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The effective use of visual languages requires a precise understanding of their meaning.
Moreover, it is impossible to prove properties of visual languages like soundness of
transformation rules or correctness results without having a formal language definition.
Although this sounds obvious, it is surprising that only little work has been done about
the semantics of visual languages, and even worse, there is no general framework
available for the semantics specification of different visual languages. We present such
a framework that is based on a rather general notion of abstract visual syntax. This
framework allows a logical as well as a denotational approach to visual semantics, and it
facilitates the formal reasoning about visual languages and their properties. We illustrate
the concepts of the proposed approach by defining abstract syntax and semantics for
the visual languages VEX, Show and Tell and Euler circles. We demonstrate the
semantics in action by proving a rule for visual reasoning with Euler circles and by
showing the correctness of a Show and Tell program.
 1998 Academic Press
1. Introduction

INVESTIGATING THE SEMANTICS of visual languages is important for several reasons: first
of all, a precise definition of semantics is indispensable for a thorough understanding of
any language. This in turn is important to appraise a visual language and to compare it
with others. Furthermore, this facilitates the development of extensions or a re-design of
the language. Second, having a precise specification of a language’s semantics, it is in
many cases only a small step toward an implementation, for instance, denotational
semantics can be translated almost verbatim into functional languages, so that an
interpreter for the language is immediately available [1]. Third, with a precise semantics,
various properties of languages can be proved. In particular, we can prove syntactic
transformations to be sound with respect to the semantics, for example, b-reduction in
VEX can be shown to realize function application, or rules for syllogistic reasoning in
Euler diagrams can be proved sound. Finally, a clear semantics of visual languages is
needed to integrate them correctly into other environments. In paricular, this applies to
heterogeneous or multi-paradigm languages, see, for example, Erwig and Meyer [2].

Despite the reasons just mentioned, research on visual language semantics is rather
sporadic. In particular, there is no general framework available which could be used for
the formal specification of visual languages. This situation is quite different in textual
languages: there we can choose among a variety of different semantic formalisms, such
as denotational semantics, structured operational semantics, action semantics, evolving
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algebras, etc., and some of these could, in principle, be employed for visual languages as
well. A possible reason why this does not happen might be that some of the components
that are necessary for a semantics framework are missing. Taking denotational semantics
as an example, we observe that—at least as far as visual programming languages are
concerned—the necessary concepts of semantic function and semantic domain can
be used as in the textual case. However, the third component, abstract syntax,
cannot be simply taken for visual languages, and there is no equivalent notion for visual
languages yet.

So in the sequel we will first introduce a concept of abstract visual syntax in
Section 2 before we demonstrate the specification of logical and denotational semantics
in Sections 3 and 4 by two simple examples. In Section 5, we show that also more
complex visual languages can be dealt with by the presented approach. Section 6 com-
ments on related work, and Section 7 presents some conclusions.

2. Abstract Visual Syntax

A textual language L is a set of strings over an alphabet A, that is, LUA*. The symbols
of any sentence (or word) w3L are only related to each other by a linear ordering. In
contrast, a sentence (or diagram or picture) p of a visual language VL over an alphabet
A consists of a set of symbols of A that are, in general, related by several relationships
Mr1,2, rnN"R. Thus, we can say that a picture p is given by a pair (s, r) where sUA is
the set of symbols of the picture and rUs]R]s gives the relationships that hold in pa.
In other words, p is nothing but a directed graph with edge labels drawn from R, and
a visual language is simply a set of such graphs.

Usually, languages contain a certain structure, that is, there are precise rules defining
which symbols can occur in which contexts and, regarding visual languages, which
symbols may take part in which relationships. This structure is recognized and enforced
during syntax analysis, and it can be assumed when defining semantics. Therefore,
semantics definitions are often based on so-called abstract syntax which defines a lan-
guage on a more abstract level with less constraints than on the concrete level. This
means that a description of concrete syntax must include every detail about the
language, whereas the abstract syntax can safely ignore all aspects that are not needed
within the semantics definition.

A precise definition of abstract syntax does not exist, and it would not make much
sense because there are different levels of ‘abstractness’ that can be dealt with. One
reason for abstract syntax not really having found its way into visual languages might be
that, as we believe, abstract visual syntax must be ‘more abstract’ than in the textual case
to be helpful. We explain this by a simple example. Consider the following (textual)
grammar describing part of a concrete syntax for expressions.

expr : :" n-expr D b-expr D if-expr
n-expr : :" term D n-expr#term
term : :" factor D term * factor
a Relationships with arity'2 can always be simulated by several binary relationships.
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factor : :" id D (n-expr)
b-expr : :" id D b-expr¡b-expr D2
if-expr : :" if b-expr then expr else expr

A corresponding abstract syntax would ignore many details, such as the choice of key
words, grammar rules for defining associativity of operators, or rules restricting the
typing of operations (see also Mosses [1]):

expr : :" id D expr op expr D if (expr, expr, expr)
op : :"# D * D ¡ D2

This grammar is much more concise. It does not introduce nonterminals for
expressions of different types, and it also ignores associativity of operators. (Omitting
the key words from the conditional does not make the grammar essentially simpler in
this example.) Further operations on sentences of the language can rely on syntax being
already checked by a parser and can thus work with the simpler abstract syntax.

In a similar way, the abstract syntax of visual languages need not be concerned with all
the details that a concrete syntax specification has to care about; see also Erwig [3]. This
means we can abstract from the choice of icons or symbols (comparable to the choice of
key words in the textual case) and from geometric details such as size and position of
objects (at least up to topological equivalence, that is, as long as relevant relationships
between objects are not affected). We can also ignore associativities used to resolve
ambiguous situations during parsing much like in the textual example. Moreover,
typings of relationships that restrict relationships to specific subsets of symbols can
be omitted. This corresponds to grouping operations, such as # or ¡, under one
nonterminal.

