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Abstract 

If A =< A, -+ > is an abstract reduction system, we use the reduction -+ to introduce a 
closure operator on the set P( A) of parts of A. We describe the topologies obtained in this 
way, and establish a bijective correspondence between these topologies and the category of 
abstract reduction systems with transitive reductions. Hence, we can view and formulate 
Church-Rosser (and the converse), Strong and Weak Normalization in topological terms. 
Also, we give topological proofs of some results on abstract reduction systems. 



Chapter 1 

Reduction topology 

1.1 Abstract reduction systems 

We use the notations and definitions of [Klo90J. Here, for the reader's convenience, we 
recall the ones more frequently used. 

Definition 1.1.1. 
An abstract reduction system (ARS) is a pair.A =< A, ( ..... ")"EI > such that; 

• A is a set 

• For all a E I, ..... " is a subset of Ax A, i.e . ..... ,,<:;;. A x A. These subsets (or binary 
relations) are called reduction relations or simply reductions. 

If (c, d) E ..... " we write c ..... " d and call d a one step a-reduct of c. 

Example 1.1.2. In this paper the main examples of ARS's will be based on 
.A =< A, ..... (3) with A the set of A-terms and ..... (3= {((Ax.d)e, d[x := eJ)} as defined in 
[Bar85J. 

Definition 1.1.3. Suppose that .A =< A, ..... ,,> and B =< B, ..... (3) are two ARS's and 
that f : A ..... B is a function between the base sets. We say that J preserves the reduction 
iJV a,a' E A, a ..... " a' =} J(a) ..... (3 J(a'). In this case we say that J is a morphism oj 
ARS's. 

Observe that in the definition above f preserves the reduction if and only if 
..... ,,<:;;. (J x f)-1( ..... (3). 
We use the symbol == to indicate identity of elements in A. 
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Definition 1.1.4. 

a) We call --*", the relation in A that is the transitive, reflexive closure of -t". In other 
words a --*" b iff there exists a finite sequence aI, a2, ... an of elements of A such that 

b) We call =" the equivalence relation generated by -t". In other words a =" b if there 
exists a finite sequence aI, a2, ... an of elements of A such that 

c) We call-t- I or <- the converse relation of-t. 

Definition 1.1.5. Let A =< A, -+,,> and B =< B, ..... (3) be two ARS's. We say that B 
is a sub-ARS of A - and write B ~ A - if the following two conditions hold: 

.B~A 

• -t(3 is the restriction of -t", i.e. Va, a' E B (a ..... (3 a' {? a -+" a') 

A is also called an extension of B. 

Definition 1.1.6. 
Let Ai =< Ai, ..... ,,'> with i E I be a family of ARS's. The product reduction is denoted 
as ..... Il'El'" or I1iEl -t", and defined on I1iElAi as follows: 

{ai};EI ..... Il;El'" {b;}iEl if and only if ai -t,,; bi for all i E I 

We say that < I1iEIAi, ..... Il;EI"; > is the product of the Ai'S and is denoted as I1iEIAi 

Property 1.1. 7. 

a) If Ai =< A;, ..... ,,'> with i E I is a family of ARS's, then the canonical projections 
7ri : I1iEIAi ..... Ai are morphisms of ARS's, from I1iEIAi into Ai' 

b) If < B,-+(3) is an arbitrary ARS and <Pi : B -+ Ai are morphisms of ARS's, the 
map <P : B ..... I1iEIA; defined as <p(b) = {<Pi(b)}iEI is a morphism of ARS's and is 
the unique morphism of ARS's as above such that 7riO<P = <Pi. 

In accordance to b) one can say that I1iEIAi is the categorical product of the Ai. 

Definition 1.1.8. Let A =< A,-» be an ARS with only one relation. 
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a) If a E A we define the following subsets of A: 

9~(a) = {b E A : a -> b} 

9_(a) = {b E A : a _ b} 

We call them the simple and the transitive reduction graphs of a. 

b) If a E A we define the following subsets of A: 

L(a) = {b E A : b -> a} 

£_(a) = {b E A: b _ a} 

We call them the simple and the transitive expansion graphs of a. 

Note that L(a) = 9~-1(a) and that £_(a) = 9_-1(a). 

Property 1.1.9. Observe that the following properties are valid for 9~(a) and 9_(a). 

b) The element a E 9_(a). Observe that in general a !f. 9~(a). In fact a E 9~(a) if 
and only if there is a loop of lenght one a -> a. 

c) If the element dE A is a normal form (i.e. 9~(d) = 0) then 9_(d) = {d}. Notice 
that the converse is not true. For example, the ARS: a -> a has 9~(a) = 
9_(a) = {a}. 

Later on, with an eye to characterizing the concept of normalization in a topological way, 
we consider elements such that 9~(a) = {a}. 

Property 1.1.10. Observe that the following properties are valid for £~ (a) and £_ (a). 

a) L(a) ~ L(a). 

b) The element a E £_ (a). Observe that in general a !f. £~ (a). In fact a E £~ (a) if 
and only if there is a loop of lenght one a -> a. 

c) If the element dE A is a source (i.e. L(d) = 0) then £_(d) = {d}. Notice that the 
converse is not true. For example, the ARS: a -> a has £~(a) = £_(a) = {a}. 

3 



1.2 From reduction to topology 

We recall the definition and the basic properties of closure operators on a set (see [KeI55]). 

Definition 1.2.1. A map C: P(A) ..... P(A) is called a closure operator if it verifies: 

a) C(0) = 0 

b) X <; C(X), If X <; A 

c) C(X) = C(C(X» 

d) C(X, u X 2) = C(X,) u C(X2) 

Recall that if C: P(A) ..... P(A) is a closure operator, F = {X <; A : X = C(X)} and 
T = {X <; A : A - X E F} form the family of closed and open sets of a topology in A. 

Theorem 1.2.2. Let A =< A, ..... > be an abstract reduction system. Consider the 
operator C: P(A) ..... P(A) defined as 

C(X) = {b E A : :Ix E X x--+> b} for X <; A 

Then C is a closure operator. 

