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Abstract

Tasks like code generation and semantic

parsing require mapping unstructured (or

partially structured) inputs to well-formed,

executable outputs. We introduce ab-

stract syntax networks, a modeling frame-

work for these problems. The outputs

are represented as abstract syntax trees

(ASTs) and constructed by a decoder with

a dynamically-determined modular struc-

ture paralleling the structure of the output

tree. On the benchmark HEARTHSTONE

dataset for code generation, our model ob-

tains 79.2 BLEU and 22.7% exact match

accuracy, compared to previous state-of-

the-art values of 67.1 and 6.1%. Further-

more, we perform competitively on the

ATIS, JOBS, and GEO semantic parsing

datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation

are challenging in part because they are struc-

tured (the output must be well-formed) but not

synchronous (the output structure diverges from

the input structure).

Sequence-to-sequence models have proven ef-

fective for both tasks (Dong and Lapata, 2016;

Ling et al., 2016), using encoder-decoder frame-

works to exploit the sequential structure on both

the input and output side. Yet these approaches

do not account for much richer structural con-

straints on outputs—including well-formedness,

well-typedness, and executability. The well-

formedness case is of particular interest, since it

can readily be enforced by representing outputs as

abstract syntax trees (ASTs) (Aho et al., 2006), an

approach that can be seen as a much lighter weight

∗Equal contribution.

name: [

’D’, ’i’, ’r’, ’e’, ’ ’,

’W’, ’o’, ’l’, ’f’, ’ ’,

’A’, ’l’, ’p’, ’h’, ’a’]

cost: [’2’]

type: [’Minion’]

rarity: [’Common’]

race: [’Beast’]

class: [’Neutral’]

description: [

’Adjacent’, ’minions’, ’have’,

’+’, ’1’, ’Attack’, ’.’]

health: [’2’]

attack: [’2’]

durability: [’-1’]

class DireWolfAlpha(MinionCard):

def __init__(self):

super().__init__(

"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,

CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):

return Minion(2, 2, auras=[

Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”

Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e

( exists $1 ( and ( from $1 ci0 )

( to $1 ci1 )

( = ( fare $1 ) $0 ) ) )

Figure 2: Example of a query and its logical form

from the ATIS dataset. The ci0 and ci1 tokens

are entity abstractions introduced in preprocess-

ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-

moyer and Collins, 2005).

In this work, we introduce abstract syntax

networks (ASNs), an extension of the standard

encoder-decoder framework utilizing a modular

decoder whose submodels are composed to na-

tively generate ASTs in a top-down manner. The

decoding process for any given input follows a dy-
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namically chosen mutual recursion between the

modules, where the structure of the tree being

produced mirrors the call graph of the recursion.

We implement this process using a decoder model

built of many submodels, each associated with a

specific construct in the AST grammar and in-

voked when that construct is needed in the out-

put tree. As is common with neural approaches to

structured prediction (Chen and Manning, 2014;

Vinyals et al., 2015), our decoder proceeds greed-

ily and accesses not only a fixed encoding but

also an attention-based representation of the in-

put (Bahdanau et al., 2014).

Our model significantly outperforms previous

architectures for code generation and obtains com-

petitive or state-of-the-art results on a suite of se-

mantic parsing benchmarks. On the HEARTH-

STONE dataset for code generation, we achieve a

token BLEU score of 79.2 and an exact match ac-

curacy of 22.7%, greatly improving over the pre-

vious best results of 67.1 BLEU and 6.1% exact

match (Ling et al., 2016).

The flexibility of ASNs makes them readily ap-

plicable to other tasks with minimal adaptation.

We illustrate this point with a suite of seman-

tic parsing experiments. On the JOBS dataset,

we improve on previous state-of-the-art, achiev-

ing 92.9% exact match accuracy as compared to

the previous record of 90.7%. Likewise, we per-

form competitively on the ATIS and GEO datasets,

matching or exceeding the exact match reported

by Dong and Lapata (2016), though not quite

reaching the records held by the best previous se-

mantic parsing approaches (Wang et al., 2014).

