ with respect to synchronization set A ⊆ A ∩ A′ , written as N ‖A N ′ , is

given as N ‖A N ′ = (S × S ′, A ∪ A′, L̃, AP ∪ AP ′, Ṽ , (s0, s
′
0)) where

• L̃ is defined as follows:

– For all (s, s′) ∈ S × S ′ , a ∈ A, if there exist ϕ ∈ C(S) and ϕ′ ∈ C(S ′), such that L(s,a,ϕ) = ⊥ and L′(s′,a,ϕ′) = ⊥,

define L̃((s, s′),a, ϕ̃) = L(s,a,ϕ)⊓ L′(s′,a,ϕ′) with ϕ̃ the new constraint in C(S × S ′) such that μ̃ ∈ Sat(ϕ̃) if and only

if there exist μ ∈ Sat(ϕ) and μ′ ∈ Sat(ϕ′) such that μ̃(u, v) = μ(u)μ′(v) for all u ∈ S and v ∈ S ′ .

If either for all ϕ ∈ C(S), we have L(s,a,ϕ) = ⊥, or ∀ϕ′ ∈ C(S ′), we have L′(s′,a,ϕ′) = ⊥ then for all ϕ̃ ∈ C(S × S ′),

L̃((s, s′),a, ϕ̃) = ⊥.

– For all (s, s′) ∈ S × S ′ , a ∈ A \ A, and for all ϕ ∈ C(S), define L̃((s, s′),a, ϕ̃) = L(s,a,ϕ) with ϕ̃ the new constraint in

C(S × S ′) such that μ̃ ∈ Sat(ϕ̃) if and only if for all u ∈ S and v = s′, μ̃(u, v) = 0 and the distribution μ : t �→ μ̃(t, s′)

is in Sat(ϕ).

– For all (s, s′) ∈ S × S ′ , a ∈ A′ \ A, and for all ϕ′ ∈ C(S ′), define L̃((s, s′),a, ϕ̃′) = L′(s′,a,ϕ′) with ϕ̃′ the new constraint

in C(S × S ′) such that μ̃′ ∈ Sat(ϕ̃′) if and only if for all u = s and v ∈ S ′, μ̃′(u, v) = 0 and the distribution μ′ : t′ �→

μ̃′(s, t′) is in Sat(ϕ′).

• Ṽ is defined as follows: for all (s, s′) ∈ S × S ′ , Ṽ ((s, s′)) = {B̃ = B ∪ B ′ | B ∈ V (s) and B ′ ∈ V ′(s′)}.

Contrary to the conjunction operation, composition is defined for dissimilar alphabets. Since PAs are a restriction of APAs,

their composition is defined in the same way. Remark that this boils down to the standard notion of parallel composition

for PAs [5]. By inspecting Definition 34, one can see that the composition of two APAs whose constraints are systems of
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linear inequalities (or polynomial constraints) may lead to an APA whose constraints are polynomial. One can also see that

the conjunction of two APAs with polynomial constraints is an APA with polynomial constraints. The class of polynomial

constraints APAs is thus closed under all compositional design operations.

The following theorem characterizes the relation between parallel composition and refinement.

Theorem 35. Given a synchronization set A, all notions of refinement are a precongruence with respect to the parallel composition

operator ‖A defined above, i.e. if N1 ⋉ N ′
1 and N2 ⋉ N ′

2 , then N1 ‖A N2 ⋉ N ′
1 ‖A N ′

2 , for ⋉ ∈ {�T ,�W ,�,�S }.

Proof. We provide the proof for ⋉ =�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N ′

1 = (S ′
1, A1, L

′
1, AP1, V

′
1, s

1
0

′
) and N ′

2 = (S ′
2, A2, L

′
2,

AP2, V
′
2, s

2
0

′
) be APAs such that AP1 ∩ AP2 = ∅. Let A ⊆ A1 ∩ A2 . Assume that N1 � N ′

1 and N2 � N ′
2 with weak re-

finement relations R1 and R2 , respectively. Let N1 ‖A N2 = (S1 × S2, A1 ∪ A2, L, AP1 ∪ AP2, V , (s10, s
2
0)) and N ′

1 ‖A N ′
2 =

(S ′
1 × S ′

2, A1 ∪ A2, L
′, AP1 ∪ AP2, V

′, (s10
′
, s20

′
)).

Let R⊆ (S1 × S2) × (S ′
1 × S ′

2) be the relation such that (s1, s2)R(s′1, s
′
2) iff s1R1s

′
1 and s2R2s

′
2 . We now show that R is

a weak refinement relation such that N1 ‖A N2 � N ′
1 ‖A N ′

2 .

Assume that (s1, s2)R(s′1, s
′
2). We show that R satisfies the axioms of a weak refinement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S ′
1 × S ′

2) be such that L′((s′1, s
′
2),a,ϕ

′) = ⊤. There are three cases:

• If a ∈ A, then there exist ϕ′
1 ∈ C(S ′

1) and ϕ′
2 ∈ C(S ′

2) such that L′
1(s

′
1,a,ϕ

′
1) = L′

2(s
′
2,a,ϕ

′
2) = ⊤ and μ′ ∈ Sat(ϕ′) iff

there exist μ′
1 ∈ Sat(ϕ′

1) and μ′
2 ∈ Sat(ϕ′

2) such that μ′ = μ′
1μ

′
2 . Since s1R1s

′
1 and s2R2s

′
2 , there exist ϕ1 ∈ C(S1) and

ϕ2 ∈ C(S2) with L1(s1,a,ϕ1) = L2(s2,a,ϕ2) = ⊤ and ∀μ1 ∈ Sat(ϕ1), ∃μ′
1 ∈ Sat(ϕ′

1): μ1 ⋐R1
μ′

1 and ∀μ2 ∈ Sat(ϕ2),

∃μ′
2 ∈ Sat(ϕ′

2): μ2 ⋐R2
μ′

2 .

Define ϕ ∈ C(S1 × S2) such that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By the definition of N1 ‖A N2 , we have L((s1, s2),a,ϕ) = ⊤.

Let μ ∈ Sat(ϕ). Then there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Since s1R1s
′
1 and s2R2s

′
2 , there

exist μ′
1 ∈ Sat(ϕ′

1), μ′
2 ∈ Sat(ϕ′

2) and correspondence functions δ1 : S1 → (S ′
1 → [0,1]) and δ2 : S2 → (S ′

2 → [0,1]),

such that μ1 ⋐
δ1
R1

μ′
1 and μ2 ⋐

δ2
R2

μ′
2 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) as δ(u, v)(u′, v ′) = δ1(u)(u′) · δ2(v)(v ′).

Consider the distribution μ′ such that μ′ = μ′
1μ

′
2 . By construction, μ′ ∈ Sat(ϕ′) and μ ⋐δ

R
μ′ . For the sake of com-

pleteness, a detailed proof of this fact is given in Appendix G.

• If a ∈ A1 \ A, then there exists ϕ′
1 ∈ C(S ′

1) such that L′
1(s

′
1,a,ϕ

′
1) = ⊤. Since s1R1s

′
1 , there exists ϕ1 ∈ C(S1) with

L1(s1,a,ϕ1) = ⊤ and ∀μ1 ∈ Sat(ϕ1), ∃μ′
1 ∈ Sat(ϕ′

1) such that μ1 ⋐R1
μ′

1 .

Define ϕ ∈ C(S1 × S2) such that μ ∈ Sat(ϕ) iff for all u ∈ S1 and v = s2,μ(u, v) = 0 and the distribution μ1 : t �→

μ(t, s2) is in Sat(ϕ1). By the definition of N1 ‖A N2 , we have L((s1, s2),a,ϕ) = ⊤. Let μ ∈ Sat(ϕ). Then there ex-

ists a μ1 ∈ Sat(ϕ1) such that μ1 can be written as t �→ μ(t, s2) and furthermore there exists μ′
1 ∈ Sat(ϕ′

1) and a

correspondence function δ1 : S1 → (S ′
1 → [0,1]) such that μ1 ⋐

δ1
R1

μ′
1 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) as δ(u, v)(u′, v ′) = δ(u)(u′) if v = s2 and

v ′ = s′2 , and 0 otherwise. Consider the distribution μ′ over S ′
1 × S ′

2 such that for all u′ ∈ S ′
1 and v ′ = s′2 , μ

′(u′, v ′) = 0

and for all u′ ∈ S ′
1 , μ′(u′, s′2) = μ′

1(u
′). By construction, μ′ ∈ Sat(ϕ′) and μ ⋐δ

R
μ′ . For the sake of completeness,

a detailed proof of this fact is given in Appendix G.

• If a ∈ A2 \ A, the proof is similar.

2. Let a ∈ A1 ∪ A2 and ϕ ∈ C(S1 × S2) be such that L((s1, s2),a,ϕ) = ⊥. There are three cases:

• If a ∈ A, then there exist ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that L1(s1,a,ϕ1) = ⊥, L2(s2,a,ϕ2) = ⊥, and μ ∈ Sat(ϕ) iff

there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Since s1R1s
′
1 and s2R2s

′
2 , there exist ϕ′

1 ∈ C(S ′
1) and

ϕ′
2 ∈ C(S ′

2) with L′
1(s

′
1,a,ϕ

′
1) = ⊥, L′

2(s
′
2,a,ϕ

′
2) = ⊥, and ∀μ1 ∈ Sat(ϕ1), ∃μ

′
1 ∈ Sat(ϕ′

1): μ1 ⋐R1
μ′

1 and ∀μ2 ∈ Sat(ϕ2),

∃μ′
2 ∈ Sat(ϕ′

2): μ2 ⋐R2
μ′

2 .

Define ϕ′ ∈ C(S ′
1 × S ′

2) such that Sat(ϕ′) = Sat(ϕ′
1)Sat(ϕ

′
2). By the definition of N ′

1 ‖A N ′
2 , we have L′((s′1, s

′
2),a,ϕ

′) =

⊥. Let μ ∈ Sat(ϕ). By the definition of ϕ , there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Furthermore,

since s1R1s
′
1 and s2R2s

′
2 , there exist μ′

1 ∈ Sat(ϕ′
1), μ′

2 ∈ Sat(ϕ′
2) and two correspondence functions δ1 : S1 → (S ′

1 →

[0,1]) and δ2 : S2 → (S ′
2 → [0,1]) such that μ1 ⋐

δ1
R1

μ′
1 and μ2 ⋐

δ2
R2

μ′
2 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) such that, for all u,u′, v, v ′ , δ(u, v)(u′, v ′) =

δ1(u)(u′) · δ2(v)(v ′). By the same calculations as above, we know that the distribution μ′ over S ′
1 × S ′

2 constructed as

μ′ = μ′
1μ

′
2 is in Sat(ϕ′) and gives that μ⋐δ

R
μ′ .

• If a ∈ A1 \ A, then there exists ϕ1 ∈ C(S1) such that L1(s1,a,ϕ1) = ⊥. Since s1R1s
′
1 , there exists ϕ′

1 ∈ C(S ′
1) with

L′
1(s

′
1,a,ϕ

′
1) = ⊥ and ∀μ1 ∈ Sat(ϕ1), ∃μ′

1 ∈ Sat(ϕ′
1): μ1 ⋐R1

μ′
1 .

Define ϕ′ ∈ C(S ′
1 × S ′

2) such that μ′ ∈ Sat(ϕ′) iff for all u′ ∈ S ′
1 and v ′ = s′2,μ(u′, v ′) = 0 and the distribution μ′

1 :

t �→ μ(t, s′2) is in Sat(ϕ′
1). By the definition of N ′

1 ‖A N ′
2 , we have L′((s′1, s

′
2),a,ϕ

′) = ⊥. Let μ ∈ Sat(ϕ). Let μ1 be

the distribution on S1 such that for all t ∈ S1 , μ1(t) = μ(t, s2). By definition, μ1 ∈ Sat(ϕ1). Let μ′
1 ∈ Sat(ϕ′

1) and a

correspondence function δ1 : S1 → (S ′
1 → [0,1]) be such that μ1 ⋐

δ1
R1

μ′
1 .
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Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) such that for all u,u′, v, v ′ , δ(u, v)(u′, v ′) =
δ1(u)(u′) if v = s2 and v ′ = s′2 , and 0 otherwise. By the same calculations as above, we know that the distribution

μ′ ∈ Sat(ϕ′) such that for all u′ ∈ S ′
1 and v ′ = s′2 , μ

′(u′, v ′) = 0 and for all u′ ∈ S ′
1 , μ

′
1 = μ′(u′, s′2), gives that μ⋐δ

R
μ′ .

• If a ∈ A2 \ A, the proof is similar.

3. For atomic propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s
′
1) and

B2 ∈ V ′
2(s

′
2)}. Since s1R1s

′
1 and s2R2s

′
2 , we know by definition that V1(s1) ∈ V ′

1(s
′
1) and V2(s2) ∈ V ′

2(s
′
2). Considering

B1 = V1(s1) and B2 = V2(s2), we thus have that V ((s1, s2)) ∈ V ′((s′1, s
′
2)).

By observing that (s10, s
2
0)R(s10

′
, s20

′
), since s10R1s

1
0

′
and s20R2s

2
0

′
, we conclude that R is a weak refinement relation. ✷

The facts that abstraction preserves strong refinement (cf. Lemma 24), and that strong refinement is a precongruence

with respect to parallel composition, enable us to apply abstraction in a component-wise manner. That is to say, rather than

first generating (the typically large PA) M ‖A N , and then applying abstraction, it allows for first applying abstraction, yielding

α1(M) and α2(N), respectively, and then constructing α1(M)‖A α2(N). Possibly a further abstraction of α1(M)‖A α2(N) can

be employed. The next theorem shows that component-wise abstraction is as powerful as applying the combination of the

“local” abstractions to the entire model.

Theorem 36. Let M and N be APAs, A a synchronization set, and α1 , α2 be abstraction functions. The following holds:

α1(M)‖A α2(N) = (α1 × α2)(M ‖A N) up to isomorphism.

Proof. Let M = (S, A, L, AP , V , s0) and N = (S ′′, A′′, L′′, AP ′′, V ′′, s′′0) be APAs and let A ⊆ A ∩ A′′ be a synchronization set

such that the parallel composition of M and N is given as M ‖A N = (S × S ′′, A ∪ A′′, L̃, AP ∪ AP ′′, Ṽ , (s0, s
′′
0)).

Let α1 : S → S ′ and α2 : S ′′ → S ′′′ . Let α1(M) = (S ′, A, L′, AP , V ′,α1(s0)), α2(N) = (S ′′′, A′′, L′′′, AP ′′, V ′′′,α2(s
′′
0)) and

(α1 × α2)(M ‖A N) = (S ′ × S ′′′, A ∪ A′′, L̃′, AP ∪ AP ′′, Ṽ ′, (α1(s0),α2(s
′′
0))) be the induced APA. Let α1(M)‖A α2(N) = (S ′ ×

S ′′′, A ∪ A′′, L̃′′, AP ∪ AP ′′, Ṽ ′′, (α1(s0),α2(s
′′
0))).

Notice that the signatures of α1(M)‖A α2(N) and (α1 × α2)(M ‖A N) only differ on constraint functions and valuation

functions. We establish the result by proving the following: for all (s′, s′′′) ∈ S ′ × S ′′′ , a ∈ A ∪ A′′ , and ϕ̃ ∈ C(S ′ × S ′′′), we

have Ṽ ′((s′, s′′′)) = Ṽ ′′((s′, s′′′)) and L̃′((s′, s′′′),a, ϕ̃) = L̃′′((s′, s′′′),a, ϕ̃).

Let (s′, s′′′) ∈ S ′ × S ′′′ .

• The valuation of (s′, s′′′) in α1(M)‖A α2(N) is

Ṽ ′′
((
s′, s′′′

))
=

{
B ∪ B ′

∣∣ B ∈ V ′
(
s′
)
∧ B ′ ∈ V ′′′

(
s′′′

)}

=
⋃

(s,s′′)∈(γ1×γ2)(s
′,s′′′)

{
B ∪ B ′

∣∣ B ∈ V (s) ∧ B ′ ∈ V ′′
(
s′′

)}

=
⋃

(s,s′′)∈(γ1×γ2)(s
′,s′′′)

Ṽ
((
s, s′′

))

= Ṽ ′
((
s′, s′′′

))
.

• For constraint functions we have the following:

– Let a ∈ A and ϕ̃′ ∈ C(S ′ × S ′′′) be such that L̃′((s′, s′′′),a, ϕ̃′) = ⊤: then for all (s, s′′) ∈ (γ1 × γ2)(s
′, s′′′), we have that

there exists ϕM ‖ N ∈ C(S × S ′′) yielding L̃((s, s′′),a,ϕM ‖ N ) = ⊤ and

Sat(ϕ̃′) = (α1 × α2)

( ⋃

((s,s′′),ϕM ‖ N )∈(γ1×γ2)(s′,s′′′)×C(S×S′′):

L((s,s′′),a,ϕM ‖ N )=⊤

Sat(ϕM ‖ N)

)
. (6)

For each of these ϕM ‖ N , we have, by the definition of parallel composition, that there exist ϕM ∈ C(S) and ϕN ∈
C(S ′′) such that L(s,a,ϕM) = ⊤ and L′′(s′′,a,ϕN ) = ⊤ and μM ‖ N ∈ Sat(ϕM ‖ N) iff there exist μM ∈ Sat(ϕM) and

μN ∈ Sat(ϕN ) s.t. μM ‖ N (u, v) = μM(u)μN (v) for all (u, v) ∈ S × S ′′ . Define ϕα1(M) ∈ C(S ′), such that Sat(ϕα1(M)) is

the abstraction of the union of satisfaction sets of such ϕM . Similarly, define ϕα2(N) ∈ C(S ′′′), such that Sat(ϕα2(N)) is

the abstraction of the union of satisfaction sets of such ϕN . That is,

Sat(ϕα1(M)) = α1

( ⋃

(s,ϕM )∈γ1(s
′)×C(S):L(s,a,ϕM )=⊤

Sat(ϕM)

)
,

Sat(ϕα2(N)) = α2

( ⋃

(s′′,ϕN )∈γ2(s
′′′)×C(S):L(s′′,a,ϕN )=⊤

Sat(ϕN)

)
. (7)
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We will now have that L′(s′,a,ϕα1(M)) = ⊤ and L′′′(s′′′,a,ϕα2(N)) = ⊤. The definition of parallel composition implies

that L̃′′((s′, s′′′),a, ϕ̃′′) = ⊤ and μα1(M) ‖ α2(N) ∈ Sat(ϕ̃′′) iff there exist μα1(M) ∈ Sat(ϕα1(M)) and μα2(N) ∈ Sat(ϕα2(N))

s.t. μα1(M) ‖ α2(N)(u, v) = μα1(M)(u)μα2(N)(v) for all (u, v) ∈ S × S ′′ . It is clear that Sat(ϕ̃′) = Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′),a, ϕ̃′) =?.

