
Abstract state machines and computationally

complete query languages�

Andreas Blassy

Mathematics Department
University of Michigan

Ann Arbor, MI 48109-1109
USA

Yuri Gurevich
Microsoft Research
One Microsoft Way
Redmond, WA 98052

USA
research.microsoft.com/~gurevich/

Jan Van den Bussche
University of Limburg (LUC)

B-3590 Diepenbeek
Belgium.

Abstract

Abstract state machines (ASMs) form a relatively new computation
model holding the promise that they can simulate any computational
system in lockstep. In particular, an instance of the ASM model has
recently been introduced for computing queries to relational databases.
This model, to which we refer as the BGS model, provides a powerful
query language in which all computable queries can be expressed. In
this paper, we show that when one is only interested in polynomial-
time computations, BGS is strictly more powerful than both QL and
whilenew , two well-known computationally complete query languages.
We then show that when a language such as whilenew is extended
with a duplicate elimination mechanism, polynomial-time simulations
between the language and BGS become possible.

Keywords: ASM, choiceless, polynomial time, database query, com-
plete query language, QL, while

�Preprint of an article in Information and Computation, 174(1):20{36, 2002.
yPartially supported by a grant from Microsoft Research.

1

1 Introduction

Abstract state machines (ASMs) were introduced as a new computation
model, accompanied by the \ASM thesis" stating that any algorithm, or
more broadly, any computational system, at any level of abstraction, can be
simulated in lockstep by an ASM [16, 12, 13, 14]. Recently, Blass, Gurevich,
and Shelah (BGS) introduced an instance of the ASM model for expressing
queries to relational databases [7].

Roughly, a BGS program is a complex rule, changing the values of cer-
tain dynamic functions at various arguments during the run of the program.
Rules are built up from elementary updates by conditionals and parallel
composition. The program is iterated until a halting condition is reached.
A powerful sublanguage of terms provides set-theoretic operations on arbi-
trarily nested sets over the input data elements. Once \activated," these
sets are incorporated in the run of the program, and can become arguments
and values of dynamic functions. While any computable query can be ex-
pressed in BGS, the actual motivation of BGS to introduce their model was
to study the complexity class denoted by eCPTIME, corresponding to BGS
programs under a polynomial time restriction.

Computationally complete query languages have been known in database
theory for some years now [1], and complexity classes similar to eCPTIME,
denoted by GEN-PTIME and GEN-PSPACE, were introduced by Abite-
boul and Vianu [6]. These classes can be de�ned in terms of the language
whilenew .

1 This language is the extension of �rst-order logic with the fol-
lowing features: (1) assignment to relation variables; (2) sequential com-
position; (3) while-loops; and (4) the introduction of new data elements in
terms of tuples of existing ones. All computable queries can be expressed
in whilenew . The complexity classes GEN-PSPACE and GEN-PTIME are
obtained by putting polynomial space and time restrictions on whilenew
programs. Abiteboul and Vianu illustrated the e�ect of such restrictions by
showing that under a polynomial space restriction, whilenew programs can
no longer check the parity of the cardinality of a set.

The advent of the BGS model thus raises the natural question: how doeseCPTIME compare to GEN-PTIME? We will show that eCPTIME is strictly
stronger than GEN-PTIME, in the sense that there are classes of structures
that can be separated in eCPTIME but not in GEN-PSPACE (and hence
neither in GEN-PTIME).2 We also identify the reason for this inequality:

1Abiteboul and Vianu used the name whileinvent in their paper [6], but use the name
whilenew in their book with Hull [1], so we use the latter name.

2A program separates two classes K0 and K1 if it outputs `false' on all structures in

2

whilenew only has tuple-based invention: new data elements can only be
introduced in terms of tuples of existing ones. By repeated application of
tuple-based invention one can construct arbitrary lists. BGS, on the other
hand, allowing the construction of arbitrary sets, also has a form of set-based
invention. In the absence of an order on the data elements, it is impossible to
simulate sets (which are unordered) using lists (which are ordered) without
introducing a lot of duplication.

Our result should be correctly compared to what is known from the
theory of object-creating query languages. It is already known [18] that
set-based invention cannot be expressed in whilenew . However, this is a
statement about object-creating queries where invention is not merely a
tool to give more power to query languages, but where we really want to
see the new data elements in the result of the query. When only consid-
ering standard domain-preserving, or even just boolean queries, set-based
invention seemed less relevant because for such queries whilenew is already
complete. Our results show that set-based invention is still relevant, but we
have to take complexity into account to see it.

When whilenew is extended with set-based invention, we show that the
language obtained, denoted by whilesets

new
, becomes polynomial-time equiv-

alent with BGS (in a sense that will be made precise). Our work is thus
related to the update language detTL for relational databases, introduced
by Abiteboul and Vianu [3, 5]. Some of the spirit of the ASM model (of
which BGS is an instance) is clearly present in detTL, and the equivalence
between detTL and whilenew seems to go without saying.3 New to our result
are the programming with sets and the added focus on polynomial time.

We conclude this introduction by mentioning some other related work.
The very �rst computationally complete query language was QL, introduced
by Chandra and Harel [8]. Because QL can be simulated in whilenew with
only a polynomial time overhead [6, 19], our negative result concerning
whilenew applies as well to QL. We also should note that the well-known
object-creating query language IQL, introduced by Abiteboul and Kanel-
lakis [2], was set in a complex-object data model with set values, where the
distinction between tuples and sets is blurred as one can always have a tuple
with a set as a component. Indeed, IQL is polynomial-time equivalent to
whilesets

new
[19] and thus also to BGS. Finally, we point out that interest in ob-

ject creation in query languages has recently resurged in the context of Web

K0 and `true' on all structures in K1.
3To witness, in their book with Hull [1], Abiteboul and Vianu refer to their paper on

detTL [5] as the original source for the language whilenew , although no language in the
style of whilenew is discussed in that paper.

3

databases [11]. Current proposals in this �eld introduce new data elements
by constructing terms, and thus essentially employ tuple-based invention.

2 Preliminaries

A relational database scheme is modeled by a �nite relational vocabulary in
the sense of mathematical logic [10]. So, a scheme is a �nite set of relation
names with associated arities. A relational database over a scheme � is
modeled by a �nite structure B over �, i.e., a �nite domain D and, for each
relation name R 2 �, a relation RB � Dr, where r is the arity of R. The
reader is assumed to be familiar with the syntax of �rst-order logic formulas
over �, and the notion of truth of a formula ' in a structure B.

