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Abstract inverse is analytic syntax. Finally, in thecursive type

view [32], the initial algebra is obtained as the solution to
We develop a theory of abstract syntax with variable a recursive (set) equation; this leads one to a treatment of
binding. To every binding signature we associate a cat- syntax within programming languages as exemplified in the
egory of models consisting ofariable setendowed with  ML/LCF approach [15].
compatible algebra and substitution structures. The syntax The first-order view can be problematic. In particu-
generated by the signature is the initial model. This gives a lar, when dealing with context-sensitive aspects of syn-
notion of initial algebra semantics encompassing the tradi- tax, it does not account satisfactorily feariable bind-
tional one; besides compositionality, it automatically veri- ing, with its allied notions of scope, free and bound oc-
fies the semantic substitution lemma. currences,a-equivalence, production of fresh variables,
and substitution €.g, in A-calculus, CCS with value
passing,r-calculus, logical quantifiers, and derivative and
Introduction integral expressions). Useful context-sensitive extensions
of BNF certainly exist, such as attribute grammars and

) , . van Wijngaarden grammars; however, they do not in them-
It has long been recognised that the essential syntactlcageIVeS give an account of deep structure

structure of programming languages is not that given by

their concrete or _S“”?"e syntax—as expres_sed, say, by &pyren [7], is that ofhigher-order abstract syntaxthere
language description in BNF oriented to parsing (there theOne uses the binding apparatus provided by the typed

parse trges contain much information useless for language)\-calculus to express all other forms of binding—see [29,

proces§|ng). Rathe_r, the deep structure of a phrase shoulté?’ 30, 28]. Normal forms (of ground type) play thide

reflect its semantic |mport. of first-order terms, but with first-order signatures being
McCarthy [24] coined the terrabstract syntaor such 15064 by second-order ones. (The binding analogue

structure, which is typically given as a tree with its top node of trees is provided by théerm graphsfirst introduced

labelled by the main semantic constituent, or, equivalently, by Wadsworth—seee.g, [17].) A form of analytic syn-

by a term of first-order logic. Abstract syntax has bsgin- tax is given by matching or unification in associated lo-

thetic and an:ly(;lc afspects:h the forrlrerl concdegs ®en-  gic programming languages [27, 30]. In implementations,
structorsneeded to form phrases, the latter tstructors — p prin's terms [9] are used to provide:‘equivalence

(predicatesand selector}y needed to take them apart [21]. normal forms”
Burstall [6] contributedstructural recursior—a generalised Unfortunatély in the higher-order abstract syntax ap-

fomﬁ of p”mi“‘_’e recursion—t(_) a”a'Y“C syntax, with an as- proach, many of the desirable properties mentioned above,

sociated prmqple q:f;tructqral induction such as accounts of structural recursion and induction, and
Thealgebraicpoint of view of the ADJ group [14] (Se€ o rsive equations for abstract syntax, are missing, or at

also [32]) regards abstract syntax as the initial algebra (Ofleast not fully developed (see [26, 25, 10])

the constructors) and semantics as the unique homomorph- L

ism to a semantic algebra (theode). Structural recursion . . L .
g ( ) of syntax with variable binding. The analogue to universal

then arises from initiality. Theategoricalview regards the . S R

algebras as those of an associated signature functor: the ini‘:’“(‘]’em"JI is the theory of binding algebras originating in the

tial algebra has an isomorphism as structure map and itsWork of Aczel [1]_—§ee also [20, 31, 37].‘ We replace algeb-
ras over sets bpinding algebrasovervariable sets Form-

*Research supported by the EU TMR research programme. ally, variable sets are (covariamt)esheaveand the funda-

One proposal for an abstract treatment, originating with

In this paper, we provide a (categorical) algebraic view




mental idea is to turn contexts into the “index category” of out. In particular, we envisage a type theory based on the
the presheaves. internal language of our semantic universe for manipulating
We obtain a notion obinding signaturan which bind- abstract syntax with binding. Again, structural induction
ing is again expressed by second-order types, but now usprinciples for reasoning about abstract syntax with binding
ing a special presheaf of variables or, equivalently, by a should be available within our framework.
first-order signature extended with a notion differenti- Second, the investigation of more sophisticated syntax in
ation (cf. [16]). Our models, théinding algebrasare then  our setting will be pursued. Multi-sorted binding signatures
presheaves endowed with both an algebra structure (corresflike the simply typed\-calculus) can be easily accommod-
ponding to the operations in the signature) and a substitutionated; various linear settingsf(operads [22]), in contrast to
structure compatible with each other. the cartesian one explored here, also seem to fit; type theor-
Abstract syntax is the initial such model, with the algebra ies with dependent types are yet to be tackled. Connections
structure obtained as the solution to a recursive (presheafpetween our approach and the general theory of substitution
equation and substitution defined by an associated structuraprovided byclubs[18, 19] will also be investigated.
recursion. The unique homomorphism from the syntax to ~ Third, theories of operational semantics with binding
another modeligitial algebra semantidspreserves the con-  will be developed along the lines of [36]. Preliminary res-
structors {e., is compositional) and the extra substitution ults indicate that some interesting syntactic formats of well-
structure (e., verifies the semantic substitution lemma). behaved operational rules for languages with variable bind-