– Let a /∈ A (or w.l.o.g. a ∈ A \ A) and ϕ̃′ ∈ C(S ′ × C ′′′) be such that L̃′((s′, s′′′),a, ϕ̃′) = ⊤: then for all (s, s′′) ∈ (γ1 ×
γ2)(s

′, s′′′), we have that there exists ϕM ‖ N ∈ C(S × S ′′) yielding L̃((s, s′′),a,ϕM ‖ N) = ⊤ and ϕ̃′ is defined as in

Eq. (6). For each of these ϕM ‖ N , we have, by the definition of parallel composition, that there exists ϕM ∈ C(S)

such that L(s,a,ϕM) = ⊤ and μM ‖ N ∈ Sat(ϕM ‖ N) iff for all u ∈ S and v = s′′ , μM ‖ N(u, v) = 0 and μM ‖ N (u, s′′) =
ϕM(u). Define ϕα1(M) ∈ C(S ′), such that Sat(ϕα1(M)) is the abstraction of the union of satisfaction sets of such ϕM

i.e. as in Eqs. (7). We will now have that L′(s′,a,ϕα1(M)) = ⊤. The definition of parallel composition implies that

L̃′′((s′, s′′′),a, ϕ̃′′) = ⊤ and μα1(M) ‖ α2(N) ∈ Sat(ϕ̃′′) iff there exists μα1M ∈ Sat(ϕα1M) s.t. for all u ∈ S ′ and v = s′′′ ,

μα1(M) ‖ α2(N)(u, v) = 0 and μα1(M) ‖ α2(N)(u, s′′′) = μα1(M)(u). It is clear that Sat(ϕ̃′) = Sat(ϕ̃′′).

The proof is similar if L̃′((s′, s′′′),a, ϕ̃′) =?. ✷

The above theorem helps avoiding state-space explosion when combining systems by allowing for abstraction as soon as

possible.

This result cannot be transferred to the notion of constraint-abstraction. Indeed, as shown for Interval Markov

Chains [22], the parallel composition of two IPAs is not an IPA. However, we can prove the following proposition, relat-

ing composition, constraint-abstraction and refinement.

Proposition 37. Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A′, L′, AP ′, V ′, s′0) be APAs with AP ∩ AP ′ = ∅. For A ⊆ A ∩ A′ ,

χ(N)‖A χ(N ′) �S χ(N ‖A N ′).

Proof. Let N ‖A N ′ = (S × S ′, A ∪ A′, L‖, AP ∪ AP ′, V‖, (s0, s
′
0)), χ(N) = (S, A, L

χ
N , AP , V

χ
N , s0), χ(N ′) = (S ′, A′, L

χ
N ′ , AP

′,

V
χ
N ′ , s

′
0), χ(N)‖A χ(N ′) = (S × S ′, A ∪ A′, L

‖
χ , AP ∪ AP ′, V

‖
χ , (s0, s

′
0)), and χ(N ‖A N ′) = (S × S ′, A ∪ A′, L

χ
‖ , AP ∪ AP ′, V

χ
‖ ,

(s0, s
′
0)). As χ(N)‖A χ(N ′) and χ(N ‖A N ′) have similar state space, structure, valuations, and initial states, we consider

the identity relation R = IdS×S ′ and show that it is a strong refinement relation. Let s1 ∈ S and s′1 ∈ S ′ be such that

(s1, s
′
1)R(s1, s

′
1). We show that R satisfies the axioms of a strong refinement relation. All the correspondence functions we

consider are the identity functions.

1. Let a ∈ A ∪ A′ , ϕ
χ
‖ ∈ C(S × S ′) be such that L

χ
‖ ((s1, s

′
1),a,ϕ

χ
‖ ) = ⊤. Then by construction of χ(N ‖A N ′), there exists

ϕ‖ ∈ C(S × S ′) such that L‖((s1, s
′
1),a,ϕ‖) = ⊤.

• If a ∈ A, then there exist ϕ ∈ C(S) and ϕ′ ∈ C(S ′) such that L(s1,a,ϕ) = ⊤ and L′(s′1,a,ϕ
′) = ⊤ and μ‖ ∈ Sat(ϕ‖)

iff there exist μ ∈ Sat(ϕ) and μ′ ∈ Sat(ϕ′) such that μ‖(u, v) = μ(u)μ′(v) for all u ∈ S and v ∈ S ′ . By construction

of χ(N) and χ(N ′), there exist ϕ
χ
N ∈ C(S) and ϕ

χ
N ′ ∈ C(S ′) such that L

χ
N (s1,a,ϕ

χ
N ) = ⊤ and L

χ
N ′ (s

′
1,a,ϕ

χ
N ′ ) = ⊤. This

means that there exists ϕ
‖
χ ∈ C(S × S ′) such that L

‖
χ ((s1, s

′
1),a,ϕ

‖
χ ) = ⊤, where μ

‖
χ ∈ Sat(ϕ

‖
χ ) iff there exist μ

χ
N ∈

Sat(ϕ
χ
N ) and μ

χ
N ′ ∈ Sat(ϕ

χ
N ′ ) such that μ

‖
χ (u, v) = μ

χ
N (u)μ

χ
N ′ (v) for all u ∈ S and v ∈ S ′ . We now show that ∀μ

‖
χ ∈

Sat(ϕ
‖
χ ) ∃μ

χ
‖ ∈ Sat(ϕ

χ
‖ ): μ

‖
χ ⋐R μ

χ
‖ by showing that μ

‖
χ ∈ Sat(ϕ

χ
‖ ) (and indeed μ

‖
χ ⋐R μ

‖
χ ). Assume that μ

‖
χ /∈

Sat(ϕ
χ
‖ ). By definition, there exist μ

χ
N ∈ Sat(ϕ

χ
N ) and μ

χ
N ′ ∈ Sat(ϕ

χ
N ′ ) such that μ

‖
χ (u, v) = μ

χ
N (u)μ

χ
N ′ (v) for all u ∈ S

and v ∈ S ′ . Let (INu )u∈S , (IN
′

v )v∈S ′ , and I
‖
(u,v) = [m

‖
(u,v),M

‖
(u,v)](u,v)∈S ′ be the intervals associated with ϕ

χ
N , ϕ

χ
N ′ , and ϕ

‖
χ ,

respectively.

If μ
‖
χ /∈ Sat(ϕ

χ
‖ ), there must exist u′ ∈ S and v ′ ∈ S ′ such that μ

χ
N (u′)μ

χ
N ′ (v

′) /∈ I
‖
(u′,v ′)

, that is, μ
χ
N (u′)μ

χ
N ′ (v

′) <

m
‖
(u′,v ′)

or μ
χ
N (u′)μ

χ
N ′ (v

′) > M
‖
(u′,v ′)

; assume the latter. By convexity and minimality of IN
u′ and IN

′

v ′ , for all constants

ǫ > 0, there must exist μ ∈ Sat(ϕ) and μ′ ∈ Sat(ϕ′) such that μ
χ
N (u′) − μ(u′) < ǫ and μ

χ
N ′ (v

′) − μ′(v ′) < ǫ . For

ǫ =
μ

χ
N (u′)μ

χ

N′ (v
′)−M

‖

(u′ ,v′)

2
, we have that μ(u′)μ′(v ′) > M

‖
(u′,v ′)

. However, the distribution μ‖ defined as μ‖(u, v) =

μ(u)μ′(v) for all u ∈ S and v ∈ S ′ , will satisfy ϕ‖ , which contradicts the definition of I
‖
(u′,v ′)

. As a consequence,

μ
‖
χ ∈ Sat(ϕ

χ
‖ ).

• If a /∈ A, then assume that a ∈ A. Then there exists ϕ ∈ C(S) such that L(s1,a,ϕ) = ⊤ and μ‖ ∈ Sat(ϕ‖) iff for all

u ∈ S , u = s1 , and v ∈ S ′ , μ‖(u, v) = 0 and there exists μ ∈ Sat(ϕ) such that μ(v) = μ‖(s1, v) for all v ∈ S ′ . By

construction of χ(N), there exists ϕ
χ
N ∈ C(S) such that L

χ
N (s1,a,ϕ

χ
N ) = ⊤. This means that there exists ϕ

‖
χ ∈ C(S × S ′)

such that L
‖
χ ((s1, s

′
1),a,ϕ

‖
χ ) = ⊤, where μ

‖
χ ∈ Sat(ϕ

‖
χ ) iff for all u ∈ S , u = s1 , and v ∈ S ′ , μ

‖
χ (u, v) = 0 and there

exists μ
χ
N ∈ Sat(ϕ

χ
N ) such that μ

χ
N (v) = μ

‖
χ (s1, v) for all v ∈ S ′ . As above, it holds that ∀μ

‖
χ ∈ Sat(ϕ

‖
χ ), ∃μ

χ
‖ ∈ Sat(ϕ

χ
‖ ):

μ
‖
χ ⋐R μ

χ
‖ .

2. Let a ∈ A ∪ A′ , ϕ
‖
χ ∈ C(S × S ′) be such that L

‖
χ ((s1, s

′
1),a,ϕ

‖
χ ) = ⊥.
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Fig. 17. A (valuation) non-deterministic APA whose set of implementations cannot be obtained with a deterministic APA.

• If a ∈ A, then there exist ϕ
χ
N ∈ C(S) and ϕ

χ
N ′ ∈ C(S ′) such that L

χ
N (s1,a,ϕ

χ
N ) = ⊥ and L

χ
N ′ (s

′
1,a,ϕ

χ
N ′ ) = ⊥ and

μ
‖
χ ∈ Sat(ϕ

‖
χ ) iff there exist μ

χ
N ∈ Sat(ϕ

χ
N ) and μ

χ
N ′ ∈ Sat(ϕ

χ
N ′ ) such that μ

‖
χ (u, v) = μ

χ
N (u)μ

χ
N ′ (v) for all u ∈ S and

v ∈ S ′ . By construction of χ(N) and χ(N ′), there exist ϕ ∈ C(S) and ϕ′ ∈ C(S ′) such that L(s1,a,ϕ) = L
χ
N (s1,a,ϕ

χ
N )

and L′(s′1,a,ϕ
′) = L

χ
N ′ (s

′
1,a,ϕ

χ
N ′ ). This gives rise to the existence of ϕ‖ ∈ C(S × S ′) such that L‖((s1, s

′
1),a,ϕ‖) = ⊥

and μ‖ ∈ Sat(ϕ‖) iff there exist μ ∈ Sat(ϕ) and μ′ ∈ Sat(ϕ′) such that μ‖(u, v) = μ(u)μ′(v) for all u ∈ S and

v ∈ S ′ . By construction of χ(N ‖A N ′), there exists ϕ
χ
‖ ∈ C(S × S ′) such that L

χ
‖ ((s1, s

′
1),a,ϕ

χ
‖ ) = ⊥. As above,

∀μ
‖
χ ∈ Sat(ϕ

‖
χ ) ∃μ

χ
‖ ∈ Sat(ϕ

χ
‖ ): μ

‖
χ ⋐R μ

χ
‖ .

• If a /∈ A, then assume that a ∈ A. Again, we can show the existence of ϕ
χ
‖ ∈ C(S × S ′) such that L

χ
‖ ((s1, s

′
1),a,ϕ

χ
‖ ) = ⊥

and ∀μ
‖
χ ∈ Sat(ϕ

‖
χ ) ∃μ

χ
‖ ∈ Sat(ϕ

χ
‖ ): μ

‖
χ ⋐R μ

χ
‖ .

We conclude that χ(N)‖A χ(N ′) �S χ(N ‖A N ′). ✷

6. Deterministic APAs

In this section, we focus on the class of deterministic APAs. Like in any specification theory, deterministic specifications

form a class with interesting properties. First, notice that action-deterministic APAs allow for more convenient definitions

for refinement and conjunction, as explained in [2,1]. In the following, we first propose an algorithm that can be applied to

any APA N and provides a deterministic APA ̺(N) that abstracts N . Then, we study the strong link between CMCs and APAs

and prove that, like for CMCs [18,19], all the notions of refinement coincide for deterministic specifications.

6.1. Determinisation

As explained in [2], the use of non-determinism changes expressiveness of APAs with respect to the known conjunction

operator. In fact, non-deterministic APAs are generally more expressive than deterministic ones. Fig. 17 presents a non-

deterministic APA, whose set of implementations cannot be specified by a single deterministic APA. States 2 and 3 have

overlapping labels (so state 1 has non-deterministic behavior). We cannot put these states on two separate a-transitions as

this introduces action non-determinism. We cannot merge them either, as their subsequent evolutions are different (and for

the same reason we cannot factor {θ,γ } to a separate state).

Nevertheless, the use of deterministic abstractions of non-deterministic behaviors is an interesting alternative to relying

on more complex refinements and more complex operators. Below, we present a determinisation algorithm that can be

applied to any APA N , producing a deterministic APA ̺(N), such that N �S ̺(N).

Our algorithm is based on subset construction and resembles the determinisation procedure for modal transition systems

described in [27].

Let N = (S, A, L, AP , V , s0) be a (consistent) APA in SVNF. Given a set of states Q ⊆ S , an action a ∈ A and a valuation

θ ⊆ AP we define Reach(Q ,a, θ) to be the maximal set of states with valuation θ that can be reached with a non-zero

probability using a distribution μ satisfying a constraint ϕ such that L(q,a,ϕ) = ⊥ for some q ∈ Q . Formally, Reach :
2S × A × 2AP → 2S is defined by:

Reach(Q ,a, θ) =
⋃{

s ∈ S
∣∣ V (s) = {θ} and ∃q ∈ Q , ∃ϕ ∈ C(S), ∃μ ∈ Sat(ϕ), L(q,a,ϕ) = ⊥ and μ(s) > 0

}
.

We lift this definition to all possible labellings as follows:

Reach(Q ,a) =
{
Reach(Q ,a, θ)

∣∣ θ ∈ 2AP
}
.

We also extend the definition to sets of actions as follows: let B ⊆ A,

Reach(Q , B) =
⋃

a∈B

Reach(Q ,a).
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Fig. 18. Determinisation ̺(N (N)) of the APA N (N) given in Fig. 7.

Now let n > 1 and define the n-step reachability as

Reachn(Q , B) = Reachn−1(Q , B) ∪
⋃

Q ′∈Reachn−1(Q ,B)

Reach
(
Q ′, B

)

where Reach1(Q , B) = Reach(Q , B).

We denote the fixpoint of Reach as follows:

Reach∗(Q , B) =

∞⋃

n=1

Reachn(Q , B).

Now, by construction, the following properties hold:

• For all Q ⊆ S and a ∈ A, for all Q ′, Q ′′ ∈ Reach(Q ,a), if Q ′ = Q ′′ then Q ′ ∩ Q ′′ = ∅, and

• For all Q ⊆ S , B ⊆ A and Q ′ ∈ Reach∗(Q , B), there exists θ ∈ 2AP such that ∀q′ ∈ Q ′ , we have V (q′) = {θ}.

We will now use the notion of reachability in our determinisation construction. Remark that the determinisation algo-

rithm highly relies on the single valuation normal form of the APA. In order to use it on any APA (with single valuation in

the initial state), it is thus necessary to use the normalization algorithm first, as defined in Definition 11.

Definition 38 (Determinisation). Let N = (S, A, L, AP , V , s0) be a consistent APA in SVNF. A deterministic APA for N is the

APA ̺(N) = (S ′, A, L′, AP , V ′, {s0}) such that

• S ′ = {s0} ∪ Reach∗({s0}, A).

• V ′ is such that V ′(Q ) = {θ} if and only if ∀q ∈ Q , V (q) = {θ}. There always exists exactly one such θ by construction.

• L′ is defined as follows: Let Q ∈ S ′ and a ∈ A.

– If, for all q ∈ Q , we have that ∀ϕ ∈ C(S), L(q,a,ϕ) = ⊥, then define L′(Q ,a,ϕ′) = ⊥ for all ϕ′ ∈ C(S ′).

– Otherwise, define ϕ′ ∈ C(S ′) such that μ′ ∈ Sat(ϕ′) if and only if (1) ∀Q ′ /∈ Reach(Q ,a), we have μ′(Q ′) = 0,

and (2) there exist q ∈ Q , ϕ ∈ C(S) and μ ∈ Sat(ϕ) such that L(q,a,ϕ) = ⊥ and ∀Q ′ ∈ Reach(Q ,a), μ′(Q ′) =∑
q′∈Q ′ μ(q′). Then define

L′
(
Q ,a,ϕ′

)
=

{
⊤ if ∀q ∈ Q , ∃ϕ ∈ C(S): L(q,a,ϕ) = ⊤,

? otherwise.

Example. Consider the non-deterministic APA N (N) given in Fig. 7. Using Definition 38, we obtain the APA ̺(N (N)) given

in Fig. 18.

By construction, ̺(N) is action- and valuation-deterministic. As expected, determinisation is an abstraction, but more

than that it is also the smallest deterministic abstraction of N . This is formalized in the following theorem.

Theorem 39. Let N be an APA in SVNF. The following statements hold:

1. N �S ̺(N), and

2. for all deterministic APA N ′ in SVNF, if N � N ′ , then ̺(N) � N ′ .

Proof. Let N = (S, A, L, AP , V , s0) be a (consistent) APA in SVNF. Let ̺(N) = (S ′, A, L′, AP , V ′, {s0}) be the determinisation

of N defined as in Definition 38. We prove the two statements separately.
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1. We prove that N �S ̺(N) by providing the following strong refinement relation. Let R ⊆ S × S ′ be the relation such

that sRQ ⇔ s ∈ Q for all Q ∈ S ′ . The proof that R is a strong refinement relation is standard. For the sake of completeness,

a detailed proof is given in Appendix H.

2. Let N ′ = (T , A, LT , AP , V T , t0) be a deterministic APA in SVNF. Assume that N � N ′ with weak refinement relation

R ⊆ S × T (notice that since N ′ is deterministic, weak refinement coincides with weak weak refinement). Let R′ ⊆ S ′ × T

be the relation such that QR′t if and only if qRt for all q ∈ Q . We prove that R′ is a weak refinement relation. Let

(Q , t) ∈R′ .

1. Let a ∈ A and ϕt ∈ C(T ) be such that LT (t,a,ϕt) = ⊤. By the definition of R′ , for all s ∈ Q , we have (s, t) ∈ R. Thus,

by the definition of R, for all s ∈ Q , there exists ϕs ∈ C(S) such that L(s,a,ϕs) = ⊤ and for all μs ∈ Sat(ϕs), there

exists μt
s ∈ Sat(ϕt) such that μs ⋐R μt

s . As a consequence, by the definition of ̺(N), there exists ϕ′ ∈ C(S ′) such that

L(Q ,a,ϕ′) = ⊤.

Let μ′ ∈ Sat(ϕ′). By construction of ϕ′ , there exist s ∈ Q ,ϕs ∈ C(S) and μ ∈ Sat(ϕs) such that L(s,a,ϕs) = ⊥ and for

all Q ′ ∈ Reach(Q ,a), μ′(Q ′) =
∑

s′∈Q ′ μ(s′). Since (Q , t) ∈R′ , we have (s, t) ∈R and therefore there exists ϕ′ t ∈ C(T )

such that LT (t,a,ϕ′ t) = ⊥. By determinism of N ′ , we have ϕ′ t = ϕt . Moreover, there must exist a correspondence

function δs and μt ∈ Sat(ϕt) such that μ ⋐δs

R
μt . Let δ : S ′ → (T → [0,1]) be such that δ(Q ′)(t) =

∑
s′∈Q ′

μ(s′)δs(s′)(t)
μ′(Q ′)

if

μ′(Q ′) > 0 and 0 otherwise. We now show that δ is a correspondence function and that μ′ ⋐δ
R′ μ

t .