Proof: Properties a) , b), c) and d) are trivially verified for this case. o 

In the case that X = {a} we write C(a) instead of C({a}). Observe also that C(X) = 
UaEXC(a). 

Definition 1.2.3. Let A =< A, ..... > be an ARS. The operator C considered above is 
called the reduction closure operator and the associated topology is called the reduction 
topology on A. We call FA or F_ and TA or T_ the family of closed and open sets with 
respect to this topology. 

This topology is sometimes called the Alexandroff topology associated to ...... It has been 
considered especially in the case in which ..... is a partial ordering on A, see [ISH92J. 

Example 1.2.4. Let A =< A, ..... {3> where A is the set of A-terms and ..... {3 is the (3-
reduction. 
If I = AX.X then C(I) = {f}. 
If K = AX.Ay.X and!1 = AX.(X x) >.x.(x x) then c(I<m) = {Km,I}. 
If W = Ax.h(x x) then C(W W) = {(W W), h(W W), h(h(W W», .. . }. 

We mention a few basic properties of this topology. 
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Property 1.2.5. 

a) A subset X ~ A is closed if and only if it is invariant under ---+ reduction. In other 
words X is closed if and only ifVx, yEA: x E X, x ---+ y then y EX. 

b) A subset X ~ A is open if and only if it is invariant under <- reduction. In other 
words X is open if and only ifVx,y E A: x E X,y ---+ x then y E X. 

c) Let <- be the converse relation of ---+. Then a subset of A is T_ open if and only if it 
is T_ closed, i.e. T_ = F_ and F_ = T_. 

Example 1.2.6. Let be A =< A, ---+(3) and AD the set of closed A-terms, i.e. A-terms 
that do not contain free variables. If c does not contain free variables and c ---+(3 d then d 
does not contain free variables. Then AD is a closed set in T_~. Observe that AD is not 
open. 

Example 1.2.7. In the examples that follow we consider the concept of Pure Type 
System and the typing relation f r A : B as defined in [Bar92]. Let B =:< Terms, ---+(3) 

where Terms is the set of pseudoterms. The following sets are examples of closed sets in 
the topology Tl3 • 

1. We consider the set of f-types of sort s, i.e. {D E Terms: (f r D : s)} for 
f E Ctx, s E S. It follows easily from the Subject Reduction Theorem that this 
set is closed. In fact, if f r D : sand D ---+(3 D' then f r D' : s. 

2. Other examples of closed sets are: the set of f-types, i.e. {D E Terms: 3s E 

S(f r D : s)} for f E Ctx; the set of f-elements of type D and sort s, i.e. 
{d E Terms: (f r d : D : s)} for f E Ctx, D E Terms and s E S; the set of 
f-elements, i.e. {d E Terms: 3D E Terms, s E S(f r d: D : s)} for f E Ctx; the 
set of f-terms, i.e. {A E Terms: 3B(f r A : B V f r B : An for f E Ctx; the set 
of legal terms, i.e. {A E Terms: 3f E Ctx, BE Terms(f r A: B V f r B : A)}. 

Property 1.2.8. If {---+,,: a E I} is a family of reductions in A then U---+,,~ A x A is a 
aEI 

reduction in A. It is clear that 

Last property explains the reason why in the definition of the reduction topology we 
considered an abstract reduction system with only one reduction relation. 
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Property 1.2.9, 

a) Note that if a E A then C(a) = {x E A : a _ x} = g~(a). In other words 
the closure of a point is the transitive reduction graph of the point. Note also that 
a - b ¢} b E C(a) ¢} C(b) <:;:: C(a). The family of all sets of the form C(a) : a E A 
is called the family of principal closed sets and is denoted as P _ <:;:: F _. 

b) Let a E A. Then E~(a) = {x E A : x - a} is an open set. This is the smallest 
set that is open and contains the element a. Note also that b _ a ¢} b E E~(a) ¢} 

E~(b) <:;:: E~(a). The family of all sets of the form E~(a) : a E A is called the 
family of principal open sets and is denoted as 0_ <:;:: T_. 

c) The family of open sets 0_ is a basis of the topology T_. 

Example 1.2.10. Let be A =< A, -4p>. In the topological space T_~ the sets E~~(M) 
are always infinite because if I = AX.X then 1M -4{3 M for all MEA. 

Now, we recall the following topological concept. 

Definition 1.2.11. Let < Xi, T; > with i E I be a family of topological spaces. The 
subsets of TIiE1Xi of the form TIiElAi with Ai open in Xi form the basis of a topology of 
the set TIiE1Xi . This topology of the product is called the Box topology and denoted as 
XT;. 

lEI 

Observe that the Box topology has more open sets than the product topology. 

Property 1.2.12. 

a) Let A =< A, ->a> be an ARS and B =< B, ->/3> a sub-ARS. 

Then F8 = {X n B : X E F"d. Hence the reduction topology on B is the restriction 
of the reduction topology on A. 

b) Let Ai =< Ai, -+0;> with i E I be a family of ARS's. Let TI'EIA, be the product of 
the Ai and -+[];EIO; its reduction as defined before. Then the topology associated to 

the product reduction is the box topology, i. e. T_n . = XT_o • 
IE/ et , iEI I 

Proof: We prove only part b) that follows from the equality: 

o 
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The correspondence established above between ARS's and topological spaces is functorial. 

Property 1.2.13. Let A =< A, -+~> and B =< E, -+(3) be two ARS's. If f : A -+ E 
preserves the reduction then f is a contino us function from < A, T~. > into < E, T~p >. 

The converse is only true if the reductions are reflexive and transitive. 

Example 1.2.14. Let A =< A, -+(3) where A.is the set of A-terms. The functions 
Abs : A -+ A and Api: A x A -+ A defined as Abs(d) = Ax.d and Apl(c,d) = (c d) are 
continuous because they preserve the reduction. 