L ) ) ing can be obtained.
Organisation of the paper. We start in Section 1 by ad-

vocating the use of the category of (covariant) presheavesl
Set™ as a suitable mathematical universe in which to deal =
with syntax with variable binding. The index categdry

is a skeleton of the category of finite sets and functions;
it provides a notion of cartesian context allowing for ex-
change, weakening, and contraction. The structu@esf
relevant to modelling variable binding is studied in detail.

The universe of types

We present the universe of types within which we work.
Our intent is to consider a notion of type broad enough to
encompassyntax with variable bindingand, more gener-
ally, algebras for binding signatures) in a framework with
rich type structurei(e., type constructors and operations on

The study of signatures with variable binding in our T 3 hoi b ining th
framework is carried out in Section 2. Our main result here types). To motivate our choice we start by examining the
structure of the set of-terms.

is that the presheaf of terms (with binders) associated to a
(binding) signature has an abstract universal characterisa-A. In the course of our discussion we will consider the set
tion as a free algebra over a presheaf of variables. This resof (untyped)\-termsAv.,, given by the following grammar.
ultis exploited in two directions: to give implementations of

abstract syntax (with variable binding)la De Bruijn, and x€Var n= x ((€N') |
to provide semantics by initiality. These two applications t€Avar == x| Azt | tite

are exemplified using th&-calculus.
Section 3 is devoted to substitution.
single-variable and simultaneous substitution. The former
is handled by introducing the notion cubstitution al-
gebrg the latter first by the elementaapstract clonesand

We treat both Iq untyped gettings, the tr.eatmer?t of the' operataas a
binder is typically dealt with by introducing the notion
of free/bound variable. However, as is well-known and
commonly used in typed settings, this information may be

then, more abstractly, as certaionoidsin the category of presented by judgements, consisting of a term together with

presheaves. The three presentations are shown to be equf CONtext, subject to a well-formedness condition. To sim-

valent. We also define two “categorical programs” for sub- plify the exposition we will consider the following well-
stitution by structural recursion formedness rules which provide canonical representatives

In Section 4, we define the category of models of a bind- E)r g—e.gu:valeln%e classes of-terms by the method of
ing signature; the presheaf of terms is the initial such model. e Bruijn leveld9].

We exemplify the corresponding initial algebra semantics 1<i<n B1ye ey Ty Trp F 1
again using the\-calculus. This semantics, besides being .. _’x; F 1. 7%’,_ /\xn+1.t
compositionglautomatically verifies theemantic substitu- (1)
tion lemma T1,..., Ty 11 T1,..., Ty o

Llyeoey Xy = ti1to

Future work. Various directions for further work are pos-

sible; we mention but a few here. First, the syntactic coun- Conceptually, the passage from the approach based on
terpart of our treatment of substitution bgtegoricalstruc- free/bound variables to the one based on contexts consists
tural recursioni(e., parameterised initiality) will be worked  in turning the free-variable functidiV : Ay,, — P(Var)



into extra structure on terms. As we will see, the latter view-
point is important for bringing out the structure of ttype

A of A-terms (modulaxv-equivalence). As a first step in this
direction notice that contextsratify A-terms. Indeed, for
all n € N, we have a bijective correspondence

~

Ae(n) 22 Ag(n) : tH—[t]a (2

where

def

Ae(n) = {t € Avar | 21,...,zn Bt}

Aa(n) ¥ {[ta |t € Avar AFV(®) C {21, .20 } }.

Next, note that the well-formedness rules (1) induce (and in

fact correspond to) the following bijection: for alle N,

\L\IZ

n+Ag(n+1) + Ag(n) x Ag(n)
1EMN

teAe(n+1)

(t1,t2) € Ag(n) X Ag(n)

Ae(n)

Li

®)
—
f—

F—

)\xn+1 .t
t1to

where, by abuse of notation, we write for the set
{1,...,n}.

To conclude the analysis of the structure/ofwe first
need to examine the structure of contexts.