• Let Q ′ ∈ S ′ be such that μ′(Q ′) > 0. As a consequence, for all s′ ∈ Q such that μ(s′) > 0, δs(s′) ∈ Dist(T ). As a

consequence,
∑

s′∈Q ′
μ(s′)δs(s′)(t)

μ(Q ′)
is also a distribution on T and δ(Q ′) ∈ Dist(T ).

• Let t′ ∈ T , then we have

∑

Q ′∈S ′

μ′
(
Q ′

)
δ
(
Q ′

)(
t′
)
=

∑

Q ′∈S ′|μ′(Q ′)>0

μ′
(
Q ′

) ∑

s′∈Q ′

μ(s′)δs(s′)(t)

μ′(Q ′)

=
∑

Q ′∈S ′|μ′(Q ′)>0

∑

s′∈Q ′

μ
(
s′
)
δs

(
s′
)
(t)

=
∑

s′∈S

μ
(
s′
)
δs

(
s′
)
(t)

= μt(t).

• Let (Q ′, t′) ∈ S ′ × T be such that δ(Q ′)(t′) > 0. Since Q ′ ∈ Reach(Q ,a) by construction, we have that for all s′ ∈ Q ′ ,

there exist sr ∈ Q , ϕr ∈ C(S) and μr ∈ Sat(ϕr) such that L(s,a,ϕr) = ⊥ and μr(s′) > 0. Since (s, t) ∈ R and by

determinism of N ′ , we can show that (s′, t′) ∈ R. Therefore we have that (s′, t′) ∈ R for all s′ ∈ Q ′ and consequently

(Q ′, t′) ∈R′ .

As a consequence, μ′ ⋐δ
R′ μ

t .

2. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(Q ,a,ϕ′) = ⊥. By construction, there must thus exist s ∈ Q and ϕs ∈ C(S) such

that L(s,a,ϕs) = ⊥. Therefore, since (s, t) ∈R, there must exist ϕt ∈ C(T ) such that LT (t,a,ϕt) = ⊥. Then, by the same

reasoning as above, we can show that for all μ′ ∈ Sat(ϕ′), there exists μt ∈ Sat(ϕt) such that μ′ ⋐R′ μt .

3. Recall that there exists θ ∈ 2AP such that V (s) = θ for all s ∈ Q . Since (s, t) ∈ R for all s ∈ Q , we have θ ⊆ V T (t) and

therefore V ′(Q ) ⊆ V T (t).

Finally, R′ is a weak refinement relation. Moreover, ({s0}, t0) ∈R′ by construction, and thus ̺(N) � N ′ . ✷

6.2. Completeness and relation with CMCs

In this section, we show that thorough and strong refinements coincide for deterministic APAs. For doing so, we will

compare the expressive power of APAs and CMCs, showing that APAs can act as a specification theory for MCs. Remark that

single valuation normal form of CMCs is defined similarly as for APAs. The satisfaction relation between MCs and CMCs as

well as the notions of weak and strong refinements are also defined similarly as for APAs.

On the relation between CMCs and APAs. We now show that APAs can act as a specification theory for MCs. For doing so, we

propose a satisfaction relation between MCs and APAs. Our definition is in two steps. First we show how to use PAs as a

specification theory for MCs. Then, we use the existing satisfaction relation between PAs and APAs to conclude.

Since MCs do not directly allow choices between actions, we use bipartite MCs in the following. Their state space is

partitioned into action-states (Q D in the definition below) and distribution-states (Q N in the definition below), and an

execution of a bipartite MC is a succession of alternations between action-states and distribution-states.
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Definition 40 (MC–PA satisfaction). Let P = (S, A, L, AP , V , s0) be a PA2. Let M = (Q ,π , AM , VM ,q0) be a bipartite Markov

Chain such that (1) Q = Q N ∪ Q D , with Q N ∩ Q D = ∅, for all q,q′ ∈ Q N ,π(q)(q′) = 0 and for all q,q′ ∈ Q D , π(q)(q′) = 0,

(2) q0 ∈ Q D , and (3) AM = A ∪ AP . Let R⊆ Q D × S . R is a satisfaction relation if and only if whenever qRs, we have

1. VM(q) = V (s).

2. For a ∈ A and μ ∈ Dist(S) such that L(s,a,μ) = ⊤, there exists q′ ∈ Q N such that VM(q′) = V (s)∪ {a}, π(q)(q′) > 0, and

π(q′) ⋐R μ.

3. For all q′ ∈ Q N such that π(q)(q′) > 0, there exist a ∈ A and μ ∈ Dist(S) such that VM(q′) = V (s) ∪ {a}, L(s,a,μ) = ⊤,

and π(q′) ⋐R μ.

We say that M satisfies P if and only if there exists a satisfaction relation R such that q0Rs0 .

The satisfaction relation between MCs and APAs follows directly. We say that a MC M satisfies an APA N , which we write

M |�MC N , if and only if there exists a PA P such that M satisfies P and P satisfies N . The set of MC-implementation of APA

N is denoted [[N]]MC .

Expressivity completeness. In the previous paragraph, we have proposed a satisfaction relation for MCs with respect to

APAs. We now propose a transformation that associates to every deterministic APA in SVNF a deterministic CMC in SVNF

representing the same set of MC-implementations. The purpose of this transformation is to show that deterministic APAs

do not allow for describing a larger class of Markov Chains than deterministic CMCs.

Definition 41 (Transformation )̂. Let N = (S, A, L, AP , V , s0) be a deterministic APA. Let ǫ be a fresh variable. The CMC

corresponding to N is N̂ = (Q̂ ,ψ, Â, V̂ , q̂0), with

• Q̂ = S × (A ∪ {ǫ}),

• q̂0 = (s0,ǫ),

• Â = AP ∪ A,

• V̂ ((s,ǫ)) = V (s) for all s,

• V̂ ((s,a)) = {B ∪ {a} | B ∈ V (s)} for all s and a ∈ A, and

• ψ is such that:

– For all (s,ǫ) ∈ Q̂ , ψ((s,ǫ))(π) = 1 if and only if
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

π((s,ǫ)) = 0,

∀s′ = s, b ∈ A ∪ {ǫ}, π((s′,b)) = 0,

∀a ∈ Must(s), π(s,a) > 0,

∀a /∈ May(s), π(s,a) = 0.

– For all a ∈ A and (s,a) ∈ Q̂ , ψ((s,a))(π) = 1 if and only if (1) for all s′ ∈ S and b ∈ A, we have π((s′,b)) = 0 and

(2) the distribution π ′ : s′ �→ π((s′,ǫ)) is such that there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥ and π ′ ∈ Sat(ϕ).

Informally, this transformation builds a CMC with a bipartite state space. The non-determinism inherent to APAs in the

choice of actions is simulated by new states of the form (s,a) for each action a that can be taken from state s. The proba-

bility of reaching state (s,a) emulates the modality of taking the corresponding a-transition, and the constraint associated

to state (s,a) matches the constraint associated to the corresponding a-transition.

Example. Consider the APA N given in Fig. 19a. Applying the transformation given in Definition 41 to N yields the CMC N̂

given in Fig. 19b.

By construction, the CMC N̂ is deterministic and in single valuation normal form. As expected, this transformation yields

a CMC that admits the same set of MC-implementations as the original APA. This is formalized in the following theorem.

Theorem 42. For all deterministic APA N in SVNF, the CMC N̂ is such that [[N]]MC = [[N̂]].

Proof. We prove the two directions separately.

• M |�MC N ⇒ M |�CMC N̂: Let M = (Q ,π , AM , VM ,q0) be a Markov Chain. We first prove that if M |�MC N , then M |�CMC N̂ .

Suppose that there exists a PA P = (S P , A, LP , AP , V P , sP0 ) such that M satisfies P and P |� N . Let N̂ = (Q̂ ,ψ, Â, V̂ , q̂0) be

2 Recall that we assume Act ∩ AP = ∅ for all PAs/APAs
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Fig. 19. APA N and CMC N̂ .

the transformation of N following Definition 41. By the satisfaction relation between M and P , we obtain that AM = A∪ AP

and Q = Q N ∪ Q D . Let R
MC ⊆ Q D × S P be the satisfaction relation witnessing that M satisfies P . Let RPA ⊆ S P × S be the

satisfaction relation witnessing P |� N . Consider the relation R⊆ Q × Q̂ such that

• qR(s,ǫ) iff there exists p ∈ S p such that qRMCp and pRPAs, and

• for all a ∈ A, qR(s,a) iff there exists q′ ∈ Q such that

– π(q′)(q) > 0,

– VM(q) = VM(q′) ∪ {a}, and

– q′R(s,ǫ).

The proof that R is a satisfaction relation for CMCs is standard. For the sake of completeness, the full proof is given

in Appendix I.

Moreover, we have that q0R(s0,ǫ), which gives that M |�CMC N̂ .

• M |�MC N ⇐ M |�CMC N̂: Let M = (Q ,π , AM , VM ,q0) be a Markov Chain. We prove that if M |�CMC N̂ , then M |�MC N ,

i.e. there exists a PA P such that M satisfies P and P |� N . Let N̂ = (Q̂ ,ψ, Â, V̂ , q̂0) be the transformation of N following

Definition 41.

Let R be the satisfaction relation for CMCs witnessing that M |�CMC N̂ . First observe that, by R, the Markov chain M

satisfies the following properties: Let Q D = {q ∈ Q | ∃s ∈ S, qR(s,ǫ)} and Q N = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s,a)}, then we

have

• Q D ∩ Q N = ∅ because of their valuations and R,

• ∀q,q′ ∈ Q D , π(q)(q′) = 0 and ∀q,q′ ∈ Q N , π(q)(q′) = 0,

• q0 ∈ Q D , and

• AM = A ∪ AP .

Define the PA P = (S P , A, LP , AP , V P , sP0 ) such that S P = Q D , with sP0 = q0 , V P is such that for all q ∈ Q D , V P (q) = VM(q),

and LP is such that for all s ∈ S P , a ∈ A and for all distribution ̺ over S P , L(s,a,̺) = ⊤ iff there exists q′ ∈ Q N such that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).

By construction, M satisfies P using the identity relation on Q D . We now prove that P |� N . Let RPA ⊆ S P × S be the relation

such that pRPAs iff pR(s,ǫ). The proof that RPA is a satisfaction relation for APA is standard and given in Appendix I. By

construction, we have that sP0R
PAs0 , thus P |� N . As a consequence, we have that there exists a PA P such that M satisfies

P and P |� N . Thus M |�MC N . ✷

We have just shown that for all APA N , there exists a CMC N̂ such that [[N]]MC = [[N̂]]CMC . The reverse of the theorem

also holds up to a syntactical transformation that preserves sets of implementations. Since CMCs are not equipped with

actions, this transformation adds a single action to all valuations of the original CMC in order to provide actions for the

transitions of the equivalent APA. Additionally, it duplicates the state-space in order to obtain a bipartite CMC with bipartite

MCs as implementations.
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Consider a MC M = (Q ,π , A, V ,q0) and a fresh variable for actions θ /∈ A. Let M̌ = (Q N ∪ Q P , π̌ , A ∪ {θ}, V̌ ,qD
0 ) be the

MC such that

• Q D = {qD | q ∈ Q },

• Q N = {qN | q ∈ Q },

• V̌ is such that V̌ (q) = V (q) if q ∈ Q D and V̌ (q) = V (q) ∪ {θ} if q ∈ Q N , and

• π̌ is such that

– for all qD ∈ Q D , π̌(qD)(qN ) = 1, and

– for all qN ∈ Q N , π̌(qN )(q′) = π(q)(q′) if q′ ∈ Q D and 0 otherwise.

This transformation naturally extends to CMCs. Obviously, it follows that for all MC M and CMC C , we have M |�CMC

C ⇔ M̌ |�CMC Č . The transformation from CMC M̌ to an APA is then obvious, and preserves the set of implementations.

This result together with Theorems 27 and 29 of [28] leads to the following important result.

Theorem 43. For deterministic APAs with single valuations in the initial state, strong refinement coincides with thorough, weak weak

and weak refinement.

Proof. Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be two pruned deterministic APA in single valuation nor-

mal form. From Theorem 17, we know that strong refinement implies thorough refinement. We now prove that the reverse

also holds.

Suppose that [[N]] ⊆ [[N ′]]. We prove that N �S N ′ .

Let N̂ = (Q̂ ,ψ, Â, V̂ , q̂0) and N̂ ′ = (Q̂ ′,ψ ′, Â, V̂ ′, q̂′
0) be the CMCs equivalent to N and N ′ (up to MC satisfaction) ob-

tained by the transformation proposed in Definition 41. By the definition of [[·]]MC , we have that [[N]]MC ⊆ [[N ′]]MC . As a

consequence, by Theorem 42, we have that [[N̂]]CMC ⊆ [[N̂ ′]]CMC . Since N̂ and N̂ ′ are deterministic CMCs in single valuation

normal form, we have, by Theorem 18 of [18], that N̂ �CMC N̂ ′ with a strong refinement relation between CMCs.

Let R̂ be the strong refinement relation between CMCs such that N̂ �CMC N̂ ′ . Define the relation R ⊆ S × S ′ such that

sRs′ iff (s,ǫ)R̂(s′,ǫ). We prove that R is indeed a strong refinement relation on APAs. Let s ∈ S and t ∈ S ′ be such that

sRt . We show that R satisfies the axioms of a strong refinement relation for APAs.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(t,a,ϕ′) = ⊤. By construction, we have (s,ǫ)R̂(t,ǫ), thus there exists a corre-

spondence function δ̂ such that for all distribution π satisfying ψ((s,ǫ)) we have that π ′ = π δ̂ satisfies ψ ′((t,ǫ)). By

construction, of ψ ′ , we thus have that π ′((s,a)) > 0. As a consequence, there exists (s′,b) ∈ Q̂ such that π((s′,b)) > 0

and δ̂((s′,b)(t,a)) > 0. By the definition of δ̂ and ψ , we have that s′ = s and b = a. Thus π((s,a)) > 0. Since this holds

for all π ∈ Sat(ψ), we have a ∈ Must(s). Thus there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊤.

Moreover, we have that (s,a)R̂(t,a). Let δ̂′ be the associated correspondence function. Let μ ∈ Sat(ϕ) and let

μ′ ∈ Dist(Q̂ ) be such that for all s′ ∈ S and b ∈ A, μ′((s′,ǫ)) = μ(s′) and μ′((s′,b)) = 0. By definition, we have that

μ′ satisfies ψ((s,a)). Thus, we have that ̺′ = μ′δ̂′ satisfies ψ ′((t,a)). As a consequence, the distribution ̺ ∈ Dist(S ′)

such that ̺(t′) = ̺′((t′,ǫ)) for all t′ is such that there exists ϕ′′ such that L′(t,a,ϕ′′) = ⊥ and ̺ ∈ Sat(ϕ′′). By action-

determinism of N ′ , we have that ϕ′′ = ϕ′ .

Let δ be the correspondence function such that δ(s′)(t′) = δ̂′((s′,ǫ))((t′,ǫ)). We prove that μ⋐δ
R

̺.

(a) Let s′ ∈ S be such that μ(s′) > 0. As a consequence, μ′((s′,ǫ)) > 0. As a consequence, by the definition of δ̂′ , we

have that δ̂′((s′,ǫ)) is a distribution over Q̂ ′ . Moreover, since ̺′ = μ′δ̂′ satisfies ψ ′((t,a)), we have that for all t′ ∈ T

and b ∈ A, ̺′((t′,b)) = 0. As a consequence, we have that for all t′ ∈ T and b ∈ A, δ̂′((s′,ǫ))((t′,b)) = 0. Thus δ(s′) is

a correct distribution over Q ′ .

(b) By definition, we have ̺′ = μ′δ̂′ . Since μ((s′,b)) = 0 for all b ∈ A, and since δ̂′((s′,ǫ))((t′,b)) = 0 for all s′ ∈ S ,

t′ ∈ S ′ and b ∈ A, we have that ̺ = μδ. As a consequence, we have that for all t′ ∈ S ′ ,

∑

s′∈S

μ
(
s′
)
δ
(
s′
)(
t′
)
= ̺

(
t′
)
.

(c) Let s′ ∈ S and t′ ∈ T be such that δ(s′)(t′) > 0. By the definition of δ, we have δ′((s′,ǫ))((t′,ǫ)) > 0. Thus

(s′,ǫ)R̂(t′,ǫ), and consequently s′Rt′ .

Therefore, we have that μ⋐δ
R

̺.

2. Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊥. By construction, we have (s,ǫ)R̂(t,ǫ), thus there exists a corre-

spondence function δ̂ such that for all distribution π satisfying ψ((s,ǫ)) we have that π ′ = π δ̂ satisfies ψ ′((t,ǫ)). By

construction of ψ , and because N is pruned, there must exist π ∈ Dist(Q̂ ) satisfying ψ((s,ǫ)), with π((s,a)) > 0. As a

consequence, δ̂ defines a distribution on Q̂ ′ , thus there exists (t′,b) ∈ Q̂ ′ such that δ̂((s,a))((t′,b)) > 0. By the recursion

axiom, we have b = a. Let π ′ = π δ̂, then we have π ′((t′,a)) > 0. Since π ′ satisfies ψ ′((t,ǫ)), we have that necessarily

t′ = t . As a consequence, by the definition of ψ ′ , there must exist ϕ′ ∈ C(S ′) such that L′(t,a,ϕ′) = ⊥. As above, we can

prove that there exists δ such that for all μ ∈ Sat(ϕ), there exists ̺ ∈ Sat(ϕ′) such that μ⋐δ
R

̺.

3. Since (s,ǫ)R̂(t,ǫ), we have that V (s) ⊆ V ′(s′).
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Finally, R is a strong refinement relation. Moreover, we have by construction that s0Rt0 , thus N �S N ′ .

By the ordering of the refinement relations presented in Theorem 17, it follows that R is also a weak and a weak weak

refinement relation. ✷

7. Extensions of alphabets (dissimilar alphabets)

So far, the specification theory of APAs has required that all specifications share same alphabets of actions and atomic

propositions. We are now going to lift this restriction by introducing the alphabet extension mechanism. As for the extension

of modal transition systems [16], there exist two ways of extending alphabets [29]: it is necessary to choose the modality

of transitions for new actions introduced depending on the operation being applied to the result.

The weak extension is used when conjoining specifications with different alphabets. This extension adds may loop tran-

sitions for all new actions and extends the sets of atomic propositions in a classical way:

Definition 44 (Weak extension). Let N = (S, A, L, AP , V , s0) be an APA, and let A′ and AP ′ be sets of actions and atomic

propositions such that A ⊆ A′ and AP ⊆ AP ′ . Let the weak extension of N to (A′, AP ′) be the APA N⇑(A′, AP ′) =

(S, A′, L′, AP ′, V ′, s0) such that for all states s ∈ S:

• L′(s,a,ϕ) = L(s,a,ϕ) if a ∈ A,

• L′(s,a,ϕ) = ? if a ∈ A′ \ A and ϕ only admits a single point distribution μ such that μ(s) = 1.

• V ′(s) = {B ⊆ AP ′ | B ∩ AP ∈ V (s)}.

A different extension, the strong one, is used in parallel composition. This extension adds must self-loops for all new

actions and extends the sets of atomic propositions in a classical way.