1.1 Related work

Encoder-decoder architectures, with and without

attention, have been applied successfully both to

sequence prediction tasks like machine translation

and to tree prediction tasks like constituency pars-

ing (Cross and Huang, 2016; Dyer et al., 2016;

Vinyals et al., 2015). In the latter case, work has

focused on making the task look like sequence-to-

sequence prediction, either by flattening the output

tree (Vinyals et al., 2015) or by representing it as

a sequence of construction decisions (Cross and

Huang, 2016; Dyer et al., 2016). Our work dif-

fers from both in its use of a recursive top-down

generation procedure.

Dong and Lapata (2016) introduced a sequence-

to-sequence approach to semantic parsing, includ-

ing a limited form of top-down recursion, but

without the modularity or tight coupling between

output grammar and model characteristic of our

approach.

Neural (and probabilistic) modeling of code, in-

cluding for prediction problems, has a longer his-

tory. Allamanis et al. (2015) and Maddison and

Tarlow (2014) proposed modeling code with a

neural language model, generating concrete syn-

tax trees in left-first depth-first order, focusing on

metrics like perplexity and applications like code

snippet retrieval. More recently, Shin et al. (2017)

attacked the same problem using a grammar-based

variational autoencoder with top-down generation

similar to ours instead. Meanwhile, a separate line

of work has focused on the problem of program

induction from input-output pairs (Balog et al.,

2016; Liang et al., 2010; Menon et al., 2013).

The prediction framework most similar in spirit

to ours is the doubly-recurrent decoder network in-

troduced by Alvarez-Melis and Jaakkola (2017),

which propagates information down the tree using

a vertical LSTM and between siblings using a hor-

izontal LSTM. Our model differs from theirs in

using a separate module for each grammar con-

struct and learning separate vertical updates for

siblings when the AST labels require all siblings

to be jointly present; we do, however, use a hori-

zontal LSTM for nodes with variable numbers of

children. The differences between our models re-

flect not only design decisions, but also differences

in data—since ASTs have labeled nodes and la-

beled edges, they come with additional structure

that our model exploits.

Apart from ours, the best results on the code-

generation task associated with the HEARTH-

STONE dataset are based on a sequence-to-

sequence approach to the problem (Ling et al.,

2016). Abstract syntax networks greatly improve

on those results.

Previously, Andreas et al. (2016) introduced

neural module networks (NMNs) for visual ques-

tion answering, with modules corresponding to

linguistic substructures within the input query.

The primary purpose of the modules in NMNs is

to compute deep features of images in the style of

convolutional neural networks (CNN). These fea-

tures are then fed into a final decision layer. In

contrast to the modules we describe here, NMN

modules do not make decisions about what to gen-

erate or which modules to call next, nor do they
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...
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(a) The root portion of the AST.

Call
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Name
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identifier
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identifier

“MinionSelector”

Name

object
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Num Call

identifier

“Adjacent”

Name

func

func func

args

args args

func args

(b) Excerpt from the same AST, corresponding to the code snip-
pet Aura(ChangeAttack(1),MinionSelector(Adjacent())).

Figure 3: Fragments from the abstract syntax tree corresponding to the example code in Figure 1. Blue

boxes represent composite nodes, which expand via a constructor with a prescribed set of named children.

Orange boxes represent primitive nodes, with their corresponding values written underneath. Solid black

squares correspond to constructor fields with sequential cardinality, such as the body of a class

definition (Figure 3a) or the arguments of a function call (Figure 3b).

maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax

Description Language (ASDL) framework (Wang

et al., 1997), which represents code fragments as

trees with typed nodes. Primitive types correspond

to atomic values, like integers or identifiers. Ac-

cordingly, primitive nodes are annotated with a

primitive type and a value of that type—for in-

stance, in Figure 3a, the identifier node stor-

ing "create minion" represents a function of

the same name.

Composite types correspond to language con-

structs, like expressions or statements. Each type

has a collection of constructors, each of which

specifies the particular language construct a node

of that type represents. Figure 4 shows con-

structors for the statement (stmt) and expression

(expr) types. The associated language constructs

include function and class definitions, return state-

ments, binary operations, and function calls.