The structure of contexts. The notion of context rel-
evant to this paper is that of (untypedartesian context
This is reflected in the operations which we allow for con-
text manipulation:exchangeweakening and contraction

These operations, when closed under composition, yield all
functions between contexts. Thus we take the category of

cartesian context8 to be the full subcategory @et with
objects{ 1,...,n } (n € N) representing generic abstract
contexts withn variables. (Note thdkf is isomorphic to the
category of finite cardinals and functions.)

A conceptual description of the categdfys as the free
cocartesian category on one object (seg [23, § VIII.4,

Lemma 1]). As such, it may be understood as being gener-

ated from an initial object (the generic abstract empty con-
text) by an operation of context extensign;) + 1, with

a generic abstract context with one varialle,Following
this viewpoint, we will henceforth consider the categéry
as equipped with a chosen coproduct structure

old,, new,

n n—+1

In particular, we havatomicoperations of exchange, weak-
ening, and contraction, respectively given by:

s [newy,old;] : 2—>2 |
oldg: 0—1 (4)

[idl,idl] :2—1

def
W =
def

C

We are now in a position to spell out the structure\of

The structure of A. Since contexts stratify terms, it follows
that the operations on contexast on them. Indeed, every
functionp : m = n in F (thought of as a renaming of
variables) induces an action

Ao(m) — 29 Ay )
>~y def e
Aa (m) — > Aa (71)
Ao (P)

whereA,(p) : t = t{xpi/x, ..
functorial in the sense that

Ag(p o p) = Ae(p') o Ae(p)

foralln € Fandforallp : n >n’andp’ : n’ >n" inTF.
That is,A; is an object of the presheaf category

-y Zpm/Zm }, Which is

AZ (1dn) = idAz (n) )

def

F = Set” |

which we take to be ouuniverse of types Following
common usage, thedgpesare referred to apresheaves
see [23]. ClearlyA,, is also a presheaf ifi. The presheaf
of variablesVar is given, forn € F andp in I, by

Var(n) ={z1,...,2, }, Var(p):z,—=>x, .

For a slightly more involved example consider the presheaf
L : F — Set with L(n) given by the left hand side of the
bijection (3) and equipped with the functorial action

def

L(p) = p+ Au(p+idy) + Ae(p) x As(p) (5)

for everyp in F.

An important non-syntactic example is provided by the
presheaf of operationffrom A to B) (A, B) for objects
A, B in a cartesian categot.

(A, B)(n) = C(A", B)
(A, B)(p) : fr="fo(mp,..

forn € Fandp : m = ninF. In particular, the presheaf
(A, A) is the so-calleatlone of operationson A.

Recall that a magf : A — B between presheaves
andB in F is a natural transformationge., an indexed fam-
ily of functions{ f,, : A(n) — B(n) in Set },cr Subject
to the following naturality condition: for alb: m = n in
F, fn o A(p) = B(p) o fm. The bijection (2) yields an iso-
morphism of presheavely = A, in F. More interestingly,
notice that the particular implementation oterms (mod-
ulo a-equivalence) adopted in our exposition by the method
of De Bruijn levels is reflected in the mathematical struc-
tures under consideration. Indeed, the bijection (3) yields a
natural isomorphism of presheavesz A, in F if and only

(6)

i) 7rpm>



if the chosen coproduct structure Bris taken to be the one
with old,, (i) = i (1 <4 < n) andnew,, = n+1 (cf.the rule
for A-introduction in (1)). We will see in the next section
that an implementation of-terms (modulax-equivalence)
by the method oDe Bruijn indices[9] is also available in
our framework.

Note that, as the passage frdihto F is given by precom-
position, it preserves equational structures. In particular, the
monad((—)+1,{ id, + w },{ id, 4+ ¢ }) onF yields the
monad(d, up, contract) on F.

We examine some properties @fFirst we note that, by
constructiong has both a left and a right adjoint; hence it

We conclude with a description of the type constructors Preserves both limits and colimits (as a simple calculation

and the operations on typedf.([11]) in the universeF that

will be needed in the rest of the paper. As an application,
we will show how type constructors may be used to provide

a structural definition of the preshdafbf (5).

The structure of F. The categoryF is a well-known and
interesting topos (see [28VI11.4]). Many of the construc-

will also show). These adjoints are given by the following
natural bijective correspondences

X —A
XxV—A

SA—Y
A— (V+1,Y)

@)

Second, observe that the first correspondence above shows

tions that follow in this and later sections can be cast in that
the language of topos theory. However, we do not emphas-

ise this viewpoint here; rather we adopt a presentation that

generalises to oth@ontexts

Sums, products, and exponentials: is a complete and

o~

3(-) COME ®)

and states that the elements of typé in the contextX
are the elements of typé in the extended context’ x V.

cocomplete cartesian closed category, with limits and Finally, we note the important fact that the diagram

colimits computed pointwise (see [23]).
V: The presheaf (chbstract variablesV € F is obtained

old new

% 1

\ 9)

by embedding the generic abstract context with one variable,

in F into F via Yoneda. Explicitly,V is the embedding of
F in Set given by

V(n)=n (nekF); V(p)=p (pinF).

