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ABSTRACT RELATIVE FOURIER TRANSFORMS OVER

CANONICAL HOMOGENEOUS SPACES OF SEMI-DIRECT

PRODUCT GROUPS WITH ABELIAN NORMAL FACTOR

Arash Ghaani Farashahi

Abstract. This paper presents a systematic study for theoretical as-
pects of a unified approach to the abstract relative Fourier transforms
over canonical homogeneous spaces of semi-direct product groups with
Abelian normal factor. Let H be a locally compact group, K be a locally
compact Abelian (LCA) group, and θ : H → Aut(K) be a continuous
homomorphism. Let Gθ = H ⋉θ K be the semi-direct product of H

and K with respect to θ and Gθ/H be the canonical homogeneous space
(left coset space) of Gθ . We introduce the notions of relative dual homo-
geneous space and also abstract relative Fourier transform over Gθ/H.
Then we study theoretical properties of this approach.

1. Introduction

The mathematical theory of relative-convolution operators is a theoreti-
cal generalization for other classical operators in mathematical analysis and
functional analysis such as two-sided convolutions and Toeplitz operators, see
[15, 16, 17] and references therein. The abstract notion of relative-convolution
operators over homogeneous spaces of locally compact groups introduced in
[16] and studied comprehensively in [10, 18]. The class of locally compact
semi-direct product groups as a large class of non-Abelian groups, has sig-
nificant roles in theories connecting mathematical physics, mathematical the-
ory of coherent states analysis [1, 8, 9, 12, 21] and covariant transforms, see
[2, 3, 4, 5, 18, 19, 20] and standard references therein.

This research work consists of aspects of theoretical nature of abstract rela-
tive Fourier transforms over canonical homogeneous spaces of locally compact
semi-direct product groups with Abelian normal factor. This article aims to
present a unified approach to the abstract harmonic analysis of relative Fourier
transforms over canonical homogeneous spaces of locally compact groups with
Abelian normal factor. The main motivation to present the following approach
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to the abstract Fourier transform is to further develop theoretical aspects of
coherent states analysis and covariant transforms over canonical homogeneous
spaces of semi-direct product groups, see [10, 18, 20] and references therein.

The paper is organized as follows. Section 2 is devoted to fixing notations
and a summary of classical harmonic analysis techniques on locally compact
homogeneous spaces, locally compact semi-direct product groups, and standard
Fourier analysis on locally compact Abelian (LCA) groups. In Section 3, we
assume that H and K are locally compact groups and θ : H → Aut(K) is a
continuous homomorphism. Further, it is assumed that Gθ = H ⋉θ K is the
semi-direct product of H and K with respect to θ. We briefly study abstract
harmonic analysis properties of the locally compact canonical homogeneous
space (left coset space) Gθ/H . Then we present the abstract notions of dual
space for the canonical homogeneous space Gθ/H , abstract relative Fourier
transform over Gθ/H , and we study theoretical aspects of the relative Fourier
transform on function spaces of the canonical homogeneous space (left coset
space) Gθ/H . Finally, we illustrate application of our results in the case of
some well-known examples.

2. Preliminaries and notations

Let G be a locally compact group with the left Haar measure mG and the
modular function ∆G. For p ≥ 1 the notation Lp(G) stands for the Banach
function space Lp(G,mG). If p = 1, then the standard convolution for f, g ∈
L1(G) is defined via

(2.1) f ∗ g(x) =

∫

G

f(y)g(y−1x)dmG(y) for x ∈ G.

The involution for f ∈ L1(G) is defined by f∗(x) = ∆G(x
−1)f(x) for x ∈ G.

Then the Banach function space L1(G) equipped with the above convolution
and involution is a Banach ∗-algebra. The Banach ∗-algebra L1(G) is commu-
tative if and only if G is Abelian, see [6, 13, 22].

Let H be a closed subgroup of a locally compact group G with the left Haar
measures mH and mG, respectively. The left coset space G/H = {xH : x ∈ G}
is considered as a locally compact homogeneous space that G acts on it from
the left. The locally compact left coset space G/H is called a locally compact
pure homogeneous space if the closed subgroup H is not normal in G. The
function space Cc(G/H) consists of all PH(f) functions, where f ∈ Cc(G) and

PH(f)(xH) =

∫

H

f(xh)dmH(h).

The mapping PH : Cc(G) → Cc(G/H) defined by f 7→ PH(f) is a surjective
bounded linear operator. Let µ be a Radon measure on G/H and x ∈ G.
The translation µx of µ is defined by µx(E) = µ(xE) for each Borel subset
E of G/H . The measure µ is called G-invariant if µx = µ for all x ∈ G.
The measure µ is called strongly quasi-invariant, if some continuous function



RELATIVE FOURIER TRANSFORMS 119

λ : G × G/H → (0,∞) satisfies dµx(yH) = λ(x, yH)dµ(yH) for x, y ∈ G. If
the function λ(x, ·) reduces to constant, µ is called relatively invariant under
G. A rho-function for the pair (G,H), is a continuous function ρ : G→ (0,∞)
which satisfies

(2.2) ρ(xh) =
∆H(h)

∆G(h)
ρ(x) for x ∈ G, h ∈ H.

If H is a closed subgroup of G, the pair (G,H) admits a rho-function and for
each rho-function ρ on G, there is a strongly quasi-invariant measure µ on G/H
such that

∫

G/H

PH(f)(xH)dµ(xH) =

∫

G

f(x)ρ(x)dmG(x) for f ∈ L1(G),

and

(2.3) dµx(yH) =
ρ(xy)

ρ(y)
dµ(yH) for x ∈ G.

The homogeneous space G/H has a G-invariant measure if and only if ∆G|H =
∆H . If µ is the strongly quasi invariant measure on G/H arising from the
rho-function ρ, the mapping TH : L1(G) → L1(G/H, µ), given by

TH(f)(xH) =

∫

H

f(xh)

ρ(xh)
dmH(h),

is a surjective bounded linear operator with ‖TH‖ ≤ 1, satisfying the Weil’s
formula [6, 13, 22]

(2.4)

∫

G/H

TH(f)(xH)dµ(xH) =

∫

G

f(x)dmG(x).

Let H and K be locally compact groups with identity elements eH and eK
respectively and left Haar measures mH and mK respectively. Let θ : H →
Aut(K) be a homomorphism such that the map (h, k) 7→ θh(k) is continuous
from H ×K onto K.

The semi-direct product Gθ = H ⋉θ K is the locally compact topological
group with the underlying set H×K which is equipped by the product topology
and the group operation is defined by

(2.5) (h, k)⋉θ (h
′, k′) = (hh′, kθh(k

′)) and (h, k)−1 = (h−1, θh−1(k−1)).