We next briey describe the languages whilenew , while
sets

new
, and BGS. For

full details we refer to the literature [1, 7, 19].

2.1 The language whilenew

An FO statement is any expression of the form

X := f(x1; : : : ; xj) j 'g

where X is a j-ary relation name, and '(x1; : : : ; xj) is a �rst-order formula.
A tuple-new statement is any expression of the form

Y := tup-newf(x1; : : : ; xj) j 'g

where Y is a relation name of arity j + 1, and ' is as before.
Programs in the language whilenew are now de�ned as follows: FO state-

ments and tuple-new statements are programs; if �1 and �2 are programs,
then so is their composition �1; �2; and if � is a program and ' is a �rst-
order sentence, then the while-loop while ' do � od is a program.

Let � be a program, let � be the vocabulary consisting of all the relation
names mentioned in �, and let A be a �nite �-structure. The result of

applying � to A, denoted by �(A), is the �-structure de�ned as follows:

� If � is the FO statement X := f(x1; : : : ; xj) j 'g, then �(A) equals A
except for the interpretation of X, which is replaced by

f(a1; : : : ; aj) 2 Aj j A j= '(a1; : : : ; aj)g: (�)

4

� If � is the tuple-new statement Y := tup-newf(x1; : : : ; xj) j 'g,
then �(A) equals A in the interpretation of every relation name other
than Y . The domain of �(A) is that of A, extended with as many
new elements as there are tuples in the above set (�). Let � be an
arbitrary bijection between the set (�) and these new elements. Then
the interpretation of Y in �(A) is de�ned as

f(�a; �(�a)) j A j= '(�a)g:

� If � is of the form �1; �2 then �(A) equals �2(�1(A)).

� If � is of the form while ' do �� od, then �(A) equals ��n(A), where
n is the smallest natural number such that ��n(A) 6j= '. If such a
number does not exist, then �(A) is unde�ned (the while-loop does
not terminate).

By the semantics of tuple-new statements (second item), �(A) is clearly
de�ned up to A-isomorphism only (isomorphisms that leave A pointwise
�xed). This is OK, because the particular choice of the newly invented
domain elements really does not matter to us. When doing a complexity
analysis, we will assume that the domain of A is an initial segment of the
natural numbers, and that a tuple-new statement simply extends this initial
segment.

When �0 is a subset of �, and A is an �0-structure, we can view A also
as an �-structure by setting A(X) empty for every relation name X in � not
in �0. In this way we can also talk about �(A). This convention formalizes
the intuition of initializing relation names not part of the vocabulary of the
input structure to the empty set. These relation names are used by the
program as variables to do its computation and to contain its �nal output.

2.2 The language while

The sublanguage obtained from whilenew by disallowing tuple-new state-
ments is called while and has been extensively studied [1, 9]. In �nite model
theory, the language while is better known under the equivalent form of
�rst-order logic extended with the partial �xpoint operator [4].

2.3 The language while
sets

new

A set-new statement is an expression of the form

Y := set-newf(x; y) j 'g;

5

where Y is a binary relation name, and '(x; y) is a �rst-order formula.
The result �(A) of applying this set-new statement � to a structure A,

equals A in the interpretations of every relation name other than Y . In
order to de�ne the domain of �(A) and its interpretation of Y , consider the
binary relation

S = f(a; b) 2 A2 j A j= '(a; b)g:

We can view this relation as a set-valued function in the canonical way: for
any a in the �rst column of S, S(a) := fb j (a; b) 2 Sg.4 Now the domain of
�(A) is that of A, extended with as many new elements as there are di�erent
sets in the range of S. Let � be an arbitrary bijection between the range of
S and these new elements. Then the interpretation of Y in �(A) is de�ned
as

f(a; �(S(a))) j 9b : S(a; b)g:

For example, the result of applying

Y := set-newf(x; y) j E(x; y)g

to the structure with domain f1; 2; 3g where E equals

f(1; 1); (1; 2); (2; 1); (2; 2); (3; 1); (3; 2); (3; 3)g;

is the structure with domain f1; 2; 3; 4; 5g where Y equals

f(1; 4); (2; 4); (3; 5)g:

By adding set-new statements to the language whilenew , we obtain the
language whilesets

new
.

2.4 The BGS model

BGS takes a functional point of view: computing means updating the values
of certain user-de�ned, named, \dynamic" functions at various arguments.
Arguments and values can be elements of the domain D of the input struc-
ture, as well as hereditarily �nite sets built over D during the execution of
the program. Formally, the set HF(D) of hereditarily �nite sets over D is
the smallest set such that if x1; : : : ; xn are in D [HF(D), then fx1; : : : ; xng
is in HF(D). Every dynamic function name has an associated arity r, and
thus has, at any stage of the computation, an interpretation (which can be
updated in later stages) as a function from (D [HF(D))r to D [HF(D).

4In SQL terminology this corresponds to grouping by the �rst column.

6

The extent of such a function f is the set f(�x; f(�x)) j �x 2 (D[HF(D))r and
f(�x) 6= ;g. At any stage of the computation, the extent of the interpretation
of any dynamic function will be �nite.

A number of static functions, which cannot be updated, are prede�ned:
The relations of the input structure are given as boolean functions. The
usual logical constants5 and functions (true, false, and, or, not, equality) are
provided. Finally, some set-theoretic constants and functions are provided:
the empty set; the input domain; set membership; set union; singleton ex-
traction, and pairing. The input domain is called `Atoms'. Union is unary,
working on a set of sets.

Terms can now be built up from variables, constants, functions, and the
set constructor ft : v 2 r : gg, where v is a variable that does not occur
free in term r but can occur free in term t and boolean term g. Variable v
becomes bound by the set constructor. The semantics is the obvious one of
ft : v 2 r and gg.

Finally, rules express transitions between states by updating the dynamic
functions. Elementary update rules are of the form f(t1; : : : ; tj) := t0, where
f is a dynamic function name (of arity j) and t1, . . . , tj are terms. The
semantics is obvious. From elementary update rules more complex rules can
be built by conditionals and parallel composition. More speci�cally:

� If g is a boolean term and R1 and R2 are rules, then so is if g then

R1 else R2 endif, again with the obvious semantics.

� If v is a variable, r is a term in which v does not occur free, and R0

is a rule in which v can occur free, then forall v 2 r do R0 enddo is
a rule in which v becomes bound. The semantics is to perform R0 in
parallel for all v 2 r, except if this yields conicting updates in which
case we do nothing.