Composite types enter syntax trees via compos-

ite nodes, annotated with a composite type and a

choice of constructor specifying how the node ex-

pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.

html#abstract-grammar

primitive types: identifier, object, ...

stmt

= FunctionDef(

identifier name, arg* args, stmt* body)

| ClassDef(

identifier name, expr* bases, stmt* body)

| Return(expr? value)

| ...

expr

= BinOp(expr left, operator op, expr right)

| Call(expr func, expr* args)

| Str(string s)

| Name(identifier id, expr_context ctx)

| ...

...

Figure 4: A simplified fragment of the Python

ASDL grammar.1

a composite node of type stmt that represents a

class definition and therefore uses the ClassDef

constructor. In Figure 3b, on the other hand, the

root uses the Call constructor because it repre-

sents a function call.

Children are specified by named and typed

fields of the constructor, which have cardinalities

of singular, optional, or sequential.

By default, fields have singular cardinality,

meaning they correspond to exactly one child.

For instance, the ClassDef constructor has a

singular name field of type identifier.

Fields of optional cardinality are associ-
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ated with zero or one children, while fields

of sequential cardinality are associated with

zero or more children—these are designated us-

ing ? and * suffixes in the grammar, respectively.

Fields of sequential cardinality are often used

to represent statement blocks, as in the body field

of the ClassDef and FunctionDef construc-

tors.

The grammars needed for semantic parsing can

easily be given ASDL specifications as well, us-

ing primitive types to represent variables, predi-

cates, and atoms and composite types for standard

logical building blocks like lambdas and counting

(among others). Figure 2 shows what the resulting

λ-calculus trees look like. The ASDL grammars

for both λ-calculus and Prolog-style logical forms

are quite compact, as Figures 9 and 10 in the ap-

pendix show.

2.2 Input Representation

We represent inputs as collections of named com-

ponents, each of which consists of a sequence of

tokens. In the case of semantic parsing, inputs

have a single component containing the query sen-

tence. In the case of HEARTHSTONE, the card’s

name and description are represented as sequences

of characters and tokens, respectively, while cate-

gorical attributes are represented as single-token

sequences. For HEARTHSTONE, we restrict our

input and output vocabularies to values that occur

more than once in the training set.

3 Model Architecture

Our model uses an encoder-decoder architecture

with hierarchical attention. The key idea behind

our approach is to structure the decoder as a col-

lection of mutually recursive modules. The mod-

ules correspond to elements of the AST gram-

mar and are composed together in a manner that

mirrors the structure of the tree being generated.

A vertical LSTM state is passed from module to

module to propagate information during the de-

coding process.

The encoder uses bidirectional LSTMs to em-

bed each component and a feedforward network

to combine them. Component- and token-level at-

tention is applied over the input at each step of the

decoding process.

We train our model using negative log likeli-

hood as the loss function. The likelihood encom-

passes terms for all generation decisions made by

the decoder.

3.1 Encoder

Each component c of the input is encoded using a

component-specific bidirectional LSTM. This re-

sults in forward and backward token encodings

(
−→
hc,
←−
hc) that are later used by the attention mech-

anism. To obtain an encoding of the input as a

whole for decoder initialization, we concatenate

the final forward and backward encodings of each

component into a single vector and apply a linear

projection.

3.2 Decoder Modules

The decoder decomposes into several classes of

modules, one per construct in the grammar, which

we discuss in turn. Throughout, we let v de-

note the current vertical LSTM state, and use f

to represent a generic feedforward neural network.

LSTM updates with hidden state h and input x are

notated as LSTM(h,x).

Composite type modules Each composite type

T has a corresponding module whose role is to se-

lect among the constructors C for that type. As

Figure 5a exhibits, a composite type module re-

ceives a vertical LSTM state v as input and ap-

plies a feedforward network fT and a softmax out-

put layer to choose a constructor:

p (C | T,v) =
[

softmax (fT (v))
]

C
.

Control is then passed to the module associated

with constructor C.

Constructor modules Each constructor C has a

corresponding module whose role is to compute

an intermediate vertical LSTM state vu,F for each

of its fields F whenever C is chosen at a composite

node u.

For each field F of the constructor, an embed-

ding eF is concatenated with an attention-based

context vector c and fed through a feedforward

neural network fC to obtain a context-dependent

field embedding:

ẽF = fC (eF, c) .

An intermediate vertical state for the field F at

composite node u is then computed as

vu,F = LSTMv (vu, ẽF) .