Definition 45 (Strong extension). Let N = (S, A, L, AP , V , s0) be an APA, and let A′ and AP ′ be sets of actions and atomic

propositions such that A ⊆ A′ and AP ⊆ AP ′ . Define the extension for composition of N to A′, AP ′ , written N ↑A′,AP ′
to be

the APA N ↑A′,AP ′
= (S, A′, L′, AP ′, V ′, s0) such that

• for all s ∈ S , a ∈ A and ϕ ∈ C(S), L′(s,a,ϕ) = L(s,a,ϕ),

• for all s ∈ S and a ∈ A′ \ A, define L(s,a,ϕ) = ⊤, with ϕ such that μ ∈ Sat(ϕ) if and only if μ(s) = 1, and

• for all s ∈ S , V ′(s) = {B ⊆ AP ′ | B ∩ AP ∈ V (s)}.

These different notions of extension give rise to different notions of satisfaction and refinement between structures with

dissimilar sets of actions. Satisfaction (or refinement) between structures with different sets of actions is defined as the

satisfaction (respectively refinement) between the structures after extension to a union of their alphabets.

By construction, all the results presented in the paper for conjunction and composition of PAs/APAs sharing alphabets of

actions and atomic propositions safely extend to the setting of PAs/APAs with dissimilar alphabets, provided that the right

extension is applied first.

8. Conclusion

This paper presents Abstract Probabilistic Automata, a new abstraction theory for Probabilistic Automata. The main con-

tributions of the paper are:

• A new abstraction theory for Probabilistic Automata through APAs.

• A new specification theory for PAs using APAs as a specification language. Our theory is equipped with a parallel

composition and conjunction operators, and satisfaction and refinement relations.

• A complete characterization of semantic and syntactic notions of refinement, and the characterization of a class of APAs

on which they coincide.

• A compositional abstraction technique for APAs which can be used to combat the state-space explosion problem.

• A proof that the proposed formalism is backward-compatible with classical notions of probabilistic bisimulation/parallel

composition of Probabilistic Automata.

There are various directions for future research. The first of them is to implement and evaluate our results. This would

require to design efficient algorithms for the compositional design operators. Also, it would be of interest to embed our

abstraction procedure in a CEGAR model checking algorithm. Another interesting direction would be to design an algo-

rithm to decide thorough refinement and characterize the complexity of this operation. Finally, one could also consider a

continuous-timed extension of our model inspired by [30].
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Appendix A. Details of the proof of Theorem 17

• (�T ) ⊇ (�W ) ⊇ (�) ⊇ (�S ): By a swap of quantifiers in the definitions, it is obvious that strong refinement implies

weak refinement, and that weak refinement implies weak weak refinement. We prove that weak weak refinement implies

thorough refinement. Let N = (S, A, L, AP , V , s0) and N ′ = (S ′, A, L′, AP , V ′, s′0) be APAs such that N �W N ′ with a weak

weak refinement relation R′ ⊆ S × S ′ .

If [[N]] = ∅, we have [[N]] ⊆ [[N ′]]. Otherwise, let P = (S P , A, LP , AP , V P , sP0 ) be a PA such that P |� N . Then there exists

a satisfaction relation R′′ ⊆ S P × S such that sP0R
′′s0 .

Let R ⊆ S P × S ′ be the relation such that uRw iff there exists v ∈ S such that uR′′v and vR′w . We prove that R is a

satisfaction relation.

Let u ∈ S P and w ∈ S ′ be such that uRw , and let v ∈ S be such that uR′′v and vR′w . We show that R satisfies the

axioms of a satisfaction relation.

1. Let a ∈ A′ and ϕ′ ∈ C(S ′) be such that L′(w,a,ϕ′) = ⊤. By R′ , there exists ϕ ∈ C(S) such that L(v,a,ϕ) = ⊤ and

∀μ ∈ Sat(ϕ), ∃μ′ ∈ Sat(ϕ′) such that μ⋐R ′ μ′ . Moreover, by R′′ , there exists μP ∈ Dist(S P ) such that LP (u,a,μP ) = ⊤

and ∃μS ∈ Sat(ϕ): μP ⋐R ′′ μS .

Take μS ∈ Dist(S) such that μP ⋐R ′′ μS and choose μ′ ∈ Dist(S ′) such that μS ⋐R ′ μ′ . Let δ′′ : S P → (S → [0,1]) and

δ′ : S → (S ′ → [0,1]) be the correspondence functions witnessing μP ⋐δ′′

R ′′ μS and μS ⋐
δ′

R ′ μ
′ , respectively. Let δ : S P →

(S ′ → [0,1]) be such that δ(s)(t) =
∑

r∈S δ′′(s)(r)δ′(r)(t). We prove that μP ⋐δ
R

μ′:

(a) Let s ∈ S P be such that μP (s) > 0. We have

∑

t∈S ′

δ(s)(t) =
∑

t∈S ′

∑

r∈S

δ′′(s)(r)δ′(r)(t)

=

(∑

r∈S

δ′′(s)(r)

)(∑

t∈S ′

δ′(r)(t)

)
= 1.

Thus δ(s) defines a distribution on S ′ .

(b) Let t ∈ S ′ . We have

∑

s∈S P

μP (s)δ(s)(t) =
∑

s∈S P

μP (s)
∑

r∈S

δ′′(s)(r)δ′(r)(t)

=
∑

r∈S

δ′(r)(t)
∑

s∈S P

μP (s)δ′′(s)(r)

=
∑

r∈S

δ′(r)(t)μS(r) = μ′(t).

(c) Let s ∈ S P and t ∈ S ′ be such that δ(s)(t) > 0. By the definition of δ, there exists r ∈ S such that δ′′(s)(r) > 0 and

δ′(r)(t) > 0. By the definition of δ′ and δ′′ , we thus have sR′′r and rR′t . By the definition of R, we thus have sRt .

Thus there exists μP ∈ Dist(S P ) such that LP (u,a,μP ) = ⊤ and there exists μ′ ∈ Sat(ϕ′) such that μP ⋐R μ′ .

2. Let a ∈ A and μP ∈ Dist(S P ) be such that LP (u,a,μ) = ⊥. By R′′ , there exists ϕ ∈ C(S) such that L(v,a,ϕ) = ⊥ and

∃μS ∈ Sat(ϕ) such that μP ⋐R ′′ μS . Moreover, by R′ , we have that for all μ ∈ Sat(ϕ), there exists ϕ′ ∈ C(S ′) such that

L′(w,a,ϕ′) = ⊥ and ∃μ′ ∈ Sat(ϕ′) such that μ⋐R ′ μ′ .

Choose μS ∈ Dist(S) such that μP ⋐R ′′ μS and choose ϕ′ ∈ Dist(S ′) such that L′(w,a,ϕ′) �? and there exists μ′ ∈

Sat(ϕ′) with μS ⋐R ′ μ′ . Let δ′′ : S P → (S → [0,1]) and δ′ : S → (S ′ → [0,1]) be the correspondence functions witnessing

μP ⋐δ′′

R ′′ μS and μS ⋐
δ′

R ′ μ
′ respectively. Let δ : S P → (S ′ → [0,1]) be such that δ(s)(t) =

∑
r∈S δ′′(s)(r)δ′(r)(t). Using the

same reasoning as above, we deduce that μP ⋐δ
R

μ′ .

3. Since uR′′v , we have that V P (u) ∈ V (v). Moreover, since vR′w , we have that V (v) ⊆ V ′(w). As a consequence, V P (u) ∈

V ′(w).

Since sP0R
′′s0 and s0R

′s′0 , we have that sP0Rs′0 , and we conclude that R is a satisfaction relation. Therefore P ∈ [[N ′]],

and N �T N ′ .
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Appendix B. Details for Section 3.2

We first give an equivalent and constructive version of the definition for probabilistic bisimulation. In order to produce

constructive results, we will use this definition throughout the section instead of Definition 18.

Definition 46 (Probabilistic bisimulation). Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs with no unreach-

able states. We say that R⊆ S × S ′ is a probabilistic bisimulation relation if and only if the following conditions hold:

• There exist n ∈ N and partitions (S1, . . . , Sn) and (S ′
1, . . . , S

′
n) of S and S ′ , respectively, such that

– for all i ∈ {1, . . . ,n}, and for all s1 ∈ S i and s2 ∈ S ′
i
, it holds that (s1, s2) ∈R, and

– for all i ∈ {1, . . . ,n} and for all j ∈ {1, . . . ,n} such that i = j and for all s1 ∈ S i and s2 ∈ S ′
j it holds that (s1, s2) /∈R.

• Whenever (s, s′) ∈R,

– V (s) = V ′(s′), and

– for all a ∈ A, there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ if and only if there exists μ′ ∈ Dist(S ′) such that

L′(s′,a,μ′) = ⊤ such that ∀i ∈ {1, . . . ,n},
∑

s1∈S i
μ(s1) =

∑
s2∈S ′

i
μ′(s2).

P and P ′ are probabilistically bisimilar, written P ≃ P ′ , if and only if there exists a probabilistic bisimulation relation

such that s0Rs′0 .

As expected, the lifting P̃ of P yields a specification that P satisfies. This is formalized in the following lemma.

Lemma 47. Given a PA P , it holds that P |� P̃ .

Proof. Let P = (S, A, L, AP , V , s0) be a PA and let P̃ = (S, A, L̃, AP , Ṽ , s0) be its lifting. Let R ⊆ S × S be the identity

relation on S . We prove that R is a satisfaction relation such that P |� P̃ . Let s ∈ S . We show that R satisfies the axioms of

a satisfaction relation.

• Let a ∈ A and ϕ ∈ C(S) be such that L̃(s,a,ϕ) = ⊤. By construction of P̃ , there exists μ ∈ Dist(S) such that Sat(ϕ) = {μ}

and L(s,a,μ) = ⊤. By construction, we thus have μ⋐R μ.

• Let a ∈ A and μ ∈ Dist(S) be such that L(s,a,μ) = ⊤. By construction of P̃ , there exists ϕ ∈ C(S) such that L̃(s,a,ϕ) =

⊤, with Sat(ϕ) = {μ}. Again, by construction, we have μ⋐R μ.

• By construction V (s) ∈ {V (s)} = Ṽ (s).

Since s0Rs0 , we conclude that P |� P̃ . ✷

B.1. Detailed proof for Theorem 20

The proof of the theorem is preceded by the following lemma.

Lemma 48. Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs with no unreachable states such that P |� P̃ ′ with a

satisfaction relationR. There exist n > 0 and partitions S1, . . . , Sn of S and S ′
1, . . . , S

′
n of S ′ such that, for all i ∈ {1, . . . ,n}, s ∈ S i and

s′ ∈ S ′
i
, either

• sRs′ or

• there exist k ∈ N, s1, . . . , sk ∈ S i and s′1, . . . , s
′
k
∈ S ′

i
such that

sRs′1 s1Rs′1 ∧

s1Rs′2 s2Rs′2 ∧
...

skRs′.

Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs with no unreachable states such that P |� P̃ ′ by a

satisfaction relation R. We prove that there exist n > 0 and partitions S1, . . . , Sn of S and S ′
1, . . . , S

′
n of S ′ such that, for all

i ∈ {1, . . . ,n}, s ∈ S i and s′ ∈ S ′
i
, either
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• sRs′ or

• there exist k ∈N, s1, . . . , sk ∈ S i and s′1, . . . , s
′
k
∈ S ′

i
such that

sRs′1 s1Rs′1 ∧

s1Rs′2 s2Rs′2 ∧
...

skRs′.

Proof of Lemma 48. Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs with no unreachable states such that

P |� P̃ ′ by satisfaction relation R.

We first propose the following procedure in order to build the partitions of S and S ′ , and then prove the lemma by

induction on this procedure.

Let S be partitioned into singleton sets T1 = {s1}, . . . , T |S| = {s|S|} and let U1, . . . ,U |S| be the partition of S ′ such that

∀1� i � |S|: U i = {s′ ∈ S ′ | siRs′}. Since there are no unreachable states in P and P ′ , it is obvious that U = U1 ∪ · · · ∪ U |S| .

The procedure is as follows:

• Let i be the smallest integer such that there exists j > i such that U i ∩ U j = ∅, if it exists.

For all l < i and i < l < j, let U ′
l
= U l and T ′

l
= T l;

Let U ′
i
= U i ∪ U j and T ′

i
= T i ∪ T j ;

For all l� j, let U ′
l
= U l+1 and T ′

l
= T l+1;

Repeat.

• If there is no such i, then stop.

Let (S1, . . . , Sn) and (S ′
1, . . . , S

′
n) denote the partitions of S and S ′ upon termination.

Remark that, at all iterations of the above procedure, it trivially holds that

∀l, U l =
⋃

s∈T l

{
s′ ∈ S ′

∣∣ sRs′
}
.

We now prove the lemma using induction on the number of steps performed using the above procedure.

• Let U
(0)
1 , . . . ,U

(0)
k

and T
(0)
1 , . . . , T

(0)
k

be the partitions in the initial state. By construction, for all i ∈ {1, . . . ,k}, if s ∈ U
(0)
i

and s′ ∈ T
(0)
i

, then sRs′ .

• Let U
(k)
1 , . . . ,U

(k)

l
and T

(k)
1 , . . . , T

(k)

l
be the sets obtained after step k of the procedure and assume that the conclusion

of the lemma holds after this step. Let i and j be the indexes used in step k+1 of the procedure. Let U
(k+1)
1 , . . . ,U

(k+1)
m

and T
(k+1)
1 , . . . , T

(k+1)
m be the partitions obtained after step k + 1 of the procedure. Let q ∈ {1, . . . ,m} and let s ∈ T k+1

q

and s′ ∈ Uk+1
q . If q = i then the conclusions obviously hold.

If q = i, then there are 3 cases

1. If s ∈ T k
i
and s′ ∈ Uk

i
or s ∈ T k

j
and s′ ∈ Uk

j
, then the conclusions hold by induction.

2. If s ∈ T k
i

and s′ ∈ Uk
j
, then by construction of i and j, we have that Uk

i
∩ Uk

j
= ∅. Thus, there must exist s∗′ ∈

Uk
i
∩Uk

j
and s∗1 ∈ T k

j
such that s∗1Rs∗′ . By the induction hypothesis, there exist r, t ∈N, si1, . . . , s

i
r ∈ T k

i
, s

j
1, . . . , s

j
t ∈ T k

j
,

si1
′
, . . . , sir

′
∈ Uk

i
and s

j
1

′
, . . . , s

j
t

′
∈ Uk

j
, such that

sRsi1
′

si1Rsi1
′

∧

· · ·

sir = Rs∗′ ∧

s∗1Rs∗′ s
j
1Rs∗′ ∧

· · ·

s
j
tRs′.

Since Uk+1
i

= Uk
i
∪ Uk

j
and T k+1

i
= T k

i
∪ T k

j
, the above construction gives that the lemma holds after step k + 1 of the

procedure.

3. If s ∈ T k
j
and s′ ∈ Uk

i
, a symmetric reasoning applies.

We conclude that the lemma holds for the partition obtained upon termination of the procedure. ✷

We now give the detailed proof of Theorem 20. Let P and P ′ be PAs. We prove that P ≃ P ′ ⇔ P |� P̃ ′ .
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Proof of Theorem 20. We prove the two directions separately.

• P ≃ P ′ ⇒ P |� P̃ ′: Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs such that P ≃ P ′ with relation Rb .

Let P̃ ′ = (S ′, A, L̃′, AP , Ṽ ′, s′0) be the lifting of P ′ . Let S1, . . . , Sn and S ′
1, . . . , S

′
n be the partitions of S and S ′ respectively,

according to Rb . Let R ⊆ S × S ′ be the relation such that sRs′ iff sRbs
′ . We prove that R is a satisfaction relation such

that P |� P̃ ′ .

Let s ∈ S and s′ ∈ S ′ be such that sRs′ . We show that R satisfies the axioms of a satisfaction relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L̃′(s′,a,ϕ′) = ⊤. By construction of P̃ ′ , there exists μ′ ∈ Dist(S ′) such that

L′(s′,a,μ′) = ⊤ and Sat(ϕ′) = {μ′}. Hence, by Rb , there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ and for all 1� i � n,

μ(S i) = μ′(S i). We now prove that μ⋐R μ′ .

Let δ : S → (S ′ → [0,1]) be a function defined as follows: Let s1 ∈ S and 1� i � n be such that s1 ∈ S i . Then for all s′1 ∈

S ′ , let δ(s1)(s
′
1) = 0 if s′1 /∈ S ′

i or μ(s1) = 0. Otherwise, let δ(s1)(s
′
1) =

μ′(s′1)

μ′(S ′
i
)
(by Rb , we know that μ′(S ′

i) = μ(S i) > 0).

(a) Let s1 ∈ S and 1� i � n be such that s1 ∈ S i and μ(s1) > 0. By construction, we have the following:

∑

s′1∈S ′

δ(s1)
(
s′1

)
=

∑

s′1∈S ′
i

δ(s1)
(
s′1

)

=
∑

s′1∈S ′
i

μ′(s′1)

μ′(S ′
i
)

= 1.

(b) Let s′1 ∈ S ′ and 1 � i � n be such that s′1 ∈ S ′
i . If μ′(S ′

i) = 0, then μ(S i) = 0 by Rb and by construction,∑
s1∈S μ(s1)δ(s1)(s

′
1) = 0 = μ′(s′1). Otherwise, we have the following:

∑

s1∈S

μ(s1)δ(s1)
(
s′1

)
=

∑

s1∈S i

μ(s1)δ(s1)
(
s′1

)

=
∑

s1∈S i

μ(s1)
μ′(s′1)

μ′(S ′
i
)

=
μ′(s′1)

μ′(S ′
i)

∑

s1∈S i

μ(s1)

= μ′
(
s′1

) μ(S i)

μ′(S ′
i
)

= μ′
(
s′1

)
.

(c) Let s1 ∈ S and s′1 ∈ S ′ be such that δ(s1)(s
′
1) > 0. Then by construction there exists 1� i � n such that s1 ∈ S i and

s′1 ∈ S ′
i . Hence s1Rbs

′
1 , and thus s1Rs′1 .

Consequently, we have μ⋐R μ′ .

2. Let a ∈ A and μ ∈ Dist(S) be such that L(s,a,μ) = ⊤. Then, by Rb , there exists μ′ ∈ Dist(S ′) such that L′(s′,a,μ′) = ⊤.

By construction of P̃ ′ , there exists ϕ′ ∈ C(S) such that L̃′(s′,a,ϕ′) = ⊤ and Sat(ϕ′) = {μ′}.

We now show that μ ⋐R μ′ . Define the correspondence function δ : S → (S ′ → [0,1]) as follows: let s1 ∈ S and let

1� i � n be such that s1 ∈ S i . Define δ(s1)(s
′
1) =

μ′(s′1)∑
s′∈S′

i
μ′(s′)

, if s′1 ∈ S ′
i
, and 0 otherwise.

(a) Let s1 ∈ S and assume that s1 ∈ S i for some i ∈ {1, . . . ,n}.

∑

s′1∈S ′

δ(s1)
(
s′1

)
=

∑

s′1∈S ′
i

δ(s1)
(
s′1

)

=
∑

s′1∈S ′
i

μ′(s′1)∑
s′∈S ′

i
μ′(s′)

= 1.