But we can do even more—and this is the point where abstract visual syntax gets
more abstract than in the textual case: the above abstract syntax for expressions is still
given by a grammar and thus retains some structural information about the language.
This is absolutely adequate since the description is very simple and can be easily used
when defining, for example, an interpreter for expressions. However, to do so for
a visual language requires, in most cases, some effort in the consideration of context
information which unnecessarily complicates definitions of transformations. Therefore,
we suggest to forget about this structural information, too, and to consider a picture just
as a directed, labeled multi-graph where the nodes represent objects and the edges
represent relationships between objects. A class of graphs is then just given by two types
defining node and edge labels, that is, the types of objects and relationships in the
abstractly represented visual language.

Definition 1. A directed labeled multi-graph of type (a, b) is a quintuple G"(V, E, ı, l, e)
consisting of a set of nodes V and a set of edges E where ı :EPV]V is a total
mapping defining for each edge the nodes it connects. The mappings l : VPa and
e : EPb define the node and edge labels.

VG and EG denote the set of nodes and edges of G. The successors of a node are
denoted by succG (v), which is defined by succG(v)"Mw3VG D&e3EG : ı(e)"(v, w)N. Like-
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wise, predG(v) denotes v’s predecessors. Whenever G is clear from the context, we also
might simply use V, E, succ, and pred. We also sometimes use a shorthand for denoting
nodes and edges together with their labels: we denote a node (or edge) x with v(x)"l
(respectively, e(x)"l ) simply by x : l .

The label types a and b might be just sets of symbols, or they can be complex
structures to enable the labeling with terms, semantic values, or even graphs (see
Section 5). The set of all graphs of type (a, b ) is denoted by C(a, b ). In the sequel, we
will look at visual languages on this very abstract level, that is, the abstract syntax of
a visual language is specified as a set of graphs of a specific type.

Definition 2. A visual language of type (a, b ) is a set of graphs VLUC(a, b ).

How does this view relate to the well-established grammatical approach to syntax?
Clearly, the syntax of languages can be conveniently specified by grammars. Grammars
provide a way to generate all sentences of the language and, given a suitable parsing
algorithm, allow to test whether a sentence is a member of the language (possibly giving
a proof for this by constructing a parse tree for reconstructing the sentence). Concern-
ing abstract syntax, however, grammars are usually not used for parsing; their purpose is
just to offer an inductive or decompositional view of language that facilitates semantics
definitions, especially, denotational semantics or structured operational semantics. As
we have demonstrated in [4], we can actually have a (de)compositional/recursive view of
graphs without resorting to grammars. So we can achieve a highly abstract comprehen-
sion of pictures together with an inductive view of graphs that facilitates, say, denota-
tional semantics definitions. On the other hand, there are visual languages whose
semantics are best described in a logical fashion. In that case, a global, set-theoretic view
of language is needed, which is just given by abstract visual syntax (and which might be
obscured when using grammatical formalisms).

As in the textual case the choice of abstract syntax for a visual language is by no
means unique. Usually, one has to trade similarity to the original notation for simplicity
of the semantics definition. We will illustrate this point further in Section 4. The use of
abstract syntax is not restricted to the definition of language semantics, but it can be also
used as a basis for transformations between different languages or for mapping between
different representations of the same language. This is illustrated in more detail in Erwig
[3]. Accidentally, the abstract syntax graphs for the examples used in this paper are all
acyclic. This is by no means essential for the presented formalism. Examples for visual
languages that have cyclic abstract syntax graphs are state diagrams (syntax and
semantics for these are defined in Erwig [3]) or a particular representation of Turing
machines (for which syntax and semantics can be found in Erwig [5]).

3. Logical Semantics

In many cases, a logical specification of semantics views the syntactic elements simply as
sets. For graphs, the node- and edge-set view is implicit in the definition. In Section 3.1
we define syntax and semantics of the well-known Euler diagrams, and in Section 3.2 we
prove a visual rule for syllogistic reasoning and thus illustrate how to establish properties
of a formalized visual language.
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3.1. Euler diagrams

The language of Euler diagrams as described by Euler [6] and Shin [7 ] contains four
kinds of basic pictures expressing logical statements as shown in Figure 1. Ambiguities
of Euler diagrams and semantic problems arising from these are discussed in detail by
Shin [ 7 ]. Our aim is not arguing in favor of or against using Euler diagrams for
reasoning. However, as a matter of fact, Euler diagrams are a widespread visual notation,
and in order to discuss the notation and compare it with others, it should be understood
in the first place. This is what abstract visual syntax and the semantic formalism can
accomplish.

The concrete syntax of Euler diagrams comprises circles and string-labels together
with the relationships inside, intersects and disjoint. Labels have two purposes: first, they
provide references to set symbols in pictures to be used in explanations, discussions, etc.
Second, their position distinguishes two different set relationships for intersecting
circles. In the abstract syntax, we can therefore omit labels and replace the intersects-
relationship by two edge labels identifying the third and fourth situations, namely,
p-intersects and nic. The names result from the following observations: in order to give
a formal semantics to Euler diagrams one has to answer the following questions (among
others):

(1) Does the third situation also say: ‘Some B is not A’? Yes, Euler also specifies that
‘Some A is not B ’ (and ‘Some B is A ’ ). Thus we know:
(a) AWBO0,
(b) A!BO0, and
(c) B!AO0.
So this situation describes what we call proper intersection, that is, we say A
p-intersects B.

(2) Is the relative position of labels irrelevant, that is, does the last example also say
‘Some B is not A’? This would be reasonable, and although Euler gives as one
possible instance an example where B is completely inside (that is, properly
included in) A, he himself uses the notation in a symmetric way later on in his
letters. Accordingly, we ignore relative positions of labels. So this relationship
describes that both differences are non-empty which expresses nothing but the
fact that two sets are not comparable with respect to inclusion; we call this
relationship not inclusion-comparable.