Figure 5b illustrates the process, starting with a

single vertical LSTM state and ending with one

updated state per field.
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stmt
ClassDef

Return

If

For

While If

(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*

stmt

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for

singular and optional cardinalities.

Constructor field modules Each field F of a

constructor has a corresponding module whose

role is to determine the number of children asso-

ciated with that field and to propagate an updated

vertical LSTM state to them. In the case of fields

with singular cardinality, the decision and up-

date are both vacuous, as exactly one child is al-

ways generated. Hence these modules forward the

field vertical LSTM state vu,F unchanged to the

child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either

zero or one children; this choice is made using a

feedforward network applied to the vertical LSTM

state:

p(zF = 1 | vu,F) = sigmoid (fgen
F

(vu,F)) . (2)

If a child is to be generated, then as in (1), the state

is propagated forward without modification.

In the case of sequential fields, a horizon-

tal LSTM is employed for both child decisions and

state updates. We refer to Figure 5c for an illus-

tration of the recurrent process. After being ini-

tialized with a transformation of the vertical state,

sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-

plying a modified form of (2):

p (zF,i = 1 | sF,i−1, vu,F) =

sigmoid (fgen
F

(sF,i−1, vu,F)) .

If zF,i = 0, generation stops and the process ter-

minates, as represented by the solid black circle

in Figure 5c. Otherwise, the process continues as

represented by the white circle in Figure 5c. In

that case, the horizontal state su,i−1 is combined

with the vertical state vu,F and an attention-based

context vector cF,i using a feedforward network

f
update
F

to obtain a joint context-dependent encod-

ing of the field F and the position i:

ẽF,i = f
update
F

(vu,F, su,i−1, cF,i).

The result is used to perform a vertical LSTM up-

date for the corresponding child wi:

vwi
= LSTMv(vu,F, ẽF,i).

Finally, the horizontal LSTM state is updated us-

ing the same field-position encoding, and the pro-

cess continues:

su,i = LSTMh(su,i−1, ẽF,i).
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Primitive type modules Each primitive type T

has a corresponding module whose role is to se-

lect among the values y within the domain of that

type. Figure 5d presents an example of the sim-

plest form of this selection process, where the

value y is obtained from a closed list via a soft-

max layer applied to an incoming vertical LSTM

state:

p (y | T,v) =
[

softmax (fT (v))
]

y
.

Some string-valued types are open class, how-

ever. To deal with these, we allow generation both

from a closed list of previously seen values, as in

Figure 5d, and synthesis of new values. Synthesis

is delegated to a character-level LSTM language

model (Bengio et al., 2003), and part of the role

of the primitive module for open class types is to

choose whether to synthesize a new value or not.

During training, we allow the model to use the

character LSTM only for unknown strings but in-

clude the log probability of that binary decision in

the loss in order to ensure the model learns when

to generate from the character LSTM.

3.3 Decoding Process

The decoding process proceeds through mutual re-

cursion between the constituting modules, where

the syntactic structure of the output tree mirrors

the call graph of the generation procedure. At

each step, the active decoder module either makes

a generation decision, propagates state down the

tree, or both.

To construct a composite node of a given type,

the decoder calls the appropriate composite type

module to obtain a constructor and its associated

module. That module is then invoked to obtain

updated vertical LSTM states for each of the con-

structor’s fields, and the corresponding constructor

field modules are invoked to advance the process

to those children.

This process continues downward, stopping at

each primitive node, where a value is generated

but no further recursion is carried out.

3.4 Attention

Following standard practice for sequence-to-

sequence models, we compute a raw bilinear at-

tention score qrawt for each token t in the input us-

ing the decoder’s current state x and the token’s

encoding et:

qrawt = e⊤t Wx.

The current state x can be either the vertical

LSTM state in isolation or a concatentation of the

vertical LSTM state and either a horizontal LSTM

state or a character LSTM state (for string gener-

ation). Each submodule that computes attention

does so using a separate matrix W.

A separate attention score q
comp
c is computed

for each component of the input, independent of

its content:

qcomp
c = w⊤

c x.