The left Haar measure of the locally compact group Gθ is

(2.6) dmGθ
(h, k) = δθH,K(h)dmH(h)dmK(k),

and the modular function ∆Gθ
is

(2.7) ∆Gθ
(h, k) = δθH,K(h)∆H(h)∆K(k) for (h, k) ∈ Gθ,

where the positive continuous homomorphism δθH,K : H → (0,∞) satisfies

[13, 14]

(2.8) dmK(k) = δθH,K(h)dmK(θh(k)) for h ∈ H.
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The homomorphism θ : H → Aut(K) is called trivial if θh = IK for all h ∈ H ,
where IK is the identity automorphism. If θ : H → Aut(K) is trivial, then
the semi-direct product of H and K with respect to θ is precisely the direct

product of H and K. If ˜H := {(h, eK) : h ∈ H} and ˜K := {(eH , k) : k ∈ K},

then ˜K is a closed normal subgroup and ˜H is a closed non-normal subgroup of

Gθ. From now on we may use H,K instead of ˜H, ˜K, respectively.
If K is an LCA (locally compact Abelian) group, all irreducible representa-

tions of K are one-dimensional. Thus, if π is an irreducible unitary representa-
tion of K we have Hπ = C. Hence, there exists a continuous homomorphism ω

of K into the circle group T = {z ∈ C : |z| = 1}, such that for each k ∈ K and
z ∈ C we have π(k)(z) = ω(k)z. Such homomorphisms are called characters

of K and the set of all such characters of K is denoted by ̂K. If ̂K equipped
with the topology of compact convergence on K which coincides with the w∗-

topology that ̂K inherits as a subset of L∞(K), then ̂K with respect to the
product of characters is an LCA group which is called the dual group of K.

The linear map ̂: L1(K) → C( ̂K) defined by v 7→ v̂ via

(2.9) v̂(ω) =

∫

K

v(k)ω(k)dmK(k),

is the Fourier transform on K. It is a norm-decreasing ∗-homomorphism from

L1(K) into C0( ̂K) with a uniformly dense range in C0( ̂K). The Fourier trans-
form (2.9) on L1(K)∩L2(K) is an isometric transform and it extends uniquely

to a unitary isomorphism from L2(K) onto L2( ̂K), and each v ∈ L1(K) with

v̂ ∈ L1( ̂K) satisfies the following Fourier inversion formula [6, 13, 22]

(2.10) v(k) =

∫

K̂

v̂(ω)ω(k)dm
K̂
(ω) for k ∈ K.

If u ∈ L1( ̂K), the function which is defined on K by

(2.11) ŭ(x) =

∫

K̂

u(ω)ω(x)dm
K̂
(ω),

belongs to L∞(K) and for all v ∈ L1(K) we have the following orthogonality
relation (Parseval formula)

(2.12)

∫

K

v(k)ŭ(k)dmK(k) =

∫

K̂

v̂(ω)u(ω)dm
K̂
(ω).

3. Abstract harmonic analysis over canonical homogeneous spaces

of semi-direct product groups

Throughout this section, we assume that H,K are locally compact groups
with given left Haar measures mH and mK respectively, and θ : H → Aut(K)
is a continuous homomorphism. Let Gθ = H ⋉θ K be the semi-direct product
of H and K with respect to θ. Then the left coset space

Gθ/H = {(h, k)H : (h, k) ∈ Gθ},
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is a locally compact homogeneous space. The homogeneous space (left coset
space) Gθ/H is called as canonical homogeneous space of the locally compact
semi-direct product Gθ = H ⋉θ K. From now on, for k ∈ K the notation kH
stands for the left coset (eH , k)H .

Next proposition states basic properties of the canonical homogeneous space
Gθ/H .

Proposition 3.1. Let H,K be locally compact groups and θ : H → Aut(K) be
a continuous homomorphism. Let Gθ = H ⋉θ K be the semi-direct product of

H and K with respect to θ. Then

(1) H is normal in Gθ if and only if θ is the trivial homomorphism.

(2) For k, k′ ∈ K, kH = k′H if and only if k = k′.

(3) The canonical left coset space Gθ/H is precisely the set {kH : k ∈ K}.

Remark 3.2. Proposition 3.1 shows that, if θ is not the trivial homomorphism,
then the canonical left coset space Gθ/H is not a locally compact group. Thus,
in this case classical tools and notions of abstract harmonic analysis such as
convolution, involution, dual group, and Fourier transform are not well-defined
for the pure homogeneous space Gθ/H .

Remark 3.3. Proposition 3.1 also asserts that the normal factorK parametrizes
the canonical left coset space Gθ/H . It should be mentioned that the topolog-
ical spaces K and Gθ/H are topologically isomorphic via the homeomorphism
k 7→ kH , although objects of these two spaces are different in general case, see
Section 5.

As an immediate consequence of Proposition 3.1 we can conclude the fol-
lowing useful corollary.

Corollary 3.4. Let ρ be a rho-function for the pair (Gθ, H). Then

(1) The linear map PH : Cc(Gθ) → Cc(Gθ/H) is given by

(3.1) PH(f)(kH) =

∫

H

f(h, k)dmH(h) for f ∈ Cc(Gθ).

(2) The linear map TH : Cc(Gθ) → Cc(Gθ/H) is given by

(3.2) TH(f)(kH) =

∫

H

f(h, k)

ρ(h, k)
dmH(h) for f ∈ Cc(Gθ).

Remark 3.5. The linear maps PH and TH have significant roles in abstract har-
monic analysis over homogeneous spaces, see [6, 13, 22]. Corollary 3.4 asserts
connections of partial integration over H with PH and TH .

The function ρθ : Gθ → (0,∞) given by

(3.3) ρθ(h, k) = ∆H(h)∆Gθ
(h)−1 = δθH,K(h)−1 for (h, k) ∈ Gθ = H ⋉θ K.

is a rho-function for the pair (Gθ, H) which is called as canonical rho-function.
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The canonical rho-function ρθ satisfies

(3.4)

∫

Gθ

f(h, k)ρθ(h, k)dmGθ
(h, k) =

∫

H

∫

K

f(h, k)dmH(h)dmK(k)

for all f ∈ Cc(Gθ).
The following result shows that the induced strongly quasi-invariant measure

µθ via the canonical rho-function ρθ defined in (3.3) is a relatively invariant
measure.

Proposition 3.6. The induced strongly quasi-invariant measure µθ via the

canonical rho-function ρθ defined in (3.3) is a relatively invariant measure on

the canonical homogeneous space Gθ/H.

Next we present basic properties of the relatively invariant measure µθ.

Theorem 3.7. Let µθ be the relatively invariant measure on the canonical left

coset space Gθ/H which arises from the canonical rho-function ρθ defined in

(3.3). Then

(3.5)

∫

Gθ/H

ψ(kH)dµθ(kH) =

∫

K

ψ(kH)dmK(k) for ψ ∈ L1(Gθ/H, µθ),

(3.6)

∫

Gθ/H

v(kH)dµθ(kH) =

∫

K

v(k)dmK(k) for v ∈ L1(K).

Proof. Let ψ ∈ L1(Gθ/H, µθ) and f ∈ L1(Gθ) with TH(f) = ψ. Using the
Weil’s formula, we have
∫

Gθ/H

ψ(kH)dµθ(kH) =

∫

Gθ/H

TH(f)(kH)dµθ(kH) =

∫

Gθ

f(h, k)dmGθ
(h, k).

By (3.2), we achieve
∫

Gθ

f(h, k)dmGθ
(h, k) =

∫

H

∫

K

f(h, k)δθH,K(h)dmH(h)dmK(k)

=

∫

H

∫

K

f(h, k)

ρ(h, k)
dmH(h)dmK(k)

=

∫

K

(
∫

H

f(h, k)

ρ(h, k)
dmH(h)

)

dmK(k).

