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ABSTRACT THEORY OF ABELIAN OPERATOR ALGEBRAS:
AN APPLICATION OF FORCING

BY
THOMAS J. JECH1

Abstract.  The abstract abelian operator theory is developed from a general
standpoint, using the method of forcing and Boolean-valued models.

1. Introduction. One aspect of the study of operator algebras is the description of
the algebraic structure of algebras of operators, and representation of abstract
algebras on a Hilbert space. This "algebraization" of the theory of algebras of
operators is well understood in the case of bounded normal operators.

The theory of von Neumann algebras (or the more general C *-algebras) is based
on Stone's characterization of abelian (commutative) algebras of bounded operators
in [13]. Stone's theory describes such algebras axiomatically, in algebraic terms,
without reference to Hilbert space, and develops a function calculus and the spectral
theory for the abstract algebras. Moreover, the algebras are algebraically isomorphic
to the algebra C(X) of all (complex-valued) continuous functions on an extremally
disconnected compact Hausdorff space X.

The functional representation of abelian von Neumann algebras has been used to
extend Stone's work to abelian algebras of unbounded normal operators. This has
been done for instance by Fell and Kelley in [2]; a detailed account of spectral
theory based on such an approach is presented by Kadison and Ringrose in [5]. For
a given abelian von Neumann algebrad, one defines an algebras/of normal (not
necessarily bounded) operators affiliated with j/. If C(X) is the functional algebra
isomorphic toj/, then s/ is isomorphic to the algebra of all normal functions on X.
This provides both the spectral theory and a Borel function calculus for unbounded
normal operators.

Our approach is more abstract, and more in the spirit of Stone's program. We
introduce an algebraic structure that we call a Stonean algebra. A Stonean algebra is
essentially a normed commutative algebra with involution, but the norm does not
necessarily take only finite values. Its real (i.e. selfadjoint) elements admit a partial
ordering that defines a topology, generally weaker (coarser) than the topology
induced by the norm. A complete Stonean algebra is complete in this topology.

We define a completion of a Stonean algebra and prove

Theorem A. Every Stonean algebra has a unique completion.

_
Received by the editors February 21, 1984.
1980 Mathematics Subject Classification. Primary 03E40, 03C60, 46J99.
1 Supported in part by an NSF grant.

©1985 American Mathematical Society
0002-9947/85 $1.00 + $.25 per page

133

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



134 T. J JECH

With the topology induced by the partial order we associate a different kind of
convergence, called ¡^-convergence (the cognoscenti will notice that ^-convergence is
the convergence in a Boolean-valued model). As ^-convergence is defined in
algebraic terms, it is respected by isomorphisms between complete Stonean algebras.

As the bounded elements of a complete Stonean algebra form a complete metric
space in the norm topology, this approach is a generalization of Stone's theory:

Theorem B. Every complete Stonean algebra is isomorphic to the algebra of all
normal functions on some extremally disconnected compact Hausdorffspace 3."; bounded
elements correspond to (finite) continuous functions on .£".

We give another characterization of complete Stonean algebras, which describes
the logical structure of Stonean algebras and which accounts for the formal similar-
ity between normal operators on one hand and complex numbers on the other.

Theorem C. Every complete Stonean algebra st is isomorphic to the algebra of all
^-valued complex numbers, where SS is the complete Boolean algebra of all projections
inst.

Using this representation, one gets the following "function calculus" for complete
Stonean algebras:

Theorem D. For any element a of a complete Stonean algebra st there is a
homomorphism <pa of the algebra of all Borel (complex-valued) functions on C into st
such that

(a) <pa(id) = a, and
(b) iff is a pointwise limit of{/„}, then q>a(f) is the SS-limit of {<?„(/„)}■

This justifies the customary notation

f(a) = aoa(f)        (a e st,/Borel on C).

We shall now turn our attention to operator algebras. The following theorem is
the raison d'être for the concept of a complete Stonean algebra.

Theorem E. For any set G of mutually compatible normal operators in a Hilbert
space, there exists a smallest complete Stonean algebra st of normal operators such that
GQst.

The construction of st in Theorem E is well known; cf. [8]. If G consists of a
single unbounded normal operator, st is the algebra constructed in [2]; if G is an
abelian von Neumann algebra, st is the algebra constructed in [5].

Not every complete Stonean algebra is isomorphic to a complete algebra of
operators. A necessary condition is that its Boolean algebra of projections is the
direct sum of measure algebras. We call a Stonean algebra measurable if its B is a
measure algebra.
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ABELIAN OPERATOR ALGEBRAS 135

Theorem F. Every measurable complete Stonean algebra is isomorphic to the
algebra of all measurable functions (mod = a.e.) on some measure space 3C; bounded
elements correspond to functions in££x(9C).

This generalizes the well-known representation of abelian von Neumann algebras
on a separable Hilbert space by-S^; cf. [14, Theorem 1.22].

Let stbe a measurable complete Stonean algebra and let Jif be a Hilbert space. We
say that st has a complete representation on Jif if there is a complete abelian algebra
st' of operators in Jifsuch that st and st' are isomorphic (as complete Stonean
algebras).

Theorem G. Every measurable complete Stonean algebra st has a complete
representation on some Hilbert space Jif; ifstis countably generated, then there is such
an Jif that is separable.