J: The type constructor (fazontext extensign : F — F
is obtained from the operation of context extengien+1 :
F — FF by precomposition:

5=) € (D)o ((—)+1)

In elementary terms, fod € F, the preshead A is given,
forn € Fandpin T, by

(04)(n) = Aln+1), (6A)(p) = Alp+id1) ;

and, forf : A — Bin F, the mapif : A — 0B is
given by

(5f)71 = fny1: A(n + 1) — B(n 4 1)

Thus, intuitively, an element of typ#A in the contextn is
an element of typel in the extended context+ 1.

The operations on contexts extend frd@hto F in the
same vein. For instance, the operations in (4) respectivel
give rise to the natural transformatiossap : §2 — §2,
up : Id — 6, contract : 62 — § with the following
explicit descriptions: ford € F andn € F,

(nel)

A(id, +5s): A(n+2) —=A(n+2) ,
A(d, +w) : A(n) —A(n+1) ,
A(d, +¢): Ain+2) —=An+1) .

SWap 4,
upA,n

contracta ,,

y

is a coproduct irnf.

It should be clear that the tydeof (5) equals the struc-
tured typeV + A, + Ay x Ap. We will show in the next
section that the inductive typeX.V+46 X + X x X charac-
terises the preshedf of A\-terms (modulax-equivalence).

2. Binding signatures and their algebras

We show that the universg provides a suitable setting
for modelling binding signatures and their algebras. In par-
ticular, we obtain a characterisation of syntax with variable
binding by initiality, which generalises the well-known res-
ult for the first-order case [14]. This yields a notionaif-
stract syntax with variable bindinfpr which an initial al-
gebra semantics is available.

Syntax with variable binding. A binding signature [31]
¥ = (0,a) consists of a set obperationsO equipped
with anarity functiona : O — N*. An operator of ar-
ity (n1,...,n) hask arguments and binds; variables in
thei-th argument] < ¢ < k). For instance, the signature of
the A-calculus has an operator of arify), viz. A-abstraction
with one argument and binding one variable, and an oper-
ator of arity(0, 0), viz. application with two arguments and
binding no variables.

The terms associated to a binding signature over a set
of variables (ranged over hy) are given by the following
grammar.

teTy =

x| o((z1, oy Tny ) te, oy (2,02, ) H)



whereo is an operator of arityn;, . .., nx). Obvious defin-
itions for free/bound variables andequivalence apply to
these terms.

Analogous to the case of thecalculus, for any binding
signature, there is a presheaf of terms (up-tequivalence)
TV, € F given by

TVa(n) € { [tla | FV(t) C {1, 20 } }
TVa(p) it F= t{xp/z1,. . Tpm/Tm}

foreveryn € Fandp : m = ninF.

Abstract syntax with variable binding. To give the ab-
stract characterisation 6f'V, we consider algebras of
binding signatures. Recalling that an operator of arity
(ni)1<i<k bindsn; variables in the-th argument and that

0 is a type constructor for context extension it is natural to
interpret an operation of arityn,,...,n;) on a presheaf
Ae Fasamap™ (A) x ... x " (A) — A, and hence

to define ax-algebra over a preshedf€ F as a map

I

0€0
a(o):<ni>1§i§k

5 (A) x ... x 6" (A) —= A

Thus, to a binding signature = (O, a) we associate the
functory : 7 — F given by

I

0€0
a(0)=(ni)i<i<k

$(x)

[T o

1<i<k

(10)

wherenew(j) = new,1;_1 (1 < j < n;) andold(j) =
old,(j) (1 < j < n).

Theorem 2.1 The presheaf of term¥V, associated to a
binding signature: (equipped with the syntactic algebra
structure) is a freec-algebra on the presheaf of variables
V.

We show how the above general result may be used to im-
plement abstract syntax. To this end recall that the under-
lying presheaf of a fre&-algebra on a presheaf may be
computed as the union of the chain

0C X +3(0) CX+X(X+%(0)C---

obtained by iterating the functoX + X on the empty
presheab.