Thus, we get
∫

K

(
∫

H

f(h, k)

ρ(h, k)
dmH(h)

)

dmK(k) =

∫

K

TH(f)(kH)dmK(k)

=

∫

K

ψ(kH)dmK(k),

which implies (3.5). The same argument implies (3.6). �
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Remark 3.8. Theorem 3.7 shows that, if we assume left Haar measures on
H,K, then the relatively invariant measure µθ on Gθ/H , which arises from the
canonical rho-function ρθ defined in (3.3) and satisfies the Weil’s formula, is
normalized automatically such that (3.5) and (3.6) hold.

The mapping Γ = Γθ : Cc(K) → Cc(Gθ/H) given by v 7→ Γθ(v), where Γθ(v)
is defined by

Γθ(v)(sH) = v(s) for s ∈ K,

is well-defined, surjective and injective.
Next result shows that the linear map Γθ is a useful tool for analyzing

functions on the canonical homogeneous space Gθ/H .

Corollary 3.9. Let µθ be the relatively invariant measure on the canonical left

coset space Gθ/H which arises from the canonical rho-function ρθ defined in

(3.3) and p ≥ 1. Then

(1) The linear map Γθ : Cc(K) → Cc(Gθ/H) satisfies

(3.7) ‖Γθ(v)‖Lp(Gθ/H,µθ) = ‖v‖Lp(K) for v ∈ Cc(K).

(2) The linear map Γθ : Cc(K) → Cc(Gθ/H) has a unique extension to the

linear map Γθ : Lp(K) → Lp(Gθ/H, µθ) which satisfies

(3.8) ‖Γθ(v)‖Lp(Gθ/H,µθ) = ‖v‖Lp(K) for v ∈ Lp(K).

Proof. (1) Let v ∈ Cc(K). Then Γθ(v) ∈ Cc(Gθ/H), and hence we have ψ :=
|Γθ(v)|

p ∈ Cc(Gθ/H). Using Theorem 3.7, we get
∫

Gθ/H

|Γθ(v)(kH)|pdµθ(kH) =

∫

K

|Γθ(v)(kH)|pdmK(k)

=

∫

K

|v(k)|pdmK(k),

which implies (3.7).
(2) It is straightforward. �

For ϕ, ϕ′ ∈ Cc(Gθ/H), define the θ-convolution of ϕ and ϕ′ by

(3.9) ϕ ∗θ ϕ
′(sH) :=

∫

Gθ/H

ϕ(kH)ϕ′(k−1sH)dµθ(kH) for sH ∈ Gθ/H.

Then the integral given in (3.9) converges and the mapping (ϕ, ϕ′) 7→ ϕ ∗θ ϕ
′

is bilinear. Let v, v′ ∈ Cc(K) with ϕ = Γθ(v) and ϕ
′ = Γθ(v

′). Then

ϕ ∗θ ϕ
′(sH) =

∫

Gθ/H

ϕ(kH)ϕ′(k−1sH)dµθ(kH)

=

∫

Gθ/H

v(k)v′(k−1s)dµθ(kH)

for all sH ∈ Gθ/H .
The following proposition states the relation of θ-convolution with the con-

volution on K.



124 ARASH GHAANI FARASHAHI

Proposition 3.10. Let ϕ, ϕ′ ∈ Cc(Gθ/H) and v, v′ ∈ Cc(K) with ϕ = Γθ(v)
and ϕ′ = Γθ(v

′). Then

(3.10) ϕ ∗θ ϕ
′ = Γθ(v ∗ v

′).

Proof. Let ϕ, ϕ′ ∈ Cc(Gθ/H), and let v, v′ ∈ Cc(K) with ϕ = Γθ(v) and ϕ′ =
Γθ(v

′). Let s ∈ K. Then the function ψs : Gθ/H → C defined by

ψs(kH) := ϕ(kH)ϕ′(k−1sH) = v(k)v′(k−1s) for kH ∈ Gθ/H,

belongs to Cc(Gθ/H). Invoking Theorem 3.7, we get
∫

Gθ/H

ϕ(kH)ϕ′(k−1sH)dµθ(kH) =

∫

Gθ/H

ψs(kH)dµθ(kH)

=

∫

K

ψs(kH)dmK(k).

Then we can write

ϕ ∗θ ϕ
′(sH) =

∫

Gθ/H

ϕ(kH)ϕ′(k−1sH)dµθ(kH)

=

∫

K

ψs(kH)dmK(k)

=

∫

K

v(k)v′(k−1s)dmK(k) = v ∗ v′(s),

which implies (3.10). �

Similarly, one can define θ-involution of ϕ ∈ Cc(Gθ/H) by

(3.11) ϕ∗θ (sH) := ∆K(s−1)ϕ(s−1H) for sH ∈ Gθ/H.

Then we have

ϕ∗θ = Γθ(v
∗),

where v ∈ Cc(K) with ϕ = Γθ(v).
Next theorem guarantees that the θ-convolution and the θ-involution defined

by (3.9) and (3.11) on Cc(Gθ/H), have unique extensions to the Banach space
L1(Gθ/H, µθ), where µθ is the relatively invariant measure on Gθ/H which
arises from the canonical rho-function given in (3.3).

Theorem 3.11. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3). The θ-convolution

given in (3.9) and the θ-involution given in (3.11) have unique extensions to

the Banach function space L1(Gθ/H, µθ) in which the Banach function space

L1(Gθ/H, µθ) equipped with the extended θ-convolution and the extended θ-

involution is a Banach ∗-algebra.

Proof. Let ϕ, ϕ′ ∈ Cc(Gθ/H) and v, v′ ∈ Cc(K) such that Γθ(v) = ϕ and
Γθ(v

′) = ϕ′. Then Proposition 3.10, implies ϕ ∗θ ϕ
′ = Γθ(v ∗ v

′). Thus, we get

(3.12) (ϕ ∗θ ϕ
′)∗θ = ϕ′∗θ ∗θ ϕ

∗θ .
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By (3.7), we can write

‖ϕ ∗θ ϕ
′‖L1(Gθ/H,µθ) = ‖Γθ(v ∗ v

′)‖L1(Gθ/H,µθ)

= ‖v ∗ v′‖L1(K)

≤ ‖v‖L1(K)‖v
′‖L1(K)

= ‖Γθ(v)‖L1(Gθ/H,µθ)‖Γθ(v
′)‖L1(Gθ/H,µθ)

= ‖ϕ‖L1(Gθ/H,µθ)‖ϕ
′‖L1(Gθ/H,µθ).

Similarly, we have

‖ϕ∗θ‖L1(Gθ/H,µθ) = ‖Γθ(v
∗)‖L1(Gθ/H,µθ)

= ‖v∗‖L1(K)

= ‖v‖L1(K) = ‖ϕ‖L1(Gθ/H,µθ).

Thus, for ϕ, ϕ′ ∈ Cc(Gθ/H), we achieve

(3.13) ‖ϕ ∗θ ϕ‖L1(Gθ/H,µθ) ≤ ‖ϕ‖L1(Gθ/H,µθ)‖ϕ
′‖L1(Gθ/H,µθ),

(3.14) ‖ϕ∗θ‖L1(Gθ/H,µθ) = ‖ϕ‖L1(Gθ/H,µθ).