A BGS program now is simply a rule without free variables. A program
� is started in the initial state, where all dynamic functions have the empty
extent, and all static functions are initialized by the input structure I. In
a run of the program, successive states are computed, until the dynamic
boolean constant `Halt' (which is present in all programs) becomes true.
The �nal state is then the result �(I). As with whilenew programs, a BGS
program may not terminate on some inputs.

5As usual, constants are viewed as zero-ary functions.

7

Path := tup-newf(x; y) j x = yg;
Ref := f(p; x) j 9y Path(x; y; p)g;
Frontier := f(x; y; p; z) j Path(x; y; p) ^ E(x; z) ^ z 6= xg;
while Frontier 6= ; do

X := tup-newf(x; y; p; z) j Frontier(x; y; p; z)g;
Path := f(x; y; q) j Path(x; y; q) _ 9p9z X(x; y; p; z; q)g;
Ref := f(q; z) j Ref (q; z) _ 9x9y9pX(x; y; p; z; q)g;
Child := f(p; q) j Child (p; q) _ 9x9y9z X(x; y; p; z; q)g;
Frontier := f(x; y; q; z0) j 9p9z(X(x; y; p; z; q)^ z 6= y ^ E(z; z0))g

od;
Path := f(x; y; p) j 9p0(Path(x; y; p0) ^ Ref (p0; y))g.

Figure 1: A whilenew program computing all-pairs shortest paths.

2.5 Examples

An example of a whilenew program is shown in Figure 1, and an example
of a BGS program is shown in Figure 2. Both example programs work on
directed graphs, modeled as structures whose domain is the set of nodes
and which have a binary relation E holding the edges. Both programs
compute, for all pairs of nodes (x; y), all shortest paths from x to y. They
do not follow exactly the same algorithm; the whilenew program does a
single-source single-target search in parallel for all source-target pairs (x; y),
while the BGS program does a single-source all-targets search in parallel for
all sources x.

In the whilenew program, a path x1 : : : xn is represented by invented
values p1, . . . , pn such that the following relations, de�ned by the program,
hold: Path(x1; xn; pi) for i = 1; : : : ; n; Ref (pi; xi) for i = 1; : : : ; n; and
Child (pi; pi+1) for i = 1; : : : ; n � 1. The relations Frontier and X used in
the program are auxiliary variables.

In the BGS program, a path x1 : : : xn is represented by a pair (x1 : : : xn�1;
xn), where the x1 : : : xn�1 is again represented by a pair, recursively.6 The
base case n = 1 is represented by a singleton fx1g. The program updates
a dynamic binary function Paths such that Paths(x; y) equals the set of
shortest paths from x to y. Other dynamic functions and constants used
by the program to aid the computation are Mode, Reached , Frontier , and
Old Frontier . The comma between rules denotes parallel composition, and
is a shorthand for a trivial forall do construct. The natural numbers 0, 1,
and 2 assigned to Mode are in HF(D) by their de�nition as von Neumann

6Recall that ordered pairs (x; y) are by de�nition in HF(D), as ffxg; fx; ygg [15].

8

if Mode = 0 then

forall x 2 Atoms do
Reached (x) := fxg,
Paths(x; x) := ffxgg,
Frontier(x) := fxg

enddo,
Mode := 1

endif,
if Mode = 1 then

forall x 2 Atoms do
Old Frontier(x) := Frontier(x),
Frontier(x) := fy : y 2 Atoms : y 62 Reached(x)

and fz : z 2 Frontier(x) : E(z; y)g 6= ;g
enddo,
Mode := 2

endif,
if Mode = 2 then

forall x 2 Atoms do
forall y 2 Frontier(x) do
Paths(x; y) := f(p; y) :

p 2
S
fPaths(x; z) : z 2 Old Frontier(x) : E(z; y)g : trueg

enddo,
Reached (x) := Reached (x) [Frontier(x)

enddo,
Halt :=

S
fFrontier(x) : x 2 Atoms : trueg = ;,

Mode := 1
endif.

Figure 2: A BGS program computing all-pairs shortest paths.

9

numerals: 0 is the empty set, and n > 0 is f0; : : : ; n � 1g, recursively [15].
The numbers 0 and 1 also play the role of the booleans false and true.

3 BGS and whilenew under polynomial time

In this section, we de�ne what it means for two classes of structures over
the same vocabulary to be separable in polynomial time by BGS programs,
or by whilenew programs. We then prove that there exists a pair that is
separable in polynomial time by a BGS program, but not by any whilenew
program.

During the run of a BGS program on a structure with domain D, a
certain number of sets in HF(D) are activated, meaning that at some point
they appear in the extent of some dynamic function. Elements of active sets
are also considered to be active, and this holds recursively. Similarly, during
the run of a whilenew program on a structure, a certain number of new
elements are invented. Activated sets and invented elements yield measures
of space usage by BGS and whilenew programs, which are quite rough, but
suÆcient for our purposes. Equally rough measures of time spent by BGS
and whilenew programs can be de�ned as follows: the time spent by a BGS
program on a structure is the number of times the program is iterated until
the halting condition is reached; the time spent by a whilenew program on a
structure is the number of times an FO or tuple-new statement is executed
during the run of the program.

In the following two paragraphs �x two disjoint classes K0 and K1 of
structures over a common vocabulary.

Let � be a BGS program using a boolean dynamic constant Output
for output. We say that � separates K0 from K1 if for any structure A 2
K0[K1, the value of Output in �(A) is false if A 2 K0, and is true if A 2 K1.
We say that � separates K0 from K1 in polynomial time if moreover, there
exist two polynomials p(n) and q(n) such that for any A 2 K0 [K1, � runs
on A for at most p(n) time, and activates at most q(n) sets, where n is the
cardinality of the domain of A.

Similarly, let � be a whilenew program having some relation variable
Output . We say that � separates K0 from K1 if �(A) is de�ned for any
structure A 2 K0[K1, and relation Output in �(A) is empty if A 2 K0, and
is not empty if A 2 K1. We say that � separates K0 from K1 in polynomial

time if moreover, there exist two polynomials p(n) and q(n) such that for
any A 2 K0 [K1, � runs on A for at most p(n) time, and invents at most
q(n) elements, where n is the cardinality of the domain of A.

10

Since we do not care what the programs do on structures outside K0

and K1, the above notion of separation is quite liberal. Still, we will be
able to obtain a negative result regarding the separating power of whilenew
in polynomial time. Also, in our de�nition, it is important to polynomially
restrict the space used as well as the time, because in BGS or whilenew it
is possible to use an exponential amount of space even in an only linear
amount of time.