Except inside, all relationships are symmetric. We depict a symmetric relationship by
an undirected edge which is represented in a directed graph by two directed edges in
both directions. So the abstract syntax graphs for the Euler diagrams of Figure 1 look
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like those shown in Figure 2. The semantics is defined for a diagram relative to a universe
of objects U. An interpretation is a mapping from the set of circles in the diagram, that
is, nodes of the graph, to subsets of U, that is, f : VP2U. Now the semantics can be
easily defined:

S I(V, E )JU"M f D f : VP2UO∀e3E: valid( f, ı (e), e(e))N

where

valid ( f, (u, l), l )"

G
f(u)Uf(v) if l"inside
f(u)Wf(v)"0 if l"disjoint
f(u)Wf(v)O0O f(u)!f (v)O0O f (v)!f (u)O0 if l"p-intersects
f(u)!f(v)O0Of (v)!f (u)O0 if l"nic

3.2. Soundness of Visual Reasoning Rules

Having a precise definition of what Euler diagrams mean it is quite easy to check the
visual rules for syllogistic reasoning. Euler gives textual versions of such rules and
explains them by pictures. One example is:

All A is B Some C is A
Some C is B

Although this sounds very intuitive, this rule is formally not correct, since ‘Some C is B ’
does only hold if C!BO0. But this cannot be concluded from the premises; C might
well be included in B. Actually, Euler is aware of this fact and gives pictures illustrating
both cases. The point is that there is no formal correspondence between propositions
and pictures (since there is no formal semantics). Now the correct rule is

All A is B Some C is A
All C is B or Some C is B

or equivalently in visual terms:

Lemma 1.
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Proof. We reformulate this rule in terms of abstract syntax. The premises can be joined
into one graph:

The semantics definition ensures for each valid interpretation the following properties:

(1) AUB.
(2) AWCO0.
(3) A!CO0.
(4) C!AO0.

First we observe from (3) and (4) that neither A nor C is empty. By (1) it also follows
that B is not empty. For the intersection and difference of two non-empty sets we know:

(i) XWYO08&ZO0 : Z-XOZ-Y.
(ii) X!YO08&ZO0 :Z-XOZWY"0.

Next we translate the conclusion of the rule into logical terms. That is, have to show that
the following is true:

(CWBO0OC!BO0OB!CO0)¡C-B

We can simplify this term: first, since C-B implies CWBO0 (because C is not
empty), we know that

CWBO0¡C-B8CWBO0

and second, C!BO0¡C-B is always true which can be easily checked by
considering all possibilities with respect to the intersection of C and B. Thus, it remains
to be shown that

CWBO0O(B!CO0¡C-B )

We can prove both parts separately. First, from (2) and (i) we infer &DO0:

(5) D-A and
(6) D-C.

By transitivity it follows from (5) and (1) that D-B, and this together with (6) and (i)
implies CWBO0. Second, we obtain from (3) and (ii) that &DO0:

(7) D-A and
(8) DWC"0.

By transitivity it follows from (7 ) and (1) that D-B, and this together with (8) and (ii)
implies B!CO0. This means that B!CO0¡C-B is also true. h
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4. Recursive Semantics

In contrast to the predicative view that was convenient in the previous section, many
languages are defined inductively, and then a semantics definition is easiest to give when
adopting that inductive view. We illustrate these ideas with the visual language VEX [8],
which provides a visual notation for the lambda calculus. We chose VEX, since it is
a rather small (but computationally complete) language and since any semantics can be
easily verified by comparison with the classical lambda-calculus.

In Section 4.1, we explain VEX informally, followed in Section 4.2 by two alternative
abstract syntax definitions. Sections 4.3 and 4.4 introduce an inductive/decompositional
view of syntax graphs that is particularly needed for the definition of denotational
semantics. Based on this, a semantics for VEX is then given in Section 4.5.

4.1. Example: VEX

VEX [4] is a purelyb visual language: each identifier is represented by an (empty) circle
that is connected by a straight line to a so-called root node. A root node is again an empty
circle with one or more straight lines touching it, leading to all identifiers with the same
name. A root node might be internally tangent to another circle, it then represents
a parameter of an abstraction, otherwise it denotes a free variable. An abstraction has, in
addition to its parameter circle, a body expression inside it. An application of two
expressions is depicted by two externally tangent circles with an arrow at the tangent
point. The head of the arrow lies inside the argument, and the tail of the arrow lies inside
the abstraction to be applied. Application order can be controlled by labeling arrows
with priority numbers which we will ignore for simplicity.

Figure 3 shows the VEX expressions for (jx.x) y and jy.((jx.yx)z ). Now what
is the exact meaning of the above drawings? In Citrin et al. [8] graphical rewrite rules
are given that can be used to reduce VEX pictures to normal forms. This is, however,
a purely syntactical manipulation. A true semantics definition maps VEX into a semantic
domain of functions. In any case, the first step is a definition of abstract visual syntax for
VEX.
b Labels are sometimes used for illustration, but strictly, they are not needed.
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4.2. Choices of Abstract Syntax

The VEX concrete syntax consists of symbols like circles, lines and arrows, and
relationships like inside or touches.

As already mentioned, there are quite different possibilities for the abstract syntax. In
a first approach, we can abstract from lines and arrows and replace them by correspond-
ing relationships, since lines simply link the use of a variable to its definition and arrows
just indicate the application of one circle to another. This is reflected in the abstract
syntax graph of a VEX expression by def-edges (that is, edges labeled with def ) that lead
from variable uses to their definition and by apply-edges leading from the expression
circles to be applied toward the argument circles. It remains to represent abstractions.
An abstraction is given by a non-empty circle c where an (empty) circle x that is internally
tangent to c represents c ’s parameter and all other circles e1,2, en inside c define the
abstraction body. In the abstract syntax, we represent this information by a par-edge
from c to x and by body-edges (c, e1),2, (c, en). Note that we do not need to distinguish
abstraction nodes from variable nodes by an explicit label, since the difference can
always be told by looking at the incident edges—by this the abstract syntax is more
similar to the concrete syntax. Therefore, we do not use any node labels, and thus the
abstract syntax for VEX is given by graphs of type (0, Mdef, apply, par, bodyN).

