
 Open access Book Chapter DOI:10.1007/11823230_5

Abstract regular tree model checking of complex dynamic data structures
— Source link

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, Tomáš Vojnar

Institutions: University of Paris, Brno University of Technology

Published on: 29 Aug 2006 - Static Analysis Symposium

Topics: Model checking, Tree automaton, Pointer (computer programming), Data structure and First-order logic

Related papers:

 Parametric shape analysis via 3-valued logic

 Separation logic: a logic for shared mutable data structures

 A local shape analysis based on separation logic

 The pointer assertion logic engine

 A Temporal Logic of Nested Calls and Returns

Share this paper:

View more about this paper here: https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-
16l7lj52uu

https://typeset.io/
https://www.doi.org/10.1007/11823230_5
https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu
https://typeset.io/authors/ahmed-bouajjani-58j8ausm6m
https://typeset.io/authors/peter-habermehl-4ce8cuhlgx
https://typeset.io/authors/adam-rogalewicz-4z21689x5o
https://typeset.io/authors/tomas-vojnar-34ppnq5qjr
https://typeset.io/institutions/university-of-paris-3fpqqchm
https://typeset.io/institutions/brno-university-of-technology-26v9vj0t
https://typeset.io/conferences/static-analysis-symposium-1nnbl1k5
https://typeset.io/topics/model-checking-sm4abkf0
https://typeset.io/topics/tree-automaton-nydyam9b
https://typeset.io/topics/pointer-computer-programming-3068i9lc
https://typeset.io/topics/data-structure-fnmrmwtt
https://typeset.io/topics/first-order-logic-2xdm2y8d
https://typeset.io/papers/parametric-shape-analysis-via-3-valued-logic-4np6ys2g2u
https://typeset.io/papers/separation-logic-a-logic-for-shared-mutable-data-structures-1oyj7ddi1a
https://typeset.io/papers/a-local-shape-analysis-based-on-separation-logic-3fa478knag
https://typeset.io/papers/the-pointer-assertion-logic-engine-1ej2w2stsy
https://typeset.io/papers/a-temporal-logic-of-nested-calls-and-returns-7xj1p5adyn
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu
https://twitter.com/intent/tweet?text=Abstract%20regular%20tree%20model%20checking%20of%20complex%20dynamic%20data%20structures&url=https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu
https://typeset.io/papers/abstract-regular-tree-model-checking-of-complex-dynamic-data-16l7lj52uu

HAL Id: hal-00150139
https://hal.archives-ouvertes.fr/hal-00150139

Submitted on 29 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract Regular Tree Model Checking of Complex
Dynamic Data Structures

Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, Tomas Vojnar

To cite this version:
Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, Tomas Vojnar. Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. Static Analysis Symposium, 2006, Seoul, South
Korea. pp.52-70. ฀hal-00150139฀

https://hal.archives-ouvertes.fr/hal-00150139
https://hal.archives-ouvertes.fr

Abstract Regular Tree Model Checking of

Complex Dynamic Data Structures

Ahmed Bouajjani1, Peter Habermehl1, Adam Rogalewicz2, and Tomáš Vojnar2

1 LIAFA, University of Paris 7, Case 7014, 2 place Jussieu, F-75251 Paris 5, France.

e-mail: {Ahmed.Bouajjani,Peter.Habermehl}@liafa.jussieu.fr
2 FIT, Brno University of Technology, Božetěchova 2, CZ-61266, Brno, Czech Republic.

e-mail: {rogalew,vojnar}@fit.vutbr.cz

Abstract. We consider the verification of non-recursive C programs manipulat-

ing dynamic linked data structures with possibly several next pointer selectors

and with finite domain non-pointer data. We aim at checking basic memory con-

sistency properties (no null pointer assignments, etc.) and shape invariants whose

violation can be expressed in an existential fragment of a first order logic over

graphs. We formalise this fragment as a logic for specifying bad memory patterns

whose formulae may be translated to testers written in C that can be attached to

the program, thus reducing the verification problem considered to checking reach-

ability of an error control line. We encode configurations of programs, which are

essentially shape graphs, in an original way as extended tree automata and we

represent program statements by tree transducers. Then, we use the abstract regu-

lar tree model checking framework for a fully automated verification. The method

has been implemented and successfully applied on several case studies.

1 Introduction

Automated verifi cation of programs manipulating dynamic linked data structures is cur-

rently a very live research area. This is partly due to the fact that programs manipulating

pointers are often complex and tricky, and so methods for automatically analysing them

are quite welcome, and also because automated verifi cation of such programs is not

easy. Programs manipulating dynamic linked data structures are typically infi nite-state

systems, their confi gurations have in general the form of unrestricted graphs (often

referred to as the shape graphs), and the shape invariants of these graphs may be tem-

porarily broken by the programs during destructive pointer updates.

In this paper, we propose a new fully-automated method for analysing various im-

portant properties of programs manipulating dynamic linked data structures. We con-

sider non-recursive C programs (with variables over fi nite data domains) manipulating

dynamic linked data structures with possibly several next pointer selectors. The proper-

ties we consider are basic consistency of pointer manipulations (no null pointer assign-

ments, no use of undefined pointers, no references to deleted elements). Further undesir-

able behaviour of the verifi ed programs (e.g., breaking of certain shape invariants such

as an introduction of undesirable sharing, cycles, etc.) may be detected via testers writ-

ten in C and attached to the verifi ed procedures. Moreover, for a more declarative way

of specifying undesirable behaviour of the considered programs, we introduce a special-

purpose logic LBMP (logic of bad memory patterns) and we show that its formulae may

be automatically translated into C testers. Then, verifi cation of these properties reduces

to reachability of a designated error location.

Our verifi cation method is based on using the approach of abstract regular tree

model checking (ARTMC) [9]. In regular tree model checking, confi gurations of the

systems being examined are encoded as trees over a suitable ranked alphabet, sets of

confi gurations are described by tree automata, and transitions of the systems are en-

coded as tree transducers. Subsequently, one computes the set of all confi gurations

reachable from an initial set of confi gurations by repeatedly applying the tree trans-

ducers on the set of the so-far reached confi gurations (encoded as tree automata). In

order to make the method terminate as often as possible and to fi ght the state explosion

problem arising due to increasing sizes of the automata to be handled, various kinds of

automatically refi nable abstractions over automata are used in ARTMC.

In order to be able to apply ARTMC for verifi cation of programs manipulating

dynamic linked data structures, whose confi gurations (shape graphs) need not be tree-

like, we propose an original encoding of shape graphs based on tree automata. We use

trees to encode the tree skeleton of a shape graph. The edges of the shape graph that

are not directly encoded in the tree skeleton are then represented by routing expressions

over the tree skeleton—i.e., regular expressions over directions in a tree (as, e.g., left

up, right down, etc.) and the kind of nodes that can be visited on the way. Both the

tree skeletons and the routing expressions are automatically discovered by our method.

The idea of using routing expressions is inspired by PALE [28] and graph types [24]

although there, they have a bit different form (see below) and are defi ned manually.

Next, we show how all pointer-manipulating statements of the C programming lan-

guage (without pointer arithmetics, recursion, and with fi nite-domain non-pointer data)

may be automatically translated to tree transducers over the proposed tree-automata-

based representation of sets of shape graphs.