In the particular case of the free algebfaon the
presheaf of variable¥ for the signature of the--calculus
YA (X) = 60X + X x X this calculation amounts to the fol-
lowing inductive definitionsA(n) = {t|ntt} (n € F)
where

1<1<n
n b var(i)

n+1lkt
n F lam(t)

n#tl nFtQ
n = app(t1,t2)

and, forp: m >ninF,

A(p)(t) = case t of

var(i) = var(pi)
lam(¢') = lam(A(p+idi)(2))
app(t1,2) = app( A(p)(t), Alp)(t2) ) -

This abstract view yields particular implementations of

and define the category of algebras associated to the signay_terms according to different choices of the coproduct

ture X as the categor-Alg, with objects given bylgeb-
rash : A — A and morphismg : (A, h) — (A", /)
given by mapsf : A — A’ that arehomomorphidn the
sense thaf o h = h' o X(f). This approach fits into the

paradigm of categorical algebra [4, 5]. However we remark
that the general theory allows for the treatment of more
sophisticated notions of signature (incorporating equational
theories and thus enabling us to deal with notions such as

A-models) which will not be considered in this extended ab-
stract.

As is well-known (seee.qg. [4]), the forgetful functor
¥-Alg — F : (A, h) == A has a left adjoint provid-
ing the freeX-algebra on a presheaf; which, for a presheaf
X € F,is aninitial(X + X)-algebra.

The presheaf of term&V, of a binding signature
¥ = (0, a) has asyntactic algebra structure [7(*)],co
given, at stage, by the mapping sending the tuple of terms
(t:)1<i<k to the term

O( (xnew(l)v s axnew(ni))ji
{Z1/% 011y, > Tn/Totdm) } J1<i<k 5

structure on the categolyy For instance, ibld,, (i) = + 1

(1 <i<n)andnew, =1 (n € N) then the presheak

implementsA-terms by the method of De Bruijn indices;

as one can notice, for example, from the fact that, for
:m—=>ninF,

Jfi=1 .
, otherwise .

N lam(var 1)
A(p)(lam(vari)) = { jam(var pi)
(The reader may wish to consider examples involwgp
and up.) Of course, the implementation of-terms by
the method of De Bruijn levels is obtained by choosing
old, (i) =i (1 <i <mn)andnew, =n+1(n € N).

A glance at initial algebra semantics. To consider inter-
pretations of the\-calculus letfold : D < D : unfold be
a retraction in a cartesian closed categof33].

The clone of operation&D, D) € F (see (6)) admits a
canonical interpretation of variables V. — (D, D) given
by

n —= C(D", D)
i = 5

9



and may be equipped with an algebra structure
(D, D)+ (D, D) x (D, D) — (D, D) as follows

c(D™',D) — C(D", D)

f = fold o A(f)
C(D™,D)xC(D",D) —= C(D™, D)
(f ) > evo (unfold o f,x) .

As A is the freeXy-algebra onV, it follows from The-
orem 2.1 that : V— (D, D) has a uniqguéitomomorphic
extension—] : A — (D, D) characterised as

1‘

V +8(D, D) + (D, D) x (D, D) — (D, D)

[var,lam,app]

V+OoA+AXA —

VH[[]]H[]]XHl -]

’

and which can be easily shown to be the traditiamahpos-
itional interpretation function\(n) — C(D", D) (n € N)
of A-terms [33].

3. Substitution

A program for substitution. To motivate the more abstract
development to follow, and to link our approach to program-
ming, we start by writing a (categorical) recursive program
for substitutingh-terms in the type theory of.

Let A (the presheaf ok-terms) be the free algebra on the
presheaf of variable¥ for the signature of the-calculus
3\ (see Theorem 2.1 and the discussion after it). We aim at
defining an operation

c:0AXA—A

that, roughly speaking, given a pdif, u) consisting of a
termt with a newvariable {.e., a term in an extended con-
text) and a termu, substitutes: for the newvariable int.
Using that

OA =6V 4+ 60A + A x 0A

(sinceA = uX.V+6X 4+ X x X andd preserves sums and
products) we can define a recursive programdfdry case
analysis on its first argument. The definition is as follows

o(t,u) = case t of

x: 60V = Bz, u) (11)
t':86A = lam(do(swapt/,upu))
11,82t oA = app( U(thu)vo(t%u) )

where, using thadV = V + 1 (see (9)), thévasic substitu-
tion3: 0V x A — Ais defined as

=
=

var(y)

B(z,u) = case x of old(y)
new

(12)

Put in elementary terms, the natural
on i A(n+1) x A(n) — A(n) (n € F)is given by

family

on(t,u) = case t of

var(i) = caseiof old,(j) = var(j)
new,, = u

lam(t") = lam( oy41(swap, t',up,, u))

app(t1,t2) = app( on(ti,u), on(t, u))

Note that the substitution,, (lam(t'), u) proceeds bgwap-
ping (the indices for) the binding and the new variables in
t' € A(n + 2), and by subsequently using the substitution
operatioro,, 1 with theweakenedrgumentip,, (u) (where
indices are shifted appropriately).