Figure 4 gives the abstract syntax graphs for the VEX pictures from Figure 3. This
representation is rather close to the spatial original and should therefore be easy to
grasp. However, a DAG representing the lambda-expression in a rather traditional way
might be better suited to study, for example, semantics of b-reduction.

Such a representation consists of application-, abstraction- and variable-nodes (with
corresponding node labels: @, j, s)c. An @-node has an outgoing fun-edge and an
outgoing arg-edge that lead to the function to be applied and the argument, respectively.
A j-node is connected by an outgoing par-edge to its parameter, an unlabeled node, and
by an outgoing body-edge to the node representing its body. Hence, this abstract syntax
for VEX uses graphs of type (M@, jN, M fun, arg, par, bodyN).

Figure 5 shows the abstract syntax graphs that correspond to the VEX pictures of
Figure 3. At this point it is important to recall that the informally stated structural
properties are not captured by abstract syntax graphs. This means that the graph shown
below is also a graph of the above type although it is certainly not representing any VEX
expression.

For defining semantics, we can safely assume structurally correct graphs be delivered,
say, by a syntax analysis phase or an editor. The structural assumptions can then appear
implicit in the semantics definition, since we need only give semantics for structurally
well-formed graphs, that is, syntactically correct pictures.
c Note that we do not need node labels to distinguish variables. As in the previous approach, uses of
variables are linked by edges to the corresponding definitions. This mechanism is a perfect substitute for
the ‘equal name’-method of the textual lambda-calculus. Therefore, nodes representing variables are left
unlabeled.
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Although the second representation offers advantages in treating certain aspects of
semantics, it does only poorly reflect the visual structure of the VEX expression, and
might thereby complicate the understanding of the original visual language. The decision
of which representation to choose depends on what is done with the semantics
definition: for just giving a meaning to VEX pictures, the first approach might be
sufficient, however, when trying to prove, for example, soundness of b-reduction, or
deriving an implementation, the second representation would probably be favored.

Next we would like to define the semantics on the basis of the abstract representa-
tions just given. We therefore need a structured way of accessing all the elements of
a syntax graph. In particular, we need an inductive view of graphs that allows the
step-by-step decomposition of graphs. We will address this issue in the next two
subsections. The concepts presented there can also be used to map between different
syntax representations.

4.3. An Inductive Graph Model

We can view a graph in the style of algebraic data types found in functional languages
like ML or Haskell: a graph is either empty, or it is constructed by a graph g and a new
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node l together with edges from v to its successors in g and edges from its predecessors
in g leading to v. This way we can construct graph expressions with a constant
constructor Empty and a constructor N taking as arguments a triple ( pred-spec, node-spec,
succ-spec), called node context, and the graph g to be extended. Here, node-spec is a node
identifier not already contained in g possibly followed by a label (for example, d : @) and
pred-spec (succ-spec) denotes a listd of predecessor (successor) nodes possibly extended by
labels for the edges that come from (lead to) the nodes. For instance, [d'fun, e] denotes
a list of two predecessor nodes d and e where the edge coming from d has label fun and
the edge coming from e has no label at all. Similarly, [ par'a, body'a] denotes a single
successor a that is reached via two differently labeled edges.

The first graph from Figure 5 is given by the following expression:

N ([ ], d : @, [ fun'b, arg'c ]) (N ([ ], c, [ ])

(N ([ ], b : j, [ par'a, body'a]) (N ([ ], a, [ ]) Empty)))

Here a, b, c, and d are arbitrary, pairwise different node identifiers. In the sequel, we make
use of two abbreviations: (1) empty sequences can be omitted, and (2) a cascade of
N-constructors is replaced by a single N*-constructor. So the above term can be
simplified to

N* (d : @, [ fun'b, arg'c ]) (c) (b : j, [ par'a, body'a]) (a) Empty

Note that there are, in general, many different graph expressions denoting the same
graph, for example, the above term denotes the same graph as

N* ([d'fun], b : j, [ par'a, body'a]) (d : @, [arg'c ]) (c) (a) Empty

The relationship between graph expressions and multi-graphs is formally defined as
follows:

c(Empty)"(0, 0, 0, 0, 0)

c(N ([ p1'x1,2, pn'xn], v : l, [ y1's1,2, ym'sm]) g )

"(VXMvN, EXMe1,2, en#mN,

ıXM(e1, ( p1, v)),2,(en , ( pn, l)), (en#1, (v, s1)),2, (en#m , (v, sm))N,

lXM(v, l )N, eXM(e1, x1),2, (en, xn), (en#1, y1),2, (en#m, ym)N)

where

(V, E, ı, l, e)"c( g ), Me1,2, en#mNWE"0, M p1,2, pn, s1,2, smN-V, and vNV

Thus, multi-graphs can serve as a kind of normal form for graph expressions. The
following result is important, since it guarantees that any graph can be viewed
inductively:
d Lists offer a convenient way for dealing with multiple edges between two nodes. In this respect, bags
would also be fine, but lists can be sorted which simplifies the processing of, for example, successors, in
a specific order.
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Theorem 1. Any directed labeled multi-graph can be represented by a graph expression.

We have given the proof in [4]. There we also define a formal semantics of graph
types and graph constructors.