We implemented our method in a prototype tool based on the Mona tree libraries

[23]. We have tested it on a number of non-trivial procedures manipulating singly-linked

lists (SLL), doubly-linked lists (DLL), trees (including the Deutsch-Schorr-Waite tree

traversal), lists of lists, and also trees with linked leaves. To the best of our knowledge,

verifying some properties on trees with linked leaves have so-far not been considered

in any other fully automated tool. The experimental results obtained from our tool are

quite encouraging (and, moreover, we believe that there is still a lot of room for fur-

ther improvements as we have, e.g., not used the mechanism of Mona’s guided tree

automata, we have used general-purpose, not specialised abstractions as in [11], etc.).

Related Work. There have been and there are currently being investigated various ap-

proaches to verifi cation of programs manipulating dynamic linked data structures that

differ in the degree of automation, generality, and/or principles used. Out of these tech-

niques, we mention TVLA based on 3-valued predicate logic with transitive closure [29,

26], PALE based on WSkS and tree automata [28], approaches based on predicate ab-

straction [4, 27], memory patterns [32, 15], graph grammars [25], separation logic [18],

alias logic [14], or various (extended) automata [20, 17, 7]. Among these approaches,

our method belongs to the most automated and at the same time most general ones.

The closest approach to what we propose here is the one of PALE that also uses

tree automata (derived from WSkS formulae) as well as the idea of a tree skeleton and

routing expressions. However, fi rst, the encoding of PALE is different in that the rout-

ing expressions must deterministically choose their target, and also, for a given memory

node, selector, and program line, the expression is fi xed and cannot dynamically change

during the run of the analysed program. Further, program statements are modelled as

transformers on the level of WSkS formulae, not as transducers on the level of tree

automata. Finally, the approach of PALE is not fully automatic as the user has to manu-

ally provide loop invariants and all needed routing expressions, which are automatically

synthesised in our approach.

In [8], we proposed a method based on abstract regular word model checking for

verifying programs with 1-selector dynamic data structures. The concept of regular

word model checking was studied in a series of works—including, for instance, [22,

12, 1, 6, 11, 21, 31]. Several different works [30, 13, 2, 3, 9] have appeared on the subject

of regular tree model checking as well. Our approach of abstract regular (tree) model

checking provides effi ciency and is the only one that has been so-far applied in the area

of verifying programs with dynamic data structures.

Top-down tree automata on infi nite trees are used for verifi cation of pointer ma-

nipulating programs in [17]. Here, linked data structures are represented with unfolded

loops as infi nite trees. Unlike our general approach, the work identifi es and concentrates

on a decidable fragment of pointer manipulating programs and their properties. The al-

lowed programs may be compiled into an automaton on pairs of trees, composed with

the given input tree automaton, the undesirable output tree automaton, and emptiness

of the product is then checked.

The logic LBMP we use is close to the existential (positive) fragment of the logic of

reachable patterns (LRP) in linked data-structures [33] but there the purpose is to have a

decidable logic for reasoning about post- and pre-conditions and closure under negation

is important. In our work we only need to express negation of invariance properties, and

our verifi cation approach is model checking.

2 The Class of Programs and Properties Considered

2.1 The Considered Programs

// Doubly-Linked Lists

typedef struct {

DLL *next, *prev;

} DLL;

DLL *DLL_reverse(DLL *x) {

DLL *y,*z;

z = NULL;

y = x->next;

while (y!=NULL) {

x->next = z;

x->prev = y;

z = x; x = y;

y = x->next

}

return x;

}

Fig. 1. Reversing a DLL

We consider standard, non-recursive C programs

manipulating dynamic linked data structures (with

possibly several next pointer selectors). We do

not consider pointer arithmetics. We suppose all

non-pointer data to be abstracted to a fi nite do-

main by some of the existing techniques before

our method is applied. In the paper, we concen-

trate on the following pointer manipulating program

statements: x=NULL, x=y, x = y->next, x->next =

y, x = malloc(), free(x), and if (x==y) goto

L1; else goto L2; for pointer variables x and y

and program line labels L1 and L2. We suppose some

further, commonly used statements (such as while

loops or nested dereferences) to be encoded by the

listed statements. For brevity, we do not explicitly

discuss manipulation of non-pointer fi nite-domain

data, which is anyway straightforward. An example

of a typical program that our method can handle is the reversion of doubly-linked lists

(DLL) shown in Fig. 1, which we also use as our running example.

2.2 The Considered Properties

First of all, the properties we intend to check include basic consistency of pointer ma-

nipulations, i.e. absence of null and undefi ned pointer dereferences and references to

already deleted nodes. Further, we would like to check various shape invariance prop-

erties (such as absence of sharing, acyclicity, or, e.g., the fact that if x->next == y

(and y is not null) in a DLL, then also y->prev == x, etc.). To defi ne such properties

we propose two approaches described below.

x = aDLLHead;

while (x != NULL && random())

x = x->next;

if (x != NULL

&& x->next->prev != x)

error();

Fig. 2. Checking the consistency

of the next and previous pointers

Shape Testers. First, we use the so-called shape

testers written in the C language. They can be seen

as instrumentation code trying to detect violations

of the memory shape properties at selected con-

trol locations of the original program. We extend

slightly the C language used by the possibility of

following next pointers backwards and by non-

deterministic branching. For our verifi cation tool,

the testers are just a part of the code being verifi ed.

An error is announced when a line denoted by an

error label is reached. This way, we can check a whole range of properties (including

acyclicity, absence of sharing and other shape invariants as the relation of next and

previous pointers in DLLs—cf. Fig 2).

A Logic of Bad Memory Patterns. Second, in order to allow the undesired violations

of the memory shape properties to be specifi ed more easily, we propose a logic-based

specifi cation language—namely, a logic of bad memory patterns (LBMP)—that is a

fragment of the existential fi rst order logic on graphs with (regular) reachability pred-

icates (and an implicit existential quantifi cation over paths). When defi ning the logic,

our primary concern is not to obtain a decidable logic but rather to obtain a logic whose

formulae may be automatically translated to the above mentioned C testers allowing us

to efficiently test whether some bad shapes may arise from the given program by testing

reachability of a designated error control line of a tester.

Let V be a fi nite set of program variables and S a fi nite set of selectors. The formu-

lae of LBMP have the form Φ ::= ∃w1, ...wn.ϕ where W = {w1, ...,wn}, V ∩W = /0,

is a set of formulae variables, ϕ ::= ϕ∨ϕ | ψ, ψ ::= ψ∧ψ | xρy, x,y ∈ V ∪W , and ρ
is a reachability formula defi ned below. To simplify the formulae, we allow y in xρy to

be skipped if it is not referred to anywhere else. We suppose such a missing variable to

be implicitly added and existentially quantifi ed. Given a ψ formula, we defi ne its asso-

ciated graph to be the graph Gψ = (V ∪W ,E) where (x,y) ∈ E iff xρy is a conjunct in

ψ. To avoid guessing in the tester corresponding to a formula, we require Gψ of every

top level ψ formula to have all nodes reachable from elements of V .