For ϕ, ϕ′ ∈ L1(Gθ/H, µθ), define the extended θ-convolution and θ-involution
respectively, by

(3.15) ϕ ∗θ ϕ
′ := ‖.‖L1(Gθ/H,µθ) − lim

n
ϕn ∗θ ϕ

′
n,

(3.16) ϕ∗θ := ‖.‖L1(Gθ/H,µθ) − lim
n
ϕ∗θ
n ,

where {ϕn}, {ϕ
′
n} ⊂ Cc(Gθ/H) with ϕ = ‖ · ‖L1(Gθ/H,µθ) − limn ϕn and ϕ′ =

‖.‖L1(Gθ/H,µθ)− limn ϕ
′
n. The extended θ-convolution and θ-involution defined

by (3.15) and (3.16) are well-defined and satisfy (3.12), (3.13) and (3.14). Thus,
the extended θ-convolution and the extended θ-involution make the Banach
space L1(Gθ/H, µθ) into a Banach ∗-algebra. �

From now on, we may use the notations ∗θ for extended θ-convolution and
∗θ for the extended θ-involution on L1(Gθ/H, µθ).

Corollary 3.12. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3). Let

ϕ, ϕ′ ∈ L1(Gθ/H, µθ).

Then

(3.17) ϕ ∗θ ϕ
′(sH) =

∫

Gθ/H

ϕ(kH)ϕ′(k−1sH)dµθ(kH) for sH ∈ Gθ/H,

and

(3.18) ϕ∗θ (sH) = ∆K(s−1)ϕ(s−1H) for sH ∈ Gθ/H.

Corollary 3.13. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3). Then
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(1) The mapping Γθ : L1(K) → L1(Gθ/H, µθ) is an isometric ∗-isomor-

phism.

(2) The θ-convolution is commutative if and only if K is Abelian.

Remark 3.14. Let sθ : Gθ/H → Gθ be given by sθ(kH) := k for all k ∈ k.
Then sθ is a continuous section, called as canonical section of the homogeneous
space Gθ/H . Let µθ be the relatively invariant measure over the canonical
homogeneous space Gθ/H which arises from the canonical rho function ρθ.
The θ-convolution operator over the canonical homogeneous spaces Gθ/H is
precisely the relative convolution operator associated to the canonical section
sθ and the trivial unitary character ı : H → C, see [6, 10, 13, 16, 18].

4. Abstract relative Fourier transform over canonical homogeneous

spaces with Abelian normal factor

In this section, we present theoretical aspects of a unified approach to the
notion of Fourier transform over the canonical left coset space Gθ/H . From
now on in this article, we assume that H is a locally compact group with a left

Haar measure mH , K is an LCA group with the dual (character group) ̂K, and
θ : H → Aut(K) is a continuous homomorphism. For simplicity in notations
we may use kh instead of θh(k) for h ∈ H and k ∈ K. Further, let mK be

a Haar measure on K and m
K̂

be the normalized Plancherel measure on ̂K

associated to mK .
For ω ∈ ̂K and h ∈ H , define ωh : K → T via

(4.1) ωh(k) := ω ◦ θh−1(k) = ω(θh−1(k)) for k ∈ K.

If ω ∈ ̂K and h ∈ H , then ωh ∈ ̂K, because for k, k′ ∈ K we have

ωh(kk
′) = ω ◦ θh−1(kk′)

= ω(θh−1(kk′))

= ω(θh−1(k)θh−1(k′))

= ω(θh−1(k))ω(θh−1(k′)) = ωh(k)ωh(k
′).

For h ∈ H , define ̂θh : ̂K → ̂K via

(4.2) ̂θh(ω) = ωh for ω ∈ ̂K.

According to (4.1), for h ∈ H we have ̂θh ∈ Aut( ̂K). Since for k ∈ K, h ∈ H ,

and ω, ω′ ∈ ̂K, we have

(ω.ω′)h(k) = (ω.ω′) ◦ θh−1(k)

= ω.ω′(θh−1(k))

= ω(θh−1(k))ω′(θh−1(k)) = ωh(k)ω
′
h(k).

Thus, we get
̂θh(ω.ω

′)(k) = ̂θh(ω)(k)̂θh(ω
′)(k),
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which implies

̂θh(ω.ω
′) = ̂θh(ω)̂θh(ω

′).

The following theorem gives the connection of the ̂θ-action and the normal-
ized Plancherel measure over the dual group.

Theorem 4.1. Let H be a locally compact group, K be an LCA group with

Haar measure mK , and m
K̂

be the normalized Plancherel measure on ̂K. Let

θ : H → Aut(K) be a continuous homomorphism and δθH,K : H → (0,∞) be

the positive continuous homomorphism which satisfies (2.8). Then

(4.3) m
K̂
◦ ̂θh = δθH,K(h) ·m

K̂
for h ∈ H.

Proof. Let h ∈ H be given. Then m
K̂

◦ ̂θh is a non-zero translation invariant

measure (Haar measure) on the locally compact Abelian group ̂K. To check

this, let E ⊆ ̂K be a Borel subset and ξ ∈ ̂K. By the translation invariance of
the normalized Plancherel measure m

K̂
, we can write

m
K̂
◦ ̂θh (ξ.E) = m

K̂
◦ ̂θh ({ξ.ω : ω ∈ E})

= m
K̂

(

̂θh{ξ.ω : ω ∈ E}
)

= m
K̂

({

̂θh(ξ.ω) : ω ∈ E
})

= m
K̂
({ξh.ωh : ω ∈ E})

= m
K̂
(ξh. {ωh : ω ∈ E})

= m
K̂
({ωh : ω ∈ E}) = m

K̂
◦ ̂θh (E) .

Thus, by the uniqueness (up to scaling) of Haar measure on locally compact

groups, we get m
K̂

◦ ̂θh = βh ·m
K̂
, where βh is a positive constant. Now we

claim that βh = δθH,K(h). To prove this, let f ∈ L1(K). Then using (2.8), we

have f ◦ θh ∈ L1(K) with ‖f ◦ θh‖L1(K) = δθH,K(h)‖f‖L1(K). Thus, for ω ∈ ̂K,
we obtain

f̂ ◦ θh(ω) =

∫

K

f ◦ θh(k)ω(k)dmK(k)

=

∫

K

f(θh(k))ω(k)dmK(k)

=

∫

K

f(k)ω(θh−1(k))dmK(θh−1(k))

=

∫

K

f(k)ωh(k)dmK(θh−1(k))

= δθH,K(h)

∫

K

f(k)ωh(k)dmK(k) = δθH,K(h) ̂f(ωh).
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Let f ∈ L1(K) ∩ L2(K) be non-zero. Then, by Plancherel theorem, we can
write

∫

K̂

| ̂f(ω)|2dm
K̂
(ωh) =

∫

K̂

| ̂f(ωh−1)|2dm
K̂
(ω)

= δθH,K(h)2
∫

K̂

| ̂f ◦ θh−1(ω)|2dm
K̂
(ω)

= δθH,K(h)2
∫

K

|f ◦ θh−1(k)|2dmK(k)

= δθH,K(h)2
∫

K

|f(k)|2dmK(θh(k))

= δθH,K(h)

∫

K

|f(k)|2dmK(k)

= δθH,K(h)

∫

K̂

| ̂f(ω)|2dm
K̂
(ω),

which implies

βh‖ ̂f‖
2
L2(K̂)

= βh

∫

K̂

| ̂f(ω)|2dm
K̂
(ω)

=

∫

K̂

| ̂f(ω)|2dm
K̂
(ωh)

= δθH,K(h)

∫

K̂

| ̂f(ω)|2dm
K̂
(ω) = δθH,K(h)‖ ̂f‖2

L2(K̂)
.