Interestingly, using thaf(X) = XV (see (8)), we have
that the definition (11) corresponds to the following one

o(t,u) = case t of
x:V+1 = casezof old(y) = var(y)
new = u
lam( Ay :V.o( Az : V.t'zy, u))

app( o(t1,u),o(tz,u))

If’:(AV)V =
ti,te : AV =>

which resembles the traditional definition of substitution.
For instance, note that by construction the equality

t' (A Eo( Az Vilam( Ay : V.t'zy ), u)
=lam(Ay: V.o( Az : V.t'zy , u))

holds.

As we show below, the above definition of substitution
amounts to a definition bgtructural recursion Hence in
our approach, unlike in the traditional one (sedy, [3]),
the well-definedness of the substitution operation need not
be established separately.

Definition of substitution by structural recursion. For
a binding signature:, let ¢px : ¥XTX — TX be a free
Y-algebra over the presheat.

To define a substitution operation

o 5(TV) x TV—="TV

for the presheaf of term3¥'V by structural recursion we
proceed as follows. First, with the aid of the followieg-
changenatural isomorphisms

6"(5X) ~ (XV)VX---XV ~ (XV><m><V)V ~ 5(5”X)
we define a distributive law
URD I E=>> (13)

of the endofuncto®: over the monad in an obvious way.
Second, we observe that this construction yields a natural

isomorphism(§V + X) 0 § = § o (V + X); from which, by



theuniformity propertyof the fixed-point operator (see [12,
Theorem 7.3.12 (6)]), it follows that the-algebra

Prv Sov 5

S5(TV) = §3(TV) — §(TV)

is free overdV. Finally, using thaty has astrength
str: 2(A) x X —3(A x X), we leto be the unique ho-
momorphic extension of a basic substitutigras in (12).
That is, we define to be the unique map such that the dia-
gram

2(5(TV)) x TV =5 S(5(TV) x TV) —=Z= 51TV
Py xid
§R(TV) x TV v
Sy xid
5(TV)
Snv xid

oV x TV

commutes, where the mag : V — TV, coercing vari-

Clones. Substitution algebras axiomatise single-variable
substitution. Here we show that they are equivalent to the
following axiomatisation of simultaneous substitution by
abstract clones (familiar, in the concrete case, from univer-
sal algebra—€f. [8, page 132]).

An (abstrac) clone X (X, u,e) consists of
a family X {Xn}nen Of sets, a family.

(Mex,|1<i< n},ey Of distinguished elements,

i

and a family

= {Ngv?) P X X (X)) > Xin }

n,meN

of operations such that, for every elemerdf X,,, every

n-tuple@ = (uq,...,u,) of elements ofX,,, and every
m-tuple v of elements ofX;, the following three axioms
hold:

,un(t;Llw"aLn):t )
(o (t50); 0) = g (t5 (s 0),

M\ Li; ) = u; )
(Lis @) = ug ) a4

s 1 (tn; 0))

An example of a clone is given by taking: fof,, the set

TV(n) of terms (in a context of, variables) with respect to

a given signature; fo.™ the variable; in TV (n); and for

ables into terms, is the universal arrow associated to the frequg,’;) the simultaneous substitution of terms

algebrdl'V.

Substitution algebras. We show that the opera-
tions o : 6TV x TV —TV (obtained as above) and
v = (énv) onew : 1 —= 4TV obey the laws of sub-
stitution. To this end we introduce an axiomatisation of
single-variable substitution, whose justification is provided
by Theorem 3.3 below.

Definition 3.1 A substitution algebra X = (X, ¢, v) con-
sists of a presheak € F equipped with two operations
¢:0X x X — X (asubstitutionandv : 1 — X (a
generic new variablesuch that:

Lu:XFsvu=u.
2. t,bu: X F ¢(up(t),u)=t.
3.t:8%°X + dg(t,v) = contract(t) .

4.t:0°X ,u:6X ,v: X F
<(d¢(t, u),v) = <(ds(swap(t), up(v)),<(u,v)) .

The axioms have the following intuitive reading. Axiom 1

says that substituting for the generic new variable has the
expected result. Axiom 2 says that substituting for a vari-
able that is not in a term does not affect the term. Axiom 3
says that substituting the generic new variable in a term is

like performing a contraction. Axiom 4 is a version of the
substitution lemma.