4.4. Pattern Matching on Graphs

The main use of graph constructors in the context of this paper is not to build new
graphs but to take part in pattern matching on graphs. Especially useful for graphs is the
concept of active patterns [9]: usually, matching a pattern like N ( p, v : l, s) g to a graph
expression binds the node context inserted last to p, v, l, s and the remaining graph to g.
However, in order to move in a controlled way through the graph, it is necessary to
match the context of a specific node. This is possible if v is already bound to the node to
be matched. Then the context of v is bound to the remaining variables. For instance,
matching the pattern N ( p, b : l, s) g against either graph expression from the previous
subsection results in the following bindings:

pP[d'fun], lPj, sP[ par'a, body'a ], gP‘g-term ’

where g-term is an arbitrary representation of the matched graph without node b and its
incident edges, for example,

‘g-term ’+N* (d : @, [arg'c ]) (c) (a) Empty

Formally, graph pattern matching is defined on the basis of the represented multi-
graphs. For a given node v assume G can be written as

G"(V#MvN, E#Me1,2, en#mN,

ı#M(e1, ( p1, v)),2,(en, ( pn, v)), (en#1, (v, s1)),2, (en#m, (v, sm))N,

l#M(v, l )N, e#M(e1, x1),2,(en, xn), (en#1, y1),2, (en#m, ym)N)

where S#T denotes disjoint set union and where the disjoint union for E is chosen
maximally, that is, there is no e@3E such that there exists (e@, (x, y))3ı with x"v or
y"v. Then matching the pattern N ( p, v : l, s) g to G produces the bindings

pP[ p1'x1,2, pn'xn], lPlab, sP[ y1's1,2, ym'sm], gP(V, E, ı, l, e)

This means that the meaning of pattern matching does not depend on the representa-
tion chosen by a particular graph expression. In other words, we have the freedom to
choose graph expressions as we like; we make use of this later on in this paper when we
apply semantics definitions to example graphs. Then we shall choose representations
that make inductive decompositions of graphs simple so that we need neither transform
graph expressions nor map them to the represented multi-graphs.

Patterns can be made more selective by adding labels that must be present or by
replacing list variables by lists of a specific length. We can also ignore bindings by simply
omitting the corresponding parts of the pattern, for example, we can match the
abstraction node b binding the parameter/body node to p/e by using the pattern

N (b : j, [ par'p, body'e ]) g
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Actually, p and e will be bound to the same node, a. Since we did not specify anything for
the predecessor list, no binding will be produced. If we wanted to ensure that the
matched node has no predecessors, we would have used the pattern N ([ ], b : j,
[ par'p, body'e]) g instead. This, however, fails to match our example graph.

Cascading patterns like N* c1 c2 2 cn g can be matched against a graph G as follows:
let g1,2, gn be auxiliary variables to be bound to intermediate decomposed graphs. Now
first, N c1 g1 is matched against G, and the bindings produced by this match, especially
the node bindings in c1 and the rest graph g1, are then used to match N* c22cn g against
g1, that is, N c2 g2 is matched against g1, N c3 g3 is matched against g2, and so on, until
N cn gn is matched against gn!1. Then g is bound to gn . In this way, N* patterns can
actually be used to conveniently find paths (of fixed length) in the graph.

4.5. Denotational Semantics

Now we can define the denotational semantics of VEX. We map each syntax graph of
a (syntactically correct) VEX expression into a value of a suitable domain D for the
lambda-calculus (for example, Scott’s construction D

=
or Plotkin’s graph model Pu

[10]). Let d be a variable denoting values from D. It is interesting to note that in contrast
to the denotational semantics of the textual lambda-calculus we do not need any
environment for passing around variable bindings; we can rather employ the VEX root
nodes to carry semantic values. It would be also possible to map the abstract syntax to
textual lambda-expression and to rely on semantics already defined for the lambda-
calculus. However, this would mean one further intermediate representation and,
as noted, a sligthly more complicated semantics definition with the need for an
environment.

We define the semantics by moving in a controlled way through the abstract graph,
that is, semantics are given with respect to specific node contexts in the graph, and in the
recursive definitions for the semantics of, say, node v, the semantics function S @ is
applied to the contexts of v’s successors. Hence, S @ has two parameters: a graph and
a node determining the context. Using the second proposal for abstract syntax we can
distinguish the following cases: first, the semantics of a node carrying a semantic value is
the value itself. (Such a value is assigned by the rule for abstractions.) Second, the
meaning of an application node is given by applying the semantics of the node
connected by the fun-edge, which is expected to be a function value, to the value denoted
by the argument node. Finally, the semantics of an abstraction is defined to be a function
value (K denotes the semantic abstraction function) which maps any value d to the value
denoted by the body of the abstraction when the parameter node is labeled d. Note that
in order to change the label of the parameter node p to d we have to decompose p from
the graph and re-insert it with the new label and the old context (that is, with
predecessors r and no successors):

S @Iv, N (v : d ) gJ"d

S @Iv, N (v : @, [ fun'f, arg'a]) gJ"S @I f, gJ (S @Ia, gJ)

S @Iv, N* (l : j, [ par'p, body'b ]) (r, p) gJ

"Kd.S @Ib, N (r, p : d, [ ]) gJ



Figure 6. Abstract syntax for lambda expression jy.((jx.yx)z )
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Now the semantics of a graph G representing a VEX expression is given by applying S @
to the root of G :

root (G )"Mv3VG D predG(v)"[ ]N

S IGJ"S @Ithe (root (G )), GJ

Here, the function the simply extracts the one element from a singleton set and is
undefined otherwise: the(MxN)"x.

We have given an alternative semantics definition for VEX based on the other
abstract syntax approach recently [5].

We can use the denotational semantics to ‘compute’ the meaning for particular VEX
expressions. As an example we determine the function denoted by the second VEX
picture of Figure 3. For convenience, we repeat the abstract syntax representation with
added node identifiers in Figure 6 to facilitate the understanding of the following
derivation.