(b) Let s′1 ∈ S ′ and assume that s′1 ∈ S ′
i
for some i ∈ {1, . . . ,n}.

∑

s1∈S

μ(s1)δ(s1)
(
s′1

)
=

∑

s1∈S i

μ(s1)δ(s1)
(
s′1

)

=
∑

s1∈S i

μ(s1)
μ′(s′1)∑
s′∈S ′

i
μ′(s′)
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=
μ′(s′1)∑
s′∈S ′

i
μ′(s′)

∑

s1∈S i

μ(s1)

= μ′
(
s′1

)
,

since by probabilistic bisimulation
∑

s1∈S i
μ(s1) =

∑
s′∈S ′

i
μ′(s′).

(c) Assume that δ(s1)(s
′
1) > 0. Then s1 ∈ S i and s′1 ∈ S ′

i
for some i ∈ {1, . . . ,n}, and hence s1Rbs

′
1 . Then s1Rs′1 .

3. By Rb , we have V (s) = V ′(s′), and therefore V (s) ∈ {V ′(s′)} = Ṽ ′(s′).

Finally, R is a satisfaction relation such that s0Rs′0 , thus P |� P̃ ′ .

• P ≃ P ′ ⇐ P |� P̃ ′: Let P = (S, A, L, AP , V , s0) and P ′ = (S ′, A, L′, AP , V ′, s′0) be PAs and let P̃ ′ = (S ′, A, L̃′, AP , Ṽ ′, s′0) be

the lifting of P ′ . Suppose that P |� P̃ ′ . We prove that P ≃ P ′ .

Let (S1, . . . , Sn) and (S ′
1, . . . , S

′
n) be the partitions of S and S ′ given by Lemma 48. Let Rb ⊆ S × S ′ be the relation such

that sRbs
′ if and only if ∃i ∈ {1, . . . ,n}: s ∈ S i ∧ s′ ∈ S ′

i
. We prove that Rb is a probabilistic bisimulation relation. Consider

the partitions above. It holds by construction that

• for all i ∈ {1, . . . ,n}, and for all s1 ∈ S i and s2 ∈ S ′
i
, it holds that (s1, s2) ∈R, and

• for all i ∈ {1, . . . ,n} and for all j ∈ {1, . . . ,n} such that i = j and for all s1 ∈ S i and s2 ∈ S ′
j
it holds that (s1, s2) /∈R.

Let s ∈ S and s′ ∈ S ′ be such that sRbs
′ . Remark that, by Lemma 48, either sRs′ or there exist k ∈ N, s1, . . . , sk ∈ S i and

s′1, . . . , s
′
k
∈ S ′

i
such that

sRs′1 s1Rs′1 ∧

s1Rs′2 s2Rs′2 ∧
...

skRs′.

• By Lemma 48 and R, we have V (s) = V (s′).

• Let a ∈ A and μ ∈ Dist(S) be such that L(s,a,μ) = ⊤.

– If (s, s′) ∈ R, then by R there exists ϕ′ ∈ C(S ′) such that L̃′(s′,a,ϕ′) = ⊤ and ∃μ′ ∈ Sat(ϕ′): μ ⋐R μ′; let δ be

the witnessing correspondence function. By construction of P̃ ′ , we have that Sat(ϕ′) = {μ′} and L′(s′,a,μ′) = ⊤.

By construction of the partitions it holds, for all j ∈ {1, . . . ,n} and all s1 ∈ S j , that δ(s1)(s
′
1) = 0 if s′1 /∈ S ′

j
. As a

consequence, if s1 ∈ S j and μ(s1) > 0, then it holds by R that
∑

s′1∈S ′
j
δ(s1)(s

′
1) = 1. Let j ∈ {1, . . . ,n}.

∑

s′1∈S ′
j

μ′
(
s′1

)
=

∑

s′1∈S ′
j

∑

s1∈S

μ(s1)δ(s1)
(
s′1

)

=
∑

s′1∈S ′
j

∑

s1∈S j

μ(s1)δ(s1)
(
s′1

)

=
∑

s1∈S j

μ(s1)
∑

s′1∈S ′
j

δ(s1)
(
s′1

)

=
∑

s1∈S j

μ(s1).

We conclude that s and s′ are indeed probabilistically bisimilar.

– If (s, s′) /∈R, then there exist k ∈ N, s1, . . . , sk ∈ S i and s′1, . . . , s
′
k
∈ S ′

i
such that

sRs′1 s1Rs′1 ∧

s1Rs′2 s2Rs′2 ∧
...

skRs′.

As above, for states v ∈ S i and v ′ ∈ S ′
i
such that vRv ′ we have that, for all μv ∈ Dist(S) such that L(v,a,μv) = ⊤,

there exists μ′
v ∈ Dist(S ′) such that L′(v ′,a,μ′

v) = ⊤ and all for all j ∈ {1, . . . ,n},
∑

s1∈S j
μv(s1) =

∑
s′1∈S ′

j
μ′

v(s
′
1).

Moreover, for all μ′
v ∈ Dist(S ′) such that L′(s′,a,μ′

v) = ⊤, we have that L̃′(v ′,a,ϕ′
v) = ⊤ with Sat(ϕ′

v) = {μ′}. Thus,

by R, there exists μv ∈ Dist(S) such that L(v,a,μv) = ⊤ and μv ⋐μ′
v . As above, we obtain that for all j ∈ {1, . . . ,n},∑

s1∈S j
μv(s1) =

∑
s′1∈S ′

j
μ′

v(s
′
1).
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By transitivity, we conclude that there exists μ′ ∈ Dist(S ′) such that L′(s′,a,μ′) = ⊤ and all for all j ∈ {1, . . . ,n},∑
s1∈S j

μ(s1) =
∑

s′1∈S ′
j
μ′(s′1).

• Let a ∈ A and μ′ ∈ Dist(S ′) be such that L′(s′,a,μ′) = ⊤. Then, by construction of P̃ ′ , we have that L̃′(s′,a,ϕ′) = ⊤ with

Sat(ϕ′) = {μ′}.

– If (s, s′) ∈ R, then by R there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ and μ ⋐R μ′ . As above, we can conclude

that for all j ∈ {1, . . . ,n}, we have
∑

s1∈S j
μ(s1) =

∑
s′1∈S ′

j
μ′(s′1).

– If (s, s′) /∈R, there exist k ∈ N, s1, . . . , sk ∈ S i and s′1, . . . , s
′
k
∈ S ′

i
such that

sRs′1 s1Rs′1 ∧

s1Rs′2 s2Rs′2 ∧
...

skRs′.

As above, by transitivity, we prove that there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ and for all j ∈ {1, . . . ,n}, we

have
∑

s1∈S j
μ(s1) =

∑
s′1∈S ′

j
μ′(s′1).

We conclude that Rb is a probabilistic bisimulation relation, thus P ≃ P ′ . ✷

B.2. Detailed proof for Lemma 21

Let P be a PA and let N be an APA. We prove the following: P |� N ⇔ P̃ � N .

Proof of Lemma 21. We prove the two directions separately.

• P |� N ⇒ P̃ � N: Let P = (S, A, L, AP , V , s0) be a PA and let N = (S ′, A, L′, AP , V ′, s′0) be an APA such that P |� N with

relation Rs . Let P̃ = (S, A, L̃, AP , Ṽ , s0) be the lifting of P . Let R⊆ S × S ′ be the relation such that sRs′ iff sRss
′ . We prove

that R is a refinement relation such that P̃ � N .

Let s ∈ S and s′ ∈ S ′ be such that sRs′ . We show that R satisfies the axioms of a weak refinement relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(s′,a,ϕ′) = ⊤. By Rs , there exist μ ∈ Dist(S) and μ′ ∈ Sat(ϕ′) such that

L(s,a,μ) = ⊤ and μ⋐Rs
μ′ . By construction of P̃ , there exists ϕ ∈ C(S) such that L̃(s,a,ϕ) = ⊤ and Sat(ϕ) = {μ}. Let

δs be the correspondence function witnessing μ ⋐
δs
Rs

μ′ . Since R = Rs , it also holds that μ ⋐
δs
R

μ′ . Thus there exists

ϕ ∈ C(S) such that L(s,a,ϕ = ⊤) and for all μ ∈ Sat(ϕ), there exists μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ .

2. Let a ∈ A and ϕ ∈ C(S) be such that L̃(s,a,ϕ) = ⊥. By construction of P̃ , there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤

and Sat(ϕ) = {μ}. By Rs , there exist ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) = ⊥ and μ′ ∈ Sat(ϕ′) such that μ⋐Rs
μ′ . As above,

it also holds that μ ⋐R μ′ . Thus there exists ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) �? and for all μ ∈ Sat(ϕ), there exists

μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ .

3. Since Ṽ (s) = {V (s)} and V (s) ∈ V ′(s′) by Rs , it holds that Ṽ (s) ⊆ V ′(s′).

Thus R is a weak refinement relation. Moreover, by construction, s0Rs′0 . Thus we conclude that P̃ � N .

• P |� N ⇐ P̃ � N: Let P = (S, A, L, AP , V , s0) be a PA, let P̃ = (S, A, L̃, AP , Ṽ , s0) be the lifting of P and let N =

(S ′, A, L′, AP , V ′, s′0) be an APA such that P̃ � N with relation Rr . Let R ⊆ S × S ′ be the relation such that sRs′ iff sRr s
′ .

We prove that R is a satisfaction relation such that P |� N .

Let s ∈ S and s′ ∈ S ′ be such that sRs′ . We show that R satisfies the axioms of a satisfaction relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(s′,a,ϕ′) = ⊤. By Rr , there exists ϕ ∈ C(S) such that L̃(s,a,ϕ) = ⊤ and for

all μ ∈ Sat(ϕ), there exists μ′ ∈ Sat(ϕ′) such that μ ⋐Rr
μ′ . By construction of P̃ , there exists μ ∈ Dist(S) such that

L(s,a,μ) = ⊤ and Sat(ϕ) = {μ}. Consider the distribution μ′ ∈ Sat(ϕ′) such that μ⋐Rr
μ′ given by Rr . Since Rr = R,

it also holds that μ ⋐R μ′ . Thus there exists μ ∈ Dist(S) such that L(s,a,μ) = ⊤ and there exists μ′ ∈ Sat(ϕ′) such

that μ⋐R μ′ .

2. Let a ∈ A and μ ∈ Dist(S) be such that L(s,a,μ) = ⊤. By construction of P̃ , there exists ϕ ∈ C(S) such that L̃(s,a,ϕ) = ⊤

and Sat(ϕ) = {μ}. Thus, by Rr , there exist ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) = ⊥ and μ′ ∈ Sat(ϕ′) such that μ ⋐Rr
μ′ .

Since Rr = R, it also holds that μ ⋐R μ′ . Thus there exist ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) �? and μ′ ∈ Sat(ϕ′) such

that μ⋐R μ′ .

3. Since Ṽ (s) = {V (s)} and Ṽ (s) ⊆ V ′(s′), it holds that V (s) ∈ V ′(s′).

Thus R is a satisfaction relation. Moreover, by construction, s0Rs′0 . As a consequence, we conclude that P |� N . ✷
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Appendix C. Detailed proof for Lemma 24

We prove that, for any APA N and abstraction function α, it holds that N �S α(N).

Proof of Lemma 24. Let N = (S, A, L, AP , V , s0) be an APA and let α : S → S ′ be an abstraction function. Consider the state

abstraction α(N) = (S ′, A, L′, AP , V ′,α(s0)). Let R ⊆ S × S ′ be the relation such that sRs′ iff s′ = α(s). We prove that R is

a strong refinement relation.

Let s ∈ S and s′ ∈ S ′ be such that sRs′ . By construction, we thus have s ∈ γ (s′). We show that R satisfies the axioms of

a strong refinement relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(s′,a,ϕ′) = ⊤. This implies, by the definition of abstraction, that there exists

ϕ ∈ C(S), such that L(s,a,ϕ) = ⊤ and

Sat
(
ϕ′

)
= α

( ⋃

(s,ϕ∗)∈γ (s′)×C(S):L(s,a,ϕ∗)=⊤

Sat
(
ϕ∗

))
.

Define δ : S → (S ′ → [0,1]) such that δ(u)(v) = 1 if α(u) = v , and 0 otherwise. We now show that for all distribution

μ ∈ Sat(ϕ), there exists μ′ ∈ Sat(ϕ′) such that μ⋐δ
R

μ′ .

Let μ ∈ Sat(ϕ) and let μ′ ∈ Dist(S ′) be such that μ′(s′′) = α(μ)(s′′) for all s′′ ∈ S ′ . Clearly, μ′ ∈ Sat(ϕ′).

(a) Let u ∈ S be such that μ(u) > 0. By construction, δ(u) is a distribution on S ′ .

(b) Let v ∈ S ′ .

∑

u∈S

μ(u)δ(u)(v) =
∑

u s.t. α(u)=v

μ(u)

=
∑

u∈γ (v)

μ(u) = α(μ)(v) = μ′(v).

(c) Let u ∈ S and v ∈ S ′ be such that δ(u)(v) > 0. By construction, we thus have α(u) = v , and finally uRv .

2. Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊥. By construction of α(N), then there are two cases. Either (1) there

exists ϕ′ ∈ C(S ′) such that L′(s′,a,ϕ′) =? and

Sat
(
ϕ′

)
= α

( ⋃

(s,ϕ∗)∈γ (s′)×C(S):L(s,a,ϕ∗) =⊥

Sat
(
ϕ∗

))

or (2) there is no constraint ϕ′′ such that L′(s′,a,ϕ′′) =?, which means that L(s,a,ϕ) = ⊤ and there exists ϕ′ ∈ C(S ′)

such that L′(s′,a,ϕ′) = ⊤ and

Sat
(
ϕ′

)
= α

( ⋃

(s,ϕ∗)∈γ (s′)×C(S):L(s,a,ϕ∗)=⊤

Sat
(
ϕ∗

))
.

Let δ : S → (S ′ → [0,1]) be the correspondence function defined as above.

Let μ ∈ Sat(ϕ) and consider μ′ ∈ Dist(S ′) such that μ′(s′′) = α(μ)(s′′) for all s′′ ∈ S ′ . Clearly, in both cases, we have

μ′ ∈ Sat(ϕ′). Define δ : S → (S ′ → [0,1]) as δ(u)(v) = 1, if α(u) = v , and 0 otherwise. We now show that μ⋐δ
R

μ′ .

(a) Let u ∈ S be such that μ(u) > 0. Clearly, δ(u) is a distribution on S ′ .

(b) Let v ∈ S ′ .

∑

u∈S

μ(u)δ(u)(v) =
∑

u s.t. α(u)=v

μ(u)

=
∑

u∈γ (v)

μ(u) = μ′(v),

by the definition of an abstraction of a distribution.

(c) Assume that δ(u)(v) > 0. Then α(u) = v , and uRv .

3. By Definition 23, it is easy to see that V (s) ⊆ V ′(s′).

By construction, we have s0Rα(s0), so we conclude that R is a strong refinement relation and N �S α(N). ✷



106 B. Delahaye et al. / Information and Computation 232 (2013) 66–116

Appendix D. Detailed proof for Lemma 26

We prove that, for any APA N , it holds that N �S χ(N).

Proof of Lemma 26. Let N = (S, A, L, AP , V , s0) be an APA and let χ(N) = (S, A, L′, AP , V , s0) be the constraint-abstraction

of N . Let R= S × S be the identity relation. We prove that R is a strong refinement relation.

Let s, s′ ∈ S be such that sRs′ . Notice that this implies that s = s′ . We show that R satisfies the axioms of a strong

refinement relation.

1. Let a ∈ A and ϕI ∈ C(S) be such that L′(s′,a,ϕI ) = ⊤. This implies, by Definition 25, that there exists ϕ ∈ C(S), such

that L(s,a,ϕ) = ⊤ and Sat(ϕI ) = {μ′ ∈ Dist(S) |
∧

s′∈S μ′(s′) ∈ I
ϕ
s′
} with {I

ϕ
s′

| s′ ∈ S} the smallest closed intervals such

that ∀μ ∈ Sat(ϕ):
∧

s′∈S μ(s′) ∈ I
ϕ
s′
.

Let δ be the identity correspondence function.

Let μ ∈ Sat(ϕ). By the definition of ϕI , it is trivial that μ ∈ Sat(ϕI ) and μ⋐δ
R

μ.

2. Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) �?. This implies, by Definition 25, that there exists ϕI ∈ C(S), such that

L(s′,a,ϕI ) = L(s,a,ϕ) and Sat(ϕI ) = {μ′ ∈ Dist(S) |
∧

s′∈S μ′(s′) ∈ I
ϕ
s′
} with {I

ϕ
s′

| s′ ∈ S} the smallest closed intervals such

that ∀μ ∈ Sat(ϕ):
∧

s′∈S μ(s′) ∈ I
ϕ
s′
.

Let δ be the identity correspondence function.

Let μ ∈ Sat(ϕ). Again, it is trivial that μ ∈ Sat(ϕI ) and μ⋐δ
R

μ.

3. By Definition 25, since s = s′ , we have V (s) ⊆ V (s′).

By construction, as the initial states are equal, we have s0Rs0 , so we conclude that R is a strong refinement relation

and N �S χ(N). ✷

Appendix E. Detailed proof for Theorem 30

We prove that for or any APA N , it holds that [[N]] = [[β(N)]], and [[N]] = [[β∗(N)]].

Proof of Theorem 30. Let N = (S, A, L, AP , V , s0) be an APA. Let T be the set of inconsistent states of N and let β(N) be the

corresponding APA using the pruning operator of Definition 29. The result is trivial if β(N) is empty. Otherwise, suppose

that β(N) = (S ′, A, L′, AP , V ′, s0), and let P = (Q , A, LP , AP , V P ,q0) be a PA. We prove that P |� N ⇔ P |� β(N). If this

holds, then, by applying β until a fixpoint is reached, it holds that [[N]] = [[β∗(N)]].

• P |� N ⇒ P |� β(N): Suppose that P |� N , and let R ⊆ Q × S be the corresponding satisfaction relation. Define the

relation R′ ⊆ Q × S ′ such that for all s ∈ S ′ , qR′s iff qRs. We prove that R′ is a satisfaction relation. Let q ∈ Q and s ∈ S ′

be such that qR′s. We show that R′ satisfies the axioms of a satisfaction relation.

1. Let a ∈ A and ϕ ∈ C(S ′) be such that L′(s,a,ϕ) = ⊤. By the definition of L′ , we have that ϕs,a = ∅ and⊔
ϕ∈ϕs,a L(s,a,ϕ) = ⊤. As a consequence, there exists ϕ ∈ C(S) such that L(s,a,ϕ) = T and μ ∈ Sat(ϕ) iff there ex-

ists μ ∈ Sat(ϕ) such that μ(s′) = μ(s′) for all s′ ∈ S ′ and μ(t) = 0 for all t ∈ T .

By R, there exists ̺ ∈ Dist(Q ) such that L P (q,a,̺) = ⊤ and there exists μ ∈ Sat(ϕ) such that ̺ ⋐R μ. Let s′ ∈ S and

suppose that μ(s′) > 0. Let δ be the correspondence function such that ̺ ⋐δ
R

μ. By definition, there must exist q′ ∈ Q

such that ̺(q′) > 0 and δ(q′)(s′) > 0. By the definition of R, this means that s′ is not inconsistent. As a consequence,

for all t ∈ T , we have μ(t) = 0 (1). Moreover, δ(q′)(s′) > 0 also implies that s′ is consistent. Thus, for all q′ ∈ Q and

t ∈ T , we have that δ(q′)(t) = 0 (2).