Some of the theory presented in this paper owes much to the theory of Boolean-
valued models, which, of course, descends from Cohen's method of forcing [1]. I am
particularly indebted to Scott and Solovay's treatment of real numbers in Boolean-
valued models [11], as well as to Takeuti's application of these methods to self-
adjoint operators [15]. I am also grateful to Richard Herman for many enlightening
discussions on operator algebras.

In §2 we state axioms for Stonean algebras and complete Stonean algebras, and
show that a complete Stonean algebra st is determined by the complete Boolean
algebra of projections in st.

In §3 we introduce the norm and piecewise uniform and ^-convergence in
complete Stonean algebras.

In §4 we introduce the Boolean-valued model and show that the ^-valued
complex numbers form a complete Stonean algebra with projections 3S.

In §5 (representation by continuous functions) we prove Theorem B and investi-
gate the two kinds of convergence on the function algebra.

§6 introduces the function calculus.
§7 is devoted to the construction of a completion of a Stonean algebra.
In §8 we generalize the definition of ^-convergence for Stonean algebras that are

not necessarily complete, and prove that completeness is equivalent to ^-conver-
gence of all á?-Cauchy nets. We also describe the complete Stonean subalgebra of a
complete Stonean algebra generated by a given set.

In §9 we introduce measurable Stonean algebras, prove Theorem F, show that
^-convergence for measurable algebras corresponds to convergence of functions a.e.,
and ^-convergence and piecewise uniform convergence coincide.

In §10 we apply the general theory to complete abelian algebras of operators in a
Hilbert space.

2. Complete Stonean algebras. We introduce axioms for Stonean algebras and
complete Stonean algebras. Throughout the paper, we use lower case Greek letters
for complex numbers (scalars). Several of the axioms are redundant when complete-
ness is assumed.
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136 T. J. JECH

Let st be a set containing 0 and 1, endowed with addition, multiplication, scalar
multiplication and involution   *, and a binary relation < .

2.1 Axiom I. stis an abelian algebra over C with involution   * and unit 1.

For every ÀeCwe identify X with the element X • 1 g st; thus + and • agree
with complex + and -, and X* = X.

2.2 Definition. An element a g stis real if a* = a.
We denote the set of all reals by @. Every z g st has the real part x = Re(z) =

(z + z*)/2, and the imaginary part y = Im(z) = (z - z*)/2z, where x, y g ^ and
z = x + /y. For every z = x + iy, the element zz* = x2 +y2is real.

2.2 Axiom II. The relation < is a partial ordering of 3& and satisfies:
(a) //a < Z>, í/ie/7 a + c<f)-rc(ii,/),cef),
(b) if a ^Oandb^O, then a ■ b > 0 (a, b g ^),
(c)//X > 0,thenX > 0,
(d) a2 > 0/or a// û G á?, a2 = 0 only if a = 0,
(e) if a,b g ^, then {a, b} has a least upper bound a V b,
(i)ifu > Oanda, b £@,then u ■ (a V b) = («a) V (we),
(g) if u> 0, then u A 1 > 0.

T/ws < agrees on R vwf/i //ie natural ordering of real numbers. Note that, by 2.2(d),
zz* > 0 for all z est.

As usual, a > b means a > ¿> and a + b. We call a real w positive if « > 0.

2.3 Axiom III. Let a be real. Ifa£0 then there is a positive u such that ua > 0.

The following axiom guarantees that st has no infinitesimals.

2.4 Axiom IV. Let a be real. If a < efor all e > 0, then a < 0.

2.5 Axiom V. Let a be real. For every positive real u there is a positive v < u and
X g R such that av < X.

(Every element of st is locally bounded.)

We caWsta Stonean algebra if it satisfies Axioms I-V. The following two axioms
make a Stonean algebra complete.

2.6 Axiom VI. Let A be a nonempty set of nonnegative reals such that a ■ b — 0
whenever a, b are distinct elements of A. Then there is some u G âisuch that u ^ a for
alla G A.

Such a m is an upper bound of the set A in the partial ordering < .

2.7 Axiom VII. Every nonempty set of reals that has an upper bound in < has a
least upper bound. Ifu^O, then sup{ ua: a G A} = u ■ sup A.

We refer to Axioms VI and VII as the completeness axioms.
2.8 Definition. A homomorphism of a Stonean algebra preserves +, •, * and < .

A complete homomorphism preserves least upper bounds whenever they exist. A
subalgebra is a regular subalgebra if the inclusion homomorphism is complete.
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ABELIAN OPERATOR ALGEBRAS 137

2.9 Examples, (a) C is a complete Stonean algebra and is a regular subalgebra of
every Stonean algebra.

(b)£Cx(0,1) is a Stonean algebra, not complete.
(c)^(0,1), the algebra of all measurable functions on (0,1), is a complete Stonean

algebra, and ^(0,1) is a regular subalgebra of Jt(0,1).
(d) C[0,1] is a Stonean algebra and a subalgebra of =2^(0,1) but not an regular

subalgebra.
The claim in 2.9(a) is just a restatement of Axiom IV:

2.10 Lemma. For allX g R, X = sup{ii: ¡i < X}.

Proof. By Axiom IV, 0 = inf{ e: e > 0}.    D
2.11 Definition. A projection p is real such that p2 = p. We denote by 38 the set

of all projections.