The graph (G1) is formally defined by the following expressions. The representations
are chosen to make subsequent pattern matching easy and to have proper bindings for
remaining graphs:

G6"N* (6 : @) Empty

G4"N* (4 : j, [ par'7, body'6 ]) ([6'arg ], 7 ) G6

G3"N* (3 : @, [ fun'4, arg'5]) (5) G4

G1"N* (1 : j, [ par'2, body'3]) ([6'fun ], 2) G3

Now the meaning of the graph G1 is

S IG1J"S @Ithe(root(G1)), G1J"S @I1, G1J

"Kd.S @I3, N ([6'fun], 2 : d ) G3J
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"Kd.(S @I4, N ([6'fun], 2 : d) G4J (S @I5, N (5)G4J))

"Kd.(Kd @.S @I6, N* ([6'arg], 7 : d @@ )) ([6'fun], 2 : d ) G6J) o)

"Kd.("d @.S @I6, N * (6 : @, [ fun'2, arg'7]) (2 : d ) (7 : d @ ) EmptyJ) o)

"Kd. ("d @.(S @I2, N* (2 : d ) (7 : d @ ) EmptyJ (S @I7, N* (2 :d ) (7 :d @ )EmptyJ))) o)

"Kd.(Kd @.(d d @) o)

"Kd.d o

Note that S @I5, N (5) G4J"o because the semantics of free variables is not defined.
Thus, the meaning of the VEX picture is a function that applies its argument to the
undefined value.

5. A Larger Example

In this section we consider abstract syntax and semantics of a more complex visual
language: Show and Tell. The language is interesting for two reasons: first, it is a member
of the rather large class of data flow languages and thus indicates how semantics could be
defined for many other visual languages. Second, it demonstrates the effective use of
nested syntax graphs which goes beyond grammatical descriptions of visual languages.

Show and Tell (STL) [11, 12] combines data flow with the concept of completion, which
means to fill in empty boxes in a data flow graph by either computation or database
search. Computations are represented by so-called box-graphs, which are acyclic directed
multi-graphs whose nodes are rectangles connected by arrows. A box is empty or it
contains either simple data, such as numbers or functions, or another whole box-graph.
In that case, the box is called complex and can be either closed or open. Data can flow along
the arrows from one box to another. Whenever two boxes connected by an arrow
contain different values, the box-graph is said to be inconsistent. An open box containing
an inconsistent box-graph propagates this inconsistency, that is, the box-graph contain-
ing the inconsistent box also becomes inconsistent. In contrast, when a closed box gets
inconsistent, all that happens is that the box cannot receive or propagate any values, that
is, an inconsistent closed box can be viewed as deleted. With the concept of inconsist-
ency, conditionals can be expressed without having boolean values.

Figure 7 shows an STL program implementing the logical AND. The program contains
two parameters (the two topmost empty boxes) and one result (the empty box on the left).
If both arguments are ‘1’, then the upper (closed) complex box remains consistent, and the
‘1’ can flow directly into the result box. Moreover, the lower (closed) complex box gets
inconsistent and cannot emit the ‘0’. On the other hand, if one argument is ‘0’, then the
upper complex box gets inconsistent and cannot send data to the result box and to the
lower box. Then, the ‘0’ can flow from the lower box into the result box.

We choose an abstract syntax that mainly follows the concrete syntax. In particular:

(1) Nodes are labeled by constants (for example, integers), function symbols (such
as#), s (representing empty STL boxes), and complete graphs. Additionally,
they carry an open- or closed-tag. (In the following we will mention these tags only
when needed.)



Figure 7. STL program for logical AND
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(2) Edges are labeled by pairs (i, j ) where i means that the edge contributes to the ith
parameter of the target node and j says that the jth component of the value at the
edge’s source node flows via this edge. If j"*, this means that the complete
value flows via the edge.

(3) Each edge e"(v, w):(i, j ) (that is, from v to w with label (i, j )) that crosses a border
of a complex box u is replaced by a new node x with label k (lying inside u) and
two edges e1 and e2 as follows:
(i) If w is inside u, then e1"(v, u):(k, j ) (ending at u) and e2"(x, w):(i, *)

(connecting x to the target of e).
(ii) If v is inside u, then e1"(v, x):(1, j ) and e2"(u, w):(i, k).
Here, k ranges from 1 to n (m) for all n incoming (m outgoing) edges and
represents the argument position of the node.

(4) The (top-level) box-graph is extended according to rule (3) as if it were enclosed
by a (closed) box having edges ending at the roots and leaving the sinks.

The abstract syntax of the STL program from Figure 7 is shown in Figure 8. For later
reference we have added small node numbers to the labels. Nodes with constants as
labels are surrounded by circles and can thus be distinguished from newly introduced
nodes. Formally, we use integers as labels of newly introduced nodes and quoted
integers as constant labels. This means, the label of node 4 is 2 whereas the label of node
8 is @1.

If OP is the set of constants and operations used by STL programs, then STL abstract
graphs without complex boxes have type C(a0, b) with (let @IN"M@N]IN):

a0"(OPXMsNXINX@IN)]Mopen, closedN

b"IN](INXM*N)

Since complex boxes are represented by nodes labeled with abstract STL graphs, the
node type can be inductively defined to include graphs of increasing nesting:

ai#1"aiXC(ai, b)



Figure 8. Abstract syntax of the STL program
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Hence, the type of arbitrary STL abstract syntax graphs is given by C"Zi50 C(ai, b).
We can now define the semantics of each STL DAG as a function Dn

PDm when we
take a domain of semantic values D (for example, for integers) and add to it a special
value e for dealing with inconsistency (see below). The first equation selects all roots of
the graph, assigns D-variables as new labels, and yields a function over these variables:

S @IN* ([ ], v1 : 1, s1)2([ ], vn : n, sn) gJ

""(d1,2, dn ).S @IN* ([ ], v1 : d1, s1)2([ ], vn : dn , sn) gJ

The used cascade pattern with the ellipsis extends as far as possible, that is, it selects all
nodes labeled by integers and having no predecessors. The recursive application of S @
denotes the result tuple (by applying another semantic function S A to all sinks of the
graph) together with the consistency status of the whole graph given by C :

S @IN* ([ p1], v1 : 1, [ ])2([ pm], vm : m, [ ]) gJ"((SAI p1, gJ,2, S AI pm, gJ), C IgJ)