Let μ ∈ Dist(S ′) be such that for all s′ ∈ S ′ , μ(s′) = μ(s′). By (1), μ is indeed a distribution. Moreover, we have by

construction that μ ∈ Sat(ϕ). Let δ′ : Q → (S ′ → [0,1]) be such that for all q′ ∈ Q and s′ ∈ S , δ′(q′)(s′) = δ(q′)(s′).

By (2), we have that δ′ is a correspondence function, and:

(a) For all q′ ∈ Q , if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S . Thus, by (2), δ′ is a distribution on S ′ .

(b) For all s′ ∈ S ′ ,

∑

q′∈Q

̺
(
q′

)
δ′

(
q′

)(
s′
)
=

∑

q′∈Q

̺
(
q′

)
δ
(
q′

)(
s′
)

= μ
(
s′
)
= μ

(
s′
)
.

(c) Whenever δ′(s′)(q′) > 0, we have by definition δ(q′)(s′) > 0. Thus, by R, q′Rs′ , and finally q′R′s′ .

Finally, we have that ̺ ⋐δ′

R′ μ.

2. Let a ∈ A and ̺ ∈ Dist(Q ) be such that L P (q,a,̺) = ⊤. By R, there exist ϕ ∈ C(S) and μ ∈ Sat(ϕ) such that L(s,a,ϕ) =

⊥ and ̺ ⋐R μ. Let ϕ ∈ C(S ′) be the constraint such that μ∗ ∈ Sat(ϕ) iff there exists μ∗′ ∈ Sat(ϕ) such that, for all

s′ ∈ S ′ , μ∗(s′) = μ∗(s′) and for all t ∈ T , μ∗(t) = 0.
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Let δ be the associated correspondence function. Let s′ ∈ S and suppose that μ(s′) > 0. By definition, there must exist

q′ ∈ Q such that ̺(q′) > 0 and δ(q′)(s′) > 0. By the definition of R, this means that s′ is not inconsistent. As a conse-

quence, for all t ∈ T , we have μ(t) = 0 (1). Moreover, δ(q′)(s′) > 0 also implies that s′ is consistent. Thus, for all q′ ∈ Q

and t ∈ T , we have that δ(q′)(t) = 0 (2).

Let ϕ ∈ C(S ′) be such that μ ∈ Sat(ϕ) iff there exists μ′ ∈ Sat(ϕ) such that, for all s′ ∈ S ′ , μ(s′) = μ′(s′) and for all

t ∈ T , μ′(t) = 0. By construction, we have ϕ ∈ ϕs,a . Thus, L′(s,a,ϕ) = ⊥.

Moreover, let μ ∈ Dist(S ′) be the distribution such that for all s′ ∈ S ′ , μ(s′) = μ(s′). By (1), μ is indeed a distribution.

By construction, we have that μ ∈ Sat(ϕ). Let δ′ : Q → (S ′ → [0,1]) be such that for all q′ ∈ Q and s′ ∈ S , δ′(q′)(s′) =

δ(q′)(s′). By (2), we have that δ′ is a correspondence function, and:

(a) For all q′ ∈ Q , if ̺(q′) > 0, then, by R, δ(q′) is a distribution on S . Thus, by (2), δ′ is a distribution on S ′ .

(b) For all s′ ∈ S ′ ,

∑

q′∈Q

̺
(
q′

)
δ′

(
q′

)(
s′
)
=

∑

q′∈Q

̺
(
q′

)
δ
(
q′

)(
s′
)

= μ
(
s′
)
= μ

(
s′
)
.

(c) Whenever δ′(s′)(q′) > 0, we have by definition δ(q′)(s′) > 0. Thus, by R, q′Rs′ , and finally q′R′s′ .

Finally, we have that ̺ ⋐δ′

R′ μ.

3. By R, we have that V (q) ∈ V (s′) = V ′(s′).

Finally, R′ is a satisfaction relation. Moreover, we have by definition that q0R
′s0 , thus P |� β(N).

• P |� N ⇐ P |� β(N): Suppose that P |� β(N), and let R′ ⊆ Q × S ′ be the corresponding satisfaction relation. Define

R ⊆ Q × S such that for all q ∈ Q and s ∈ S , qRs iff s ∈ S ′ and qR′s′ . By construction, R is a satisfaction relation and

q0Rs0 . Thus P |� N . ✷

Appendix F. Detailed proof for Theorem 32

Let N1 , N2 , and N3 be consistent APAs sharing action and atomic proposition sets. We prove that

• β∗(N1 ∧ N2)�W N1 and β∗(N1 ∧ N2)�W N2 .

• If N3 �W N1 and N3 �W N2 , then N3 �W β∗(N1 ∧ N2).

Proof of Theorem 32. Let N1 = (S1, A, L1, AP , V1, s0) and N2 = (S2, A, L2, AP , V2, s
2
0) and N3 = (S3, A, L3, AP , V3, s

3
0) be

three APAs. Let N1 ∧ N2 = (S1 × S2, A, L̃, AP , Ṽ , (s0, s
2
0)) be the conjunction of N1 and N2 defined as in Definition 31. We

prove the claims separately.

• β∗(N1 ∧ N2) �W N1: Obviously, if N1 ∧ N2 is fully inconsistent, then β∗(N1 ∧ N2) is empty and refines N1 with the empty

refinement relation. Suppose now that β∗(N1 ∧N2) = (S∧, A, L∧, AP , V ∧, (s0, s
2
0)), with S∧ ⊆ S1 × S2 , not empty. Define the

relation R⊆ S∧ × S1 such that for all (s, s′) ∈ S∧ and t ∈ S1 , (s, s′)Rt iff s = t . We prove that R is a weak weak refinement

relation. Let (s, s′) ∈ S∧ be such that (s, s′)Rs. We show that R satisfies the axioms of a weak weak refinement relation.

1. Let a ∈ A and ϕ ∈ C(S1) be such that L1(s,a,ϕ) = ⊤. Since (s, s′) ∈ S∧ , we have that a ∈ May(s′). Let ϕ̃ ∈ C(S1 × S2) be

such that μ̃ ∈ Sat(ϕ̃) iff

• the distribution μ : r →
∑

r′∈S2
μ̃((r, r′)) is in Sat(ϕ), and

• there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution μ′ : r′ →

∑
r∈S1

μ̃((r, r′)) is in

Sat(ϕ′).

By the definition of N1 ∧ N2 , we have that L̃((s, s′),a, ϕ̃) = ⊤. Consider now ϕ∧ ∈ C(S∧) the constraint such that

μ∧ ∈ Sat(ϕ∧) iff there exists μ̃ ∈ Sat(ϕ̃) such that ∀r ∈ S∧ , μ∧(r) = μ̃(r) and ∀r ∈ S1 × S2 \ S∧ , μ̃(r) = 0. According to

the definition of pruning, we know that L∧((s, s′),a,ϕ∧) =
⊔

ψ∈ϕ∧(s,s′),a L̃((s, s
′),a,ψ). Since ϕ̃ ∈ ϕ∧(s,s′),a , it holds that

L∧((s, s′),a,ϕ∧) = ⊤.

Thus there exists ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊤. Moreover, define the correspondence function δ : S∧ →

(S1 → [0,1]) such that δ((r, r′))(r′′) = 1 iff r′′ = r. Let μ∧ ∈ Sat(ϕ∧), μ̃ be the corresponding distribution in Sat(ϕ̃), and

μ the distribution such that μ : r ∈ S1 �→
∑

r′∈S2
μ̃((r, r′)). By definition, μ is in Sat(ϕ). We now prove that μ∧ ⋐δ

R
μ.

• For all (r, r′) ∈ S∧ , δ((r, r′)) is a distribution on S1 by definition.

• Let r ∈ S1 .

∑

(r,r′′)∈S∧

μ∧
((
r′, r′′

))
δ
((
r′, r′′

))
(r) =

∑

r′∈S2|(r,r′)∈S∧

μ∧
((
r, r′

))

=
∑

r′∈S2|(r,r′)∈S∧

μ̃
((
r, r′

))
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=
∑

r′∈S2

μ̃
((
r, r′

))

= μ(r).

• Finally, if δ((r, r′))(r′′) > 0, then r = r′′ and (r, r′)Rr by definition.

Thus μ∧ ⋐δ
R

μ.

2. Let a ∈ A and ϕ∧ ∈ C(S∧) be such that L∧((s, s′),a,ϕ∧) = ⊥. By the definition of L∧ , there exists ϕ̃ ∈ ϕ∧t,a . Thus,

L̃((s, s′),a, ϕ̃) = ⊥ in N1 ∧ N2 , and a distribution μ∧ satisfies ϕ∧ iff there exists a distribution μ̃ ∈ Sat(ϕ̃) such that

μ∧(r) = μ̃(r) for all r ∈ S∧ and μ̃(r) = 0 for all r ∈ S1 × S2 \ S∧ . Since S∧ contains only consistent states, there exists

μ∧ ∈ Sat(ϕ∧). Let μ̃ ∈ Sat(ϕ̃) be a corresponding distribution in ϕ̃ . There are 3 cases.

• If a /∈ Must(s) and a /∈ Must(s′), then by the definition of L̃, there must exist ϕ ∈ C(S1) and ϕ′ ∈ C(S2) such that

L1(s,a,ϕ) = ⊥ and L2(s
′,a,ϕ′) = ⊥. Moreover, ˜̺ ∈ Sat(ϕ̃) iff the distributions ̺ : r ∈ S1 �→

∑
r′∈S2

˜̺ ((r, r′)) and ̺′ :

r′ ∈ S2 �→
∑

r∈S1
˜̺ ((r, r′)) are respectively in Sat(ϕ) and in Sat(ϕ′).

Since μ̃ ∈ Sat(ϕ̃), let μ and μ′ be the corresponding distributions in Sat(ϕ) and Sat(ϕ′). Define the correspondence

function δ : S∧ → (S1 → [0,1]) such that δ((r, r′))(r′′) = 1 iff r′′ = r. As above, we can prove that μ∧ ⋐δ
R

μ.

• Otherwise, suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) such that ϕ̃ is such that ˜̺ ∈ Sat(ϕ̃) iff

– the distribution ̺ : r →
∑

r′∈S2
˜̺ ((r, r′)) is in Sat(ϕ), and

– there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution ̺′ : r′ →

∑
r∈S1

˜̺ ((r, r′)) is in

Sat(ϕ′).

Since μ̃ ∈ Sat(ϕ̃), let ϕ′ ∈ C(S2) be the corresponding constraint on S2 such that L2(s
′,a,ϕ′) = ⊥. Let μ and μ′ be

the corresponding distributions in Sat(ϕ) and Sat(ϕ′). Define the correspondence function δ : S∧ → (S1 → [0,1]) such

that δ((r, r′))(r′′) = 1 iff r′′ = r. As above, we can prove that μ∧ ⋐δ
R

μ.

• Finally, suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) such that ϕ̃ is such that ˜̺ ∈ Sat(ϕ̃) iff

– there exist a distribution ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊥ and the distribution ̺ : r →
∑

r′∈S2
˜̺ ((r, r′)) is in

Sat(ϕ), and

– the distribution ̺′ : r′ →
∑

r∈S1
˜̺ ((r, r′)) is in Sat(ϕ′).

Since μ̃ ∈ Sat(ϕ̃), let ϕ ∈ C(S1) be the corresponding constraint on S1 such that L1(s,a,ϕ) = ⊥. Let μ and μ′ be the

corresponding distributions in Sat(ϕ) and Sat(ϕ′). Define the correspondence function δ : S∧ → (S1 → [0,1]) such

that δ((r, r′))(r′′) = 1 iff r′′ = r. As above, we can prove that μ∧ ⋐δ
R

μ.

Finally, in any case, there exists ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊥ and there exists μ ∈ Sat(ϕ) such that μ∧ ⋐R μ.

3. By definition, V ∧((s, s′)) = Ṽ ((s, s′)) = V1(s) ∩ V2(s
′) ⊆ V1(s).

Finally, R is a weak weak refinement relation, and we have β∗(N1 ∧ N2)�W N1 .

• β∗(N1 ∧ N2) �W N2: This result is obtained using a similar proof as above.

• if N3 �W N1 and N3 �W N2 , then N3 �W β∗(N1 ∧ N2): Let R1 ⊆ S3 × S1 and R2 ⊆ S3 × S2 be the weak weak refinement

relations such that N3 � N1 and N3 � N2 . Obviously, if N1 ∧N2 is fully inconsistent, then β∗(N1 ∧N2) is empty. In this case,

there are no consistent APAs refining both N1 and N2 . As a consequence, N3 is inconsistent, which violates the hypothesis.

Suppose now that β∗(N1 ∧ N2) = (S∧, A, L∧, AP , V ∧, (s0, s
2
0)), with S∧ ⊆ S1 × S2 , is not empty. Define the relation R∧ ⊆

S3 × S∧ such that s′′R∧(s, s′) ∈ S∧ iff s′′Rs ∈ S1 and s′′R′s′ ∈ S2 . We prove that R∧ is a weak weak refinement relation.

Let s ∈ S1, s
′ ∈ S2 and s′′ ∈ S3 be such that s′′R∧(s, s′). We show that R∧ satisfies the axioms of a weak weak refinement

relation.

1. Let a ∈ A and ϕ∧ ∈ C(S∧) be such that L∧((s, s′),a,ϕ∧) = ⊤. By definition, we have L̃((s, s′),a, ϕ̃) = ⊤ with ϕ̃ ∈ C(S1 ×

S2) such that μ∧ ∈ Sat(ϕ∧) iff there exists μ̃ ∈ Sat(ϕ̃) such that μ∧(r) = μ̃(r) for all r ∈ S∧ and μ̃(r) = 0 for all

r ∈ S1 × S2 \ S∧ . There are 2 cases.

• Suppose that a ∈ Must(s) and there exists ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊤, and ˜̺ ∈ Sat(ϕ̃) iff

– the distribution ̺ : r →
∑

r′∈S2
˜̺ ((r, r′)) is in Sat(ϕ), and

– there exist a distribution ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and the distribution ̺′ : r′ →

∑
r∈S1

˜̺ ((r, r′)) is in

Sat(ϕ′).

Since L1(s,a,ϕ) = ⊤ and s′′R1s, there exists ϕ′′ ∈ C(S3) such that L3(s
′′,a,ϕ′′) = ⊤ and ∀μ′′ ∈ Sat(ϕ′′), ∃μ ∈ Sat(ϕ),

such that μ′′ ⋐R1
μ (1).

Since L3(s
′′,a,ϕ′′) = ⊤ and s′′R2s

′ , we have that ∀μ′′ ∈ Sat(ϕ′′), there exist ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊥ and

μ′ ∈ Sat(ϕ′) such that μ′′ ⋐R2
̺′ (2).

Let μ′′ ∈ Sat(ϕ′′). By (1) and (2), there exist μ ∈ Sat(ϕ), ϕ′ ∈ C(S2) such that L2(s
′,aϕ′) = ⊥ and μ′ ∈ Sat(ϕ′) such

that μ′′ ⋐R1
μ and μ′′ ⋐R2

μ′ . Since (s, s′) and s′′ are consistent, remark that for all (r, r′) in S1 × S2 \ S∧ , we cannot

have s′′R1r and we cannot have s′′R2r
′ (3).

We now build μ∧ ∈ Sat(ϕ∧) such that μ′′ ⋐R∧ μ∧ .
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Let δ and δ′ be the correspondence functions such that μ′′ ⋐δ
R1

μ and μ′′ ⋐δ′

R2
μ′ . Define the correspondence func-

tion δ′′ : S3 → (S∧ → [0,1]) such that for all r′′ ∈ S3 and (r, r′) ∈ S∧ , δ′′(r′′)((r, r′)) = δ(r′′)(r)δ′(r′′)(r′). We build μ∧

and prove that μ′′ ⋐δ′′

R∧ μ∧ .

– For all r′′ ∈ S3 , if μ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By (3), we know that for all (r, r′) ∈ S1× S2\ S∧ ,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a consequence, δ′′(r′′) is a distribution on S∧ .

– Define μ∧(r, r′) =
∑

r′′∈S3
μ′′(r′′)δ′′(r′′)((r, r′)). We prove that μ∧ ∈ Sat(ϕ∧):

∗ Let r′ ∈ S2 , then we have

∑

r∈S1|(r,r′)∈S∧

μ∧
(
r, r′

)
=

∑

r∈S1|(r,r′)∈S∧

∑

r′′∈S3

μ′′
(
r′′

)
δ′′

(
r′′

)((
r, r′

))

=
∑

r∈S1|(r,r′)∈S∧

∑

r′′∈S3

μ′′
(
r′′

)
δ
(
r′′

)
(r)δ′

(
r′′

)(
r′

)

=
∑

r′′∈S3

μ′′
(
r′′

)
δ′

(
r′′

)(
r′
) ∑

r∈S1|(r,r′)∈S∧

δ
(
r′′

)
(r)

=
∑

r′′∈S3

μ′′
(
r′′

)
δ′

(
r′′

)(
r′
)

= μ′
(
r′

)
by definition.

∗ Let r ∈ S1 , then we have

∑

r′∈S2|(r,r′)∈S∧

μ∧
(
r, r′

)
=

∑

r′∈S2|(r,r′)∈S∧

∑

r′′∈S3

μ′′
(
r′′

)
δ′′

(
r′′

)((
r, r′

))

=
∑

r′∈S2|(r,r′)∈S∧

∑

r′′∈S3

μ′′
(
r′′

)
δ
(
r′′

)
(r)δ′

(
r′′

)(
r′

)

=
∑

r′′∈S3

μ′′
(
r′′

)
δ
(
r′′

)
(r)

∑

r′∈S2|(r,r′)∈S∧

δ′
(
r′′

)(
r′

)

=
∑

r′′∈S3

μ′′
(
r′′

)
δ
(
r′′

)
(r)

= μ(r) by definition.

Thus we have that

· the distribution ̺ : r →
∑

r′∈S2
μ∧((r, r′)) is in Sat(ϕ), and

· the distribution ̺′ : r′ →
∑

r∈S1
μ∧((r, r′)) is in Sat(ϕ′).

As a consequence, μ∧ ∈ Sat(ϕ∧) by the definition of ϕ∧ .

– If δ′′(r′′)((r, r′)) > 0, then by definition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0. As a consequence, r′′R1r and r′′R2r
′ , thus

r′′R∧(r, r′).

Finally, μ′′ ⋐R∧ μ∧ and μ∧ ∈ Sat(ϕ∧).

• Suppose that a ∈ Must(s′) and there exists ϕ′ ∈ C(S2) such that L2(s
′,a,ϕ′) = ⊤, and ˜̺ ∈ Sat(ϕ̃) iff

– there exist a distribution ϕ ∈ C(S1) such that L1(s,a,ϕ) = ⊥ and the distribution ̺ : r →
∑

r′∈S2
˜̺ ((r, r′)) is in

Sat(ϕ), and

– the distribution ̺′ : r′ →
∑

r∈S1
˜̺ ((r, r′)) is in Sat(ϕ′).