2.12 Lemma. The set 3$ is a Boolean algebra; if st is a complete Stonean algebra,
then 38 is a complete Boolean algebra.

Proof. The Boolean algebraic operations on â?are defined as follows:

(2.13) pi\q=p-q,   pVq=p + q-p-q,    -p = \-p.

An easy calculation shows that these operations, applied to projections, yield
projections. Likewise, the standard axioms of Boolean algebras [9] are verified. For
instance, the distributive and de Morgan laws read

(1 ... P(l + r~ fl- r)= pq+ pr -(pq)(pr),
(        ' l-pq=(\-p)+{l-q)-(\- p){\ - fl),

and the partial ordering < of ^is the Boolean algebraic partial ordering of 38:

(2.15) p < fl   iff   p-q=p.

To verify (2.15), note first that by 2.2(d), p > 0 for all p <^38, and hence 0 < p < 1.
If p ■ a = p, then/? = pq < 1 ■ q = q; conversely, if p < q, then/? = p2 < pq ^ p • 1
= p, and so pq = p.

If S is a nonempty set of projections, then 1 is an upper bound; if p = sup S, then
p is a projection.    □

The main result of this section is that a complete Stonean algebra is uniquely
determined by its Boolean algebra of projections.

2.16 Remark. In the Examples 2.9, 3S = {0,1} when st= C or st= C[0,1], and
38 = Borel/null when st= SCX oxM.

2.17 Theorem. Let st1 andst2 be complete Stonean algebras and let 38\ and 382 be
their algebras of projections. If tr is an isomorphism between 38\ and 3S2, then m has a
unique extension to an isomorphism between st1 andst2.

We devote the rest of the section to the proof of Theorem 2.17; we assume that
stis a complete Stonean algebra.

2.18 Definition. A condition is a projection/? ¥= 0. A condition/? is stronger than
a condition q if p < a. The set of all conditions is denoted by P.
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2.19 Definition. Let a, b be reals and/?, q conditions:

p \\- a = b (p forces a = b) ifpa = pb,
p lh a < b ûpa < pb,
p \\- a =£ b il qa ¥= qb for every q stronger than p,
p \\- a < b if p II- a < b and p \\- a ¥= b.

(Of course, the inspiration for this definition is Cohen's forcing [1].)

2.20 Lemma, (a) If p forces a = b (a < b, a ¥= b, a < b) and if q is stronger than p,
then q forces a = b (a < b, a =£ b, a < b).

(b) No p forces both a = b and a ¥= b.
(c) a = b iff\ \\- a = b iff every p II- a = b; a < ¿? iff! lh a < b iff every p lh a < /?.

Proof. Easy.
2.21 Definition.

[a = /?! = sup{/?:/> lh a = /?},       la < ¿?1 = sup{/?:/? lh a < /?},
[a # /?! = sup{/?:/) lh a * /?},        [a < Z?l = sup{/?:/? Il- a < /?}.

2.22 Lemma. For every a, b and p, there is a a < /? st/cft that q forces a = b, or a
forces a # ¿?.

Corollary. la # ¿>] = 1 - la = /?].

Proof. If there is no condition q < p that forces a = b, then /? forces a = /? by
definition.    □

2.23 Lemma. For every a, b and p, there is a q < /? ímc/i that a forces a ^ b or q
forces b < a.

Corollary. la < /?] = 1 - [Z? < a].

Proof. Without loss of generality, assume that b = 0. Let /? g P. By Axiom III
there exists a positive y < p such that either ao > 0 or ao < 0. Let us assume that
av > 0. Let q = \v ¥= 01. As v + 0, a is a condition; we shall show that a < /? and
a II- a > 0. If r is a condition such that r ■ p = 0, then rv ^ rp = 0, and so
r lh v = 0; hence r • a = 0 and it follows that q < p.

As 1 - q = lv = 01, we have (1 - a) • v = 0, and so v < a. Consequently, #a >
i?a > 0, and a lh a > 0.    D

2.24 Lemma. // a > 0, i/ie« i/ieve is a condition p and some e > 0 such that
p lh a > c.

Proof. By Axiom IV there is an e > 0 such that a 3È e. By Lemma 2.23 it follows
that la < e] + 1, and so there is a/? g P that forces a > e.   D

2.25 Lemma. For every real a and every condition p, there is a stronger condition q
and some X g R such that a lh a < X.

Proof. Let /? g P. By Axiom V there exists a positive 1; ̂  /> and some p such that
at? < ti. By Lemma 2.24 there is a q and an e > 0 such that q \\- v ^ e. Because
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v < p we have (as in the Proof of Lemma 2.23) a < /?; eqa < qav < pq, hence
a lh eu < ju, and letting X = p/e we get q lh a < X.    D

2.26 Definition. Two projections /? and a are orthogonal if /? • a = 0. A partition
of unity is a maximal set of pairwise orthogonal conditions (nonzero projections).

2.27 Lemma. Let W be a partition of unity and let {ap: p g W} C st. Then there is
a unique a G stsuch that pa = pa for all p G W.