Definition 1.2.15. The category ARS of ARS's is defined as follows: 

• Obj(ARS) = {AlA is an ARS } 

• MorARS( < A, -+~>, < E, -+(3)) = {f: A -+ E I Va, a' E A, a -+~ a' =? f(a) -+(3 

f( a')} 

Definition 1.2.16. The functor H from the category of ARS's to the category of topo
logical spaces, i. e., H : ARS -+ Top is defined as follows: 

• H( < A, -+» =< A, L > for < A, -+>E Obj(ARS). 

• H(g) = g for g : A -+ E E Mor(ARS). 

1.3 From topology to reduction 

Theorem 1.3.1. 
Suppose that < A, T > is a topological space. The following subset of Ax A , {( a, b) E 
A x A : b E C( a)} <:;:: A x A is denoted as -+7 and defines a reflexive transitive relation 
on A. 

Definition 1.3.2. Let < A, T > be a topological space. The reduction -+7 is called the 
abstract reduction associated to T and the associated ARS is called the abstract reduction 
system associated to T. 

Property 1.3.3. If {T; : i E I} is a family of topologies in A then n T; is a topology in 
_el 

A and -+n 70 = U;E[ -+70· 
iEI 
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Property 1.3.4. 

a) Let < A, T > be a topological space and < A', T' > a topological subspace of A. Then 
< A', -+7'> is a sub-ARS of < A, -+7>. 

b) Let < Ai, To > with i E I be a family of topological spaces and let XTo be the box 
iEI 

product of the To. Then the reduction associated to the box topology is the product 
reduction, i.e. -+x ~ = niEI -+70' 

• iEI 

Property 1.3.5. 
If f is a continous function from < A, T > into < B, T' > then f : A -+ B preserves the 
reduction, i.e. a -+7 b '* f(a) -+7' f(b) 

Proof: If f is continuous then b E C7 (a) implies that f(b) E C7 .(J(a)). 
o 

Definition 1.3.6. The functor g from the category of topological spaces to the category 
of ARS's, i.e. g : Top -+ ARS is defined as follows: 

• g( < A, T » =< A, -+7> for < A, T >E Obj(Top). 

• g(J) = f for f : A -+ B a continuous function of topological spaces. 

1.4 Abstract reduction and topology 

Definition 1.4.1. The functor" transitive closure" for ARS's is denoted as TC 
ARS -+ ARS and defined as follows: 

• TC( < A, (-+a)aEI » =< A, (-a)aEI > for < A, (-+a)aEI >E ARS. 

• TC(J) = f for fEARS. 

Property 1.4.2. The functor TC verifies that TC 2 = I where I denotes the identity 
functor. 

We need the following construction from general topology. 

Definition 1.4.3. Let < A, T > be a topological space. The reductive topology associated 
to T is denoted as 7,. and defined as follows. Let To <::; T be an arbitrary subfamily of T 
and call 070 the set 070 = nOETo O. The set {OTo : To <::; T} is a basis for the topology 
7,.. 
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The construction above can be viewed from a functorial angle. 

Definition 1.4.4. Define a functor R from the category of topological spaces into itself, 
R : Top -+ Top, as follows: 

• R( < A, T » =< A, T., > for < A, T >E Top 

• RU) = f for f E Top. 

Property 1.4.5. The functor R verifies that R2 = I where I denotes the identity 
functor. 

Definition 1.4.6. Let < A, T > be a topology on A. We say that < A, T > is a reduction 
topology if T = T.,. In other words if the family of open sets is closed by intersections. 

Property 1.4.7. 

a) Suppose that T is a topology in A. Then T is a reduction topology if and only if there 
exists another topology T' in A , such that if F' denotes the family of closed sets of 
T' , then F' = T. 

b) Suppose that T is a topology in A that has the following property: 

(M) For all a E A, there exists a unique set M(a) that is the smallest open set 
that contains the point a, i.e. M(a) <; X for all X E T such that a E X. 

Then T is a reduction topology if and only if it verifies the property (M). 

c) Suppose that T is a topology on the set A and T., the associated reduction topology. 
For every point a E A we have that CT ( a) = CT. (a). 

Proof: Assertions a) and c) are clear. 
To prove b) we take a reduction topology < A, T > and observe that it verifies (M) 
because n U is the smallest open set containing a. 

{U:aEUET} 

Conversely, a topology < A, T > that verifies (M) is a reduction topology. Suppose that 
To <; T and X = nUETa U # 0. Take a E X then for any U E To, M(a) <; U and then 
M(a) <; X . So that X = UaEX M(a) is an open set. 0 

Property 1.4.8. Suppose that T is a reduction topology on the set A. 

a) For any X <; A there exists an open set M(X) that is the smallest open subset of A 
that contains X. Moreover M(X) = UaEX M(a). 
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b) Given a, bE A, we have that b E C(a) ¢} a E M(b). 

c) For all a, b E A, bE M(a) if and only if M(b) ~ M(a). 

d) The family of open sets M(a) with a E A form a basis for the topology T. 

Corollary 1.4.9. 

a) If < A, -+> is an ARS the topology T~ is a reduction topology and M(a) = f_(a). 

b) If T is a reduction topology on the set A and -+T is the associated reduction relation, 
then M(a) = {bE A: b-+T a} 

Proof: We only prove a). Clearly f_(a) is the minimal open set that contains a. Hence 
condition (M) is verified and thus, T~ is a reduction topology. 0 

Lemma 1.4.10. Let A be a set and T, T' two topologies on A. Suppose that for all 
a E A we have that CT(a) = CT,(a). Then T,. = T:. 