An LBMP reachability formula has the form ρ ::=
s
→|

s
←| ρ+ρ | ρ.ρ | ρ∗ | [σ] where

s ∈ S and σ is a local neighbourhood formula. Finally, an LBMP local neighbour-

hood formula has the form ∃u1, ...,um.BC(x
s
→ y,x = y) where U = {u1, ...,um} is

a set of local formula variables, U ∩ (V ∪W ∪ {p}) = /0, p 6∈ V ∪W , s ∈ S , x ∈
V ∪W ∪U ∪{p}, y∈ V ∪W ∪U ∪{p,⊥,⊤}, and BC is the Boolean closure. Here,⊥

represents NULL,⊤ an undefi ned value, and p is a special variable that always represents

the current position in a shape graph. Moreover, to avoid guessing in the evaluation of

the local neighbourhood formulae, we require that if σ is transformed into σ′ in DNF,

and we construct a graph based on the positive
s
→ literals for each disjunct of σ′, each

node of such a graph is reachable from p.

The semantics of LBMP formulae is relatively straightforward. Therefore we defer

its description to the full version of the paper [10]. Instead, we illustrate the semantics of

LBMP formulae on several examples expressing undesirable phenomena that we would

like to avoid when manipulating acyclic doubly-linked lists. In their case, it is undesir-

able if one of the following happens after some operation (as, for instance, reversion)

on a given list—we suppose the resulting list to be pointed via the program variable l:

1. the list does not end with null, which can be tested via l
n
→

∗
[p =⊤],

2. the predecessor of the fi rst element is not null, which corresponds to l[¬(p
b
→⊥)],

3. the predecessor of the successor of a node n is not n, which can be detected via the

formula l
n
→

∗
[∃x. p

n
→ x ∧ x 6=⊥ ∧ ¬(x

p
→ p)], or

4. the list is cyclic, i.e. ∃x. l
n
→

∗
[p = x]

n
→

n
→

∗
[p = x]. (Note that this property is in

fact implied by items 2 and 3.)

All the given formulae can be joint by disjunction into a single LBMP formula. Due

to the space limitations, we do not provide more examples of LBMP formulae, but we

note that for all the structures mentioned later in Section 5, we are able to specify all the

commonly considered undesirable situations in LBMP (some more examples of LBMP

formulae can then be found in the full version of the paper [10]).

Due to a lack of space, the procedure for translating LBMP formulae is described

in the full version of the paper [10]. Intuitively, it is quite easy to see that the existen-

tially quantifi ed LBMP formulae with a stress on exploring paths through the examined

linked data structures starting from program variables can be encoded in a slightly ex-

tended C code, put after the program being verifi ed, and used in an effi cient way for

checking safety of the given program. We translate disjunctions to non-deterministic

branching, conjunctions and series of reachability formulae to series of tests, iteration

in the reachability expressions to non-deterministic while loops. The needed extension

of C includes non-deterministic branching and the possibility of following next pointers

backwards. Both of these features may easily be handled in our verifi cation framework.

2.3 The Verification Problem

Our verifi cation problem is model checking of the described undesirable existential

properties against the given program. Above, we explain that for the specifi cation of

a violation of shape invariants, we use shape testers or LBMP whose formulae are

translated into shape testers. For shape testers, we need to check unreachability of their

designated error location. Moreover, we model all program statements such that if some

basic memory consistency error (like a null pointer assignment) happens, the control is

automatically transferred to a unique error control location. Thus, we are in general

interested in checking unreachability of certain error control locations in a program.

3 Automata-based Verification Framework

In this section, we introduce the abstract tree regular model-checking framework based

on tree automata and transducers that we use for solving our verifi cation problem.

3.1 Tree Automata and Transducers

Terms and Trees. An alphabet Σ is a fi nite set of symbols. Σ is called ranked if there

exists a rank function ρ : Σ→ N. For each k ∈ N, Σk ⊆ Σ is the set of all symbols with

rank k. Symbols of Σ0 are called constants. Let χ be a denumerable set of symbols

called variables. TΣ[χ] denotes the set of terms over Σ and χ. The set TΣ[/0] is denoted

by TΣ, and its elements are called ground terms. A term t from TΣ[χ] is called linear if

each variable occurs at most once in t.

A fi nite ordered tree t over a set of labels L is a mapping t : P os(t)→ L where

P os(t) ⊆ N∗ is a fi nite, prefi x-closed set of positions in the tree. A term t ∈ TΣ[χ] can

naturally also be viewed as a tree whose leaves are labelled by constants and variables,

and each node with k sons is labelled by a symbol from Σk [16]. Therefore, below, we

sometimes exchange terms and trees. We denote N lPos(t) = {p ∈ P os(t) | ¬∃i ∈ N :

pi ∈ P os(t)} the set of non-leaf positions.

Tree Automata. A bottom-up tree automaton over a ranked alphabet Σ is a tuple A =
(Q,Σ,F,δ) where Q is a fi nite set of states, F ⊆ Q is a set of fi nal states, and δ is a

set of transitions of the following types: (i) f (q1, . . . ,qn)→δ q, (ii) a→δ q, and (iii)

q→δ q′ where a ∈ Σ0, f ∈ Σn, and q,q′,q1, . . . ,qn ∈Q. Below, we call a bottom-up tree

automaton simply a tree automaton.

Let t be a ground term. A run of a tree automaton A on t is defi ned as follows. First,

leaves are labelled with states. If a leaf is a symbol a∈ Σ0 and there is a rule a→δ q∈ δ,

the leaf is labelled by q. An internal node f ∈ Σk is labelled by q if there exists a rule

f (q1,q2, . . . ,qk)→δ q ∈ δ and the fi rst son of the node has the state label q1, the second

one q2, ..., and the last one qk. Rules of the type q→δ q′ are called ε-steps and allow us

to change a state label from q to q′. If the top symbol is labelled with a state from the

set of fi nal states F , the term t is accepted by the automaton A.

A set of ground terms accepted by a tree automaton A is called a regular tree lan-

guage and is denoted by L(A). Let A = (Q,Σ,F,δ) be a tree automaton and q ∈ Q a

state, then we defi ne the language of the state q—L(A,q)—as the set of ground terms

accepted by the tree automaton Aq = (Q,Σ,{q},δ). The language L≤n(A,q) is defi ned

to be the set {t ∈ L(A,q) | height(t)≤ n}.

Tree Transducers. A bottom-up tree transducer is a tuple τ = (Q,Σ,Σ′,F,δ) where

Q is a fi nite set of states, F ⊆ Q a set of fi nal states, Σ an input ranked alphabet, Σ′
an output ranked alphabet, and δ a set of transition rules of the following types: (i)

f (q1(x1), . . . ,qn(xn))→δ q(u), u∈TΣ′ [{x1, . . . ,xn}], (ii) q(x)→δ q′(u), u∈ TΣ′ [{x}], and

(iii) a→δ q(u), u∈ TΣ′ where a∈Σ0, f ∈Σn, x,x1, . . . ,xn ∈χ, and q,q′,q1, . . . ,qn ∈Q. In

the following, we call a bottom-up tree transducer simply a tree transducer. We always

use tree transducers with Σ = Σ′.