Since f and hence ‖ ̂f‖L2(K) are non-zero, we can conclude that βh = δθH,K(h).
�

Corollary 4.2. The continuous homomorphism δθ̂
H,K̂

: H → (0,∞) is given

by

δθ̂
H,K̂

(h) = δθH,K(h−1) = δθH,K(h)−1 for h ∈ H.

Let ̂θ : H → Aut( ̂K) be given via h 7→ ̂θh. Then the map h 7→ ̂θh is a

homomorphism from H into Aut( ̂K). To see this, let h, h′ ∈ H , ω ∈ ̂K, and
k ∈ K. Then we can write

ωhh′(k) = ω(θ(hh′)−1(k))

= ω(θh′−1θh−1(k)) = ωh′(θh−1(k)) = ̂θh′(ω)(θh−1(k)).

Thus, we get

̂θhh′(ω)(k) = ωhh′(k)

= ̂θh′(ω)(θh−1(k)) = ̂θh[̂θh′(ω)](k),

which guarantees that
̂θhh′(ω) = ̂θh[̂θh′(ω)].
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Then we can present the following result.

Theorem 4.3. Let δθH,K : H → (0,∞) be the positive continuous homomor-

phism satisfying (2.8). Then ̂θ : H → Aut( ̂K) is a continuous homomorphism

and the semi-direct product group G
θ̂
:= H ⋉

θ̂
̂K is a locally compact group

with a left Haar measure given by

(4.4) dmG
θ̂
(h, ω) = δθH,K(h)−1dmH(h)dm

K̂
(ω).

Proof. For σ ∈ Aut(K), let σ̂ ∈ Aut( ̂K) be given for all ω ∈ ̂K by σ̂(ω) :=
ω◦σ−1, where for all k ∈ K we have ω◦σ−1(k) = ω(σ−1(k)). Then by Theorem

26.9 and Theorem 26.5 of [13], the mapping ̂: Aut(K) → Aut( ̂K) defined by
σ 7→ σ̂ is a topological group isomorphism and therefore it is continuous. Due
to the following diagram

(4.5) H
θ
→ Aut(K)

̂
→ Aut( ̂K),

the homomorphism ̂θ : H → Aut( ̂K) defined in (4.1) is continuous, which

consequently guarantees that the semi-direct product group G
θ̂
= H ⋉

θ̂
̂K is a

locally compact group. Then Theorem 4.1, implies that

dmG
θ̂
(h, ω) = δH,K(h)−1dmH(h)dm

K̂
(ω),

is a left Haar measure for G
θ̂
= H ⋉

θ̂
̂K. �

Remark 4.4. The group law for (h, ω), (h′, ω′) ∈ G
θ̂
= H ⋉

θ̂
̂K is

(h, ω)⋉
θ̂
(h′, ω′) = (hh′, ω.ω′

h).

Definition 4.5. Let H be a locally compact group, K be an LCA group with

dual group ̂K, and θ : H → Aut(K) be a continuous homomorphism. The

locally compact group G
θ̂
= H⋉

θ̂
̂K is called as θ-dual group or the semi-direct

dual of the locally compact semi-direct product group Gθ.

Due to the Pontrjagin duality theorem [6, 13], each k ∈ K defines a character
̂k on ̂K via ̂k(ω) = ω(k) and the map k 7→ ̂k is a topological group isomorphism

from K onto
̂

̂K.

Proposition 4.6. For (h, k) ∈ Gθ we have

(4.6) θ̂h(k) =
̂

̂θh(̂k).

Proof. Let (h, k) ∈ Gθ and ω ∈ ̂K. Then we have

(4.7)
̂

̂θh(̂k)(ω) = ωh−1(k).

Indeed, by (4.1), we can write

̂

̂θh(̂k)(ω) = ̂k ◦ ̂θh−1(ω)

= ̂k
(

̂θh−1(ω)
)
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= ̂k(ωh−1) = ωh−1(k).

Using duality notation and (4.7), we get

θ̂h(k)(ω) = ω(θh(k))

= ω ◦ θh(k)

= ωh−1(k) =
̂

̂θh(̂k)(ω). �

Remark 4.7. The ̂θ-dual group operation, for (h, ̂k), (h′, ̂k′) ∈ Ĝ̂
θ
= H ⋉̂̂

θ

̂

̂K, is

(4.8) (h, ̂k)⋉̂̂
θ
(h′, ̂k′) = (hh′, ̂k

̂

̂θh(̂k′)),

where
̂

̂θ : H → Aut(
̂

̂K) is given by

(4.9)
̂

̂θh(̂k)(ω) = ωh−1(k)

for all ω ∈ ̂K and (h, k) ∈ Gθ.

Next result is a type of Pontrjagin duality Theorem for the θ-dual structure
of the locally compact semi-direct product group Gθ.

Theorem 4.8. Let H be a locally compact group, K be an LCA group with

dual group ̂K, and θ : H → Aut(K) be a continuous homomorphism. Then

(4.10) (h, k) 7→ Θ(h, k) := (h, ̂k),

is a topological groups isomorphism from Gθ onto Ĝ̂
θ
.

Proof. Let (h, k), (h′, k′) ∈ Gθ. Using (4.6), and since the map k 7→ ̂k is a
topological group homomorphism, we have

Θ ((h, k)⋉θ (h
′, k′)) = Θ (hh′, kθh(k

′))

=
(

hh′, k̂θh(k′)
)

=
(

hh′, ̂kθ̂h(k′)
)

=

(

hh′, ̂k
̂

̂θh(̂k′)

)

= (h, ̂k)⋉̂̂
θ
(h′, ̂k′) = Θ(h, k)⋉̂̂

θ
Θ(h′, k′),

which guarantees that Θ is a homomorphism. The fact that, k 7→ ̂k is a

topological group isomorphism from K onto
̂

̂K, implies that the map Θ is a
topological group isomorphism as well. �

Remark 4.9. Theorem 4.8 assures that we can identify elements of Ĝ̂
θ
with Gθ

via the topological group isomorphism Θ defined in (4.10). Form now on, we

may identify an element (h, ̂k) ∈ Ĝ̂
θ
with (h, k), at times.
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Definition 4.10. Let H be a locally compact group, and K be an LCA group

with dual group ̂K. Let θ : H → Aut(K) be a continuous homomorphism. The
canonical left coset space G

θ̂
/H = {(h, ω)H : (h, ω) ∈ G

θ̂
} is a locally compact

homogeneous space, which is called as dual homogeneous space of the canonical
locally compact homogeneous space Gθ/H .

Theorem 4.8 implies that dual of the canonical left coset space G
θ̂
/H is the

canonical left coset space Gθ/H .
Then we state basic properties of canonical dual homogeneous spaces.

Proposition 4.11. Let H be a locally compact group, and K be an LCA group

with dual group ̂K. Let θ : H → Aut(K) be a continuous homomorphism.