Proof. It is enough to prove the existence in the case when each ap > 0; this is
because every element of st has the form x + iy where x, y G ¿%, and every real has
the forma = a + + a'wherea + = a ■ {a > 01 > 0 anda"= a • [a < 01 < 0.

Thus let IF be a partition of unity, and ap > 0 for all /? G IF. By Axiom VI, the
set

A = {paq:pe W}

has an upper bound, and hence a least upper bound a = sup .4. It is easily verified
that pa = pap for all /? g W.

To prove uniqueness, it suffices to show that a = 0 when pa = 0 for all p g IF.
But then 0 = sup{ /?a: /? g W} = a • sup W = a ■ \ = a.   D

2.28 Definition. A sfey? function is an element j with the property that there is a
partition of unity W and a set {Xp g C: /? g W} such that sp = Xpp for all /? g H7.

2.29 Definition. Let j/,, j/2 De Stonean algebras and let stx be a subalgebra of
j/2. j^2 is dense in st2 if:

(a) for every a2 > 0 inst2 there is an a, > 0 instl such that al < a2, and
(b) for every real a2 inst2 there is an ax g j/x such that a, > a2.

2.30 Lemma. If stx is a dense subalgebra of a complete Stonean algebra st2, then
every real a G st2 is the least upper bound of the set

S = { x G j-^ : x < a }.

Corollary. Ifstx is a dense subalgebra of a complete Stonean algebra st2, thenstx
is a regular subalgebra ofst2.

Proof. Let a g st2. By 2.29(b) there is an x g stx such that x < a, and so the set
5 is nonempty. Let b = sup S; we have b < a. If b < a, let d > 0 be in st2 such that
d < a - b. Then x + d G 5 for all x g 5, and

¿> + d = sup{x + d: x g 5} < b,

a contradiction.    D

2.31 Lemma. Letstbe a complete Stonean algebra. The set of all step functions in
stis a dense subalgebra ofst.

Proof. Lemmas 2.24, 2.25 and 2.27.   D
2.32. We are now ready to complete the proof of Theorem 2.17. Let stx and st2 be

complete Stonean algebras and let us assume that stx and st2 have the same algebra
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38 of projections. We extend the identity mapping on 38 to an isomorphism -n
between jj/j and st2 as follows:

We let tt(s) = s for every step function s g stv Then we apply Lemma 2.31 to
extend ir to an isomorphism between stx and st2. This also proves uniqueness
because if ir is an isomorphism between j^ andst2, then: (a) ir(l) = 1, (b) rr(n) = n
for all « = 1,2,3. (c) ir(r) = r for every rational r, (d) tr(X) = X for every
X G R, and, finally, (e) tr(s) = s for every step function s.   D

3. Norm and convergence. Throughout this section, st is a complete Stonean
algebra. For each a G st we define the norm of a as follows:

(3 j\ i|a|i _ Í least X > 0 such that aa* < X2   if such a X exists,
I oo    otherwise.

3.2 Lemma, (a) ||a|| > 0, and\\a\\ = 0 iff a = 0,
(b)||Xa|| = |X|-||A||,
(c)||a + /?||<||a|| + ||/?||,
(d)\\a-b\\^\\a\\-\\b\\,and
(e)||aa*|| = ||a||2.

Proof. Follows from Axiom 11(d). (b) and (d) are easy, and (c) is a standard
algebraic calculation. To prove (e), we can reduce it to the case when a > 0 and
||a2|| = 1; we want to prove that a < 1. If not, then there is a p g P and an e > 0
such that/? Ih a ^ 1 + e, and so/? Ih a2 > (1 + e)2, which implies ||a2|| > 1.   D

3.3 Definition. The set B(st) of all bounded elements of st consists of all a g
st of finite norm. B(st) is the bounded part of st.

The bounded part of stis a regular subalgebra of st. The norm induces a metric
on B(st ) which, due to the completeness axiom (Axiom VII) makes B(st ) a
complete metric space, and therefore a C*-algebra [14].

We shall consider three kinds of convergence of sequences in st, and, more
generally, of nets in st (see [6] for definition of a net). [In §8 we give a general
definition for algebras that are not necessarily complete.]

3.4 Definition, (a) a is a uniform limit of {a„} if \\an - a\\ -> 0,
(b) a is a piecewise uniform limit of {an} if there is a partition of unity W such

that, for all/? g W, {anp} converges uniformly to ap, and
(c) a is a 38-limit of {a„} if for every e > 0 there is a partition of unity Wc and a

set { Nf: p g WA such that, for every p G We, n > Ay implies \\ap - anp\\ < e.
An obvious modification of 3.4 yields the definition of uniformly Cauchy, piecewise

uniformly Cauchy, and 3S-Cauchy sequences and nets.
A more or less standard argument shows that a limit (of each kind), if it exists, is

unique. The completeness axiom yields the expected:

3.5 Lemma, (a) Every uniformly Cauchy net has a uniform limit.
(b) Every piecewise uniformly Cauchy net has a piecewise uniform limit.
(c) Every 38-Cauchy net has a 38-limit.
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Proof. By treating the real and imaginary parts separately, we may assume that
all the elements involved are real.