A run of a tree transducer τ on a ground term t is similar to a run of a tree automaton

on this term. First, rules of type (iii) are used. If a leaf is labelled by a symbol a and there

is a rule a→δ q(u)∈ δ, the leaf is replaced by the term u and labelled by the state q. If a

node is labelled by a symbol f , there is a rule f (q1(x1),q2(x2), . . . ,qn(xn))→δ q(u)∈ δ,

the fi rst subtree of the node has the state label q1, the second one q2, . . ., and the last one

qn, then the symbol f and all subtrees of the given node are replaced according to the

right-hand side of the rule with the variables x1, . . . ,xn substituted by the corresponding

left-hand-side subtrees. The state label q is assigned to the new tree. Rules of type (ii)

are called ε-steps. They allow us to replace a q-state-labelled tree by the right hand side

of the rule and assign the state label q′ to this new tree with the variable x in the rule

substituted by the original tree. A run of a transducer is successful if the root of a tree

is processed and is labelled by a state from F .

A tree transducer is linear if all right-hand sides of its rules are linear (no variable

occurs more than once). The class of linear bottom-up tree transducers is closed under

composition. A tree transducer is called structure-preserving (or a relabelling) if it does

not modify the structure of input trees and just changes the labels of their nodes. By

abuse of notation, we identify a transducer τ with the relation {(t,t ′) ∈ TΣ×TΣ | t →
∗
δ

q(t ′) for some q ∈ F}. For a set L⊆ TΣ and a relation R⊆ TΣ×TΣ, we denote R(L) the

set {w∈ TΣ | ∃w
′ ∈ L : (w′,w) ∈ R} and R−1(L) the set {w∈ TΣ | ∃w

′ ∈ L : (w,w′) ∈ R}.
If τ is a linear tree transducer and L is a regular tree language, then the sets τ(L) and

τ−1(L) are regular and effectively constructible [19, 16].

Let id ⊆ TΣ× TΣ be the identity relation and ◦ the composition of relations. We

defi ne recursively the relations τ0 = id, τi+1 = τ◦τi and τ∗ =∪∞
i=0τi. Below, we suppose

id ⊆ τ meaning that τi ⊆ τi+1 for all i≥ 0.

3.2 Abstract Regular Tree Model Checking

Let us recall the basic principles of abstract regular tree model checking (ARTMC) [9].

Let Σ be a ranked alphabet and MΣ the set of all tree automata over Σ. Let Init ∈MΣ be

a tree automaton describing a set of initial confi gurations, τ a tree transducer describing

the behaviour of a system, and Bad ∈ MΣ a tree automaton describing a set of bad

confi gurations. The verifi cation problem is to check whether

τ∗(L(Init))∩L(Bad) = /0 (1)

One of the methods how to check this is ARTMC [9]. Instead of computing the precise

set of reachable confi gurations, it computes an overapproximation.

We defi ne an abstraction function as a mapping α : MΣ→ AΣ where AΣ ⊆MΣ and

∀M ∈MΣ : L(M)⊆ L(α(M)). An abstraction α′ is called a refinement of the abstraction

α if ∀M ∈MΣ : L(α′(M)) ⊆ L(α(M)). Given a tree transducer τ and an abstraction α,

we defi ne a mapping τα : MΣ →MΣ as ∀M ∈MΣ : τα(M) = τ̂(α(M)) where τ̂(M) is

the minimal deterministic automaton describing the language τ(L(M)). An abstraction

α is finitary, if the set AΣ is fi nite.

For a given abstraction function α, we can compute iteratively the sequence of

automata (τi
α(Init))i≥0. If the abstraction α is fi nitary, then there exists k ≥ 0 such

that τk+1
α (Init) = τk

α(Init). The defi nition of the abstraction function α implies, that

L(τk
α(Init))⊇ τ∗(L(Init)).

If L(τk
α(Init))∩L(Bad) = /0, then the verifi cation problem (1) has a positive answer.

If the intersection is non-empty, we must check whether it is a real counterexample,

or a spurious one. The spurious counterexample may be caused by the used abstraction

(the counterexample is not reachable from the set of initial confi gurations). Assume that

τk
α(Init)∩L(Bad) 6= /0, which means that there is a symbolic path:

Init, τα(Init), τ2
α(Init), · · ·τn−1

α (Init), τn
α(Init) (2)

such that L(τn
α(Init))∩L(Bad) 6= /0.

Let Xn = L(τn
α(Init)) ∩ L(Bad). Now, for each l, 0 ≤ l < n, we compute Xl =

L(τl
α(Init))∩ τ−1(Xl+1). Two possibilities may occur: (a) X0 6= /0, which means that

the verifi cation problem (1) has a negative answer, and X0 ⊆ L(Init) is a set of dan-

gerous initial confi gurations. (b) ∃m,0 ≤ m < n,Xm+1 6= /0∧Xm = /0 meaning that the

abstraction function is too rough—we need to refi ne it and start the verifi cation process

again.

In [9], two general-purpose kinds of abstractions are proposed. Both are based on

automata state equivalences. Tree automata states are split into several equivalence

classes, and all states from one class are collapsed into one state. An abstraction be-

comes fi nitary if the number of equivalence classes is fi nite. The refi nement is done by

refi ning the equivalence classes. Both of the proposed abstractions allow for an auto-

matic refi nement to exclude the encountered spurious counterexample.

The fi rst proposed abstraction is an abstraction based on languages of trees of a fi-

nite height. It defi nes two states equivalent if their languages up to the give height n are

equivalent. There is just a fi nite number of languages of height n, therefore this abstrac-

tion is fi nitary. A refi nement is done by an increase of the height n. The second proposed

abstraction is an abstraction based on predicate languages. Let P = {P1,P2, . . . ,Pn} be

a set of predicates. Each predicate P∈ P is a tree language represented by a tree automa-

ton. Let M = (Q,Σ,F,δ) be a tree automaton. Then, two states q1,q2 ∈Q are equivalent

if their languages L(M,q1) and L(M,q2) have a nonempty intersection with exactly the

same subset of predicates from the set P . Since there is just a fi nite number of subsets

of P , the abstraction is fi nitary. A refi nement is done by adding new predicates, i.e. tree

automata corresponding to the languages of all the states in the automaton of Xm+1 from

the analysis of spurious counterexample (Xm = /0).

4 Tree Automata Encoding of Pointer Manipulating Programs

4.1 Encoding of Sets of Memory Configurations

Memory confi gurations of the considered programs with a fi nite set of pointer variables

V , a fi nite set of selectors S = {1, ...,k}, and a fi nite domain D of data stored in dynam-

ically allocated memory cells can be described as shape graphs of the following form.

A shape graph is a tuple SG = (N,S,V,D) where N is a fi nite set of memory nodes,

N ∩{⊥,⊤} = /0 (we use ⊥ to represent null, and ⊤ to represent an undefi ned pointer

value), N⊥,⊤ = N ∪{⊥,⊤}, S : N× S → N⊥,⊤ is a successor function, V : V → N⊥,⊤

is a mapping that defi nes where the pointer variables are currently pointing to, and

D : N → D defi nes what data are stored in the particular memory nodes. We suppose

⊤∈ D—the data value⊤ is used to denote “zombies” of deleted nodes, which we keep

and detect all erroneous attempts to access them.