We now prove:

Theorem 1. There exist pairs of classes of structures that can be separated

in polynomial time by a BGS program, but not by a whilenew program.

Consider the vocabulary consisting of a single relation name P , which is
unary. For any natural number n, de�ne a structure In over this vocabulary
as follows. The domain of In consists of 2n elements. Exactly n of these
satisfy the predicate P . The pair now for which we are going to prove the
theorem was already considered by Blass, Gurevich and Shelah [7] and is
the following: K0 = fIn j n eveng, and K1 = fIn j n oddg. We can easily
separate K0 from K1 by a BGS program in polynomial time: the program
generates all subsets of P with even cardinality (which is in polynomial time
because the cardinality of the input domain is 2n), and then checks whether
P itself was generated.

We will actually show that K0 cannot be separated from K1 by any
whilenew program that can invent only a polynomial number of elements;
the time spent by the program will be irrelevant.

The following interpretation of tuple-new statements as list constructions
will provide insight. Lists over some domain D are inductively de�ned as
follows:

� The empty list () is a list;

� If l1, . . . , lj are elements of D or lists, then (l1; : : : ; lj) is also a list.

Adopting BGS terminology, we will frequently refer to domain elements as
\atoms," to distinguish them from lists built over the domain.

Now recall the semantics of a tuple-new statement

Y := tup-newf(x1; : : : ; xj) j '(x1; : : : ; xj)g

on a structure A, which assigns to relation name Y the relation

f(a1; : : : ; aj ; �(a1; : : : ; aj)) j A j= '(a1; : : : ; aj)g

11

for some bijection � from the tuples over A satisfying ' to new elements. We
�x this bijection � uniformly as follows. Assume it is the mth time we are
performing a tuple-new statement in the execution of the program. Then
�(a1; : : : ; aj) is de�ned to be the following list:

((a1; : : : ; aj); �m);

where �1 is the empty list, and �m withm > 1 is the list (�m�1). The reason
for pairing with �m is to ensure that, if a same tuple �a participates in two
di�erent executions of an invention statement, the second time a di�erent
element will be invented for it than the �rst time.

We thus see that element invention can be viewed as list construction.
But this implies that element invention can be discarded altogether, if the
lists to be constructed are already present in the structure. More precisely,
we can expand an input structure I with a (possibly in�nite) collection �
of lists over its atoms as follows. The lists, and all the lists occurring in
them, are added to the domain of I. To represent their internal structure,
we provide a unary relation Empty and two binary relations Head and Tail .
Relation Empty has just one element, the empty list. Relation Head consists
of all pairs (x; y) where x = (x1; : : : ; xj) is a nonempty list in � and y equals
x1. Relation Tail consists of all pairs (x; y) where x is as above and y equals
(x2; : : : ; xj) (if j = 1 then y equals the empty list).

A structure I expanded with a collection � of lists in the way just de-
scribed is denoted by (I;�). We have the following simulation of whilenew
programs by while programs:

Lemma 1. For every whilenew program � over a vocabulary � there exists

a while program �0 over the expanded vocabulary � [fEmpty ;Head ;Tailg
with the following property. Let I be any input structure such that �(I) is
de�ned, and let � be any collection of lists over the atoms of I that includes

all lists invented during the execution of � on I. Then �0(I;�) is de�ned,
and equals �(I) on every relation name of �.

Proof. The desired program �0 is identical to � apart from the fact that
every tuple-new statement is replaced by two FO statements that simulate
it, using the lists that are already present. For example, a statement Y :=
tup-newf(x; y) j 'g is simulated by the following two FO statements:

Y := f(x; y; z) j '(x; y) ^ 9l19c9l29e(Head(z; l1) ^ Tail(z; c) ^ Counter (c) ^
Head(l1; x) ^ Tail(l1; l2) ^Head(l2; y) ^ Tail(l2; e) ^ Empty(e))g;

Counter := f(c0) j 9c9e(Counter(c) ^Head(c0; c) ^ Tail(c0; e) ^ Empty(e))g.

In the beginning of �0 relation Counter is initialized to Empty .

12

We note one more lemma regarding whilenew programs (still under the
list construction view of element invention), which is straightforwardly ver-
i�ed:

Lemma 2. If � is an arbitrary whilenew program, I is an arbitrary input

structure, � is an arbitrary automorphism of I, and x is an element in �(I),
then also �(x) is an element in �(I).

Note that � is de�ned on the atoms of I and that it is applied to tuples
and lists over these atoms in the canonical way.

We are now ready for the following:

Proof of Theorem 1. Recall the classesK0 = fIn j n eveng and K1 = fIn j n
oddg introduced after the statement of the theorem. Suppose, for the sake
of arriving at a contradiction, that � is a whilenew -program separating these
classes and that p is a polynomial such that � invents at most p(2n) elements
when run on any input structure In (recall that the cardinality of the domain
of In is 2n). If we take the number d to be one more than the degree of p,
the program will invent at most 2dn elements when run on In, for suÆciently
large n.

When considering a structure In, let us refer to the elements in P as
\colored." Note that any permutation of the colored domain elements, as
well as any permutation of the uncolored ones, is an automorphism of In.
Consider an invented list x in �(In). Let c (u) be the number of di�erent
colored (uncolored) atoms occurring in x. The number of di�erent images
of x under automorphisms of In equals

n!

(n� c)!
�

(2n � n)!

(2n � n� u)!
:

Denoting c+u by t, the above number is, for suÆciently large n, larger than
n!=(n �minft; ng)!. Still the total number of invented elements cannot be
more than 2dn. Hence, with �(n) de�ned to be the largest natural number
in f1; : : : ; ng such that

n!

(n� �(n))!
� 2dn;

we can conclude by Lemma 2 that in any invented list, the number of dif-

ferent atoms occurring in it is at most �(n).
Let �0 be the while program simulating �, as given by Lemma 1. So,

for any n, the output of � on In is the same as the output of �0 on the
expansion of In with all lists over its atoms in which at most �(n) di�erent

13

atoms occur; denote this expansion by I�n. In particular, since � separates
K0 from K1, the output of �

0 on I�n is di�erent from that on I�n+1. It is well
known that every while program can be equivalently expressed by a formula
in the in�nitary logic L!

1! [17, 9]. Let k be the number of variables needed
to express �0 in Lk

1!. If we can now show that for certain n, I�n and I�n+1
are indistinguishable in Lk

1!, we have arrived at the desired contradiction
and completed the proof.