Proof: Using Property 1.4.7 part c) we can assume that T and T' are reduction 
topologies. In this case the result follows immediately from Property 1.4.8 parts b) and 
d). 0 

Theorem 1.4.11. Let ARS and Top be the categories of Abstract Reduction Systems 
and topological spaces respectively. Let ARSt be the subcategory of ARS consisting of the 
reflexive and transitive reduction systems and TOPr the subcategory of Top consisting of 
the topological spaces whose topology is a reduction topology. Let H, g, TC and n be the 
functors defined before. 

a) The composition goH = TC. 

b) The composition Ho g = n 
c) The functorsH and g are inverses of each other when respectively restricted to ARSt 

and TOPr. 

d) In the category TOPr the Box topology is the categorical product topology. 

e) The functor H : ARSt -+ TOPr is an equivalence of categories and preserves infinite 
products. Its inverse is the functor g : TOPr -+ ARSt . 
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Proof: 

a) Let < A, --> > be an ARS. Then H( < A, --> » =< A, T_ > is a reductive topology with 
M(a) = £_(a) by Corollary 1.4.9 part a). Then goH« A,--») =< A,-->T_>. 
Using Corollary 1.4.9 part b) we deduce that M(a) = £_r_(a). Hence as for all 
a E A, £_r_(a) = £_(a) we deduce that -->T_ =-. 

b) Let < A, T > be a topological space. Then g( < A, T » =< A, -->T> with a -->T b 
if and only if bE C(a). Then, Hog« A,T » =< A,T_r > is a reductive 
topology such that CT_r(a) = CT(a). Hence, using Lemma 1.4.10 we conclude 
that T,. = T_T' 

c) It follows immediately from parts a), b) and the fact that nand TC are projection 
functors onto TOPr and ARS t respectively. 

d) Suppose that Band {A;};EI are reduction topological spaces. Suppose we have 
continuous maps ,p; : B --> A;, i E I. The map TI;,p; : B --> TI;A; is continuous in 
the Box topology because if we take a basic open set of the form TI;X; <;;; TIiA;, then 
(TI;,p;)-'(TI;X;) = n;{¢>;)-'(X;). 

e) This follows immediately from the previous parts and from Property 1.2.8. 

o 

Definition 1.4.12. Let T be a reduction topology on a set A. Let M and C be the 
operators on P( A) defined before. Given pair of points a, b E A, a is said to be T 
connectable with b iff :3n E IN such that b E (CM)n(a). 

It is clear that in a reduction topology, b E CM(a) if and only if M(b)nM(a) # 0 and this 
happens if and only if a E CM(b). By induction one can prove that the definition above is 
symmetric, i.e., a is T connectable with b if and only if b is T connectable with a. In fact 
bE (CM)n(a) =} M(b) n M((CM)n-'(a» # 0 =} :3b, E (CM)n-'(a) : M(b) n M(b,) # 
o =} a E (CM)n-'(bJ),b, E CM(b) =} a E (CM)n(b). 

Property 1.4.13. Let < A,--» be an ARS and call 
generated by -->. Suppose that T_ is the associated topology. 
connectable, if and only if a = b. 

the equivalence relation 
Then, a and bare T_ 

For future reference we list some properties of the operators C and M. 

Property 1.4.14. 

a) For all a E A we have that CM(a) <;;; (CM)2(a) <;;; .,. <;;; (CMt(a) <;;; .... 
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b) The roles ofC and M are interchangeable, i.e. (CMt(a) ~ (MC)n+1(a) and then 
Un(CM)n(a) = Un(MC)n(a) 

c) The set Un(CMt( a) is the smallest open and closed set in the topology T that contains 
a. 

Proof: We only prove b). As a E C(a), then if b E (CM)n(a) we deduce that b E 
(CM)n(a) ~ (CMtC(a). Then bE M(b) ~ M(CM)nC(a) ~ (MC)n+l(a). 0 

Note that the set Un(CMt(a) is the equivalence class of a respect to the relation =. 
We finish this Section with a Lemma that establishes the relationship between the oper
ators C and M for the union of two reductions and the corresponding operators for the 
uniendum (see Proposition 1.2.8). 

Lemma 1.4.15. Let A be a set and Q and f3 a pair of reductions on A. Call C",C/3, M" 
and M/3 the corresponding operators on peA). Then: 

i) C"u/3 = Un?:O(C"C/3)n = Un?:O(C/3C,,)n. 

ii) M"u/3 = Un?:o(M"M/3)n = Un?:o(M/3M,,)n. 
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Chapter 2 

Topological characterizations of 
confluence and normalization 

In this Chapter we start with a reduction relation ---+ and consider the associated topology 
T. We give, in terms of T, characterizations of confluence, normalization and other 
concepts that are usually considered as relevant for abstract reduction systems. We also 
give topological proofs of some of the general theorems in the theory of ARS's. 

2.1 Topological characterizations of confluence 

Definition 2.1.1. Let.A =< A, ---+> be an ARS with only one relation. We say that 
the reduction system ---+ is confluent or Church-Rosser - and write that ---+ is CR - if 
Va,b,cE A 3d E A : (c ,,«- a -.." b,* c -.." d ,,«- b) 

Theorem 2.1.2. The abstract reduction system A =< A, ---+> is confluent (or verifies 
Church-Rosser) if and only if for all a in A and for every pair C and D of non empty T_ 
closed subsets of CT_ (a), C n D oj 0. 

Proof: Suppose .A is confluent and C and D are as above. Take c E C and d E D. As 
c, d E CL (a) we have that d «- a-c. As the ARS is confluent there exists an x E A 
such that d _ x «- c. As d ED, CT_(d) ~ D and as d _ x, x E CL(d) ~ D. 
Similarly, x E CL(c) ~ C. Hence x E C n D. 
Conversely, suppose that we have a,d,c E A such that d «- a_c. Then CT_(d) ~ 
CT_ (a) and CT_ (a) ~ CT_ (a). So that by hypothesis, there exists an element x E CT_ (d) n 
CT_ (c). That means that d _ x «- C and hence that A is confluent. 0 

One can think of confluence as a property having to do with the "size" of open and closed 
subsets of principal closed subsets CL(a) of A. If.A is confluent then closed subsets of 
CT_ (a) are "large" because they always intersect, and open subsets of CT_ (a) are "small". 
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Example 2.1.3. 

1. In the reduction system b <- a --t c, the closed subsets of C(a) = {a,b,e} are: {b} 
and {e}.Note that they are disjoint. 