(a) If {a„} is uniformly Cauchy, then the set {a,,} has a lower bound and an
upper bound. It is easily verified that a = infmsupnS,m{am} is a uniform limit of the
net{a„}.

(b) This is a piecewise version of (a).
(c) Let {a„} bea á?-Cauchy. There is a partition of unity W and, for all p g IF,

there is an N such that \\anp - amp\\ < 1 whenever n, m > N   Letp

janP      dn>Np,
"        \ aN p    otherwise

and also

ap = aNpP       (p^W).

The set {/?„} has a lower bound a - 1, an upper bound a + 1, and a âf-limit
b = inf„supn>m{Z?„m}. And b is also the^-limit of {a„}.    D

It is clear that uniform convergence implies piecewise uniform convergence which,
in turn, implies ^-convergence.

Example. Let a > 0, ||a|| = oo, and let an = \/n ■ a ■ la < w2J. then a„ -> 0
piecewise uniformly, but ||an|| = n -» oo.

We shall show later that, for operator algebras, ^-convergence and piecewise
uniform convergence coincide.

We conclude with the following observation.

3.6 Proposition. Letstbe a complete Stonean algebra. Every a G stis a piecewise
uniform limit of a sequence in B(st).

Proof. Assume that a ^ 0. For every n, let a„ = a • \a < «1 = a A n. The
general case is reduced to a > 0 by using Re(z), and a-[[a>0]+a-[[a<0l.    D

4. The Boolean-valued model Vm. We proved in Theorem 2 that a complete
Stonean algebra is determined by its algebra of projections. We shall now give an
explicit construction of a complete Stonean algebra from its projections. The
technique is known: in the context of operators on Hilbert space it is the spectral
resolution jXdpx (see e.g. [8]); in set theory it is the construction of a Boolean-
valued model (see e.g. [4]).

4.1. Let 38 be a complete Boolean algebra. To construct a complete Stonean
algebra st=st(3S ) whose projections are isomorphic to 38, we define its reals
@(st) = ®(38 ). An element of ®(38 ) is a function </?x: X g R) with values in 38
such that:

A P\ = °>  V P\ = 1.   and
XeR XeR

PX =   A P\ + e-
e>0

(4.2)

(i)
(Ü)

(in)
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Our intention is, of course, that a function (px: X G R) represents the (unique)
real in a complete Stonean algebra st such that

(4.3) h<H = Px       (XeR).
If a g st, then the function defined by (4.3) has properties (4.2); conversely, if (px)
has properties (4.2), then there is a unique a g stsuch that (4.3) holds, namely

(4.4) a = sup{X/?x: X G R}.
Thus to construct a complete Stonean algebra from 38, it suffices to endow the set

¿%(38) with appropriate operations and +, • and relation < (as scalar multiplication
is obvious), and verify that the resulting j>/(33) satisfies Axioms I through VII.

We could do that by exploiting known identities for spectral resolutions (see [15]
for details). We follow a different path, and use the Boolean-valued model V®
instead.

The Boolean-valued model of set theory is a class F^of objects (38-valued names),
endowed with ^-valued functions (of two variables)

(4.5) \x=y\,       IxGyl.
The actual construction of V3 is irrelevant (see [4] for details), and for our purposes
it is convenient to assume that [x = yl = 1 holds only when x = y (this can be
assumed because Ix = yl = 1 is an equivalence relation). The important property of
the Boolean-valued model is this: From (4.5) one defines Boolean values of all
statements expressible in the language of set theory, by

[$ and ?] = [$] A [¥],    [0 or ¥] = [*] v [¥],    [notfc] = 1 - 1$],
(4.6) Ithere is* such that $(x)l = V{I$(*)]|:*e Va},

I for all x such that 3>(x)] = A {!*(*)!:* e v&)-

We see that $ holds in Va if [[$1 = 1. The main tool of the Boolean-valued model
theory is that every axiom of set theory (and hence every theorem of set theory)
holds in every Boolean-valued model.

The method of Boolean-valued models was developed by Scott and Solovay [11]
and Vopénka [16] from Cohen's method of forcing. In current terminology, when we
let P = 38 — {0} (forcing conditions),
(4.7) p Ih <S> (pforces $) means/? < JO].

One technical feature of Va is useful to mention, that is, the property

(4.8) if px$(x)l = 1, then there is an x g Va such that I$(x)] = 1.
In view of (4.6), this is a consequence of the following property:

If IF is a partition of unity and {xp: p g IF} C Va, then
(4.9) there is a unique x g Va such that /? Ih x = xp, for all

p g W.
(Compare with Lemma 2.27.) It also follows from (4.9) that if x is obtained from

{xp: /? g W) and if $ is some property such that l<b(xp)\ = 1 for all /?, then
I<J?(x)l = 1. For example, the universe of sets F (the ground model) is naturally
embedded in Va as a subclass F c Va. By (4.9) it follows that

(4.10) [x g V\ = 1
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if and only if there is a partition of unity W and a set {xp: p G IF} c V such that
[x = xp\ = /? for all/? G W.

Let R^ be the set of all ^-valued reals, that is, the set of all a g Va such that
(4.11) [a is a real numberl = 1.