Take n suÆciently large so that k�(n+ 1) � n.7 We will actually show
that I�n+1 is indistinguishable with k variables from J , where J is the ex-
pansion of In with all lists over its atoms in which at most �(n+1) di�erent
atoms occur (rather than �(n)). This is OK, because by Lemma 1, �0 has
the same output on I�n and J . We show a winning strategy for the duplica-
tor in the well-known k-pebble game [17, 9] on I�n+1 and J . We abbreviate
�(n+ 1) to �.

The duplicator maintains, as part of his strategy, a partial bijection f
from atoms of J to atoms of I�n+1. Initially, f is empty, and at any time
the domain of f consists of at most k� atoms. This number comes from
the fact that there are k pebbles, and each pebble can be placed either on
an atom, or on a list in which at most � di�erent atoms occur. Assume
the spoiler places pebble number i on an element x in J , thereby e�ectively
choosing up to � atoms from J at the same time. Let x0 be the element (if
any) on which pebble i was placed previously at J . The duplicator begins
by removing from f all pairs involving atoms from J that appear in x0 but
not in any other currently pebbled element of J . He then updates f by
matching the newly chosen atoms, i.e., those appearing in x but not yet in
f , with arbitrary atoms from I�n+1, taking care only that colored atoms are
matched with colored ones (and uncolored with uncolored). The inequality
k� � n guarantees that this is possible. Finally the duplicator responds
to the spoiler's move by placing pebble number i at I�n+1 on element f(x).
If the spoiler's move was at structure I�n+1 rather than at J , everything is
symmetric. The partial isomorphism that the duplicator thus preserves by
this strategy is simply f itself, canonically applied to the pebbled elements.

Because of the equivalence between whilenew and the generic machine
model of Abiteboul and Vianu [6], Theorem 1 implies that generic machines
are strictly weaker than BGS in the context of polynomial time computation.
This result corrects a tentative claim (`the simulation in the reverse direction

7It is easy to see that it is indeed impossible for �(n+ 1) to be greater than n=k for n
suÆciently large.

14

can, it seems, be carried out using the \form and matter" considerations in
Section 9') near the end of Section 1 of the BGS paper [7]. The form and
matter considerations mentioned there involve tuples rather than sets as
\matter" and therefore run into the same duplication problem as whilenew .

4 Polynomial time equivalence of BGS and while
sets
new

In this section, we formally de�ne notions of polynomial-time simulation of
BGS programs by whilesets

new
programs, and vice versa, and show that such

simulations exist.

4.1 Simulating while
sets

new
in BGS

To simulate whilesets
new

in BGS, we need some way to represent elements that
are invented by a whilesets

new
program by hereditarily �nite sets that can be

constructed by a BGS program. For elements invented by a tup-new state-
ment, we already did this in the previous section, where we described a
list-construction semantics for tup-new.8 So it remains to describe a set-
construction semantics for set-new.

To this end, recall the semantics of a set-new statement Y := set-newS
on a structure A (where S is a binary relation on A de�ned by some �rst-
order formula), which assigns to relation name Y the relation f(a; �('(a))) j
9b : S(a; b)g for some bijection � from the range of S (viewed as a set-valued
function) to new elements. We �x this bijection � uniformly as follows. As-
sume it is the mth time we are performing a tuple-new or set-new statement
in the execution of the program. Then �(S(a)) is de�ned to be the pair

(S(a); �m);

where �m is as de�ned in the previous section.
We now say that a BGS program �0 simulates a whilesets

new
program � if

for every input structure I, if �(I) is de�ned then so is �0(I), and for every
relation variable X of �, say of arity r, there is an r-ary boolean dynamic
function bX of �0, such that the tuples in X in �(I) are exactly the tuples at
which bX is true in �0(I). Moreover, we say that the simulation is linear-step,
polynomial-space if there exists a constant c and a polynomial p such that
for every input structure I where �(I) is de�ned, the following holds. Let
the time for which � runs on I be t, and let the number of invented elements

8Lists are special kinds of sets: a list of length n is a mapping from f1; : : : ; ng to the
set of members of the list, and a mapping is a set of ordered pairs.

15

during the run be s. Then �0 runs on I for at most ct time, activating at
most p(n+ s) sets, where n is the cardinality of the domain of I.

Here, in close analogy to what we de�ned for whilenew programs at the
beginning of Section 3, we de�ne the time spent by a whilesets

new
program on

a structure as the number of times an FO, tuple-new, or set-new statement
is executed during the run of the program.

Note that, while we allow a polynomial overhead in space usage, we
allow only a linear overhead in the running time of the simulation. A weaker
notion of polynomial time simulation could be de�ned, allowing a polynomial
overhead also for running time, but we will not need to consider this weaker
notion as we will be able to obtain positive results for our stronger notion.

We show:

Theorem 2. Every whilesets
new

program can be linear-step, polynomial-space

simulated by a BGS program.

Proof. Let � be a whilesets
new

program. An instruction in � is any FO, tuple-
new, or set-new statement occurring in �, or any expression of the form
while ' do occurring in �. The latter kind of instruction is called a test

instruction. We number the instructions, so that no instruction gets the
number 0. (Recall that we can use natural numbers, represented as von
Neumann numeral, in BGS programs.) The �rst and last instructions of �
are de�ned in the obvious way; in particular, if the �rst (last) statement of
� is a while-loop, then the test instruction of that loop is considered to be
the �rst (last) instruction. Let start be the �rst instruction, and let last be
the last instruction.9

Also, every instruction i 6= last that is not a test instruction has a natural
\next" instruction next(i); in particular, if i is the last instruction of the
body of a while-loop then next(i) is the test instruction of that loop. If
i = last , we still de�ne next(i), as some number �nish which is not the
number of any instruction. Every test instruction i 6= last has two natural
next instructions, next+(i) and next�(i): the �rst when the test succeeds,
the second when the test fails. Note that even if a test instruction i equals
last , it still has a next+(i). We de�ne next�(last) to be again �nish.

We will describe, for each instruction i of �, a BGS rule �(i). The desired
BGS program �0 then simply is the parallel composition of all these rules,
together with the following initialization and �nish rules:

if Mode = 0 then

9If the whole program is one while-loop, the test instruction of that loop is at the same
time the �rst and the last instruction.

16

Instruction := start ,
Adom := Atoms,
Mode := 1

endif,
if Instruction = �nish then

Halt := 1
endif.