Theorem 3.2 For every binding signaturg, the structure
(TV, 0, nyv ") is a substitution algebra.

o™ . TV(n) x TV(m)" — TV(m)
We writeo,(,?)(t; ) in infix notation and with no indices as
t [@]. Then the three axioms in (14) amount to the following
familiar properties of substitution:

txr,...,xn) =t

ta)[o] = tfu o], ..., un[0]]

(The lastidentity is theyntactic substitution lemmacf. [3,
page 27].)

For every object of a cartesian categog, the clone of
operations(C, C') on C' as defined after (6) yields another
example of an (abstract) clon&:, = C(C™, C) is then the
set of operations o6 of arity n, «; is thei-th projections;,
andy,, is given by composition.

We remark that, just like clones of operations, abstract
clones X (X, u,t) are presheaves, witlX(n) of

X, and with action on renamingg : n > m given by

def
X(p)(t) = :um(t; Lply«-oy Lpn)'

Both clones and substitution algebras, together with the
evident homomorphisms, form categories.

Theorem 3.3 The categories of substitution algebras and
of clones are equivalent.

Monoids in F. There are several equivalent categorical
formulations of clonesg.g, as Lawvere theories as fi-
nitary monadsor asone-object cartesian multicategories



(See [13] for an elementary presentation of the connection(Note that every equivalence classX# V' contains a tuple

between substitution and Lawvere theories.) Here we recallof the form(¢; 1, . ..
that clones (and thus also substitution algebras) are equival-

ent to monoids inF with respect to a suitable monoidal

,n).)
Monoids in F, with mapsf : (X, u,t) — (X', 1/, )
given by morphismg : X — X’ such thatf o, = «/ and

structure. This compact and abstract presentation is im-f o = u' o (f e f), form a categoryMon(F) with initial

portant for reasoning about the structure of substitution and

its interplay with>-algebras. In particular, it allows us to

define the simultaneous substitution of terms by structural

recursion.

objectV = (V,VeV = V,idy). Similarly, one defines
the categoryMon(C) of monoids in any monoidal category
C=(C,®,I).

The monoidal structure we consider is given by a (highly proposition 3.4 The categories of clones and of monoids

non-symmetric) tensore' of presheaves with univ. For
every presheal’, the functor—e Y is left adjoint to the
endofunctorY, ) on F:

XeY —7
X —(Y,2)
An explicit description of this tensor is given by the follow-
ing coendformula: for presheave¥ andY’,

(X oY) (m) = (ILeny X (n) X Y (m)")

={(t;@) [neN, tc X(n), ucY(m)"}, ~
where=: is the equivalence relation generated by

(t;ul,...

JUp) ~ (t5uy, .. ul)

iff there exists amap : n = n’ such thatX (p)(t) = ¢’ and
u; = u;n For example, foX =Y = A,

(w1295 U1, u2) ~ (T2T3; U, UL, U2)
~ ($1$3;U1,U,U2) ~ (xle;uz,ul)

and(zix1;u) ~ (x129; u,w), forall uy, ug, andu in A(m).

A monoid X = (X, p,¢) in F = (F,e, V) consists of
a presheafX, aunit . : V — X, and amultiplication
u: X ¢ X — X such that the following diagrams com-

mute.

Vex 4 x

S

X

idec

X=—"XeV
M o

<

Xe(XeoX)

iido;t

XeX

(XeX)eX

/uidl

XeX X

o

in F = (F,e,V) are equivalent.

A program for simultaneous substitution. Let F' be an
endofunctor on a monoidal closed categ6ry= (C,®, I).

If F has a strengthstxy : F(X) QY —F(X®Y),
then its free algebras are algmrametrically free with
respect to®. In particular, if F has a free algebra
¢r: FTI—=TIoverl, then there is a unique map
o:TI®TI—TI making the following diagram com-
mutative

stTr,Tr1

F(TI) @ TI "5 P(TT o T1) —£% prp

Jo

o1 ®idl

wheren; is the universal arrow corresponding to the free
algebraT’l. That is,o is the unique (parametric) homo-

morphic extension of @ T'1 =TI

Proposition 3.5 Under the above

TI = (TI,0,nr)isamonoid inC.

hypotheses,

The adjunction (15) shows th#t = (F, e, V) is closed.
Moreover, endofunctors correspondinditst-order signa-
tures are strong with respect #in the obvious way; for
instance, for binary operations, the strength mapg; «)
to ((t1; @), (t2;@)). Moving on to binding signatures, one
has to prove) strong. This holds in the categoly/F
of pointed presheaves; indeefiyestricts to an endofunc-
toron V/F (viaup : Id — ¢) and it has a strength
stxy(m): (6X ¢Y)(m) —3§(X e Y)(m) which acts as
follows,

(t; @) = (t; [up,y, (4), tmt1(newy,)])

The three isomorphisms in the above diagrams act as fol-

lows:
(i; ﬁ) —u;

((t;@); U) == (t; (u1;0), . . ., (un; 0))

(t:1,...,n)—t |

where, : V — Y is the point ofY". In particular, the free

>-algebraTV overV has a pointyy ©f var: V—TV
given by the insertion of the variables (mappintp x;).