The final token-level attention scores are the

sums of the raw token-level scores and the corre-

sponding component-level scores:

qt = qrawt + q
comp
c(t) ,

where c(t) denotes the component in which token

t occurs. The attention weight vector a is then

computed using a softmax:

a = softmax (q) .

Given the weights, the attention-based context is

given by:

c =
∑

t

atet.

Certain decision points that require attention

have been highlighted in the description above;

however, in our final implementation we made

attention available to the decoder at all decision

points.

Supervised Attention In the datasets we con-

sider, partial or total copying of input tokens into

primitive nodes is quite common. Rather than pro-

viding an explicit copying mechanism (Ling et al.,

2016), we instead generate alignments where pos-

sible to define a set of tokens on which the atten-

tion at a given primitive node should be concen-

trated.2 If no matches are found, the correspond-

ing set of tokens is taken to be the whole input.

The attention supervision enters the loss

through a term that encourages the final attention

weights to be concentrated on the specified sub-

set. Formally, if the matched subset of component-

token pairs is S, the loss term associated with the

supervision would be

log
∑

t

exp (at)− log
∑

t∈S

exp (at), (3)

2Alignments are generated using an exact string match
heuristic that also included some limited normalization, pri-
marily splitting of special characters, undoing camel case,
and lemmatization for the semantic parsing datasets.
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where at is the attention weight associated with to-

ken t, and the sum in the first term ranges over all

tokens in the input. The loss in (3) can be inter-

preted as the negative log probability of attending

to some token in S.

4 Experimental evaluation

4.1 Semantic parsing

Data We use three semantic parsing datasets:

JOBS, GEO, and ATIS. All three consist of nat-

ural language queries paired with a logical repre-

sentation of their denotations. JOBS consists of

640 such pairs, with Prolog-style logical represen-

tations, while GEO and ATIS consist of 880 and

5,410 such pairs, respectively, with λ-calculus log-

ical forms. We use the same training-test split

as Zettlemoyer and Collins (2005) for JOBS and

GEO, and the standard training-development-test

split for ATIS. We use the preprocessed versions

of these datasets made available by Dong and La-

pata (2016), where text in the input has been low-

ercased and stemmed using NLTK (Bird et al.,

2009), and matching entities appearing in the same

input-output pair have been replaced by numbered

abstract identifiers of the same type.

Evaluation We compute accuracies using tree

exact match for evaluation. Following the pub-

licly released code of Dong and Lapata (2016), we

canonicalize the order of the children within con-

junction and disjunction nodes to avoid spurious

errors, but otherwise perform no transformations

before comparison.

4.2 Code generation

Data We use the HEARTHSTONE dataset intro-

duced by Ling et al. (2016), which consists of

665 cards paired with their implementations in the

open-source Hearthbreaker engine.3 Our training-

development-test split is identical to that of Ling

et al. (2016), with split sizes of 533, 66, and 66,

respectively.

Cards contain two kinds of components: tex-

tual components that contain the card’s name and

a description of its function, and categorical ones

that contain numerical attributes (attack, health,

cost, and durability) or enumerated attributes (rar-

ity, type, race, and class). The name of the card

is represented as a sequence of characters, while

3Available online at https://github.com/

danielyule/hearthbreaker.

its description consists of a sequence of tokens

split on whitespace and punctuation. All categori-

cal components are represented as single-token se-

quences.

Evaluation For direct comparison to the results

of Ling et al. (2016), we evaluate our predicted

code based on exact match and token-level BLEU

relative to the reference implementations from the

library. We additionally compute node-based pre-

cision, recall, and F1 scores for our predicted trees

compared to the reference code ASTs. Formally,

these scores are obtained by defining the intersec-

tion of the predicted and gold trees as their largest

common tree prefix.

4.3 Settings

For each experiment, all feedforward and LSTM

hidden dimensions are set to the same value. We

select the dimension from {30, 40, 50, 60, 70}
for the smaller JOBS and GEO datasets, or from

{50, 75, 100, 125, 150} for the larger ATIS

and HEARTHSTONE datasets. The dimensionality

used for the inputs to the encoder is set to 100 in

all cases. We apply dropout to the non-recurrent

connections of the vertical and horizontal LSTMs,

selecting the noise ratio from {0.2, 0.3, 0.4, 0.5}.
All parameters are randomly initialized using Glo-

rot initialization (Glorot and Bengio, 2010).