2. The reduction system that follows is confluent. 

c 

The family of principal closed subsets is 'P_ = {C(a) = C(d) = {a,b,e,d},C(b) = 
{b,e},C(e) = {e}}. TheclosedsubsetsofC(a) =C(d) = {a,b,e,d} are {e},{b,e},{a,b,e,d} 
The closed subsets of C(b) = {b, c} are {e}, {b, c}. 

Definition 2.1.4. Let A =< A, --t> be an ARS . We say that it is converse Church
Rosser - and write that --t is CCR - if Vc, d, b :Ja : b ...... d «- c => b «- a ...... c. 

Theorem 2.1.5. The abstract reduction system A =< A, --t> is converse Church-Rosser 
if and only if for all a in A and for every pair C and D of non empty T_ open subsets of 
L(a), cnD #- 0. 

Proof: The result follows from Theorem 2.1.2 and the observation that < A,--t> 
is CCR iff < A, <-> is Church-Rosser. Also, we use that T_ = F_ , F_ = T_ and 
f~(a) = Cr_(a). 0 

Theorem 2.1.6. Let A =< A, --t> be an abstract reduction system and let M and C be 
the associated operators as defined in Definition 1.2.1 and Property 1.4.8. 

a) The abstract reduction system A =< A, --t> is Church-Rosser if and only if V X <; A, 
C(M(X)) <; M(C(X)). 

b) The abstract reduction system A =< A, --t> is converse Church-Rosser if and only 
if V X <; A, M(C(X)) <; C(M(X)). 
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Proof: Observe that 

C(M(X» = {z; 3y,y - z&y _ x&x E X} 

M(C(X» = {u: 3v,u _ v&x _ v&x E X} 

Then propositions a) and b) are evident. o 

Theorem 2.1. 7. Let A =< A, --» be an abstract reduction system and let M and C be 
the associated operators as defined in Definition 1.2.1 and Property 1.4.8. 

a) The abstract reduction system A =< A, -+> is Church-Rosser if and only if for all 
X C A that is closed, then M (X) is also closed. 

b) The abstract reduction system A =< A,-+> is converse Church-Rosser if and only 
if for all X C A that is open, then C( X) is also open. 

Proof: The proofs of a) and b) are identical. We prove only the first. Suppose that 
X <;:: A is a closed subset. By Theorem 2.1.6 we have that CM(X) <;:: MC(X) = M(X). 
Hence, we conclude that C(M(X» = M(X). Conversely, suppose that M takes closed 
sets into closed sets. Then CM(X) <;:: CM(C(X» = MC(X). 0 

Example 2.1.8. For the abstract reduction system < A, -+(3) it is well-known that -+(3 

is confluent but not converse Church-Rosser. 

The theorem that follows is a topological version of the proof of confluence for the abstract 
reduction system < A, -->(3) as appears in [Bar92], pg. 138. 

Theorem 2.1.9. Let A =< A, --» and A' =< A', -+'> be a pair of abstract reduction 
systems. Call < A, T > and < A', T' > the corresponding topological spaces. Suppose 
there is a continuous function f : A -+ A' and a closed function 9 : A --> A' such that 
g(f-l(X» = M(X), for all X <; A'. Then A' is Church-Rosser. 

Proof: Suppose X <;:: A'. By hypothesis we know that g(f-l(X» = M(X). Then 
CM(X) = Cg(f-l(X». As 9 is closed: Cg(f-l(X» <;:: g(Cf-l(X». The continuity of f 
implies that g(Cf-l(X» <;:: g(f-l(CX». Hence we have that CM(X) = Cg(f-l(X» <;:: 
g(Cf-l(X» <;:: gU-1(CX» = MC(X). 

o 

In the notation of [Bar92], the system A' =< A', -+'> is < A, -+f3>, the system A =< 
A, -+> is < A, -+(3), the function f == </J and 9 == 1 I. The facts that 9 is closed, f is 
continuous and th~t g(f-l(X» = M(X), "IX <;:: A' are equivalent to Lemma 2.3.13, 
Lemma 2.3.14(3) and Lemma 2.3.15 in [Bar92]. 
The theorem that follows is a topological version of the proof of confluence for a Pure 
Type System with definitions as considered in [PS93]. 
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Theorem 2.1.10. Let A =< A, -» and A' =< A', ->'> be an abstract reduction system 
and a subsystem. Call < A, T > and < A', T' > the corresponding topological spaces. 
Suppose there exists a continuous function f : A -> A' such that f(X) <;; CT(X), "IX <;; A. 
If A' is CR then A is CR. 

Proof: To simplify notations we write CT and CT' as C. Take C, D arbitrary closed sets in 
A. The hypothesis f(X) <;; C(X), "IX <;; A guarantees that f(C) <;; C n A' and f(D) <;; 
D n A' and then: C(J(C)) <;; C n A', C(J(D)) <;; D n A'. Hence, if C(J(C)) nC(J(D)) of 0 
then CnD of 0. 
Suppose that C, D <;; C(a) are closed. We prove that C(J(C)) n C(J(D)) of 0. As f is 
continuous f(C),j(D) <;; f(C(a)) <;; C(J(a)). Hence C(J(C)),C(J(D)) <;; C(J(a)). Using 
the hypothesis that A' is CR, we conclude that: C(J(C)) n C(J(D)) of 0. 

o 

We want to study conditions to guarantee the confluence of the union of two reductions 
(see [Bar85] pg. 64). 

Definition 2.1.11. Let A be a set and ->0' ->{J two reducions on A. We say that ->0 and 
->{J commute (see picture bellow) if Va, b, c E A 3d E A : (c wa ->{J b =} c ->{J d wb). 

a_c 
o . 

{Jl {J' 
b ...... <: d 

Lemma 2.1.12. If A is a set, ->",,->{J two reducions on A and Co,C{J,Mo, M{J the 
corresponding operators on P(A), then the following conditions are equivalent: 

a) The reductions -'»0 and -*{J commute. 

b) For all X <;; A, CoM{J(X) <;; M{JCo(X). 

c) For all X <;; A, C{JMo(X) <;; MoC{J(X). 