The above proposition then yields the following:



Corollary 3.6 Let X be a binding signature and &tV be
its free algebra oveY. Then(TV, o, nv) is a monoid inF,
whereo : TV ¢ TV — TV is the uniqgue homomorphic

extension ofV e TV = TV.

The abover is defined bystructural recursion For in-
stance, for the\-calculuso : A ¢ A — A is defined as
follows: for all (¢; @) in (A e A)(m),

om(t; W) = case t of
var() > oy
lam(¢) = lam( opme1 (¥'; [up,, (@), var(new,,)] )
app(t1,t2) = app( om(t1; @), om(l2; @) )

Takingold,(i) =i+ 1 (1 < i < n)andnew, = 1 we
get De Bruijn’s definition of substitution for indices, while
old,(i) = i (1 < i < n)andnew, = n + 1 give the
definition for levels. Cf.[9, 34].)

4. Initial algebra semantics

of diagram (16) specialise, respectively, to the models and

theuniformity conditiongiven in [2].

We call the unique morphisfi'V.—= 93t from the ini-
tial X-monoidT'V to aX-monoidMt theinitial algebra se-
manticscorresponding t@Jt. By definition of morphism in
¥-Mon(F), the initial algebra semantics é®@mpositional
it preserves the variablesd it always satisfies treemantic
substitution lemm{B5, Lemma 4.6].

Consider, for example, the\-calculus. For
M = (M, p, ¢, [abs,-]) to be aXy-monoid the follow-
ing should hold: for alt in Mt(n) ande’in M(m)",

fim (abs(d); €) = abs(tm+1(d; [up,, (€), tm+1(newn, )])
Nm(dl . d2; é‘) = ,U'm(dl; g) . Nm(an é‘)

The initial algebra semantics of thecalculus with respect
to such a modeMt is the unique morphisrfi] : A — M
such that:

[Az.t] = abs[t]
[z:] = [ (]

[tu] = [t - [l

The key to initial algebra semantics for syntax with vari-
able binding is the definition of a category lihding al- [t [urs .- un]l = pn ([2]; [ua], - - -, [un])
gebras(consisting of compatible algebra and substitution ) ) )
structures) in which the syntactic algebra equipped with the [N Particular, one can easily verify that the modé!, D)
usual substitution operation is characterised as an initial ob-T0" the A-calculus defined at the end of Section 2 is a
ject. In this section we consider two equivalent formulations > Monoid and that the corresponding initial algebra se-
of the concept of binding algebrsi¢. asy-monoids and as ~ Mantics is the desired one.
>-substitution algebras) and establish the required property Using substitution algebras rather than monoids we
(i.e, that the freex-algebralV with the monoid structure  define an equivalent category &Fsubstitution algebras
given by Corollary 3.6 is an initial object in the category of as follows: objects are quadruplés = (X, <, v, h) con-
Y-monoids). sisting of a substitution algebr@X, <, ) and aX-algebra

For any strong endofunctoF’ on ¢ = (C,®,1), (X, h) that are compatible in the sense that the diagram

let F-Mon(C) be the category with objects given by

F-monoids i.e, quadruplesX = (X, u,t,h), wWhere S(5(X)) x x Srexx D((X) x X) —2> X
(X, i, ) is amonoid inC and(X, k) is an F-algebra such
that vx xidlg
" P 0X(X) x X h
stx,x w
FX)® X 2 F(X ® X) —> FXx ~ i
dhxid
h@”dl J/” (16) 5(X) x X - X
X®X X

g commutes (where is the distributive law of (13)); morph-

isms are maps iff that are bottt-algebra and substitution-
algebra homomorphisms.

commutes; morphisms are maps 6fwhich are both
F-algebra and monoid homomorphisms.

Theorem 4.1 Let F, TI, o, n;, and¢; be as in Proposi-

Theorem 4.2 The categories of:-substitution algebras
tion 3.5. Therl'l = (T'I, 0,01, ¢1) is an initial F-monoid.

and ofX-monoids inF are equivalent.

This result, together with Corollary 3.6, ensures that we can

take X-monoids as our category of models for a binding Acknowledgements. We are grateful to John Power es-
signatureX; the type of termsI'V is then the initial such  pecially for his suggestion of working with algebras over
model. We remark that-monoids and the commutativity presheaves.
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