We perform 200 passes over the data for the

JOBS and GEO experiments, or 400 passes for

the ATIS and HEARTHSTONE experiments. Early

stopping based on exact match is used for the se-

mantic parsing experiments, where performance is

evaluated on the training set for JOBS and GEO

or on the development set for ATIS. Parameters

for the HEARTHSTONE experiments are selected

based on development BLEU scores. In order to

promote generalization, ties are broken in all cases

with a preference toward higher dropout ratios and

lower dimensionalities, in that order.

Our system is implemented in Python using

the DyNet neural network library (Neubig et al.,

2017). We use the Adam optimizer (Kingma and

Ba, 2014) with its default settings for optimiza-

tion, with a batch size of 20 for the semantic pars-

ing experiments, or a batch size of 10 for the

HEARTHSTONE experiments.

4.4 Results

Our results on the semantic parsing datasets are

presented in Table 1. Our basic system achieves
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ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy

ZH15 84.2 ZH15 88.9 ZH15 85.0

ZC07 84.6 KCAZ13 89.0 PEK03 88.0

WKZ14 91.3 WKZ14 90.4 LJK13 90.7

DL16 84.6 DL16 87.1 DL16 90.0

ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.

SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1

NEAREST 3.0 65.0 65.7

LPN 6.1 67.1 –

ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-

PATT refers to the system with supervised atten-

tion mentioned in Section 3.4. LPN refers to the

system of Ling et al. (2016). Our nearest neigh-

bor baseline NEAREST follows that of Ling et al.

(2016), though it performs somewhat better; its

nonzero exact match number stems from spurious

repetition in the data.

a new state-of-the-art accuracy of 91.4% on the

JOBS dataset, and this number improves to 92.9%

when supervised attention is added. On the ATIS

and GEO datasets, we respectively exceed and

match the results of Dong and Lapata (2016).

However, these fall short of the previous best re-

sults of 91.3% and 90.4%, respectively, obtained

by Wang et al. (2014). This difference may be par-

tially attributable to the use of typing information

or rich lexicons in most previous semantic pars-

ing approaches (Zettlemoyer and Collins, 2007;

Kwiatkowski et al., 2013; Wang et al., 2014; Zhao

and Huang, 2015).

On the HEARTHSTONE dataset, we improve

significantly over the initial results of Ling et al.

(2016) across all evaluation metrics, as shown in

Table 2. On the more stringent exact match metric,

we improve from 6.1% to 18.2%, and on token-

level BLEU, we improve from 67.1 to 77.6. When

supervised attention is added, we obtain an ad-

ditional increase of several points on each scale,

achieving peak results of 22.7% accuracy and 79.2

BLEU.

class IronbarkProtector(MinionCard):

def __init__(self):

super().__init__(

’Ironbark Protector’, 8,

CHARACTER_CLASS.DRUID,

CARD_RARITY.COMMON)

def create_minion(self, player):

return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit

a uniform structure that our system almost always

predicts correctly, as in this instance.

class ManaWyrm(MinionCard):

def __init__(self):

super().__init__(

’Mana Wyrm’, 1,

CHARACTER_CLASS.MAGE,

CARD_RARITY.COMMON)

def create_minion(self, player):

return Minion(

1, 3, effects=[

Effect(

SpellCast(),

ActionTag(

Give(ChangeAttack(1)),

SelfSelector()))

])

Figure 7: For many cards with moderately com-

plex descriptions, the implementation follows a

functional style that seems to suit our modeling

strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in

the HEARTHSTONE dataset share a great deal of

common structure. As a result, in the simplest

cases, such as in Figure 6, generating the code is

simply a matter of matching the overall structure

and plugging in the correct values in the initializer

and a few other places. In such cases, our sys-

tem generally predicts the correct code, with the
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class MultiShot(SpellCard):

def __init__(self):

super().__init__(

’Multi-Shot’, 4,

CHARACTER_CLASS.HUNTER,

CARD_RARITY.FREE)

def use(self, player, game):

super().use(player, game)

targets = copy.copy(

game.other_player.minions)

for i in range(0, 2):

target = game.random_choice(targets)

targets.remove(target)