This case is strictly symmetric to the one presented above, so there also exists ϕ′′ ∈ C(S3) such that L3(s
′′,a,ϕ′′) = ⊤

and for all μ′′ ∈ Sat(ϕ′′), there exists μ∧ ∈ Sat(ϕ∧) such that μ′′ ⋐R∧ μ∧ .

2. Let a ∈ A and ϕ′′ ∈ C(S3) be such that L3(s
′′,a,ϕ′′) = ⊥. Let μ′′ ∈ Sat(ϕ′′).

Since s′′R1s and s′′R2s
′ , there must exist ϕ ∈ C(S1), μ ∈ Sat(ϕ), ϕ′ ∈ C(S2) and μ′ ∈ Sat(ϕ′) such that L1(s,a,ϕ) = ⊥,

L2(s
′,a,ϕ′) = ⊥, μ′′ ⋐R1

μ and μ′′ ⋐R2
μ′ . As a consequence, L̃((s, s′),a, ϕ̃) = ⊥, with ϕ̃ ∈ C(S1 × S2) such that

˜̺ ∈ Sat(ϕ̃) iff the distributions ̺ : r ∈ S1 �→
∑

r′∈S2
˜̺ ((r, r′)) and ̺′ : r′ ∈ S2 �→

∑
r∈S1

˜̺ ((r, r′)) are respectively in Sat(ϕ)

and in Sat(ϕ′). Moreover, since s′′ and (s, s′) are consistent, there exists ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊥

and ̺∧ ∈ Sat(ϕ∧) iff there exists ˜̺ ∈ Sat(ϕ̃) such that ̺∧(r, r′) = ˜̺ (r, r′) for all (r, r′) ∈ S∧ and ˜̺ (r, r′) = 0 for all

(r, r′) ∈ S1 × S2 \ S∧ .

Let δ and δ′ be the correspondence functions such that μ′′ ⋐δ
R1

μ and μ′′ ⋐δ′

R2
μ′ . Since s′′ and (s, s′) are consistent,

we know that (1) for all (r, r′) ∈ S1 × S2 \ S∧ , we have μ(r) = μ′(r′) = 0 and (2) for all r′′ ∈ S3 and (r, r′) ∈ S1 × S2 \ S∧ ,

we cannot have r′′R1r and we cannot have r′′R2r
′ .

Define the correspondence function δ′′ : S3 → (S∧ → [0,1]) such that for all r′′ ∈ S3 and (r, r′) ∈ S∧ , δ′′(r′′)((r, r′)) =

δ(r′′)(r)δ′(r′′)(r′). We now build μ∧ such that μ′′ ⋐δ′′

R∧ μ∧ and prove that μ∧ ∈ Sat(ϕ∧).
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• For all r′′ ∈ S3 , if μ′′(r′′) > 0, both δ(r′′) and δ′(r′′) are distributions. By (2), we know that for all (r, r′) ∈ S1 × S2 \ S∧ ,

δ(r′′)(r) = δ′(r′′)(r′) = 0. As a consequence, δ′′(r′′) is a distribution on S∧ .

• Define μ∧(r, r′) =
∑

r′′∈S3
μ′′(r′′)δ′′(r′′)((r, r′)). As above, we can prove that μ∧ ∈ Sat(ϕ∧).

• If δ′′(r′′)((r, r′)) > 0, then by definition δ(r′′)(r) > 0 and δ′(r′′)(r′) > 0. As a consequence, r′′R1r and r′′R2r
′ , thus

r′′R∧(r, r′).

Finally, there exist ϕ∧ ∈ C(S∧) such that L∧((s, s′),a,ϕ∧) = ⊥ and μ∧ ∈ Sat(ϕ∧) such that μ′′ ⋐R∧ μ∧ .

3. Since s′′R1s and s′′R2s
′ , we have V3(s

′′) ⊆ V1(s) ∩ V2(s
′) = V ∧((s, s′)).

Finally, R∧ is a weak weak refinement relation between N3 and β∗(N1 ∧ N2). Moreover, we know that s30R1s0 , s
3
0R2s

2
0 ,

and (s0, s
2
0) is consistent. As a consequence s30R

∧(s0, s
2
0) and N3 � β∗(N1 ∧ N2). ✷

Appendix G. Detailed proof for Theorem 35

Given a synchronization set A, we prove that all notions of refinement are a precongruence with respect to the parallel

composition operator ‖A defined above, i.e. if N1 ⋉ N ′
1 and N2 ⋉ N ′

2 , then N1 ‖A N2 ⋉ N ′
1 ‖A N ′

2 , for ⋉ ∈ {�T ,�W ,�,�S }.

Proof of Theorem 35. We provide the proof for ⋉=�. The other proofs are similar.

Let N1 = (S1, A1, L1, AP1, V1, s
1
0), N2 = (S2, A2, L2, AP2, V2, s

2
0), N ′

1 = (S ′
1, A1, L

′
1, AP1, V

′
1, s

1
0

′
) and N ′

2 = (S ′
2, A2, L

′
2,

AP2, V
′
2, s

2
0

′
) be APAs such that AP1 ∩ AP2 = ∅. Let A ⊆ A1 ∩ A2 . Assume that N1 � N ′

1 and N2 � N ′
2 with weak re-

finement relations R1 and R2 , respectively. Let N1 ‖A N2 = (S1 × S2, A1 ∪ A2, L, AP1 ∪ AP2, V , (s10, s
2
0)) and N ′

1 ‖A N ′
2 =

(S ′
1 × S ′

2, A1 ∪ A2, L
′, AP1 ∪ AP2, V , (s10

′
, s20

′
)).

Let R⊆ (S1 × S2) × (S ′
1 × S ′

2) be the relation such that (s1, s2)R(s′1, s
′
2) iff s1R1s

′
1 and s2R2s

′
2 . We now show that R is

a weak refinement relation such that N1 ‖A N2 � N ′
1 ‖A N ′

2 .

Assume that (s1, s2)R(s′1, s
′
2). We show that R satisfies the axioms of a weak refinement relation.

1. Let a ∈ A1 ∪ A2 and ϕ′ ∈ C(S ′
1 × S ′

2) be such that L′((s′1, s
′
2),a,ϕ

′) = ⊤. There are three cases:

• If a ∈ A, then there exist ϕ′
1 ∈ C(S ′

1) and ϕ′
2 ∈ C(S ′

2) such that L′
1(s

′
1,a,ϕ

′
1) = L′

2(s
′
2,a,ϕ

′
2) = ⊤ and μ′ ∈ Sat(ϕ′) iff

there exists μ′
1 ∈ Sat(ϕ′

1) and μ′
2 ∈ Sat(ϕ′

2) such that μ′ = μ′
1μ

′
2 . Since s1R1s

′
1 and s2R2s

′
2 , there exist ϕ1 ∈ C(S1) and

ϕ2 ∈ C(S2) with L1(s1,a,ϕ1) = L2(s2,a,ϕ2) = ⊤ and ∀μ1 ∈ Sat(ϕ1), ∃μ′
1 ∈ Sat(ϕ′

1): μ1 ⋐R1
μ′

1 and ∀μ2 ∈ Sat(ϕ2),

∃μ′
2 ∈ Sat(ϕ′

2): μ2 ⋐R2
μ′

2 .

Define ϕ ∈ C(S1 × S2) such that Sat(ϕ) = Sat(ϕ1)Sat(ϕ2). By the definition of N1 ‖A N2 , we have L((s1, s2),a,ϕ) = ⊤.

Let μ ∈ Sat(ϕ). Then there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Since s1R1s
′
1 and s2R2s

′
2 , there

exist μ′
1 ∈ Sat(ϕ′

1), μ′
2 ∈ Sat(ϕ′

2) and correspondence functions δ1 : S1 → (S ′
1 → [0,1]) and δ2 : S2 → (S ′

2 → [0,1]),

such that μ1 ⋐
δ1
R1

μ′
1 and μ2 ⋐

δ2
R2

μ′
2 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) as δ(u, v)(u′, v ′) = δ1(u)(u′)δ2(v)(v ′). Con-

sider the distribution μ′ such that μ′ = μ′
1μ

′
2 . By construction, μ′ ∈ Sat(ϕ′). We now prove that μ⋐δ

R
μ′:

(a) Assume that for (u, v) ∈ S1 × S2 , μ(u, v) > 0. Then we have

∑

(u′,v ′)∈S ′
1×S ′

2

δ(u, v)
(
u′, v ′

)
=

∑

u′∈S ′
1

∑

v ′∈S ′
2

δ1(u)
(
u′

)
δ2(v)

(
v ′

)

=

( ∑

u′∈S ′
1

δ1(u)
(
u′

))( ∑

v ′∈S ′
2

δ2(v)
(
v ′

))

= 1.

Thus δ(u, v) is a distribution on S ′
1 × S ′

2 .

(b) Let (u′, v ′) ∈ S ′
1 × S ′

2 .

∑

(u,v)∈S1×S2

μ(u, v)δ(u, v)
(
u′, v ′

)
=

∑

u∈S1

∑

v∈S2

μ1(u)μ2(v)δ1
(
u,u′

)
δ2

(
v, v ′

)

=

( ∑

u∈S1

μ1(u)δ1(u)
(
u′

))( ∑

v∈S2

μ2(v)δ2(v)
(
v ′

))

= μ′
1

(
u′

)
μ′

2

(
v ′

)
= μ′

(
u′, v ′

)
.

(c) Assume that δ(u, v)(u′, v ′) > 0. Then δ1(u)(u′) > 0 and δ2(v)(v ′) > 0, and since N1 � N ′
1 and N2 � N ′

2 , uR1u
′ and

vR2v
′ . Thus, by the definition of R, we have (u, v)R(u′, v ′).

• If a ∈ A1 \ A, then there exists ϕ′
1 ∈ C(S ′

1) such that L′
1(s

′
1,a,ϕ

′
1) = ⊤. Since s1R1s

′
1 , there exists ϕ1 ∈ C(S1) with

L1(s1,a,ϕ1) = ⊤ and ∀μ1 ∈ Sat(ϕ1), ∃μ′
1 ∈ Sat(ϕ′

1) such that μ1 ⋐R1
μ′

1 .
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Define ϕ ∈ C(S1 × S2) such that μ ∈ Sat(ϕ) iff for all u ∈ S1 and v = s2,μ(u, v) = 0 and the distribution μ1 : t �→

μ(t, s2) is in Sat(ϕ1). By the definition of N1 ‖A N2 , we have L((s1, s2),a,ϕ) = ⊤. Let μ ∈ Sat(ϕ). Then there exists a

μ1 ∈ Sat(ϕ1) such that μ1 can be written as t �→ μ(t, s2) and furthermore there exist μ′
1 ∈ Sat(ϕ′

1) and a correspon-

dence function δ1 : S1 → (S ′
1 → [0,1]) such that μ1 ⋐

δ1
R1

μ′
1 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) as δ(u, v)(u′, v ′) = δ(u)(u′) if v = s2 and

v ′ = s′2 , and 0 otherwise. Consider the distribution μ′ over S ′
1 × S ′

2 such that for all u′ ∈ S ′
1 and v ′ = s′2 , μ

′(u′, v ′) = 0

and for all u′ ∈ S ′
1 , μ

′(u′, s′2) = μ′
1(u

′). By construction, μ′ ∈ Sat(ϕ′). We now prove that μ⋐δ
R

μ′:

(a) Assume that for (u, v) ∈ S1 × S2 , μ(u, v) > 0. Then we have
∑

(u′,v ′)∈S ′
1×S ′

2

δ(u, v)
(
u′, v ′

)
=

∑

u′∈S ′
1

∑

v ′∈S ′
2

δ1(u)
(
u′

)

=
∑

u′∈S ′
1

δ1(u)
(
u′

)
= 1.

Thus δ(u, v) is a distribution on S ′
1 × S ′

2 .

(b) Let (u′, v ′) ∈ S ′
1 × S ′

2 , with v ′ = s′2 .

∑

(u,v)∈S1×S2

μ(u, v)δ(u, v)
(
u′, v ′

)
=

∑

u∈S1

∑

v∈S2

μ(u, v)0

= 0

= μ′
(
u′, v ′

)
.

Let u′ ∈ S ′
1 , then we have

∑

(u,v)∈S1×S2

μ(u, v)δ(u, v)
(
u′, s′2

)
=

∑

u∈S1

∑

v=s2

μ(u, v)δ(u, v)
(
u′, s′2

)

=
∑

u∈S1

μ1(u)δ1
(
u,u′

)

= μ′
(
u′, v ′

)
.

(c) Assume that δ(u, v)(u′, v ′) > 0. By the definition of δ, we have δ1(u)(u′) > 0 and v = s2, v
′ = s′2 . By the definition

of δ1 , we thus have uR1u
′ . Since s2R2s

′
2 by assumption, we finally have (u, v)R(u′, v ′).

• If a ∈ A2 \ A, the proof is similar.

2. Let a ∈ A1 ∪ A2 and ϕ ∈ C(S1 × S2) be such that L((s1, s2),a,ϕ) = ⊥. There are three cases:

• If a ∈ A, then there exist ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that L1(s1,a,ϕ1) = ⊥, L2(s2,a,ϕ2) = ⊥, and μ ∈ Sat(ϕ) iff

there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Since s1R1s
′
1 and s2R2s

′
2 , there exist ϕ′

1 ∈ C(S ′
1) and

ϕ′
2 ∈ C(S ′

2) with L′
1(s

′
1,a,ϕ

′
1) = ⊥, L′

2(s
′
2,a,ϕ

′
2) = ⊥, and ∀μ1 ∈ Sat(ϕ1), ∃μ

′
1 ∈ Sat(ϕ′

1): μ1 ⋐R1
μ′

1 and ∀μ2 ∈ Sat(ϕ2),

∃μ′
2 ∈ Sat(ϕ′

2): μ2 ⋐R2
μ′

2 .

Define ϕ′ ∈ C(S ′
1 × S ′

2) such that Sat(ϕ′) = Sat(ϕ′
1)Sat(ϕ

′
2). By the definition of N ′

1 ‖A N ′
2 , we have L′((s′1, s

′
2),a,ϕ

′) =

⊥. Let μ ∈ Sat(ϕ). By the definition of ϕ , there exist μ1 ∈ Sat(ϕ1) and μ2 ∈ Sat(ϕ2) such that μ = μ1μ2 . Furthermore,

since s1R1s
′
1 and s2R2s

′
2 , there exist μ′

1 ∈ Sat(ϕ′
1), μ′

2 ∈ Sat(ϕ′
2) and two correspondence functions δ1 : S1 → (S ′

1 →

[0,1]) and δ2 : S2 → (S ′
2 → [0,1]) such that μ1 ⋐

δ1
R1

μ′
1 and μ2 ⋐

δ2
R2

μ′
2 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) such that, for all u,u′, v, v ′ , δ(u, v)(u′, v ′) =
δ1(u)(u′)δ2(v)(v ′). By the same calculations as above, we know that the distribution μ′ over S ′

1 × S ′
2 constructed as

μ′ = μ′
1μ

′
2 is in Sat(ϕ′) and gives that μ⋐δ

R
μ′ .

• If a ∈ A1 \ A, then there exists ϕ1 ∈ C(S1) such that L1(s1,a,ϕ1) = ⊥. Since s1R1s
′
1 , there exists ϕ′

1 ∈ C(S ′
1) with

L′
1(s

′
1,a,ϕ

′
1) = ⊥ and ∀μ1 ∈ Sat(ϕ1), ∃μ′

1 ∈ Sat(ϕ′
1): μ1 ⋐R1

μ′
1 .

Define ϕ′ ∈ C(S ′
1 × S ′

2) such that μ′ ∈ Sat(ϕ′) iff for all u′ ∈ S ′
1 and v ′ = s′2,μ(u′, v ′) = 0 and the distribution μ′

1 :

t �→ μ(t, s′2) is in Sat(ϕ′
1). By the definition of N ′

1 ‖A N ′
2 , we have L′((s′1, s

′
2),a,ϕ

′) = ⊥. Let μ ∈ Sat(ϕ). Let μ1 be

the distribution on S1 such that for all t ∈ S1 , μ1(t) = μ(t, s2). By definition, μ1 ∈ Sat(ϕ1). Let μ′
1 ∈ Sat(ϕ′

1) and a

correspondence function δ1 : S1 → (S ′
1 → [0,1]) be such that μ1 ⋐

δ1
R1

μ′
1 .

Define the correspondence function δ : (S1 × S2) → ((S ′
1 × S ′

2) → [0,1]) such that for all u,u′, v, v ′ , δ(u, v)(u′, v ′) =

δ1(u)(u′) if v = s2 and v ′ = s′2 , and 0 otherwise. By the same calculations as above, we know that the distribution

μ′ ∈ Sat(ϕ′) such that for all u′ ∈ S ′
1 and v ′ = s′2 , μ

′(u′, v ′) = 0 and for all u′ ∈ S ′
1 , μ

′
1 = μ′(u′, s′2), gives that μ⋐δ

R
μ′ .

• If a ∈ A2 \ A, the proof is similar.

3. For atomic propositions we have that, V ((s1, s2)) = V1(s1) ∪ V2(s2) and V ′((s′1, s
′
2)) = {B = B1 ∪ B2 | B1 ∈ V ′

1(s
′
1) and

B2 ∈ V ′
2(s

′
2)}. Since S1R1s

′
1 and s2R2s

′
2 , we know by definition that V1(s1) ∈ V ′

1(s
′
1) and V2(s2) ∈ V ′

2(s
′
2). Considering

B1 = V1(s1) and B2 = V2(s2), we thus have that V ((s1, s2)) ∈ V ′((s′1, s
′
2)).
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By observing that (s10, s
2
0)R(s10

′
, s20

′
), since s10R1s

1
0

′
and s20R2s

2
0

′
, we conclude that R is a weak refinement rela-

tion. ✷

Appendix H. Detailed proof for Theorem 39

Let N be an APA in single valuation normal form. We prove that N �S ̺(N).

Proof of Theorem 39. Let N = (S, A, L, AP , V , s0) be a (consistent) APA in single valuation normal form. Let ̺(N) =

(S ′, A, L′, AP , V ′, {s0}) be the determinisation of N defined as in Definition 38. We prove that N �S ̺(N).

Let R ⊆ S × S ′ be the relation such that sRQ ⇔ s ∈ Q . We prove that R is a strong refinement relation. Let s, Q be

such that sRQ . We show that R satisfies the axioms of a strong refinement relation.

1. Let a ∈ A and ϕ′ ∈ C(S ′) be such that L′(Q ,a,ϕ′) = ⊤. By construction of ϕ′ , we have that ∀q ∈ Q , ∃ϕq ∈ C(S) such

that L(q,a,ϕq) = ⊤.

Since s ∈ Q , there exists ϕs such that L(s,a,ϕs) = ⊤.

Define the correspondence function δ : S → (S ′ → [0,1]) such that δ(s′)(Q ′) = 1 if Q ′ ∈ Reach(Q ,a) and s′ ∈ Q ′ .

Otherwise, δ(s′)(Q ′) = 0.

We now prove that for all μ ∈ Sat(ϕs), there exists μ′ ∈ Sat(ϕ′) such that μ⋐δ
R

μ′ . Let μ ∈ Sat(ϕs).