Then

(1) H is normal in G
θ̂
if and only if θ is the trivial homomorphism.

(2) Gθ/H is a pure homogeneous space if and only if G
θ̂
/H is a pure

homogeneous space.

(3) For ω, ω′ ∈ ̂K, ωH = ω′H if and only if ω = ω′.

(4) The canonical homogeneous space G
θ̂
/H is precisely {ωH : ω ∈ ̂K}.

Corollary 4.12. Let ρ̂ be a rho-function for the pair (G
θ̂
, H). Then

(1) The linear map PH : Cc(Gθ̂
) → Cc(Gθ̂

/H) is given by

(4.11) PH(g)(ωH) =

∫

H

g(h, ω)dmH(h) for g ∈ Cc(Gθ̂
).

(2) The linear map TH : Cc(Gθ̂
) → Cc(Gθ̂

/H) is given by

(4.12) TH(g)(ωH) =

∫

H

g(h, ω)

ρ̂(h, ω)
dmH(h) for g ∈ Cc(Gθ̂

).

The function ρ
θ̂
: G

θ̂
→ (0,∞) given by

(4.13) ρ
θ̂
(h, ω) = ∆H(h)∆G

θ̂
(h)−1 = δθ̂

H,K̂
(h)−1 = δθH,K(h),

for (h, ω) ∈ Gθ = H ⋉θ
̂K, is the canonical rho-function for the pair (G

θ̂
, H).

Then we can present the following consequences, due to the structure of the
θ-dual group G

θ̂
and results of Section 3.

Theorem 4.13. The induced strongly quasi-invariant measure µ
θ̂
on the can-

onical left coset space G
θ̂
/H which arises from the rho-function defined in (4.13)

is a relatively invariant measure on Gθ/H and satisfies

(4.14)

∫

G
θ̂
/H

φ(ωH)dµ
θ̂
(ωH) =

∫

K̂

φ(ωH)dm
K̂
(ω) for φ ∈ L1(G

θ̂
/H, µ

θ̂
).

(4.15)

∫

G
θ̂
/H

u(ω)dµ
θ̂
(ωH) =

∫

K̂

u(ω)dm
K̂
(ω) for u ∈ L1( ̂K).
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Corollary 4.14. Let µ
θ̂
be the relatively invariant measure on the canoni-

cal homogeneous space G
θ̂
/H which arises from the canonical rho-function ρ

θ̂

defined in (4.13) and p ≥ 1. Then,

(1) The linear map Γ
θ̂
: Cc( ̂K) → Cc(Gθ̂

/H) satisfies

(4.16) ‖Γ
θ̂
(u)‖Lp(G

θ̂
/H,µ

θ̂
) = ‖u‖

Lp(K̂) for u ∈ Cc( ̂K).

(2) The linear map Γ
θ̂
: Cc( ̂K) → Cc(Gθ̂

/H) has a unique extension to the

linear map Γ
θ̂
from Lp( ̂K) onto Lp(G

θ̂
/H, µ

θ̂
) which satisfies

(4.17) ‖Γ
θ̂
(u)‖Lp(G

θ̂
/H,µ

θ̂
) = ‖u‖

Lp(K̂) for u ∈ Lp( ̂K).

Now we can introduce the abstract notion of relative Fourier transform over
Gθ/H .

Definition 4.15. For ϕ ∈ L1(Gθ/H, µθ), we define the θ-Fourier transform of
ϕ at ωH ∈ G

θ̂
/H by

(4.18) Fθ(ϕ)(ωH) :=

∫

Gθ/H

ϕ(kH)ω(k)dµθ(kH).

Then the mapping ϕ 7→ Fθ(ϕ) is linear, and satisfies

(4.19) Fθ(ϕ)(ωH) =

∫

Gθ/H

ϕ(kH)ω(k)dµθ(kH) =

∫

Gθ/H

v(k)ω(k)dµθ(kH),

where v ∈ L1(K) with ϕ = Γθ(v).
The following result gives the relation of the θ-Fourier transform defined in

(4.18) with the Fourier transform on K.

Proposition 4.16. Let v ∈ L1(K) with ϕ = Γθ(v). Then

(4.20) Fθ(ϕ)(ωH) =

∫

K

v(k)ω(k)dmK(k) for ωH ∈ G
θ̂
/H.

Proof. Let ϕ ∈ L1(Gθ/H, µθ) and ω ∈ ̂K. Let v ∈ L1(K) with ϕ = Γθ(v).
Then the function ψω : Gθ/H → C, defined by

ψω(kH) := Γθ(v)(kH)ω(k) = v(k)ω(k) for kH ∈ Gθ/H,

belongs to L1(Gθ/H, µθ). Using Theorem 3.7, we have
∫

Gθ/H

ϕ(kH)ω(k)dµθ(kH) =

∫

Gθ/H

ψω(kH)dµθ(kH)

=

∫

K

ψω(kH)dmK(k) =

∫

K

Γθ(v)ω(k)dmK(k),

which implies (4.20). �

Consequently, we can deduce the following proposition.

Proposition 4.17. The θ-Fourier transform Fθ : L1(Gθ/H, µθ) → C0(Gθ̂
/H)

is a norm-decreasing ∗-homomorphism.
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Next theorem can be considered as a Parseval formula for the θ-Fourier
transform given in (4.18).

Theorem 4.18. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3), and µ
θ̂
be the relatively

invariant measure on G
θ̂
/H which arises from the canonical rho-function ρ

θ̂

given by (4.13). Let φ ∈ L1(G
θ̂
/H, µ

θ̂
). Then the function φ̆ : Gθ/H → C

defined by

(4.21) φ̆(kH) =

∫

G
θ̂
/H

φ(ωH)ω(k)dµ
θ̂
(ωH)

belongs to L∞(Gθ/H, µθ), and for ϕ ∈ L1(Gθ/H, µθ) we have

(4.22)

∫

Gθ/H

ϕ(kH)φ̆(kH)dµθ(kH) =

∫

G
θ̂
/H

Fθ(ϕ)(ωH)φ(ωH)dµ
θ̂
(ωH).

Proof. By (4.20), for ϕ = Γθ(v) ∈ L1(Gθ/H, µθ) with v ∈ L1(K) we get

(4.23) Fθ(ϕ)(ωH) = v̂(ω) = Γ
θ̂
(v̂)(ωH).

Then (4.21) implies φ̆ ∈ L∞(Gθ/H, µθ). Let ϕ ∈ L1(Gθ/H, µθ). Then ϕ · φ̆ ∈
L1(Gθ/H, µθ), and we can write

∫

Gθ/H

ϕ(kH)φ̆(kH)dµθ(kH)

=

∫

Gθ/H

ϕ(kH)

(

∫

G
θ̂
/H

φ(ωH)ω(k)dµ
θ̂
(ωH)

)

dµθ(kH)

=

∫

G
θ̂
/H

(

∫

Gθ/H

ϕ(kH)ω(k)dµθ(kH)

)

φ(ωH)dµ
θ̂
(ωH)

=

∫

G
θ̂
/H

Fθ(ϕ)(ωH)φ(ωH)dµ
θ̂
(ωH).

�

The following result is an L1-inversion formula for the θ-Fourier transform.