The dynamic constant Instruction will be used to keep track of which in-
struction to simulate, and the dynamic constant Adom will be used to hold
the current domain of elements in course of the computation of � (recall
that the domain can expand by the execution of tuple-new and set-new
statements).

First, suppose instruction i is an FO statement X := f(x1; : : : ; xj) j
'g. The �rst-order formula '(x1; : : : ; xj) is to be evaluated by letting the
quanti�ers in it range over the current domain, stored in Adom. It is already
known [7] that any such a �rst-order condition can be expressed by a boolean
BGS term, which, when evaluated, will activate a number of sets that is
bounded by a polynomial in the cardinality of Adom. Denoting the BGS
term for formula ' simply by ' itself, the rule �(i) is now as follows:

if Instruction = i then
forall x1 2 Adom do
. . .

forall xj 2 Adom do
bX(x1; : : : ; xj) := '

enddo

. .
.

enddo,
Instruction := next(i)

endif.

Next, suppose instruction i is a tuple-new statement Y := tup-newf(x1;
: : : ; xj) j 'g. In addition to assigning to function bY , we now also have to
expand Adom with the invented elements, i.e., all elements ((a1; : : : ; aj); �m)
where (a1; : : : ; aj) satis�es '(x1; : : : ; xj). We keep track of the current value
of �m using a dynamic constant Lambda. To compute the invented elements
by a BGS term, we distinguish two cases:

� If j = 0, de�ne the term t1 as follows:

t1 := f(;;Lambda) : v 2 f1g : 'g;

17

where v is just a dummy variable.

� If j � 1, de�ne the terms ti for i = 1; : : : ; j by downward induction as
follows:

tj := f((x1; : : : ; xj);Lambda) : xj 2 Adom : '(x1; : : : ; xj)g

and for i < j,

ti :=
[
fti+1 : xi 2 Adom : trueg:

Now the rule �(i) is de�ned as follows:

if Instruction = i then
forall x1 2 Adom [t1 do
. . .

forall xj 2 Adom [t1 do

forall y 2 Adom [t1 do
bY (x1; : : : ; xj ; y) := ' and y = ((x1; : : : ; xj);Lambda)

enddo

enddo

. .
.

enddo,
Adom := Adom [t1,
Lambda := fLambdag,
Instruction := next(i)

endif.

Next, suppose instruction i is a set-new statement Y := set-newf(x; y) j
'g. De�ne the following auxiliary terms:

t(x) := fy : y 2 Adom : '(x; y)g;

t := f(t(x);Lambda) : x 2 Adom : t(x) 6= ;g:

The rule �(i) is as follows:

if Instruction = i then
forall x 2 Adom [t do
forall z 2 Adom [t do
bY (x; z) := t(x) 6= ; and z = (t(x);Lambda)

enddo

enddo,

18

Adom := Adom [t,
Lambda := fLambdag,
Instruction := next(i)

endif.

Finally, suppose instruction i is a test instruction while ' do. Then
the rule �(i) is the following:

if Instruction = i then
if ' then

Instruction := next+(i)
else

Instruction := next�(i)
endif

endif.

We hope that our description of this BGS program �0 has made it evident
that �0 correctly simulates �.

Moreover, if the total number of instructions executed in the run of �
on a structure A equals t, then �0 will iterate t + 2 times on A (the extra
two iterations are to initialize and to �nish). Now recall that we actually
de�ned the time spent by � on A as the total number of times an FO, tuple-
new, or set-new statement is executed; in other words, we ignored the test
instructions. However, since we can execute only a constant number of test
instructions without encountering a non-test instruction, ignoring the test
instructions has at most the e�ect of dividing by a constant.

Regarding space usage, each iteration of �0 activates a number of sets
that is bounded by a polynomial in the cardinality of Adom. This cardinality
is at most n+ s, where n is the cardinality of the domain of A, and s is the
number of elements invented while running � on A.

Hence, the simulation is linear-step, polynomial-space, and the proof is
complete.

4.2 Simulating BGS in while
sets

new

To simulate BGS in whilesets
new

, we need some way to represent hereditarily
�nite sets by invented elements. To this end, we observe that for any �nite
domain D, the structure (D [HF(D);2) is an (in�nite) directed acyclic
graph. At any stage in the run of a BGS program on a structure with do-
main D, the active sets, together with the elements of D, generate a �nite
subgraph of this graph. The simulating whilesets

new
program will maintain a

copy of that subgraph, where the active sets are represented by invented

19

elements, and the elements of D are represented by themselves. The mem-
bership relation 2 will be stored in a relation variable Epsilon.

We now say that a whilesets
new

program �0 simulates a BGS program �
if for every input structure I, if �(I) is de�ned then so is �0(I), and for
every dynamic function name f of �, say of arity r, there is an (r + 1)-ary
relation variable bf of �0, such that bf in �0(I) equals exactly the extent of
f in �(I), under a representation of the active hereditarily �nite sets by
invented elements as given in relation Epsilon in �0(I). Moreover, we say
that the simulation is linear-step, polynomial-space if there exist a constant
c and a polynomial p such that for every input structure I where �(I) is
de�ned, the following holds. Let the time for which � runs on I be t, and
let the number of sets activated during the run be s. Then �0 runs on I for
at most ct time, inventing at most p(s) elements.10

We show:

Theorem 3. Every BGS program can be linear-step, polynomial-space sim-

ulated by a whilesets
new

program.

Proof. Let � be a BGS program. The simulating whilesets
new

program �0

begins with the following initialization part that invents representatives for
the sets 0, 1, and Atoms:

InputDomain := f(x) j trueg;
Zero := tup-newf() j trueg;
One := tup-newf() j trueg;
Epsilon := f(z; o) j Zero(z) ^One(o)g;
Atoms := tup-newf() j trueg;
Epsilon := Epsilon [f(i; a) j InputDomain(i) ^Atoms(a)g.

An important part of the program �0 is a long sequence of FO, tuple-new,
and set-new statements evaluating all occurrences of terms in �. We next
describe how this can be done. Every occurrence of a term t takes place in
a context, consisting of a sequence v1 : : : vk of variables which are not bound
in or by t, but which are bound by a set-constructor term f� � � : vi 2 ri : : : : g
encompassing t, or by a rule forall vi 2 ri do : : : encompassing t. We may
assume that � does not reuse variables, i.e., that every variable is bound

10The reader will have noticed that, while here we require that �0 invents at most
p(s) elements, in the notion of polynomial-space simulation of whilesetsnew programs by BGS
programs as de�ned in the previous subsection, we allowed the simulating BGS program
to activate p(n+s) sets. The reason for this is that, even if a whilesetsnew program � does not
invent any new elements (i.e., s = 0), a simulating BGS program still needs to activate
some sets just to evaluate the �rst-order formulas used in �.