• Let s′ ∈ S be such that μ(s′) > 0. As a consequence, by the definition of Reach, there exists a single Q ′ ∈ S ′ such that

s′ ∈ Q ′ . Thus δ(s′)(Q ′) = 1 and for all Q ′′ = Q ′ , we have δ(s′)(Q ′′) = 0. Thus δ defines a distribution on S ′ .

• Define μ′ : S ′ → [0,1] such that μ′(Q ′) =
∑

s′∈S μ(s′)δ(s′)(Q ′). By the definition of δ, we have that (1) for all Q ′ /∈

Reach(Q ,a), μ′(Q ′) = 0; (2) there exist q ∈ Q , ϕ ∈ C(S) and μ ∈ Sat(ϕ) (namely s, ϕs and μ) such that L(q,a,ϕ) = ⊥

and for all Q ′ ∈ Reach(Q ,a), μ′(Q ′) =
∑

q′∈Q ′ μ(q′). Thus μ′ ∈ Sat(ϕ′) by construction.

• Let s′, Q ′ be such that δ(s′)(Q ′) > 0. By construction of δ, we have s′ ∈ Q ′ , thus s′RQ ′ .

As a consequence, there exists μ′ ∈ Sat(ϕ′) such that μ⋐δ
R

μ′ .

2. Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊥. By construction of ̺(N), there exists ϕ′ ∈ C(S ′) such that

L′(Q ,a,ϕ′) = ⊥. ϕ′ is defined as follows: μ′ ∈ Sat(ϕ′) iff (1) ∀Q ′ /∈ Reach(Q ,a), we have μ′(Q ′) = 0, and (2) there

exist q ∈ Q , ϕq ∈ C(S) and μq ∈ Sat(ϕq) such that L(q,a,ϕq) = ⊥ and ∀Q ′ ∈ Reach(Q ,a), μ′(Q ′) =
∑

q′∈Q ′ μq(q
′).

Define the correspondence function δ : S → S ′ → [0,1] such that δ(s′)(Q ′) = 1 if Q ′ ∈ Reach(Q ,a) and s′ ∈ Q ′ . Other-

wise, δ(s′)(Q ′) = 0.

We now prove that for all μ ∈ Sat(ϕ), there exists μ′ ∈ Sat(ϕ′) such that μ ⋐δ
R

μ′ . Let μ ∈ Sat(ϕ), and let μ′ : S ′ →

[0,1] be the distribution such that μ′(Q ′) =
∑

s′∈S μ(s′)δ(s′)(Q ′). We prove that μ⋐δ
R

μ′ and μ′ ∈ Sat(ϕ′).

• Let s′ ∈ S be such that μ(s′) > 0. As a consequence, by the definition of Reach, there exists a single Q ′ ∈ S ′ such that

s′ ∈ Q ′ . Thus δ(s′)(Q ′) = 1 and for all Q ′′ = Q ′ , we have δ(s′)(Q ′′) = 0. Thus δ defines a distribution on S ′ .

• Define μ′ : S ′ → [0,1] such that μ′(Q ′) =
∑

s′∈S μ(s′)δ(s′)(Q ′). By the definition of δ, we have that (1) for all

Q ′ /∈ Reach(Q ,a), μ′(Q ′) = 0; (2) there exist q ∈ Q , ϕq ∈ C(S) and μq ∈ Sat(ϕq) (namely s, ϕ and μ) such that

L(q,a,ϕq) = ⊥ and for all Q ′ ∈ Reach(Q ,a), μ′(Q ′) =
∑

q′∈Q ′ μq(q
′). Thus μ′ ∈ Sat(ϕ′) by construction.

• Let s′, Q ′ be such that δ(s′)(Q ′) > 0. By construction of δ, we have s′ ∈ Q ′ , thus s′RQ ′ .

As a consequence, there exists μ′ ∈ Sat(ϕ′) such that μ⋐R μ′ .

3. By construction of ̺(N), we have that V (s) = V ′(Q ).

Finally, R is a strong refinement relation. Moreover, we have that s0 ∈ {s0}, thus s0R{s0} and N �S ̺(N). ✷

Appendix I. Detailed proof for Theorem 42

Let N = (S, A, L, AP , V , s0) be a deterministic APA in single valuation normal form and such that AP ∩ A = ∅. We prove

that the CMC N̂ is such that, for all MC M , M |�MC N ⇔ M |� N̂ .

Proof of Theorem 42. We prove the two directions separately.

• M |�MC N ⇒ M |�CMC N̂: Let M = (Q ,π , AM , VM ,q0) be a Markov Chain. We first prove that if M |�MC N , then M |�CMC N̂ .

Suppose that there exists a PA P = (S P , A, LP , AP , V P , sP0 ) such that M satisfies P and P |� N . Let N̂ = (Q̂ ,ψ, Â, V̂ , q̂0) be

the transformation of N following Definition 41.

By the satisfaction relation between M and P , we obtain that AM = A ∪ AP and Q = Q N ∪ Q D . Let RMC ⊆ Q D × S P

be the satisfaction relation witnessing that M satisfies P . Let RPA ⊆ S P × S be the satisfaction relation witnessing P |� N .

Consider the relation R⊆ Q × Q̂ such that

• qR(s,ǫ) iff there exists p ∈ S p such that qRMCp and pRPAs, and

• for all a ∈ A, qR(s,a) iff there exists q′ ∈ Q such that

– π(q′)(q) > 0,
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– VM(q) = VM(q′) ∪ {a}, and

– q′R(s,ǫ).

We now prove that R is a satisfaction relation for CMCs.

First consider q ∈ Q and s ∈ S such that qR(s,ǫ). By definition, there exists p ∈ S P such that qRMCp and pRPAs. We

show that, in this case, R satisfies the axioms of a satisfaction relation for CMCs.

1. By RMC , we have that VM(q) = V P (p). By RPA , we know that V P (p) ∈ V (s). Since V̂ ((s,ǫ)) = V (s), we have, VM(q) ∈

V̂ ((s,ǫ)).

2. Let δ be a correspondence function such that, for all q′ ∈ Q , s′ ∈ S and a ∈ A, δ(q′)((s′,a)) = 1 if s′ = s, π(q)(q′) > 0 and

VM(q′) = VM(q) ∪ {a} and 0 otherwise.

• Let q′ ∈ Q be such that π(q)(q′) > 0. By RMC , there exist a ∈ A and a distribution ̺ over S P such that VM(q′) =

V (p) ∪ {a}, LP (p,a,̺) = ⊤ and π(q′) ⋐RMC ̺. Thus, we have π(q)(q′) > 0 and VM(q′) = VM(q) ∪ {a}. As a conse-

quence, δ(q′)((s,a)) = 1, and for all (s′,b) = (s,a), δ(q′)((s′,b)) = 0. Finally, δ(q′) defines a distribution on Q̂ .

• Let γ = π(q)δ. We prove that γ satisfies ψ((s,ǫ)):

– By the definition of δ, for all q′ ∈ Q , we have δ(q′)((s,ǫ)) = 0. As a consequence,

γ ((s,ǫ)) =
∑

q′∈Q

π(q)
(
q′

)
δ
(
q′

)
((s,ǫ)) = 0.

– By the definition of δ, we also have that for all q′ ∈ Q , s′ ∈ S with s′ = s and b ∈ A ∪ {ǫ}, δ(q′)((s′,b)) = 0. As a

consequence,

∀s′ = s, b ∈ A ∪ {ǫ}, γ
((
s′,b

))
=

∑

q′∈Q

π(q)
(
q′

)
δ
(
q′

)((
s′,b

))
= 0.

– Let a ∈ Must(s), and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊤. By RAP , we have that there exists a distribution ̺ over

S P such that LP (p,a,̺) = ⊤ and there exists μ ∈ Sat(ϕ) such that ̺ ⋐RAP μ. Thus, by RMC , we have that there

exists q′ ∈ Q such that VM(q′) = V P (p) ∪ {a} = VM(q) ∪ {a}, π(q)(q′) > 0 and π(q′) ⋐RMC ̺. By the definition of δ,

we have that δ(q′)((s,a)) > 0. As a consequence,

γ ((s,a)) =
∑

q′′∈Q

π(q)
(
q′′

)
δ
(
q′′

)
((s,a)) > 0.

– Let a /∈ May(s), i.e. such that for all ϕ ∈ C(S), we have L(s,a,ϕ) = ⊥. Suppose that γ ((s,a)) > 0. By the definition

of γ , there must exist q′ ∈ Q such that π(q)(q′) > 0 and δ(q′)((s,a)) > 0. By the definition of δ, we thus have

VM(q′) = VM(q) ∪ {a} = V P (p) ∪ {a}. Moreover, by RMC , there exists a distribution ̺ such that L P (p,a,̺) = ⊤ and

π(q′) ⋐RMC ̺. Thus, by RPA , there must exist ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥, which is a contradiction. As a

consequence, we have

γ ((s,a)) = 0.

Finally, we have that γ satisfies ψ((s,ǫ)).

• Let q′ ∈ Q and (s′,a) ∈ Q̂ be such that δ(q′)((s′,a)) > 0. By the definition of δ, we have that π(q)(q′) > 0, a = ǫ ,
VM(q′) = VM(q) ∪ {a} and s′ = s. Since qR(s,ǫ), we have, by the definition of R, that q′R(s,a).

Let q ∈ Q , s ∈ S and a ∈ A be such that qR(s,a). By definition, there exists q′ ∈ Q such that π(q′)(q) > 0, VM(q) =

VM(q′) ∪ {a} and q′R(s,ǫ). We show that, also in this case, R satisfies the axioms of a satisfaction relation for CMCs.

1. Since q′R(s,ǫ), we know that there exists p ∈ S P such that q′RMCp and pRPAs. Thus, we have VM(q′) = V P (p) ∈ V (s).

Moreover, by the definition of N̂ , we have that V̂ ((s,a)) = {B ∪ {a} | B ∈ V (s)}. Since VM(q) = VM(q′)∪ {a} and VM(q′) ∈

V (s), we have that VM(q) ∈ V̂ ((s,a)).

2. Since q′RMCp and π(q′)(q) > 0, there exists a distribution ̺ over S P such that LP (p,a,̺) = ⊤ and there exists a

correspondence function δMC such that π(q) ⋐δMC

RMC ̺. Moreover, since pRPAs, there exists ϕ ∈ C(S) such that L(s,a,ϕ) =

⊥, and there exist μ ∈ Sat(ϕ) and a correspondence function δPA such that ̺ ⋐δPA

RPA μ.

Define the correspondence function δ : Q → (Q̂ → [0,1]) such that for all q′′ ∈ Q and s′′ ∈ S ,

∀b ∈ A, δ
(
q′′

)((
s′′,b

))
= 0, and

δ
(
q′′

)((
s′′,ǫ

))
=

∑

p′′∈P

δMC
(
q′′

)(
p′′

)
δPA

(
p′′

)(
s′′

)
.
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• Let q′′ ∈ Q be such that π(q)(q′′) > 0. By RMC , we know that δMC(q′′) is a distribution over S P . Let now p′′ ∈ S P be

such that δMC(q′′)(p′′) > 0. By RMC , we know that ̺(p′′) =
∑

u∈Q π(q,u)δMC(u)(p′′) > 0. As a consequence, by RPA ,

we know that δPA(p′′) is a distribution over S . As a consequence, we have that δ(q′′) is a distribution over Q̂ .

• Let γ = π(q)δ. We prove that γ satisfies ψ((s,a)).

– By the definition of δ, we have that for all s′′ ∈ S and b ∈ A,

γ
((
s′′,b

))
=

∑

q′′∈Q

π(q)
(
q′′

)
δ
(
q′′

)((
s′′,b

))
= 0.

– Let γ ′ : s′′ �→ γ ((s′′,ǫ)). Let s′′ ∈ S . By definition, we have

γ ′
(
s′′

)
= γ

((
s′′,ǫ

))

=
∑

q′′∈Q

π(q)
(
q′′

)
δ
(
q′′

)((
s′′,ǫ

))

=
∑

q′′∈Q

π(q)
(
q′′

) ∑

p′′∈S P

δMC
(
q′′

)(
p′′

)
δPA

(
p′′

)(
s′′

)

=
∑

p′′∈S P

( ∑

q′′∈Q

π(q)
(
q′′

)
δMC

(
q′′

)(
p′′

))
δPA

(
p′′

)(
s′′

)

=
∑

p′′∈S P

̺
(
p′′

)
δPA

(
p′′

)(
s′′

)
by definition of δMC

= μ
(
s′′

)
by definition of δPA.

Finally, we have γ ′ = μ. Since, by definition, μ ∈ Sat(ϕ), we have that there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥

and γ ′ ∈ Sat(ϕ). Thus γ satisfies ψ((s,a)).

– Let q′′ ∈ Q and (s′′,b) ∈ Q̂ be such that δ(q′′)((s′′,b)) > 0. By the definition of δ, b = ǫ and there must exist p′′ ∈ S P

such that (1) δMC(q′′)(p′′) > 0 and (2) δPA(p′′)(s′′) > 0. By (1), we have q′′RMCp′′ and by (2), we have p′′RPAs′′ . As

a consequence, by the definition of R, we have q′′R(s′′,ǫ).

Thus R is a satisfaction relation for CMCs. Moreover, we have that q0R(s0,ǫ), which gives that M |�CMC N̂ .

• M |�MC N ⇐ M |�CMC N̂: Let M = (Q ,π , AM , VM ,q0) be a Markov Chain. We prove that if M |�CMC N̂ , then M |�MC N ,

i.e. there exists a PA P such that M satisfies P and P |� N . Let N̂ = (Q̂ ,ψ, Â, V̂ , q̂0) be the transformation of N following

Definition 41.

Let R be the satisfaction relation for CMCs witnessing that M |�CMC N̂ . First observe that, by R, the Markov Chain M

satisfies the following properties: Let Q D = {q ∈ Q | ∃s ∈ S, qR(s,ǫ)} and Q N = {q ∈ Q | ∃s ∈ S, a ∈ A, qR(s,a)}, then we

have

• Q D ∩ Q N = ∅ because of their valuations and R,

• ∀q,q′ ∈ Q D , π(q)(q′) = 0 and ∀q,q′ ∈ Q N , π(q)(q′) = 0,

• q0 ∈ Q D , and

• AM = A ∪ AP .

Define the PA P = (S P , A, LP , AP , V P , sP0 ) such that S P = Q D , with sP0 = q0 , V P is such that for all q ∈ Q D , V P (q) = VM(q),

and LP is such that for all s ∈ S P , a ∈ A and for all distribution ̺ over S P , L(s,a,̺) = ⊤ iff there exists q′ ∈ Q N such that

• π(q)(q′) > 0,

• V (q′) = V (q) ∪ {a}, and

• ̺ = π(q′).

By construction, it is trivial that M satisfies P using the identity relation on Q D .

We now prove that P |� N . Let RPA ⊆ S P × S be the relation such that pRPAs iff pR(s,ǫ). We now prove that RPA is a

satisfaction relation for APA.

Let q ∈ S P and s ∈ S be such that qRPAs. We show that RPA satisfies the axioms of a satisfaction relation for APAs.

1. Let a ∈ A and ϕ ∈ C(S) be such that L(s,a,ϕ) = ⊤. By construction, we have that a distribution γ over Q̂ satisfies

ψ((s,ǫ)) if γ ((s,a)) > 0.

Since qR(s,ǫ), we have that there exists a correspondence function δ : Q → (N̂ → [0,1]) such that π(q)δ satisfies

ψ((s,ǫ)). As a consequence, there must exist q′ ∈ Q such that π(q)(q′) > 0 and δ(q′)((s,a)) > 0. By R again, we have

that VM(q′) = VM(q) ∪ {a} = VM(s) ∪ {a}.
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As a consequence, in P , we have that L P (q,a,̺) = ⊤ with ̺ = π(q′). Moreover, since δ(q′)((s,a)) > 0, we have that

q′R(s,a). Thus, there exists a correspondence function δ′ : Q → (Q̂ → [0,1]) such that π(q′)δ′ satisfies ψ((s,a)), i.e.

the distribution γ ′ : s′ ∈ S �→ [π(q′)δ′](s′,ǫ) is such that there exists ϕ′ such that L(s,a,ϕ′) = ⊥ and γ ′ ∈ Sat(ϕ′). By

determinism of N , we have ϕ = ϕ′ . Let δPA be the correspondence function between P and S such that for all p′ ∈ S P

and s′ ∈ S , δPA(p′)(s′) = δ′(p′)((s′,ǫ)). By construction of ψ((s,a)), we have that for all p′ ∈ S P , b ∈ A and s′ ∈ S ,

δ′(p′)((s′,b)) = 0. Thus, δPA is a correct correspondence function by construction.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ such that δPA(p′)(s′) > 0, we have that δ′(p′)((s′,ǫ)) > 0. So,

by R, we have p′R(s′,ǫ), and thus p′RPAs′ .

Finally, we have that there exists ̺ such that L P (q,a,̺) = ⊤, and there exists γ ′ = ̺δPA ∈ Sat(ϕ) such that ̺ ⋐δPA

RPA γ ′ .

2. Let a ∈ A and ̺ ∈ Dist(S P ) be such that LP (q,a,̺) = ⊤. By construction, there exists q′ ∈ Q N such that π(q)(q′) > 0,

VM(q′) = VM(q) ∪ {a} and ̺ = π(q′).

Since qR(s,ǫ), we have that there exists δ such that π(q)δ satisfies ψ((s,ǫ)). Since π(q)(q′) > 0, δ(q′) defines a distri-

bution over Q̂ . As a consequence, there exists (s′,b) ∈ Q̂ such that δ(q′)((s′,b)) > 0. Since π(q)δ satisfies ψ((s,ǫ)), we

have that (s′,b) = (s,a).

Thus δ(q′)((s,a)) > 0, and, by the definition of δ, we have that q′R(s,a). As a consequence, there exists a correspon-

dence function δ′ such that π(q′)δ′ satisfies ψ((s,a)), i.e. the distribution γ ′ : s′ ∈ S �→ [π(q′)δ′](s′,ǫ) is such that there

exists ϕ such that L(s,a,ϕ) = ⊥ and γ ′ ∈ Sat(ϕ). Let δPA be the correspondence function between P and S such that

for all p′ ∈ S P and s′ ∈ S , δPA(p′)(s′) = δ′(p′)((s′,ǫ)). By construction of ψ((s,a)), we have that for all p′ ∈ S P , b ∈ A

and s′ ∈ S , δ′(p′)((s′,b)) = 0. Thus, δPA is a correct correspondence function by construction.

Moreover, we have that ̺δPA ∈ Sat(ϕ), and, for all p′, s′ such that δPA(p′)(s′) > 0, we have that δ′(p′)((s′,ǫ)) > 0. So,

by R, we have p′R(s′,ǫ), and thus p′RPAs′ .

Finally, there exists ϕ ∈ C(S) such that L(s,a,ϕ) = ⊥ and there exists γ ′ = ̺δPA in Sat(ϕ) such that ̺ ⋐δPA

RPA γ ′ .

3. By construction, we have V P (q) = VM(q). By R, we have VM(q) ∈ V̂ ((s,ǫ)) = V (s). Thus V P (q) ∈ V (s).

Finally, RPA is indeed a satisfaction relation.

By construction, we have that sP0R
PAs0 , thus P |� N . As a consequence, we have that there exists a PA P such that M

satisfies P and P |� N . Thus M |�MC N . ✷
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