Proof: The proof is omitted because it is identical to the proof of Theorem 2.1.6. 0 

Lemma 2.1.13. If A is a set, -*0' -*(f two reductions on A and Co,C(f,Mo, M(f the 
corresponding operators on P(A), then the following are equivalent: 

a) The reductions -*0 and -*{J commute. 

b) For all X <;; A that is To closed, then M{J(X) is To closed. 

16 



Proof: See Theorem 2.1. 7. o 

In what follows we present a topological proof of the Lemma of Hindley-Rosen. 

Lemma 2.1.14. Let A be a set and Ct, f3 two reductions on A . Suppose that Ct and f3 
are confluent and commute, then Ct U f3 is confluent. 

Proof: Supposse that Z <:;; A is closed in Tau{3' Then by Proposition 1.2.8, Z is Ta 
and Tp closed. Hence by Lemma 2.1.13, M{3(Z) is Ta closed. As f3 is CR, by Theorem 
2.1.7 M{3(Z) is also Tp closed. So that M{3(Z) is Ta and T{3 closed. Repeating the 
argument taking Ct instead of f3 and M{3(Z) instead of Z, we conclude that MaM{3(Z) is 
Ta and Tp closed. By induction we conclude that "In (MaM{3)n(z) is Ta and Tp closed. 
So that by Proposition 1.2.8, Mau{3(Z) is Tau{3 closed (see Proposition 1.2.8). Hence 
using Theorem 2.1.7 we conclude that Ct U f3 is a confluent reduction. 0 

2.2 Topological characterizations of normalization 

We recall the following definitions from [Kl090J. 

Definition 2.2.1. Let A =< A,....; > be an ARS with only one relation. 

a) We say that d E A is a normal form for ---+, if there is no element c E A such that 
d ---+ c. 
We say that b E A has a normal form if there exists d E A such that d is a normal 
form and b -+> d. 

b) We say that ---+ weakly normalizes - and write ---+ is WN - if every element of A has 
a normal form. 

We will introduce the concept of zero loop. 

Definition 2.2.2. An element dE A such that g~(d) = {d} is called a zero loop. 

Example 2.2.3. Let be < A, ---+f3> where A is the set of A-terms. There is only one zero 
loop in this topology and is n = AX.(X x) AX.(X x). 

Zero loops and normal forms are the only closed points in the reduction topology. 

Lemma 2.2.4. Let A be an ARS. An element a E A is a zero loop or a normal form iff 
{a} is a T~ closed set. 
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Proof: If dE A is a zero loop or a normal form then 9~(d) = {d} = C(d). If {a} is 
closed, 9~(a) = {a} and so 9_(a) C;;; {a}. Hence one of the following two alternatives 
holds: 9_(a) = {a} and we have a zero loop or 9_(a) = 0 and we have a normal form. 

Example 2.2.5. Consider the following ARS 

abc 

~f/~ 
b d 

We have that: C(a) = {a, b}, C(b) = {b}, C(c) = {b, c, d} and C(d) = {d}. 
Clearly d is a normal form and b is a zero loop. 

o 

The topological indistinguishibility of zero loops and normal forms leads to the following 
definition. 

Definition 2.2.6. 

a) Let A be an ARS. An element a E A is an almost normal form if it is a normal form 
or a zero loop. 

b) We say that an element b E A has an almost normal form if there exists an a E A in 
almost normal form such that b -+> a. 

c) We say that ...... almost weakly normalizes - and write ...... is AWN - if all the elements 
of A have an almost normal form. 

Hence almost normal forms are the only closed points in the reduction topology. 
It is very simple to characterize topologically the property of AWN. 

Theorem 2.2.7. An abstract reduction system A almost weakly normalizes iff every non 
empty closed subset of A with respect to the reduction topology has a closed point. 

Proof: Suppose A verifies AWN. Take C # 0 a closed subset of A. Take c E C and 
consider a E A such that a is in almost normal form and c -+> a. Hence a E C because C 
is closed and a is a closed point because of Lemma 2.2.4 . 
Conversely, suppose that every non empty closed set has a closed point. Then for any 
b E A the closed set C(b) has a closed point c inside. Then b -+> c and c is in almost 
normal form. 

o 
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The theorem that follows is a topological version of the proof of weak normalization for 
a PTS with definitions as considered in [PS93]. 

Theorem 2.2.8. Let A =< A, -t> and A' =< A', -t'> be an abstract reduction 
system and a subsystem. Call < A,7 > and < AI,7' > the corresponding topological 
spaces. Suppose that A' is 7 -closed and that there exists a lunction I : A -t A' such that 
I(X) <;;; CT(X), 'IX <;;; A. II A' is AWN then A is AWN. 

Proof: To simplify notations we write CT and CT' as C. Take C =f 0 a closed set in A. 
The hypothesis I(X) <;;; C(X), 'IX <;;; A guarantees that I(C) <;;; C n A'. As C =f 0, 
o =f I(C) <;;; C n A' . Since A' is AWN there exists a 7 '-closed point {a} in C n A'. As 
A' is T-closed in A then {a} is a 7 -closed point. 0 

Definition 2.2.9. Let A =< A, -t> be an ARS with only one relation. We say that -t 

almost strongly normalizes - and write -t is ASN - if every reduction sequence al -t" 

a2 -t" ... an -t" an+l ... terminates in a zero loop or in a normal form. In equivalent terms 
we could say that the ARS is ASN if for every reduction sequence as above, there exists 

an m E IN such that am = am+l = ... 
To characterize almost strong normalization we need the concept of Noetherian family of 
subsets. 

Definition 2.2.10. Let A be an arbitrary set and S a family of subsets of A, i.e. 
S <;;; P(A). We say that S is Noetherian 1 iff all decreasing subfamilies of S stabilize, 
i. e. for an arbitrary family {S, : i E IN} <;;; S such that SI ;:::> S2 ;:::> S3 ;:::> •• ;:::> Sn ;:::> .. 

=} 3m E IN such that Sm = Sm+! = ... 