The actual real numbers R (the real numbers in V) are embedded in R^ as a dense
subset; they are those a g Va which satisfy

[a G R] = 1,
which by (4.10) is equivalent to being a "step function":

[a = Xpj = p       (/? G IF; IF a partition of unity).

As [R is dense in R^l = 1, every a G Ra is uniquely determined by the set of all
X g R with a < X, i.e., by the â?-valued function
(4.12) ([a < XI: XeR).
The function (4.12) satisfies (4.2); conversely any function that satisfies (4.2) defines
an element a of R^, and such an a is unique by the assumption we made on the
equivalence relation [x = yl = 1. Thus we have a one-to-one correspondence be-
tween R^ and Si. (This correspondence is due to Scott and Solovay.)

Thus 3? is identified with R^ which is naturally endowed with +, • and < :
a < b ifla</?l = l,

(4.13) a + b = c    if la + b = c] = 1,
a • b = c      if la ■ b = cj = 1.

Let st be the algebra of all a + ib where a, b G 3?.

4.14 Lemma, st is a complete Stonean algebra and its algebra of projections is 33.

Proof. Axioms I and II of §2 are easily verified using the calculus of Boolean
values (4.6).

Proof of Axiom III. Let a G Si. The statement
a < 0    or   a > 0

holds in Va, and so
[a < 01 V la > 01 = 1.

If a ^ 0 (i.e. if [a < 01 * 1), then [a > 01 > 0. Let p = la > 0]. Then p ■ a = the
unique ¿? such that lb = aj = p and lb = 0\] = I - p, and we have pa > 0 for this
p > 0.

Proof of Axiom IV. If a < e for all e > 0, then
la < e for aile G R, e > 01 = 1.

and hence
la < 0] = 1.

Proof of Axiom V. Let a g Si and let u > 0. Since
[there is X g R such that au < XI = 1,

there exists X g R and p g 38, p > 0, such that
p Ih u > 0    and    au < X.

Let i? = /?m. Then 0 < v < u, and ai; < X.
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Proof of Axiom VI. Let A be a nonempty set of nonnegative reals such that
a • b = 0 whenever a, b g A. For each a g ^ let

pa = la±0l.
Since

[a • b = 0 implies either a = 0or¿? = 0] = l,

it follows that pa • ph = 0 whenever a =£ /?. Let /?0 = 1 - VaG/j /?a and let IF = {pa:
a e A or a = 0, and pa + 0}. IF is a partition of unity and there exists a unique
x g ^ such that pa Ih x = a for all a g ,4 and p0 Ih x = 0. Clearly, x > a for all
a G /Í.

Proof of Axiom VII. If A c ^such that /I has an upper bound, then

M has an upper boundl = 1,
and because

[every bounded set of reals has a least upper boundl = 1,

there is an a G Si such that

[a = sup/ll = 1,
which, in turn, translates into a = sup .4.

Finally, we prove that the algebra of all projections in st is 33. We observe that

[if a2 = a then either a = 0 or a = 1] = 1,

and therefore if a g st is such that a2 = a, then

[a = 11=/?,    [ii = 0l = l-p
for some /? g 33. However, p itself is such that

lp = H=p   and   [/? = 01 = 1-/?
and, by uniqueness, a = p.   D

Thus we have

Theorem C. For every complete Boolean algebra 33 there is a unique complete
Stonean algebra st whose algebra of projections is 38; it is the algebra of 38-valued
complex numbers.

We have the following correspondence:

(4.15)

0,1
+ ,■

*
x = X- 1

step function s
reals

<
projection/?

pa = pb
pa < pb

0,1
+ ,-

complex conjugation
[x = Xl = l.Xe C

Is G Cl = 1
real numbers

[/?G  {0,l}l = l,/? = [/? = ll
p Ih a = b
p Ih a < b
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We note that the forcing relation Ih , as well as the Boolean values [ 1, as we
defined them for = , <-.., ¥• and < in 2.19 and 2.21, coincide with [ 1 and Ih in
(4.6) and (4.7) under this correspondence.

We shall now turn our attention to convergence. Let {a„} be a net of elements of
st, and consider the statement
(4.16) [fl = lima„l = l,
or, equivalently.

(4.17) [Ve G R, e > 0, 3/VVa ̂  N \a„ - a\ « e] = 1,
which, when translated, gives

(4.18) Ve > 0V/> G PWq G P,q < /?, 3NVn > N q Ih \an - a\ < e,
and that, in turn, is equivalent to

(Ve > 0)(3 partition of unity Wc)3{Nf:p g We}(Vp g We)\/n
(419) XT*-        I-       II II

« < Ay implies \\ap - a„p\\ < e,

and we have

4.20 Proposition. A net {an} c st 33-converges to a if and only if
l\ima„ = 11 = 1,

which is why we defined ^-convergence in the first place.

5. Representation by continuous functions. We now use the Boolean-valued model
to obtain a representation of complete Stonean algebras by algebras of continuous
functions.

Let st be a complete Stonean algebra and let 33 be the algebra of all projections in
st. Let áfbe the Stone space [12] of 33, namely the set of all ultrafilters on 33, with
the topology given by the basis of open sets
(5.1) Up= {xg iT:p<Ex}.
The space £"is compact and Hausdorff. The Boolean algebra 33 is isomorphic to the
set algebra 33' of all clopen sets in 3"; and because 38 is complete, is extremally
disconnected (the closure of every open set is open, see [6]), and so 38' is the
collection of all regular open sets in 3C.