To be able to describe the way we encode sets of shape graphs using tree automata,

we fi rst need a few auxiliary notions. First, to allow for dealing with more general shape

graphs than tree-like, we do not simply identify the next pointers with the branches of

the trees accepted by tree automata. Instead, we use the tree structure just as a backbone

over which links between the allocated nodes are expressed using the so-called routing

expressions, which are regular expressions over directions in a tree (like move up, move

left down, etc.) and over the nodes that can be seen on the way. From nodes of the

trees described by tree automata, we refer to the routing expressions via some symbolic

names called pointer descriptors that we assign to them—we suppose dealing with a

fi nite set of pointer descriptors R . Moreover, we couple each pointer descriptor with a

unique marker from a setM (and so ||R ||= ||M ||). The routing expressions may iden-

tify several target nodes for a single source memory node and a single selector. Markers

associated with the target nodes can then be used to decrease the non-determinism of

the description (only nodes marked with the right marker are considered as the target).

Let us now fi x the sets V , S , D , R , and M . We use a ranked alphabet Σ =
Σ2 ∪ Σ1 ∪ Σ0 consisting of symbols of ranks k = ||S ||, 1, and 0. Symbols of rank k

represent allocated memory nodes that may be pointed by some pointer variables, may

be marked by some markers as targets of some next pointers, they contain some data

and have k next pointers specifi ed either as null, undefi ned, or via some next pointer de-

scriptor. Thus, Σ2 = 2V ×2M ×D × (R ∪{⊥,⊤})k. Given an element n ∈ Σ2, we use

the notation n.var, n.mark, n.data, and n.s (for s ∈ S) to refer to the pointer variables,

markers, data, and descriptors associated with n, respectively. Σ1 is used for specifying

nodes with undefi ned and null pointer variables, and so Σ1 = 2V . Finally, in our trees,

the leaves are all the same (with no special meaning), and so Σ0 = {•}.

We can now specify the tree memory backbones we use to encode memory con-

fi gurations as the trees that belong to the language of the tree automaton with the fol-

lowing rules3: (1) • → qi, (2) Σ2(qi/qm, ...,qi/qm)→ qm, (3) Σ1(qm/qi)→ qn, and (4)

Σ1(qn)→ qu. Intuitively, qi, qm, qn, and qu are automata states, where qi accepts the

leaves, qm accepts the memory nodes, qn accepts the node encoding null variables, and

qu, which is the accepting state, accepts the node with undefi ned variables. Note that

there is always a single node with undefi ned variables, a single node with null vari-

ables, and then a sub-tree with the memory allocated nodes. Thus, every memory tree

t can be written as t = undef (null(t ′)) for undef ,null ∈ Σ1. We say a memory tree

t = undef (null(t ′)) is well-formed if the pointer variables are assigned unique mean-

ings, i.e. undef ∩ null = /0∧∀p ∈ N lPos(t ′) : t ′(p).var∩ (null ∪ undef) = /0∧∀p1 6=
p2 ∈ N lPos(t ′) : t ′(p1).var∩ t ′(p2).var = /0 where N lPos are non-leaf positions—cf.

Section 3.1.

We let S −1 = {s−1 | s ∈ S } be a set of “inverted selectors” allowing one to follow

the links in a shape graph in a reverse order. A routing expression may then be formally

defi ned as a regular expression on pairs s.p∈ (S ∪S−1).Σ2. Intuitively, each pair used as

3 If we put a set into the place of the input symbol in a transition rule, we mean we can use any

element of the set. Moreover, if we use q1/q2 instead of a single state, one can take either q1

or q2, and if there is a k-tuple of states, one considers all possible combinations of states.

M2

M1

M1

M2

M2

M1

D1

D1

D1

D2

D2

D2

S = {1, 2}
−1

M1: 1.D1

M2: 1.D2

7

10

14

26 Z

Y null

null

null

X

7

10

14

26

X

Z

Y

S = {1, 2}

A tree memory encoding of the DLLThe original DLL Descriptors

null pointers

undefined pointers

Fig. 3. An example of a tree memory encoding—a doubly linked list (DLL)

a basic building block of a routing expression describes one step over the tree memory

backbone: we follow a certain branch up or down and then we should see a certain node

(most often, we will use the node components of routing expressions to check whether

a certain marker is set in a particular node).

A tree memory encoding is a tuple (t,µ) where t is a tree memory backbone and

µ a mapping from the set of pointer descriptors R to routing expressions over the set

of selectors S and the memory node alphabet Σ2 of t. An example of a tree memory

encoding for a doubly-linked list (DLL) is shown in Fig. 3.

Let (t,µ), t = undef (null(t ′)), be a tree memory encoding with a set of selectors

S and a memory node alphabet Σ2. We call π = p1s1...plsl pl+1 ∈ Σ2.((S ∪ S
−1).Σ2)

l

a path in t of length l ≥ 1 iff p1 ∈ P os(t ′) and ∀i ∈ {1, ..., l} : (si ∈ S ∧ pi.si = pi+1 ∧
pi+1 ∈ P os(t ′))∨ (si ∈ S

−1∧ pi+1.si = pi). For p, p′ ∈ N lPos(t ′) and a selector s ∈ S ,

we write p
s
−→ p′ iff (1) t ′(p).s ∈ R , (2) there is a path p1s1...plsl pl+1 in t for some

l ≥ 0 such that p = p1, pl+1 = p′, and (3) s1t ′(p2)...t
′(pl)slt

′(pl+1) ∈ µ(t ′(p).s).
The set of shape graphs represented by a tree memory encoding (t,µ) with t =

undef (null(t ′)) is denoted by [[(t,µ)]] and given as all the shape graphs SG = (N,S,V,D)
for which there is a bijection β : P os(t ′)→ N such that:

1. ∀p, p′ ∈ N lPos(t ′) ∀s ∈ S : (t ′(p).s 6∈ {⊥,⊤}∧ p
s
−→ p′)⇔ S(β(p),s) = β(p′).

(The links between memory nodes are respected.)

2. ∀p ∈ N lPos(t ′) ∀s ∈ S ∀x ∈ {⊥,⊤} : t ′(p).s = x⇔ S(β(p),s) = x.

(Null and undefi ned successors are respected.)

3. ∀v ∈ V ∀p ∈ P os(t ′) : v ∈ t ′(p).var⇔V (v) = β(p).
(Assignment of memory nodes to variables is respected.)

Dn

D2

D1

DnD2D1

...

pointers datamarkers

Subtree 1

Subtree 2

Subtree n

...pointers datamarkers

Subtree 1 Subtree 2 Subtree n...

Fig. 4. Splitting memory nodes in Mona into data and next pointer nodes

4. ∀v ∈ V : (v ∈ null⇔V (v) =⊥)∧ (v ∈ undef ⇔V (v) =⊤).
(Assignment of null and undefi nedness of variables are respected.)

5. ∀p ∈ N lPos(t ′) ∀d ∈ D : t ′(p).data = d⇔ D(β(p)) = d.

(Data stored in memory nodes is respected.)