Theorem 2.2.11. Let A =< A,-t> be an ARS. Then A almost strongly normalizes if 
and only if the following two conditions are verified: 

1. The family P ~ <;;; F ~ of principal closed sets of A is Noetherian. 

2. C(a) = C(b) ¢} a = b. 

Proof: Suppose -t almost strongly normalizes. If C(a) = C(b) with a =j. b, we would have 
a reduction of infinite length a -» b -» a -» b ... 
Suppose now that we have a decreasing family of sets in P~, i.e. a family of the form: 

1 In accordance with the usual mathematical definitions one should use the word Artinian instead of 
Noetherian. We use Noetherian not to diverge too much from the existing literature on the subject. See 
[Klo90] Definition 1.3. (iii) page 5. 
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This family produces a family of reductions al - a2 - ... an - an+! .. that must 
terminate, i.e. there exists an m E IN such that am == am+! == ... Hence C(am) = 
C(am +!) = ... 

Conversely, any reduction al - az ---+> ••• an - an+l" produces a family of principal 
closed sets: C(al) ~ C(a2) ~ ... ~ C(an ) ~ C(an+!) ~ ... By the Noetherian hypothesis 
we conclude that there exists an m E IN such that C(am) = C(am+d = ... Hence by 
hypothesis 2 we conclude that am == am+! == ... 0 

In our topological formulation some of the known results for ARS become very easy to 
prove. We illustrate this with the proof that almost strong normalization implies almost 
weak normalization. 

Theorem 2.2.12. Let A be ARS. If A is almost strongly normalizable then A is almost 
weakly normalizable. Equivalently (in topological terms) if in A the family of principal 
closed sets is Noetherian and C(a) = C(b) {o} a == b ; then every closed subset of A has a 
closed point. 

Proof: Let C be an arbitrary closed subset of A and consider the subfamily of P_ 
consisting of the sets of the form {C(x) : x E C}. This subfamily has a minimal element 
C(m). Take y E C(m). As m E C and C is closed y E C. By minimalityC(y) = C(m) and 
so we conclude that y == m. Hence C(m) has only one element and hence m is a closed 
point. 0 

Note that we cannot deal topologically with the concepts of normalization. This is because 
topologically the zero loops and the normal forms are impossible to distinguish. 
In a system in which there are no zero loops, the concept of almost normalization and of 
normalization coincide. Concrete examples of such systems are the set of typable terms 
of an arbitrary PTS in which the zero loop cannot be typed. 

Definition 2.2.13. 

a) Let A be an ARS. We say that A verifies the almost normal form property - and 
we write ~ verifies ANF - if for all a, b E A such a is in almost normal form and 
a = b; then b - a. 

b) We say that A verifies the unique almost normal form property - and we write ~ 
verifies AUF - if for all a, b E A such that a and b are in almost normal form and 
a = b; then a == b. 

If we drop the word "almost" in a) and b) we say that A verifies the normal form property 
and the unique normal form property respectively and we will use the abbreviations: NF 
and UF respectively. 
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Theorem 2.2.14. 

a) The ARS -+ verifies ANF if and only if for all a, b E A with {a} closed and a, b T_ 
connectable =} a E C(b). 

b) The ARS -+ verifies AUF if and only if for all a,b E A with {a},{b} closed and 
T_-connectable =} a == b. 

Obviously, AN F =} AUF because a E C(b) and C(b) = {b}. 
Now we prove topologically that CR =} AN F. 

Theorem 2.2.15. If -+ is CR then -+ verifies AN F. Equivalently in topological terms 
if for all X <; A, CM(X) <; MC(X), then for all a,b E A with {a} closed in T_ and a 
T_ connectable with b we conclude that a E C(b). 

Proof: Let a, b E A be a pair of T_ connectable elements of A with {a} closed. We start 
by observing that by CR condition, if X is a closed subset of A and M and C are as 
in Definition 1.4.12, then Ilk E IN, (CMt(X) <; M(X). This is because CM(X) <; 
MC(X) <; M(X) the first inclusion following from CR and the second because X is 
closed. Then (CM)2(X) <; CMM(X) = CM(X) <; M(X), etc. As a and bare L 
connectable, bE (CM)n(a) for some n E IN. As {a} is closed (CM)n(a) <; M(a). Then 
bE M(a) and then a E C(b). 

o 

In particular, we deduce that CR =} NF =} UFo 
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Chapter 3 

Connectivity and irreducibility 
the reduction topology 

Recall the following definitions from general topology. 

Definition 3.1. 
Let (X, T) be a topological space. 

• In 

a) X is said to be connected if for every pair C, D of disjoint closed subsets of X such 
that CUD = X we have that C or D are equal to X. 

b) X is said to be irreducible if for every pair C, D of closed subsets of X such that 
CUD = X we have that C or D are equal to X. 

Observe that X is irreducible if and only if for every pair S, T C X of non empty open 
subsets of X, we have that S n T # 0. It is clear that, irreducible implies connected and it 
is known that the closure of an irreducible subset is irreducible. Hence, C(x) is irreducible 
-and connected- for all x E X. 
Observe that in case that T is a reduction topology, the statement" X ~ A is connected" 
is self dual, in other words X is T connected if and only if X is T' connected. Here T' 
is as in Property 1.4.7, i.e. the topology whose open sets are the closed subsets in the 
topology T. 
For the rest of this Chapter we assume that A =< A, --> > is an abstract reduction system 
and that T~ is the associated topology. Sometimes we abbreviate T~ = T and T_ = T. 
The associated operators will be denoted as C , M , C' and M' respectively. Observe 
that C = M' and M = C'. 

Theorem 3.2. 
For all a E A the set M (a) is connected. 
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Proof: Clearly M(a) = C'(a). We just observed that for an arbitrary topology the sets 
of the form C' (a) are T' -connected. Hence they are T -connected. 

o 

Now we identify the connected components of A. 
In Proposition 1.4.14 we established the main properties of the set Un(CM)n(a). Here 
we prove that it coincides with the connected component of A that contains a. 

Theorem 3.3. For any a E A the set Un(CMt(a) = Un(Mc)n(a) , that will be denoted 
as Cc(a), is the connected component of A that contains a. 