20

only once. Moreover, we order the context variables v1, . . . , vk top down,
so that the context of the occurrence of the term ri describing the range of
vi is v1 : : : vi�1. We will compute a (k + 1)-ary relation T holding all tuples
(a1; : : : ; ak; t(a1; : : : ; ak)), where ai is in the range of vi. We must distinguish
between occurrences of the same syntactic term in di�erent contexts, but
di�erent occurrences of the same syntactic term in the same context can be
treated identically.

We proceed by induction. We may assume that relations R1, . . . , Rk for
the terms r1, . . . , rk have already been computed. To set the ranges of the
context variables, the following formula will be used extensively:

Ranges(x1; : : : ; xk) :=
k̂

i=1

Ri(x1; : : : ; xi�1; xi):

It will be convenient to abbreviate (x1; : : : ; xk) by �x.
If t is a variable vi, then we write

T := f(�x; xi) j Ranges(�x)g:

If t is a function term f(t1; : : : ; tj), we may assume that relations T1,
. . . , Tj for the terms t1, . . . , tj have already been computed. We consider
the following cases for the function name f :

� f is `true', so j = 0. In this case we write

T := f(�x; t) j Ranges(�x) ^One(t)g:

� f is `and', so j = 2. In this case we write

T := f(�x; t) j Ranges(�x) ^ 9t19t2(T1(�x; t1) ^ T2(�x; t2)

^ if One(t1) ^One(t2) then One(t) else Zero(t))g:

Here and below, `if � then � else ' is an abbreviation for the formula
(�! �) ^ (:�!).

� f is `not', so j = 1. We write

T := f(�x; t) j Ranges(�x) ^ 9t1(T1(�x; t1)

^ if Zero(t1) then One(t) else Zero(t))g:

21

� f is `=', so j = 2. We write

T := f(�x; t) j Ranges(�x) ^ 9t19t2(T1(�x; t1) ^ T2(�x; t2)

^ if t1 = t2 then One(t) else Zero(t))g:

� f is an input relation name. In this case we write

T := f(�x; t) j Ranges(�x) ^ 9t1 : : : 9tj(

j^
l=1

Tl(�x; tl)

^ if f(t1; : : : ; tj) then One(t) else Zero(t))g:

� f is a dynamic function name. Then we write

T := f(�x; t) j Ranges(�x) ^ 9t1 : : : 9tj(

j^
l=1

Tl(�x; tl)

^ if 9t0 bf(t1; : : : ; tj ; t0) then bf(t1; : : : ; tj ; t) else Zero(t))g:

Recall that, by de�nition of simulation, bf only stores the extent of
f , so if there is no value in bf for (t1; : : : ; tj) this indeed means that
f(t1; : : : ; tj) = ;.

� f is `;', so j = 0. We write

T := f(�x; t) j Ranges(�x) ^ Zero(t)g:

� f is `Atoms', so j = 0. We write

T := f(�x; t) j Ranges(�x) ^Atoms(t)g:

� f is `2', so j = 2. We write

T := f(�x; t) j Ranges(�x) ^ 9t19t2(T1(�x; t1) ^ T2(�x; t2)

^ if Epsilon(t1; t2) then One(t) else Zero(t))g:

� f is `TheUnique', for singleton extraction, so j = 1. We write

T := f(�x; t) j Ranges(�x) ^ 9t1(T1(�x; t1)

^ if 9!yEpsilon(y; t1) then Epsilon(t; t1) else Zero(t))g:

Here, 9!y is an expression for \there exists a unique y."

22

� f is `
S
', so j = 1. This is the �rst of three cases where we have

to construct sets, so let us explain in some detail the strategy we will
follow. A similar strategy will be followed in the other two cases where
we have to construct sets.

1. Using tup-new, we invent for every value of t1 a new element to
represent

S
t1, in an auxiliary relation Xt.

2. We associate the invented representatives to their members in an
auxiliary binary relation E.

3. Using set-new and an auxiliary relation Unique, we make sure
that sets have unique representatives. (The value of t1 could be
the same for di�erent values of the context variables. Moreover,
even for di�erent values V1 and V2 of t1, we could have

S
V1 =S

V2.)

4. Elements representing a set that was already active are replaced
by the already existing representative for that set (a particular
example is the empty set), using an auxiliary relation Replace.

5. The representatives of newly activated sets are incorporated in
the Epsilon relation.

6. Finally, relation T is set.

Concretely in whilesets
new

, we write:

Xt := tup-newf(�x) j Ranges(�x)g;
E := f(y; z) j 9�x9t19s(Xt(�x; z) ^ T1(�x; t1)

^ Epsilon(s; t1) ^ Epsilon(y; s))g;
Unique := set-newf(z; y) j E(y; z)g;
Replace := f(z; z0) j (:9y E(y; z) ^ Zero(z0))

_ (9yEpsilon(y; z0) ^ 8y(Epsilon(y; z0)$ E(y; z)))g;
Epsilon := Epsilon

[f(y; u) j 9z(E(y; z) ^ :9z0Replace(z; z0) ^Unique(z; u))g;
T := f(�x; t) j 9z(Xt(�x; z)

^ if 9z0 Replace(z; z0) then Replace(z; t) else Unique(z; t))g.

� f is `Pair', for pairing, so j = 2. The only thing we have to change
from the previous case is the assignment to relation E. We now write

E := f(y; z) j 9�x(Xt(�x; z) ^ (T1(�x; y) _ T2(�x; y)))g:

23

Finally, if t is a term of the form fp : v 2 r : qg, we may assume that
relations P , R, and Q for the terms p, r, and q have already been computed.
Note that, while the context for t is v1 : : : vn, the context for p and q is
v1 : : : vnv; the context for r is still v1 : : : vn. Again, the only thing we have
to change from the case where t was of the form

S
t1, is the assignment to

E. We now write

E := f(y; z) j 9�x9v9r9q(Xt(�x; z) ^R(�x; r)

^ Epsilon(v; r) ^Q(�x; v; q) ^ P (�x; v; y))g:

Having �nished the treatment of terms, we next show how to determine
the actions of occurrences of rules occurring in �. Like terms, every occur-
rence of a rule R takes place in a context, consisting of a sequence v1 : : : vk
of variables which are bound by forall vi 2 ri do : : : rules encompassing R.
As with terms, we do distinguish between occurrences of the same syntactic
rule in di�erent contexts, but need not distinguish between di�erent occur-
rences in the same context. We will compute, for every dynamic function
name f (of arity j), a (k + j + 1)-ary relation UpdatesRf holding all tuples
(a1; : : : ; aj ; b) for which R speci�es an update of f(a1; : : : ; aj) to b.