A tree automata memory encoding is a tuple (A,µ) where A is a tree automaton ac-

cepting a regular set of tree memory backbones and µ is a mapping as above. Naturally,

A represents the set of shape graphs defi ned by [[(A,µ)]] =
S

t∈L(A) [[(t,µ)]].

Remarks. We use ARTMC as our verifi cation method. It syntactically manipulates

tree automata A whose languages can be interpreted as shape graphs using our encod-

ing. Notice, that (A,µ) and [[(A,µ)]] are two different notions, since the encoding is

not canonical as a given shape graph can be possibly obtained by several different tree

memory encodings. In Section 4.3, we argue that program statements can, nevertheless,

be encoded faithfully as tree transducers. Another important property of the encoding

is that given a tree automata memory encoding (A,µ), the set [[(A,µ)]] can be empty

although L(A) is not empty (since the routing expressions can be incompatible with the

tree automaton). Of course, if L(A) is empty, then [[(A,µ)]] is also empty. Therefore,

checking emptiness of [[(A,µ)]] (which is important for applying the ARTMC frame-

work, see Section 4.4) can be done in a sound way by checking emptiness of L(A).

4.2 Tree Memory Configurations in Mona

In our implementation, we use the tree automata library from the Mona project [23]. As

the library supports binary trees only, and we need n-ary ones, we split each memory

node labelled with Σ2 = 2V ×2M ×D × (R ∪{⊥,⊤})k in the above defi nition of a tree

memory encoding into a data node labelled with 2V × 2M ×D and a series of k next

pointer nodes, each labelled with R ∪{⊥,⊤}—cf. Fig. 4.

As for the set of pointer descriptors R , we currently fi x it by introducing a unique

pointer descriptor for each destructive update x->s = y or x->s = new that appears in

the program. This is because they are the statements that establish new links among the

allocated memory nodes. In addition, we might have some further descriptors if they

are a part of the specifi cation of the input confi gurations (see section 4.4).

Further, in our Mona-based framework, we encode routing expressions using tree

transducers. A transducer representing a routing expression r simply copies the input

tree memory backbone on which it is applied up to: (1) looking for a data node n1 that is

labelled with a special token � 6∈ V ∪M ∪D and (2) moving � to a data node n2 that is

the target of the next pointer described by r and that is also marked with the appropriate

marker. As described in the next section, we can then implement program statements

that follow the next pointers (e.g., x = y->s) by putting the token � to a node pointed

to by x, applying the transducer implementing the appropriate routing expression, and

making y point to the node to which � was moved. Due to applying abstraction, the tar-

get may not always be unique—in such a case, the transducer implementing the routing

expression simply returns a set of trees in which � is put to some target data node such

that all possibilities where it can get via the given routing expression are covered.

Note that the use of tree transducers for encoding routing expressions allows us

in theory to express more than using just regular expressions. In particular, we can

refer to the tree context of the nodes via which the given route is going. In our current

implementation, we, however, do not use this fact.

4.3 Encoding Program Statements as Tree Transducers

We encode every of the considered pointer-manipulating statements as a tree transducer.

In the transducer, we expect the tree memory encoding to be extended by a new root

symbol which corresponds to the current program line or to an error indication when

an error is found during the analysis. We now briefly describe how the transducers

corresponding to the program statements work. Each transducer is constructed in such

a way, that it simulates the effect of a program statement on a set of shape graphs

represented by a tree automata memory encoding: if a shape SG represented by a tree

memory encoding is transformed by the program statement to a shape graph SG′, then

the transducer transforms the tree memory encoding such that it represents SG′. This

makes sure, that although the encoding is non canonical (see end of section 4.1), we

simulate faithfully a program statement.

Non-destructive Updates and Tests. The simplest is the case of the x = NULL as-

signment. The transducer implementing it just goes through the input tree and copies it

to the output with the exception that (1) it removes x from the labelling of the node in

which it currently is and adds it to the labelling of the null node and (2) changes the cur-

rent line appropriately. The transducer implementing an assignment x = y is similar, it

just puts x not to the null node, but to the node which is currently labelled by y.

The transducers for the tests of the form if (x == null) goto l1; else goto

l2; are very similar to the above—they just do not change the node in which x is, but

only change the current program line to either l1 or l2 according to whether or not

x is in the null node. If x is in undef , an error indication is used instead of l1 or l2.

The transducers for if (x == y) goto l1; else goto l2; are similar—they just

test whether or not x and y appear in the same node (both different from undef).

The transducer for an x = y->s statement is a union of several complementary

actions. If y is in null or undef , an error is indicated. If y is in a regular data node and

its s-th next pointer node contains either ⊥ or ⊤, the transducer removes x from the

node it is currently in and puts it into the null or undef node, respectively. If y is in

a regular data node n and its s-th next pointer node contains some pointer descriptor

r ∈ R , the � token is put to n. Then, the routing expression transducer associated with

r is applied. Finally, x is removed from its current node and put into the node to which

� was moved by the applied routing expression transducer.

Destructive Updates. The destructive pointer update x->s = y is implemented as fol-

lows. If x is in null or undef , an error is indicated. If x is defi ned and if y is in null or

undef , the transducer puts ⊥ or ⊤ into the s-th next pointer node below x, respectively.

Otherwise, the transducer puts the pointer descriptor r associated with the particular

x->s = y statement being fi red into the s-th next pointer node below x, and it marks

the node in which y is by the marker coupled with r. Then, the routing expression trans-

ducer associated with r is updated such that it includes the path from the node of x to

the node of y.

One could think of various strategies how to extract the path going from the node

of x to the node of node y. Currently, we use a simple strategy, which is, however,

successful in many practical examples as our experiments show: We extract the shortest

path between x and y on the tree memory backbone, which consists of going a certain

number of steps upwards to the closest common parent of x and y and then going a

certain number of steps downwards. (The upward or the downward phase may also

be skipped when going just down or up, respectively.) When extracting this path, we

project away all information about nodes we see on the way and about nodes not directly

lying on the path. Only the directions (left/right up/down) and the number of steps are

preserved.

Note that we, in fact, perform the operation of routing expression extraction on a tree

automaton, and we extract all possible paths between where x and y may currently be.

The result is transformed into a transducer τxy that moves the token � from the position

of x to the position of y, and τxy is then united with the current routing expression

transducer associated with the given pointer descriptor r. The extraction of the routing

paths is done partly by rewriting the input tree automaton via a special transducer τπ
that in one step identifi es all the shortest paths between all x and y positions and projects

away the non-necessary information about the nodes on the way. The transducer τπ is

simple: it just checks that we are going one branch up from x and one branch down to y

while meeting in a single node. The transition relation of the resulting transducer is then

post-processed by changing the context of the path to an arbitrary one which cannot be

done by transducing in Mona where structure preserving transducers may only be used.

Dynamic Allocation and Deallocation. The x = malloc() statement is implemented

by rewriting the right-most • leaf node to a new data node pointed to by x. Below the

node, the procedure also creates all the k next pointer nodes whose contents is set to ⊤.