Proposition 4.19. The θ-Fourier transform Fθ satisfies the following recon-

struction formula

(4.24) ϕ(kH) =

∫

G
θ̂
/H

Fθ(ϕ)(ωH)ω(k)dµ
θ̂
(ωH)

if ϕ ∈ L1(Gθ/H, µθ) with Fθ(ϕ) ∈ L1(G
θ̂
/H, µ

θ̂
).

For ϕ = Γθ(v) ∈ L2(Gθ/H, µθ) with v ∈ L2(K), we can simultaneously
define the θ-Fourier transform of ϕ by

(4.25) Fθ(ϕ)(ωH) = v̂(ω) = Γ
θ̂
(v̂)(ωH) for ωH ∈ G

θ̂
/H.

Then the mapping ϕ 7→ Fθ(ϕ) is linear.
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The following theorem can be considered as a Plancherel formula for the
θ-Fourier transform given in (4.25).

Theorem 4.20. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3), and let µ
θ̂
be the

relatively invariant measure on G
θ̂
/H which arises from the canonical rho-

function ρ
θ̂
given by (4.13). The θ-Fourier transform Fθ is a unitary transform

from L2(Gθ/H, µθ) onto L
2(G

θ̂
/H, µ

θ̂
).

Proof. Let ϕ ∈ L2(Gθ/H, µθ). Let v ∈ L2(K) with Γθ(v) = ϕ. Using (3.7) and
(4.25), we have

(4.26) ‖Fθ(ϕ)‖L2(G
θ̂
/H,µ

θ̂
) = ‖Γ

θ̂
(v̂)‖L2(G

θ̂
/H,µ

θ̂
) = ‖v̂‖

L2(K̂).

Using Plancherel formula, we have ‖v̂‖
L2(K̂) = ‖v‖L2(K). Then using (3.7), we

get

(4.27) ‖v‖L2(K) = ‖Γθ(v)‖L2(Gθ/H,µθ) = ‖ϕ‖L2(Gθ/H,µθ).

Thus, we achieve

(4.28) ‖Fθ(ϕ)‖L2(G
θ̂
/H,µ

θ̂
) = ‖ϕ‖L2(Gθ/H,µθ).

Invoking the fact that the standard Fourier transform ̂ : L2(K) → L2( ̂K)
is unitary, and using (4.25), we obtain that the θ-Fourier transform maps
L2(Gθ/H, µθ) onto L

2(G
θ̂
/H, µ

θ̂
). �

Corollary 4.21. For ϕ, ψ ∈ L2(Gθ/H, µθ) we have

(4.29)

∫

Gθ/H

ϕ(kH)ψ(kH)dµθ(kH)=

∫

G
θ̂
/H

Fθ(ϕ)(ωH)Fθ(ψ)(ωH)dµ
θ̂
(ωH).

Remark 4.22. The construction of the measures µθ and µ
θ̂
is the main contri-

bution of Theorem 4.20, where the relatively invariant measure µθ on Gθ/H

(resp. µ
θ̂
on G

θ̂
/H) is normalized with respect to the Haar measure mK (resp.

m
K̂
) such that (3.5) and (3.6) (resp. (4.14) and (4.15)) hold.

The following theorem presents an inversion formula for the relative Fourier
transform in L2-sense.

Theorem 4.23. Let µθ be the relatively invariant measure on Gθ/H which

arises from the canonical rho-function ρθ given by (3.3), and let µ
θ̂
be the

relatively invariant measure on G
θ̂
/H which arises from the canonical rho-

function ρ
θ̂
given by (4.13). Let Ψ ∈ L2(G

θ̂
/H, µ

θ̂
). Then the function ψ :

Gθ/H → C defined by

(4.30) ψ(kH) :=

∫

G
θ̂
/H

Ψ(ωH)ω(k)dµ
θ̂
(ωH)

belongs to L2(Gθ/H, µθ), and we have Fθ(ψ) = Ψ.
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Proof. It is straightforward to see that ψ∈L2(Gθ/H, µθ). Let Φ∈L2(G
θ̂
/H, µ

θ̂
)

and also φ ∈ L2(Gθ/H, µθ) with Φ = Fθ(φ). Using (4.29), we have

〈Φ,Fθ(ψ)〉L2(G
θ̂
/H,µ

θ̂
) = 〈Fθ(φ),Fθ(ψ)〉L2(G

θ̂
/H,µ

θ̂
)

= 〈φ, ψ〉L2(Gθ/H,µθ)

=

∫

Gθ/H

φ(kH)ψ(kH)dµθ(kH)

=

∫

Gθ/H

φ(kH)

(

∫

G
θ̂
/H

Ψ(ωH)ω(k)dµ
θ̂
(ωH)

)

dµθ(kH)

=

∫

G
θ̂
/H

(

∫

Gθ/H

φ(kH)Ψ(ωH)ω(k)dµθ(kH)

)

dµ
θ̂
(ωH)

=

∫

G
θ̂
/H

Fθ(φ)(ωH)Ψ(ωH)dµ
θ̂
(ωH)

= 〈Fθ(φ),Ψ〉L2(G
θ̂
/H,µ

θ̂
) = 〈Φ,Ψ〉L2(G

θ̂
/H,µ

θ̂
),

which implies Fθ(ψ) = Ψ. �

Then we can prove the following result.

Proposition 4.24. For ϕ, ϕ′ ∈ L2(Gθ/H, µθ) we have

(4.31) Fθ(ϕ.ϕ
′) = Fθ(ϕ) ∗θ̂ Fθ(ϕ

′).

Proof. Let v, v′ ∈ L2(K) with ϕ = Γθ(v) and ϕ′ = Γθ(v
′). Then we have

v.v′ ∈ L1(K) and ϕ.ϕ′ ∈ L1(Gθ/H, µθ). Thus, we can write

Fθ(ϕ.ϕ
′) = Fθ(Γθ(v)Γθ(v

′))

= Fθ(Γθ(v.v
′)) = ̂v.v′ = v̂ ∗ ̂v′

= Γ
θ̂
(v̂) ∗

θ̂
Γ
θ̂
(v̂) = Fθ(ϕ) ∗θ̂ Fθ(ϕ

′). �

5. Examples

Throughout this section we study aspects of relative Fourier transforms over
canonical homogeneous spaces of some semi-direct product groups with the
Abelian normal factor.

5.1. Canonical homogeneous space of the affine group

Let H := R+ = (0,+∞) and K := R. Let dx be the Haar measure of the
additive group R and da/a be the Haar measure of the multiplicative group
R+. The continuous affine group ax+b is the semi-direct product H⋉θK with
respect to the homomorphism θ : H → Aut(K) given by a 7→ θa, where θa(x) =
ax for x ∈ R and a ∈ (0,∞). The underlying manifold of the continuous affine
group is (0,∞)× R and the group law is

(5.1) (a, x)⋉θ (a
′, x′) = (aa′, x+ ax′).
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Then the canonical left coset space Gθ/H is {xH : x ∈ R}, where xH =
{(a, x) : a ∈ (0,+∞)} for all x ∈ R. In geometric terms, each coset xH is
precisely the half line with the end point (0, x) which extended indefinitely in
the direction of the positive part of the real axis, and hence the canonical left
coset space Gθ/H is the locally compact space consists of all these half lines.