Proof: Suppose that Cc(a) = CUD with C and D closed and disjoint in Cc(a). As 
Cc(a) is open and closed in A so are C and D. Suppose a E C. Since Cc(a) is the smallest 
open and closed set that contains a: Cc(a) ~ C. Hence Cc(a) = C and D = 0. Hence 
Cc(a) is connected. Being open and closed it has to be a connected component. 0 

Corollary 3.4. Let a, b E A, then the assertions that follow are equivalent: (aJ The 
elements a and bare T connectable, (b) If = is the equivalence relation induced by A, 
a = b, (c) a E Cc(b), (dJ bE Cc(a), (eJ Cc(a) = Cc(b). 

In the case that A is CR, one can describe C c( a) in a more precise way. 

Theorem 3.5. Assume that A =< A, --> > is an ARS that verifies Church-Rosser and 
call C and M the associated operators as defined in Definition 1.2.1 and Property 
1.4.8. Then 

i) For all integers k ::::: 1 , (CM)k(a) ~ MC(a). 

ii) For all integers k 2: 2, (CM)k(a) = MC(a). 

iii) CM(a) ~ MC(a) = (CM)2(a) = ... = (CM)n(a) = Un(CM)n(a). 

Proof: 

i) We proceed by induction on k. If k = 1 the inclusion CM(a) ~ MC(a) for a confluent 
abstract reduction system was proved in Theorem 2.1.6. If k > 1,(CM)k(a) = 

(CM)«CMt-l(a» ~ CMMC(a) = CMC(a) ~ MCC(a) = MC(a). 

ii) As we proved in general in Proposition 1.4.14, MC(a) ~ (CM)2(a). Using part i) 
we conclude that in the case that the ARS is confluent (CM)2(a) ~ MC(a). Hence 
(CM)2(a) = MC(a). For k ::::: 2 , MC(a) = (CM)2(a) ~ (CM)k(a) ~ MC(a). 

iii) It follows immediately from i) and ii). 
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o 

The theorem that follows is an immediate consequence of the one just proved. 

Theorem 3.6. Let A be an abstract reduction system. 

a) If A is CR then CeCa) = MC(a) for all a E A. 

b) If A is CCR then CeCa) = CM(a) for all a EA. 

c) If A is CR then C e( a) = M (a) for all a E A that are closed points. In particular 
M (a) is closed. 

Example 3.7. In the case of A-terms, i.e. < A, -4{i> we have that 
Ce(a) = {b: a ={i b} = MC(a).l 

If A is an abstract reduction system, we call .t\f(A) C A the set of closed points or in 
other words the set of terms in almost normal form. 

Theorem 3.8. 
Let A =< A, -4 > be a confluent and almost weakly normalizing ARB. Then the sets 
M(n),n E .t\f(A) are the connected components of A. 

Proof: 
This follows from the results already proved by observing that if a E A, and n E .t\f(A) is 
its normal form, then Cc(a) = Cern) = M(n). 0 

The sets M(a) are always connected, their irreduciblity is related with the converse of 
Church-Rosser. 
Let us see an example. 

Example 3.9. 
For reduction system e -4 a <- b the set M (a) = {a, b, e} is obviously connected. The 
closed sets are {a}, {a, e} and {a, b} and there is no way to write {a, b, e} as the union of 
two disjoint closed sets. 
However, it is not irreducible because {a, b, e} = {a, e} U {a, b}. 
The point is that the system above is not converse Church-Rosser, I.e. even though 
e -4 a <- b, we can not find d such that e «- d --+> b. 

1 In [Chu41j pg. 25, this result is stated as: "If A conv B, there is a conversion of A into B in which 
no expansion precedes any reduction". 
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Example 3.10. Consider the ARS < A, ->{J> where A is the set of 'x·terms. If we take 
M == (b c) (b c), M, == ('xx.b x (b c» c and M2 == 'xx.(x x) (b c). The set M(M) is not 
irreducible because M(M.) and M(M2 ) are disjoint open subsets of M(M). See [Bar92J, 
pg. 75, Ex. 3.5.11. 

Theorem 3.11. 

a) The abstract reduction system A is Church-Rosser if and only if Va E A the sets 
C( a) are T' irreducible. 

b) The abstract reduction system A is converse Church-Rosser if and only if Va E A 
the sets M (a) are T irreducible. 

Proof: 

a) In accordance with the comments that follow Definition 3.1, a subset X of A is 
T' irreducible, if and only every pair of non empty T closed subsets of X has non 
empty intersection. We conclude our result by applying this conclusion together 
with Theorem 2.1.2 to the case that X = CT_(a) for all a. 

b) It follows immediately from a). 

o 

Notice that the Theorem just proved provides a fourth topological characterization of 
confluence, the other ones appeared in Theorem 2.1.2, Theorem 2.1.6 and Theorem 
2.1.7. 
Part b) of the Theorem that follows asserts that in the case of almost weak normalization, 
to guarantee CCR it is enough to look at the irreducibility of M(a) in the case that a is 
in almost normal form. 

Theorem 3.12. 

a) Let A be an ARS and let a, bE A be such that a -+> b. Then if M(b) is irreducible 
so is M(a) . 

b) Suppose that A is an almost weakly normalizing ARS. Then A is CCR if and only if 
Vn E N(A) the sets M(n) are irreducible. 

Proof: 

a) As a -+> b we have that M(a) ~ M(b). As M(a),M(b) are open sets, if we take 
a pair of open non empty subsets C,D in M(a) they are also open in M(b). As 
M(b) is irreducible, the intersection C n D #0. So that M(a) is irreducible. 

25 



b) It follows immediately from what we just proved and Theorem 3.11, b). This is 
because if a E A there exists an n E JV( A) such that a -+> n. 

o 

Hence if the reduction relation is confluent and almost weakly normalizing, A can be 
written as the disjoint union of connected components that are open and closed in A. If 
moreover -+ is converse Church-Rosser the connected components are irreducible. 
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