In order to exploit the regularity that is always present in algorithms allocating new

data structures, which typically add new elements at the end/leaves of the structure,

we also explicitly support an x.s = malloc() statement. We even try to pre-process

programs and compact all successive pairs of statements of the form x = malloc();

y->s = x (provided x is not used any further) to y->s= malloc(). Such a statement

is then implemented by adding the new element directly under the node pointed to by

y (provided it is a leaf) and joining it by a simple routing expression of the form “one

level down via a certain branch”. This typically allows us to work with much simpler

and more precise routing expressions.

Finally, a free(x) statement is implemented by a transducer that moves all vari-

ables that are currently in the node pointed to by x to the undef node (if x is in null or

undef , an error is indicated). Then, the node is marked by a special marker as a deleted

node, but it stays in our tree memory encoding with all its current markers set. In addi-

tion to all the other tests mentioned above as done within the transducer implementing

an x = y->s assignment, it is also tested whether the target is not deleted—if so, an

error is indicated.

4.4 Verification of Programs with Pointers using ARTMC

aDLLHead = malloc();

aDLLHead->prev = null;

x = aDLLHead;

while (random()) {

x->next = malloc();

x->next->prev = x;

x = x->next;

}

x->next = null;

Fig. 5. Generating DLLs

Input structures. We consider two possibilities how to en-

code the input structures. First, we can directly use the tree

automata memory encoding—e.g., a tree automata memory

encoding (with two pointer descriptors next and prev and

the corresponding routing expressions) describing all possi-

ble doubly-linked lists pointed to by some program variable.

Such an encoding can be provided manually or derived au-

tomatically from a description of the concerned linked data

structure provided, e.g., as a graph type [24]. The main ad-

vantage is that the verifi cation process starts with an exact

encoding of the set of all possible instances of the consid-

ered data structure.

Another possible approach is to start with the unique “empty” shape graph where

all variables are undefi ned. We can encode such a shape graph using a tree automata

encoding where all variables are in undef , null is empty, there are no other nodes, and

all the routing expressions are empty. The set of structures on which the examined

procedure should be verifi ed is then supposed to be generated by a constructor written

in C by the user (as, e.g., in Fig. 5). This constructor is then put before the verifi ed

procedure and the whole program is given to the model checker. The advantage is that

no further notation is necessary. The disadvantage is that we have more code that is

subject to the verifi cation and the set of automatically obtained input structures need

not be encoded in the optimal way leading to a slow-down of the verifi cation.

Applying ARTMC. In Section 3.2, we have given an overview of ARTMC. We sup-

posed that one transducer τ is used to describe the behaviour of the whole system. In

the application described in this paper, we use a variant of this approach by considering

each program statement as one transducer. Then, we compute an overapproximation

of the reachable confi gurations for each program line by starting from an initial set of

shape graphs represented by a tree automata memory encoding and iterating the abstract

fi xpoint computation described in Section 3.2 through the program structure. The fi x-

point computation stops if the abstraction α is fi nitary. In such a case, the number of the

abstracted tree automata encoding sets of the memory backbones that can arise in the

program being checked is fi nite. Moreover, the number of the arising routing expres-

sions is also fi nite as they are extracted from the bounded number of the tree automata

describing the encountered sets of memory backbones.4

During the computation, we check whether a designated error location in the pro-

gram is reached or whether a fi xpoint is attained. In the latter case, the property is

satisfi ed (the error control location is not reachable). In the former case, we compute

backwards to check if the counterexample is spurious as explained in Section 3.2. How-

ever, as said in Section 4.1, the check for emptiness is not exact and therefore we might

conclude that we have obtained a real counterexample although this is not the case. Such

a case does not happen in any of our experiments and could be detected by replaying

the path from the initial confi gurations.

5 Implementation and Experimental Results

An ARTMC Tool for Tree Automata Memory Encodings. We have implemented the

above proposed method in a prototype tool based on the Mona tree automata libraries

[23]. We use a depth-fi rst strategy when iterating the transducers corresponding to the

particular program lines.

We have also refi ned the basic fi nite-height and predicate abstractions proposed in

[9]. In particular, we do not allow collapsing of data nodes with next pointer nodes,

collapsing of next pointer nodes corresponding to different selectors, and we prevent

the abstraction of allowing a certain pointer variable to point to several memory nodes

at the same time.

We have also proposed one new abstraction schema called the neighbour abstrac-

tion. Under this schema, only the tree automata states are collapsed that (1) accept equal

data memory nodes with equal next pointer nodes associated with them and (2) that di-

rectly follow each other (are neighbours). This strategy is very simple, yet it proved

useful in some practical cases.

Finally, we allow the abstraction to be applied either at all program lines or only

at the loop closing points. In some cases, the latter approach is more advantageous

due to some critical destructive pointer updates are done without being interleaved with

abstraction. This way, we may avoid having to remove lots of spurious counterexamples

that may otherwise arise when the abstraction is applied while some important shape

invariant is temporarily broken.

Experimental Results. We have performed several experiments with singly-linked

lists (SLL), doubly-linked lists (DLL), trees, lists of lists, and trees with linked leaves.

All three mentioned types of automata abstraction—the fi nite height abstraction (with

the initial height being one), predicate abstraction (with no initial predicates), and

neighbour abstraction—proved useful (gave the best achieved result) in different ex-

amples. All examples were automatically verifi ed for null/undefi ned/deleted pointer

4 The non-canonicity of our encoding does not prevent the computation from stopping. It may

just take longer since several encodings for the same graph could be added.

exceptions. Additionally, some further shape properties (such as absence of sharing,

acyclicity, preservation of input elements, etc.) were verifi ed in some case studies too.

All these properties were specifi ed in the LBMP logic from Sect. 2.2 and translated to

C testers. We give a detailed overview of the performed experiments in the full version

of the paper [10].

Table 1 contains verifi cation times for the experiments mentioned above (the “+

test” in the name of an experiment means that some shape invariants were checked). We

give the best result obtained using the three mentioned abstraction schemas and say for

which abstraction schema the result was obtained. The note “restricted” accompanying

the abstraction method means that the abstraction was applied at the loop points only.

The experiments were performed on a 64bit Xeon 3,2 GHz with 3 GB of memory. The

column |Q| gives information about the size of the biggest encountered automaton, and

Nre f gives the number of refi nements.

Despite the prototype nature of the tool, which can still be optimised in multiple

ways (some of them are mentioned in the conclusions), the results are quite competi-

tive. For example, for one of the most complex examples—the Deutsch-Schorr-Waite

tree traversal, TVLA took 3 minutes on the same machine with manually provided in-

strumentation predicates and predicate transformers. The verifi cation time for the trees

with linked leaves is relatively high, but we are not aware of any other fully automated

tool with which experiments with this structure have been performed.