Let
(5.2) Cu{oo},       Ru{-oo,+oo)
denote, respectively, the Riemann sphere (one-point-compactification of C) and the
extended real line. Following [5], we let
(5.3) jV(Sf) = all continuous functions/: #"-» C U {oo}

such that/_, (oo) is nowhere dense

(the normal functions on 3C),
and
(5.4) y(iT) = all continuous functions/: X'-> R U {oo, -oo}

such that/_,( ± oo) is nowhere dense

(the selfadjoint functions on if ).
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Theorem B. Every complete Stonean algebra st is isomorphic to the algebra JÍ(íX),
where íT is the Stone space of the algebra 38 of all projections of st. Under this
isomorphism B(st), the bounded part of st, corresponds to C(S), the algebra of all
complex continuous functions on SC.

Proof. We identify st with the 33-valued complex numbers. For each a G Si = Ra,
let/,: SC'—> R U {-oo, oo} be as follows:

(5.5) /a(x) = inf{XGR:[a<Xl Gx}.

First we show that each fa is continuous. Let a g R and x0 g SC. Assume that
/a(x0) = X0 G R and let e > 0. It follows from (5.5) that [a < X0 + el G x0. Now,
because

(5.6) [a<X0-el + [a > X0-el = 1
and the first term in (5.6) is not in x0 (that would imply f(x0) < X0), we have
[a > X0 — el G x0, and so

p = [X0 - e < a < X0 + el G x0.

If x g Up, then, first, [a < X0 + el g x and we have fa(x) < X0 + e. Second, for
any X if [a < XI G x, then X > X0 - e, and therefore fa(x) > X0 - e. Hence fa(U)
ç [X0 — e, X + e].

Assume that fa(x) = + oo and let X0 G R. Since [a > XI G x0 for every X g R,
we let/? = [a > X01 and it follows that fa(U) Q [XQ, + oo].

Finally, assume that fa(x0) = -oo and let X0 g R. We have [a < XI g x0 for
every X G R, and soif we let/? = [a < X01, we have fa(Up) ç [-oo, X0].

It is easy to see that fa is finite on an open dense set. As the topology is given by
the sets U , this amounts to the fact that

for every p e P there exists q e P, q < p, and XeR

such that q Ih \a\ < X.

(Then/a(x) g [-X, X] for all x g Uq.)
It is not difficult to verify that the correspondence

(5.8) fl-/a

respects < , + and ■. To verify that the correspondence (5.8) is one-to-one, it
suffices to show that fa ¥= 0 whenever a > 0. But if a > 0, then there is a /? g P and
an e > 0 such that /? Ih a > e. It follows that for every x G U, fa(x) > e, and so

»0.
It remains to show that the correspondence (5.8) is between st and all functions in

JV(5C). Let/G^F(J"). For each X g R u {-oo, oo}, we let

Fx= {xg^:/(x)^X},

and let Ex be the closure of the interior of Fx. For each X we have Fx = n£>0Fx+E =
fl{^: p > X rational}. As we identified regular open sets in #"with elements of S3,
we see that (Ex: X g R) has properties (4.2). Thus let st be

a = JX dEx = sup{ X£x: X G R}.
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We claim that/a = /. This is proved as follows: For each rational X e R u {-00,00},
let Nx ç SC be the nowhere dense set (Ex - Fx) U (Fx - Ex), and let

M =     U    Nx.
X rational

The set M is meager and, for every x e SC— M and every rational X,
x e Ex   iff   x g E    for all rational p > X.

It follows that, for every x e SC— M and every rational X,
/(x)<X   iff   /a(x)<X.

As the rational numbers are dense in R, we have

for all x in SC— M, but since SC— M is dense in SC, and / and fa are continuous, we
have/ = /a.   D

We have not really proved that bounded elements of st correspond to finite
continuous functions on SC but that should be obvious, granting the fact that

(5.9) ||/[|=sup|/(x)|    forany/G^iT).

Thus uniform convergence mJi(SC) is just uniform convergence of functions. As
for the other two kinds of convergence, we have

5.10 Theorem, (a) A net {/„} in Jf(SC) converges to f piecewise uniformly if and
only if there is an open dense set U such that fn(x) -* /(x) for all x g U.

(b) A countable set {/„ } in J/~( SC ) 33-converges to f if and only if there is a comeager
set C such that f„(x) -» f(x)for all x G C.

[One direction of (b) holds for nets in general.]
Proof, (a) Let f„-*f piecewise uniformly. There is a partition of unity IF such

that each E e IF is a clopen set and/„ -» /uniformly on E. Then/„(x) converges to
/(x) for all x in the dense open set U{E: E n W}.

Conversely, let U be an open dense set such that f„(x)^>f(x) for all x e U.
There exists a partition of unity IF such that each £ e IF is clopen and E ç U.
Since SC is compact, /„ converges to / uniformly on each E e IF. Hence f„-*f
piecewise uniformly.