(Note that by definition of abstract syntax each sink has exactly one predecessor.) S A
moves in reverse direction through the abstract graph: it recursively determines the tuple
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of values for all predecessors and applies the function denoted by the current node to it.
This function is denoted by the semantic function F defined below. In the pattern we
assume that the predecessors ( pi) are ordered with respect to the first label component
(i) of the connecting edges. This ensures that the parameters appear in the correct order.
Note that the values of the predecessors are not taken as a whole, but only the specific
components as specified by the second label part (si) of the connecting edges. This is
achieved by the application of projecting functions Psi (where P

*
(x)"x),

S AIv, N ([ p1'(1, s1),2, pk'(k, sk)], l : f ) gJ"

F I f J(Ps1(S AI p1, gJ),2, Psk(S AI pk, gJ))

The semantic functions S @ and SA only define the meaning of consistent STL-graphs. An
inconsistent node or graph is defined to return the value e which is defined to be equal
to all other values of D. In this way, an inconsistent (closed) node that is connected by
an edge to a node v that is labeled by a constant or not labeled at all does not affect the
result of v. A graph is inconsistent if any of its open nodes is inconsistent. Let open be
a predicate that is true only for open nodes. The consistency of nodes/graphs is denoted
by C @/C :

C @Iv, GJ"(open(v)NS AIv, GJOe)

C IGJ"∀v3VG : C@ Iv, GJ

Now the semantics of an STL graph is finally given by

S IGJ"G
P1(S @IGJ) if P2(S @IGJ)

e otherwise

If G contains no open boxes, the propagation of inconsistency need not be taken into
account because in that case C @ and C always yield true. Thus, the semantics for graphs
without open boxes simplifies to

S IGJ"S @IGJ

S @IN* ([ p1], v1 : 1, [ ])2([ pm], vm : m, [ ]) g J"(S AI p1, gJ,2, S AIpm, gJ)

It remains to define the functions denoted by node labels. An operation on D (like#)
denotes itself. A constant c is interpreted as a function that checks whether all incoming
values are equal to c, and an unlabeled node checks all incoming values for equality.
Finally, the semantics of a node labeled by a complete STL graph is given by S :

F I f : Dn
PDmJ"f

F Ic : DJ"K(d1,2, d n).if d1"2"dn"c then c else e

F IsJ"K(d1,2, dn).if d1"2"dn then d1 else e

F IG :CJ"S IGJ



ABSTRACT SYNTAX AND SEMANTICS OF VISUAL LANGUAGES 479
The first line includes the case for constant labels, that is, n"0. This means in
particular, that the definition of SA reduces in this special case to:

S AIv, N ([ p1'(1, s1),2, pk'(k, sk)], l : d ) g J"d

In the reminder of this section, we demonstrate the semantics definition by proving the
correctness of the STL program of Figure 7, that is, we want to show that the program
indeed computes the logical AND. Let G be any graph expression representing the
abstract syntax graph shown in Figure 8. Then we have to prove:

Theorem 2. S IGJ"K(d1, d2).if d1"d2"1 then 1 else 0.

Proof. We use the following abbreviations:

G Dv1 : l1,2,vn : ln :"

if G"N* ( p1, v1, s1)2( pn, vn, sn) G @ then N* ( p1, v1:l1, s1)2( pn, vn : ln, sn) G @ else o

eq :"K(d1, 2, dn).if d1"2"dn then d1 else e

eqc :"K(d1,2, dn).if d1"2"dn"c then c else e

Since G contains no open boxes we can work with the simplified semantics, that is,
S IGJ"S @IGJ. Thus:

S IGJ"S @IGJ

"S @IN* ([ ], 1 : 1, [(1,*)'2]) ([ ], 4 : 2, [(1,*)'3]) gJ

"K(d1, d2).S @IG D1 : d1,4 : d2J

("K(d1, d2).S @IN* ([ ],1 : d1,[(1,*)'2])

([ ],4 : d2,[(1,*)'3]) gJ)

"K(d1, d2).S @IN ([12'(1,*)], 11 : 1, [ ]) g11J

Again we can ignore C and use the simplified definition for SA. Thus, we can continue
(omitting brackets around the one-tuple):

"K(d1, d2).S AI12, g11J

"K(d1, d2).S AI12, N ([5'(1,1), 13'(2,1)], 12 : s) g12J

"K(d1, d2).FIsJ (P1(S AI5, g12J), P1(S AI13, g12J)) (A)

We next have to determine S AI5, g12J and S AI13, g12J :

S AI5, g12J"S AI5, N ([2'(1,*), 3'(2, *)], 5 : G5) g5J

"F IG5J (P
*
(S AI2, g 5J), P

*
(S AI3, g 5J))

"SIG5J (S AI2, g5J, S AI3, g5J) (B)
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To proceed we now need SAI2, g5J, SAI3, g5J, and SIG5J. Note in the following that
g5 and thus all reduced graphs derived from that have their origin in the graph
G D1 : d1,4 : d2, that is, nodes 1 and 4 have assigned the semantic values (variables) d1

and d2 :

SAI2, g5J"SAI2, N ([1'(1,*)], 2 : s) g2J

"F IsJ (P
*
(SAI1, g2J))

"eq (S AI1, N (1 : d1) g1J)

"eq (d1)

"d1

The derivation for S AI3, g5J is almost identical and yields

SAI3, g5J"d2

For S IG5J we obtain:

S IG5J"S @IG5J"S @IN * ([ ], 6 : 1, [(1,*)'8]) ([ ], 7 : 2, [(2,*)'8]) g @J

"K(d3, d4).S @IG5D6 : d3,7 : d4J

"K(d3, d4).S @IN* ([8'(1,*)], 9 : 1, [ ]) ([8'(1,*)], 10 : 2, [ ]) g9J

"K(d3, d4).(SAI8, g9J, S AI8, g9J)

In the next two lines, we give only the values for the first component of the pair, since
the second component is identical.