Table 1. Results of experimenting with the prototype implementation of the presented method

Example Time Abstraction method |Q| Nre f

SLL-creation + test 0.5s predicates, restricted 22 0
SLL-reverse + test 6s predicates 45 1

DLL-delete + test 8s fi nite height 100 0
DLL-insert + test 11s neighbour, restricted 94 0

DLL-reverse + test 13s predicates 48 1

DLL-insertsort 3s predicates 38 0
Inserting into trees + test 12s predicates, restricted 91 0

Linking leaves in trees + test 11min 15s predicates 217 10

Inserting into a list of lists + test 27s predicates, restricted 125 1
Deutsch-Schorr-Waite tree traversal 3min 14s predicates 168 0

6 Conclusion

We have proposed a new, fully automated method for verifi cation of programs manipu-

lating complex dynamic linked data structures. The method is based on the framework

of ARTMC. In order to able to use ARTMC, we proposed a new representation of

sets of shape graphs based on tree automata and a representation of the standard C

pointer manipulating statements as tree transducers (with some extensions). In partic-

ular, we considered verifi cation of the basic memory consistency properties (no null

pointer assignments, etc.) and of shape invariants whose corruption may be described

in an existential fragment of a fi rst-order logic on graphs. We formalised this fragment

as a special-purpose logic called LBMP whose formulae may be translated to C-based

testers that may be attached to the verifi ed programs, thus transforming the verifi cation

problem to be considered to the control line reachability. We have implemented the

technique in a prototype tool and obtained some promising experimental results.

In the future, we would like to optimise the performance of our Mona-based proto-

type tool, e.g., by exploiting the concept of guided tree automata that are suggested as

very helpful in many situations by the authors of Mona [5] and that we have not used yet.

Further, it is interesting to try come up with some special purpose automata abstrac-

tions for the considered domain—so-far we have used mostly general purpose tree au-

tomata abstractions, and we have an experience from [8] that special purpose abstraction

may bring very signifi cant speed-ups (in [8], it was sometimes two orders of magnitude

or even more). Further research directions then include, for instance, checking of other

kinds of properties (as, e.g., absence of garbage, which we know to be possible—cf. the

full version of the paper [10]—but which we have not yet implemented), experimenting

with combinations of our technique with techniques of non-pointer data abstraction, or

termination checking.

Acknowledgement. This work was supported in part by the French Ministry of Re-

search (ACI project Securité Informatique) and by the Czech Grant Agency within

projects 102/05/H050, 102/04/0780, and 102/03/D211.

References

1. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson. Regular Model Checking Made Simple

and Efficient. In Proc. of CONCUR’02, volume 2421 of LNCS. Springer, 2002.

2. P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. In Proc.

of CAV’02, volume 2404 of LNCS. Springer, 2002.

3. P.A. Abdulla, A. Legay, J. d’Orso, and A.Rezine. Simulation-Based Iteration of Tree Trans-

ducers. In Proc. of TACAS’05, volume 3440 of LNCS. Springer, 2005.

4. I. Balaban, A. Pnueli, and L. Zuck. Shape Analysis by Predicate Abstraction. In Proc. of

VMCAI’05, volume 3385 of LNCS. Springer, 2005.

5. M. Biehl, N. Klarlund, and T. Rauhe. Algorithms for Guided Tree Automata. In Proc. of

WIA’96, volume 1260 of LNCS. Springer, 1997.

6. B. Boigelot, A. Legay, and P. Wolper. Iterating Transducers in the Large. In Proc. of CAV’03,

volume 2725 of LNCS. Springer, 2003.

7. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with Lists

are Counter Automata. Technical Report TR-2006-3, Verimag, UJF/CNRS/INPG, Grenoble,

2006.

8. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Programs with Dynamic 1-

Selector-Linked Structures in Regular Model Checking. In Proc. of TACAS’05, volume 3440

of LNCS. Springer, 2005.

9. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model

Checking. ENTCS, 149:37–48, 2006. A preliminary version was presented at Infinity’05.

10. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model

Checking of Complex Dynamic Data Structures, 2006. Full version available on URL:

http://www.fit.vutbr.cz/˜vojnar/pubs.php.

11. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. In Proc. of

CAV’04, volume 3114 of LNCS. Springer, 2004.

12. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular Model Checking. In Proc. of

CAV’00, volume 1855 of LNCS. Springer, 2000.

13. A. Bouajjani and T. Touili. Extrapolating Tree Transformations. In Proc. of CAV’02, volume

2404 of LNCS. Springer, 2002.

14. M. Bozga, R. Iosif, and Y. Lakhnech. Storeless Semantics and Alias Logic. In Proc. of

PEPM’03. ACM Press, 2003.

15. M. Češka, P. Erlebach, and T. Vojnar. Pattern-Based Verification of Programs with Extended

Linear Linked Data Structures. ENTCS, 145:113–130, 2006. A preliminary version was

presented at AVOCS’05.

16. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.

Tree Automata Techniques and Applications, 2005.

URL: http://www.grappa.univ-lille3.fr/tata.

17. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Automatic Verification of Parameterized Data

Structures. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

18. D. Distefano, P.W. O’Hearn, and H. Yang. A Local Shape Analysis Based on Separation

Logic. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

19. J. Engelfriet. Bottom-up and Top-down Tree Transformations—A Comparison. Mathemati-

cal System Theory, 9:198–231, 1975.

20. P. Habermehl, R. Iosif, and T. Vojnar. Automata-Based Verification of Programs with Tree

Updates. In Proc. of TACAS’06, volume 3920 of LNCS. Springer, 2006.

21. P. Habermehl and T. Vojnar. Regular Model Checking Using Inference of Regular Lan-

guages. ENTCS, 138:21–36, 2005. A preliminary version was presented at Infinity’04.

22. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic Model Checking with

Rich Assertional Languages. In Proc. of CAV’97, volume 1254 of LNCS. Springer, 1997.

23. N. Klarlund and A. Møller. MONA Version 1.4 User Manual, 2001. BRICS, Department of

Computer Science, University of Aarhus, Denmark.

24. N. Klarlund and M.I. Schwartzbach. Graph Types. In Proc. of POPL’93. ACM Press, 1993.

25. O. Lee, H. Yang, and K. Yi. Automatic Verification of Pointer Programs Using Grammar-

Based Shape Analysis. In Proc. of ESOP’05, volume 3444 of LNCS. Springer, 2005.

26. A. Loginov, T. Reps, and M. Sagiv. Abstraction Refinement via Inductive Learning. In Proc.

of CAV’05, volume 3576 of LNCS. Springer, 2005.

27. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate Abstraction and Canonical

Abstraction for Singly-Linked Lists. In Proc. of VMCAI’05, volume 3385 of LNCS. Springer,

2005.

28. A. Møller and M.I. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. of PLDI’01.

ACM Press, 2001. Also in SIGPLAN Notices 36(5), 2001.

29. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic.

TOPLAS, 24(3), 2002.

30. E. Shahar and A. Pnueli. Acceleration in Verification of Parameterized Tree Networks. Tech-

nical Report MCS02-12, Faculty of Mathematics and Computer Science, The Weizmann

Institute of Science, Rehovot, Israel, 2002.

31. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Using Language Inference to Verify

Omega-regular Properties. In Proc. of TACAS’05, volume 3440 of LNCS. Springer, 2005.

32. T. Yavuz-Kahveci and T. Bultan. Automated Verification of Concurrent Linked Lists with

Counters. In Proc. of SAS’02, volume 2477 of LNCS. Springer, 2002.

33. G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A Logic of Reachable Pat-

terns in Linked Data-Structures. In Proc. of FOSSACS’06, volume 3921 of LNCS. Springer,

2006.