The continuous homomorphism δθH,K : H → (0,∞) is given by δθH,K(a) =

a−1 for a ∈ H . The left Haar measure of Gθ is dµGθ
(a, x) = a−2dadx. The

linear map PH : Cc(Gθ) → Cc(Gθ/H) is

(5.2) PH(f)(xH) =

∫ +∞

0

f(a, x)

a
da for f ∈ Cc(Gθ) and x ∈ R.

The canonical rho-function ρ : Gθ → (0,∞) is ρ(a, x) = δθH,K(a)−1 = a for

(a, x) ∈ Gθ. Thus, the linear map TH : Cc(Gθ) → Cc(Gθ/H) is

(5.3) TH(f)(xH) =

∫ +∞

0

f(a, x)

a2
da for f ∈ Cc(Gθ) and x ∈ R.

Let µθ be the induced relatively invariant measure on the homogeneous space
Gθ/H via the canonical rho-function ρ. Then

(5.4)

∫

Gθ/H

φ(xH)dµθ(xH) =

∫ +∞

−∞

∫ +∞

0

f(a, x)

a
dadx for φ ∈ Cc(Gθ/H),

(5.5)

∫

Gθ/H

φ(xH)dµθ(xH) =

∫ +∞

−∞

∫ +∞

0

g(a, x)

a2
dadx for φ ∈ Cc(Gθ/H),

where f, g ∈ Cc(Gθ) are satisfying PH(g) = φ and TH(g) = φ.
Let dω be the normalized Plancherel (Haar) measure on the character group

̂R. The character group ̂R can be identified with R via the dual pairing ω(x) =

〈x, ω〉 = e2πiωx for x ∈ R and ω ∈ ̂R. The continuous homomorphism ̂θ : H →

Aut( ̂K) is given by a 7→ ̂θa where

〈x, ωa〉 = 〈x, ̂θa(ω)〉

= 〈θa−1(x), ω〉

= 〈a−1x, ω〉 = e2πiωa−1x.

Thus, G
θ̂
has the underlying manifold (0,∞)× ̂R, with the group law given by

(5.6) (a, ω)⋉
θ̂
(a′, ω′) = (aa′, ωω′

a).

The continuous homomorphism δθ̂
H,K̂

: H → (0,∞) is given by δθ̂
H,K̂

(a) = a for

a ∈ H . The left Haar measure dµG
θ̂
(a, ω) of G

θ̂
is precisely dadω. The linear

map PH : Cc(Gθ̂
) → Cc(Gθ̂

/H) is

(5.7) PH(f)(ωH) =

∫ +∞

0

f(a, x)

a
da for f ∈ Cc(Gθ̂

) and ω ∈ R.
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The canonical rho-function ρ̂ : G
θ̂
→ (0,∞) is ρ̂(a, ω) = δθ̂

H,K̂
(a)−1 = a−1 for

(a, ω) ∈ G
θ̂
. Thus, the linear map TH : Cc(Gθ̂

) → Cc(Gθ̂
/H) is

(5.8) TH(f)(ωH) =

∫ +∞

0

f(a, ω)da for f ∈ Cc(Gθ̂
) and ω ∈ R.

Let µ
θ̂
be the induced relatively invariant measure on the homogeneous space

G
θ̂
/H via the canonical rho-function ρ̂. Then

(5.9)

∫

G
θ̂
/H

Φ(ωH)dµ
θ̂
(ωH)=

∫ +∞

−∞

∫ +∞

0

f(a, ω)

a
dadω for Φ ∈ Cc(Gθ̂

/H),

(5.10)

∫

G
θ̂
/H

Φ(ωH)dµ
θ̂
(ωH)=

∫ +∞

−∞

∫ +∞

0

g(a, ω)dadω for Φ ∈ Cc(Gθ̂
/H),

where f ,g ∈ Cc(Gθ̂
) with PH(f) = Φ and TH(g) = Φ.

Then the relative Fourier transform of ϕ ∈ L1(Gθ/H, µθ) is given by

(5.11) Fθ(ϕ)(ωH) =

∫

Gθ/H

ϕ(xH)e−2πiωxdµθ(xH) for ωH ∈ G
θ̂
/H.

5.2. Canonical homogeneous spaces of Euclidean groups

Let n ∈ N, K := Rn, and H := SO(n). Let E(n) be the group of rigid
motions of K, the group generated by rotations and translations, that is the
semi-direct product of H and K with respect to the continuous homomorphism
θ : SO(n) → Aut(Rn) which is given by σ 7→ θσ, where θσ(x) = σx for all
σ ∈ SO(n) and x ∈ Rn. The group operation for E(n) is

(5.12) (σ,x) ⋉θ (σ
′,x′) = (σσ′,x+ θσ(x

′)) = (σσ′,x+ σx′).

Since H is compact, we deduce that the continuous homomorphism δθH,K :

H → (0,∞) is the constant function 1. Therefore, dσdx is a left Haar measure
for E(n) = Gθ and the linear map TH = PH : Cc(E(n)) → Cc(Xn) is given by
(5.13)

TH(f)(xH) = PH(f)(xH) =

∫

SO(n)

f(σ,x)dσ for f ∈ Cc(E(n)) and x ∈ Rn.

Also, the canonical rho-function ρθ is the constant function 1 and hence the
canonical invariant measure µn := µθ on the canonical homogeneous space
Xn := E(n)/H is E(n)-invariant. Thus, we can write

(5.14)

∫

Xn

φ(xH)dµn(xH) =

∫

Rn

∫

SO(n)

f(σ,x)dσdx for φ ∈ Cc(Xn),

where f ∈ Cc(E(n)) satisfies TH(f) = PH(f) = φ.

Identifying ̂Rn with Rn, the continuous homomorphism ̂θ : SO(n)→Aut(Rn)

is σ 7→ ̂θσ via

〈x, ̂θσ(w)〉 = 〈x,wσ〉
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= 〈θσ−1(x),w〉

= 〈σ−1x,w〉 = e−2πi(σ−1
x,w),

where (·, ·) stands for the standard inner product of Rn and 〈·, ·〉 is the dual

pairing of Rn and ̂Rn. Thus, G
θ̂
has the underlying manifold SO(n) × Rn =

SO(n)× ̂Rn with the group operation

(5.15) (σ,w) ⋉
θ̂
(σ′,w′) = (σσ′,w +w′

σ).

Then Theorem 4.3 guarantees that dmG
θ̂
(σ,w) = dσdw is a left Haar measure

for E(n̂) := G
θ̂
, where dw is the normalized Plancherel (Haar) measure on

the character group ̂Rn. From now on we denote the dual homogeneous space
G

θ̂
/H byXn̂. Then the canonical rho-function ρ

θ̂
is the constant function 1 and

hence the canonical invariant measure µn̂ := µ
θ̂
on the canonical homogeneous

space Xn̂ := E(n̂)/H is E(n̂)-invariant.
Then the relative Fourier transform of ϕ ∈ L1(Xn, µn) is given by

(5.16) Fθ(ϕ)(wH) =

∫

Xn

ϕ(xH)e−2πi(w,x)dµn(xH) for wH ∈ Xn̂.

Acknowledgments. Thanks are due to Prof. Hans G. Feichtinger for stimu-
lating discussions and pointing out various references.
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