target.damage(

player.effective_spell_damage(3),

self)

def can_use(self, player, game):

return (

super().can_use(player, game) and

(len(game.other_player.minions) >= 2))

class MultiShot(SpellCard):

def __init__(self):

super().__init__(

’Multi-Shot’, 4,

CHARACTER_CLASS.HUNTER,

CARD_RARITY.FREE)

def use(self, player, game):

super().use(player, game)

minions = copy.copy(

game.other_player.minions)

for i in range(0, 3):

minion = game.random_choice(minions)

minions.remove(minion)

def can_use(self, player, game):

return (

super().can_use(player, game) and

len(game.other_player.minions) >= 3)

Figure 8: Cards with nontrivial logic expressed in an imperative style are the most challenging for our

system. In this example, our prediction comes close to the gold code, but misses an important statement

in addition to making a few other minor errors. (Left) gold code; (right) predicted code.

exception of instances in which strings are incor-

rectly transduced. Introducing a dedicated copy-

ing mechanism like the one used by Ling et al.

(2016) or more specialized machinery for string

transduction may alleviate this latter problem.

The next simplest category of card-code pairs

consists of those in which the card’s logic is

mostly implemented via nested function calls.

Figure 7 illustrates a typical case, in which the

card’s effect is triggered by a game event (a spell

being cast) and both the trigger and the effect are

described by arguments to an Effect construc-

tor. Our system usually also performs well on in-

stances like these, apart from idiosyncratic errors

that can take the form of under- or overgeneration

or simply substitution of incorrect predicates.

Cards whose code includes complex logic ex-

pressed in an imperative style, as in Figure 8, pose

the greatest challenge for our system. Factors like

variable naming, nontrivial control flow, and in-

terleaving of code predictable from the descrip-

tion with code required due to the conventions of

the library combine to make the code for these

cards difficult to generate. In some instances (as

in the figure), our system is nonetheless able to

synthesize a close approximation. However, in the

most complex cases, the predictions deviate sig-

nificantly from the correct implementation.

In addition to the specific errors our system

makes, some larger issues remain unresolved. Ex-

isting evaluation metrics only approximate the

actual metric of interest: functional equiva-

lence. Modifications of BLEU, tree F1, and exact

match that canonicalize the code—for example,

by anonymizing all variables—may prove more

meaningful. Direct evaluation of functional equiv-

alence is of course impossible in general (Sipser,

2006), and practically challenging even for the

HEARTHSTONE dataset because it requires inte-

grating with the game engine.

Existing work also does not attempt to enforce

semantic coherence in the output. Long-distance

semantic dependencies, between occurrences of a

single variable for example, in particular are not

modeled. Nor is well-typedness or executability.

Overcoming these evaluation and modeling issues

remains an important open problem.

5 Conclusion

ASNs provide a modular encoder-decoder archi-

tecture that can readily accommodate a variety of

tasks with structured output spaces. They are par-

ticularly applicable in the presence of recursive

decompositions, where they can provide a simple

decoding process that closely parallels the inher-

ent structure of the outputs. Our results demon-

strate their promise for tree prediction tasks, and

we believe their application to more general out-

put structures is an interesting avenue for future

work.
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A Appendix

expr

= Apply(pred predicate, arg* arguments)

| Not(expr argument)

| Or(expr left, expr right)

| And(expr* arguments)

arg

= Literal(lit literal)

| Variable(var variable)

Figure 9: The Prolog-style grammar we use for the

JOBS task.

expr

= Variable(var variable)

| Entity(ent entity)

| Number(num number)

| Apply(pred predicate, expr* arguments)

| Argmax(var variable, expr domain, expr body)

| Argmin(var variable, expr domain, expr body)

| Count(var variable, expr body)

| Exists(var variable, expr body)

| Lambda(var variable, var_type type, expr body)

| Max(var variable, expr body)

| Min(var variable, expr body)

| Sum(var variable, expr domain, expr body)

| The(var variable, expr body)

| Not(expr argument)

| And(expr* arguments)

| Or(expr* arguments)

| Compare(cmp_op op, expr left, expr right)

cmp_op = Equal | LessThan | GreaterThan

Figure 10: The λ-calculus grammar used by our

system.
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