"K(d3, d4).(SAI8, N ([6'(1,*), 7'(2,*)], 8 : @1) g8J,2)

"K(d3, d4).(F I8: @1J (P
*
(S AI6, g8J), P

*
(S AI7, g8J)),2)

"K(d3, d4).(eq1(d3, d4), eq1(d3, d4))

We can insert the results for S AI2, g5J, S AI3, g5J, and S IG5J into (B) and obtain

S AI5, g12J"K(d3, d4).(eq1(d3, d4), eq1(d3, d4)) (d1, d2)

"(eq1(d1, d2), eq1(d1, d2))

Next we determine S AI13, g12J. This works analogous to the derivation of S AI5, g12J.
Since g13 is different from g12, we formally have to derive S AI5, g13J from anew, but it is
obvious that it results in the same function as S AI5, g12J. So we get

S AI13, g12J"S AI13, N ([5'(1,2)], 13 : G13) g13J

"F IG13J (P2(S AI5, g13J))

"Kd5.eq0(d5) (eq1(d1, d2))

"eq0(eq1(d1, d2))

"if d1"d2"1 then e else 0
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To understand the last step consider two cases: if d1"d2"1, then eq1(d1, d2)"1, and
eq0(1)"e. Otherwise, eq1(d1, d2)"e, and since e is equal to all values, eq0(e)"0.

Finally, we can insert SAI5, g12J and S AI13, g12J into (A) and we obtain (note that
P1 has no effect on a one-tuple):

S IGJ"K(d1, d2).FIsJ (P1(S AI5, g12J), P1(S AI13, g12J))

"K(d1, d2).eq (eq1(d1, d2), if d1"d2"1 then e else 0)

"K(d1, d2).if d1"d2"1 then 1 else 0

Again, to understand the last step consider the following two cases:
(1) If d1"d2"1, then eq1(d1, d2)"1 and the second expression yields e. Thus the

argument pair of eq is (e, 0), and eq( e, 0)"1.
(2) If d1O1 or d2O1, then eq1(d1, d2)"e, but now the second expression yields 0.

Thus the argument pair of eq is (e, 0), and eq(e, 0)"0.
This completes the proof. h

6. Related Work

6.1. Syntax of Visual Languages

There has been quite a lot of work concerning the syntax of visual languages; for an
overview, see Marriott et al. [13]. However, all these formalisms are concerned with the
specification of concrete syntax and address the related aspects of parsing and syntax
directed editors.

Only few papers deal with abstract visual syntax. Andries et al. [14] and Rekers and
Schürr [15, 16] recommend the separation of abstract syntax from concrete syntax.
However, this is only partially achieved by those approaches, since they require
a one-to-one correspondence between concrete and abstract syntax, and thus abstract
syntax is intrinsically coupled very closely to concrete syntax. Also, that work is only
concerned with translation of visual languages, aspects of semantics definitions are not
discussed. More on abstract visual syntax as used in this paper can be found in Erwig [3].

6.2. Semantics of Visual Languages

Besides semantics definitions for specific languages, such as in Kimura [12], there has
been not much done about semantics of visual languages in general. Wang and Lee [17]
take an algebraic view of modeling pictures. Their goal is to get a formal basis for visual
reasoning by axiomatic characterizations of what can be seen in a picture. The work of
Bottoni et al. [18] is centered around the formal understanding of and reasoning with
images. Both approaches are based on concrete visual syntax and are not targeted at the
semantics specification of visual programming languages.

The term ‘semantics’ is sometimes used with a different meaning, for example, in
Helm and Marriott [19] it means a set of pictures satisfying a given specification, that is,
the semantics is a visual language itself and not a mathematical domain describing the
computations performed by a visual language.
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6.3. Graph Representation

Using graphs to describe pictures is a common and widespread approach. However,
general models that apply to a broad range of visual languages are few. Examples are
Harel’s higraphs [20] and the theory of graph grammars [21].

Higraphs are a kind of amalgam of hierarchical graphs and Euler/Venn diagrams.
Higraphs have a concise formal semantics, and by modeling a visual language VL as
a higraph, the semantics of VL is implicitly defined. Higraphs provide a perfect
representation for those visual languages that exactly fit that model. However, since
higraphs have a fixed structure, their applicability is restricted, and only a certain class of
visual languages can be expressed in terms of them. Hence, although quite many
applications can, in principle, be described as higraphs, several of them require changes
of their concrete syntax, and some languages cannot be described at all. Moreover, the
lack of an inductive view of higraphs makes denotational specifications difficult, if not
impossible.

Graph grammars, on the other hand, provide a fairly general model of visual
languages. Graph grammars are very powerful, and they have been extensively used to
describe graph transformations. Graph grammars enjoy a large body of theoretical
results, and they also provide, in a certain sense, an inductive view of graphs. So why
should we need yet another graph model? A major difficulty with graph grammars is that
they consider the graphs they operate on as global variables that can be updated
destructively. This means that changes performed by grammar rules are implicitly
propagated, and thus a declarative treatment of graphs is prohibited. Things are
complicated by the fact that the semantics of graph grammars themselves is rather
complex due to advanced embedding rules and nondeterminism. In contrast, the
inductive graph view presented in this paper is quite simple, and it treats graphs as
explicit parameters of transformations.

7. Conclusions and Future Work

We have presented a general framework for the specification of visual language
semantics. A rather unrestricted form of abstract visual syntax given by graphs is the
backbone of the formalism. The approach applies to quite a wide range of visual
languages, and we can even employ different semantics formalism, such as denotational
or logical semantics.

A drawback of the approach presented so far is that visual information is mapped
completely to a textual description. We are currently extending the formalism by
a heterogeneous, that is, semi-visual, notation so that certain relationships, such as
adjacency or intersection, need not be encoded in graph edges, but can be kept in visual
form [5]. This will make semantics definitions and other transformations much more
readable.
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