Again, we proceed by induction, and as in term evaluation, we use the
formula Ranges(x1; : : : ; xk) setting the ranges of the context variables.

If R is an elementary update of the form f(t1; : : : ; tj) := t0, we write

UpdatesRf := f(�x; t1; : : : ; tj ; t0) j Ranges(�x) ^

j^
l=0

Tl(�x; tl)g:

For every dynamic function name g di�erent from f , we put UpdatesRg := ;.

The relation variables UpdatesRg for all dynamic function names g 6= f are
initialized empty.

If R is of the form if q then R1 else R2 endif, we may assume that
relations UpdatesR1

f and UpdatesR2

f , for all f , have already been computed.
We then write, for each f (of arity j),

UpdatesRf := f(�x; y1; : : : ; yj ; y0) j Ranges(�x) ^ 9q(Q(�x; q)

^ if One(q) then UpdatesR1

f (�x; y1; : : : ; yj ; y0)

else UpdatesR2

f (�x; y1; : : : ; yj; y0))g:

Finally, if R is of the form forall v 2 t do R0, we may assume that
relations UpdatesR0

f , for all f , have already been computed. Note that the

24

context for R0 is v1 : : : vkv. We then write, for each f (of arity j),

UpdatesRf := f(�x; y1; : : : ; yj ; y0) j Ranges(�x) ^ 9t9v(T (�x; t)

^ Epsilon(v; t) ^UpdatesR0

f (�x; v; y1; : : : ; yj; y0))g:

Since the BGS program � to be simulated is nothing but a rule without
free variables, we can next show how to simulate one application of �. All
this amounts to is to perform the actual updates as speci�ed in the relations
Updates�f , on condition that none of these relations contains a conict, i.e.,
two tuples (a1; : : : ; aj ; b) and (a1; : : : ; aj ; b

0) with b 6= b0.
Concretely, for every dynamic function name f (of arity j), de�ne the

following sentence:

Conictf := 9a1 : : : 9aj9b9b
0

(Updates�f (a1; : : : ; aj ; b) ^Updates�f (a1; : : : ; aj ; b
0) ^ b 6= b0):

Then de�ne the sentence Conict as the disjunction
W
f Conictf . We now

write, for every dynamic function name f (of arity j):

bf := f(a1; : : : ; aj ; b) j

if Conict then bf(a1; : : : ; aj ; b) else
if :9b0Updates�f (a1; : : : ; aj ; b

0) then bf(a1; : : : ; aj ; b) else
if :9z(Updates�f (a1; : : : ; aj ; z) ^ Zero(z)) then Updates�f (a1; : : : ; aj ; b)

else falseg.

Note that we avoid storing the empty set as a function value in bf , becausebf is supposed to store only the extent of f .
We �nally have all the necessary ingredients to describe the desired pro-

gram �0:

hinitializei;

while :9o(dHalt(o) ^One(o)) do
hevaluate all termsi;
happly � oncei

od

The correctness of the simulation of � by �0 should be evident. The
time spent by �0 is clearly linear in the time spent by �. Regarding space
usage, the invented elements occurring in the Epsilon relation during the
execution of �0 are in one-to-one correspondence with the active sets during
the execution of �. Moreover, the number of new elements invented at each

25

iteration of the while-loop is bounded by a polynomial in the number of these
active elements. Hence, the simulation is linear-step, polynomial-space, and
the proof is complete.

Acknowledgment

We thank Marc Spielmann for proofreading this paper.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[2] S. Abiteboul and P.C. Kanellakis. Object identity as a query language
primitive. Journal of the ACM, 45(5):798{842, 1998.

[3] S. Abiteboul and V. Vianu. Procedural and declarative database up-
date languages. In Proceedings 7th ACM Symposium on Principles of

Database Systems, pages 240{250, 1988.

[4] S. Abiteboul and V. Vianu. Fixpoint extensions of �rst-order logic
and Datalog-like languages. In Proceedings Fourth Annual Symposium

on Logic in Computer Science, pages 71{79. IEEE Computer Society
Press, 1989.

[5] S. Abiteboul and V. Vianu. Procedural languages for database queries
and updates. Journal of Computer and System Sciences, 41(2):181{229,
1990.

[6] S. Abiteboul and V. Vianu. Generic computation and its complexity. In
Proceedings 23rd ACM Symposium on the Theory of Computing, pages
209{219, 1991.

[7] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time.
Annals of Pure and Applied Logic, 100:141{187, 1999.

[8] A. Chandra and D. Harel. Computable queries for relational data bases.
Journal of Computer and System Sciences, 21(2):156{178, 1980.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

[10] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Undergraduate Texts in Mathematics. Springer-Verlag, 1984.

26

[11] M. Fern�andez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catch-
ing the boat with Strudel: Experiences with a Web-site management
system. SIGMOD Record, 27(2):414{425, 1998. Proceedings ACM SIG-
MOD International Conference on Management of Data.

[12] Y. Gurevich. Evolving algebras: An attempt to discover semantics.
Bulletin of the European Association for Theoretical Computer Science,
43:264{284, 1991.

[13] Y. Gurevich. Evolving algebra 1993: Lipari guide. In E. B�orger, editor,
Speci�cation and Validation Methods, pages 9{36. Oxford University
Press, 1995.

[14] Y. Gurevich. May 1997 draft of the ASM guide. Technical Report
CSE-TR-336-97, University of Michigan, EECS Department, 1997.

[15] P. Halmos. Naive Set Theory. Van Nostrand Reinhold, 1960.

[16] J. Huggins, editor. Abstract State Machines Web pages.
hwww:eecs:umich:edu=gasmi.

[17] Ph.G. Kolaitis and M.Y. Vardi. In�nitary logics and 0-1 laws. Infor-

mation and Computation, 98(2):258{294, 1992.

[18] J. Van den Bussche and J. Paredaens. The expressive power of complex
values in object-based data models. Information and Computation,
120:220{236, 1995.

[19] J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On
the completeness of object-creating database transformation languages.
Journal of the ACM, 44(2):272{319, 1997.

27