(b) Let {/„} be a net and let /be a áMimit of /„. For each k there is a partition of
unity Wk and a set {Nf: p e Wk} such that \f„ - f\ < \/k onp for all n > A^. Let
Uk = U{ /?: p e Wk} and C = C\kc-lUk. C is a comeager set and, for all x G C and
every k, there is an N such that |/„(x) -/(x)| < \/k for all n^N. Hence
/„(*)-/(*) on C.

Now let { /„} be a countable net and assume that /„ does not ^-converge to /.
Hence [/ = lim /„I ¥= 1, and so
(5.11) (3e > 0)3/?0VAiV/? < p0 Wq < p 3« ^ N such that a Ih |/„ - f\> §.
Let e G 0 and/?0 g P be given by (5.11); (5.11) can be reformulated as follows:

V#(3 partition IF„ of /?„)({n?:peWN}) such that(5.12) v ;
nf > N and/? Ih /„« - /| > e for all/? g H^.
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For each N let UN = U{ /?: /? e WN} and let S = f]^=1UN. The set S is comeager on
p0 and, for each x e S, there are cofinally many « such that |/„(x) -/(x)| > e.
Hence /„(x) does not converge to/(x) for all x in a set 5 that is comeager on a
nonempty open set.    D

6. Function calculus. In this section we prove Theorem D.

Theorem D. Let st be a complete Stonean algebra and let a est. There is a
homomorphism <pa of the algebra of Borel functions f: C -» C into st such that:

(a) qpa(id) = a, and
(b) iff„(x) -» f(x)pointwise, then <p(f) is a 38-limit of<p(fn).

[The theorem can be extended to functions of several variables.]
We identify st again with the ^-valued complex numbers, where 38 is the algebra

of projections in st.
The set of all Borel functions/: C —> C is the smallest collection of functions that

contains all continuous functions and is closed under taking pointwise limits of
sequences. The functions form a heirarchy of length w,, where continuous functions
are of class 0 and functions of class a are limits of sequences of functions of class
< a. Each continuous function can be coded by a single (infinite) 0-1 sequence, and
the process of generating Borel functions of higher classes can also be so coded.
Consequently, questions on Borel functions are encoded as properties of certain 0-1
sequences. The set of all codes of Borel functions (as well as sequences of Borel
functions) is a n{ set (i.e. coanalytic), and simple properties of Borel functions, such
as (Vx)lim/i(x) =/(x), are nj relations between their codes. A detailed descrip-
tion of coding Borel sets can be found e.g. in [10, or 4, §42]; the codes of Borel
functions are defined similarly.

It is a standard fact of models of set theory that nj relations are absolute for
Boolean-valued models. Thus if /is a Borel function on C and c is its code, then in
Va it holds that c is a code of a Borel function (on Ca); we denote this function by

fa. By absoluteness, if X e C, then/^(X) =/(X), and so/^is an extension off.
The correspondence/ >-» fa has, among others, the following properties:

(a) if /is a constant function X, then fa is a constant function X,

(b) if/is the identity function, then fa is the identity function,

(61)        (c)    (/+g)* = /*+g* (/•*)* = /*• g*and(/*)*= (/*)*,
(d) if/«g,then/*<g*,
(e) if(VxGC)/(x) = lim/„(x),

then (Vx g Ca)lfa(x) = lim/*(*)] = 1.

This is because all the properties in question are absolute for the Boolean-valued
model Va.

Now let a be a fixed element of st= Ca. We define the homomorphism <pa as
follows:

(6.2) *„(/) =/'(*)
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for every Borel function /: C -* C. The previous discussion confirms that <pa is a
homomorphism. By (6.1)(b),

<pa(id) = id*(«) = a

and, by (6.1)(e), iff(x) = lim /„(x) for all x, then

[/(a) = lim/f(a)l = l,
and so <pa(/) is the J'-limit of {<pa(/„)}.

7. Completion of a Stonean algebra. In this section we prove Theorem A.
7.1 Definition. Let st be a Stonean algebra. A complete Stonean algebra st is a

completion of st if B(st) is (isomorphic to) a dense subalgebra of B(st).

Theorem A. Every Stonean algebra has a unique completion.

7.2. The uniqueness part of Theorem A follows from Lemma 2.30. If stx and st2
are both completions of st, then

•n(st) = supv{x G st: x < a}        (aerf,)

is an isomorphism betweenstx andst2.
7.3. Let j/be a Stonean algebra. We are going to construct a completion st of st

by constructing the complete Boolean algebra of projections of st and then embed-
ding st in the (uniquely determined) st. We remark that 33 is, in general, not the
completion of the algebra of projections of st. For instance, the Stonean algebra
C[0,1] has only two projections, 0 and 1, but its completion has an infinite algebra
of projections.

7.4 Definition. Let Q be the set of all positive elements of st. Two elements u, v
of Q are orthogonal, u±vifu-v = 0.

On Q we define the relation =s: as follows:

(7.5) u =i v   if, for every w g Q, w ± Fimplies w ± u.

The relation =s is transitive, and so let
(7.6) u = v   if u =s: v and v =s u.

7.7 Definition. Let P be the set of all equivalence classes of Q. The elements of P
are conditions, and on P we define

/? «S a ( /? is stronger than fl)    if«^ u(u e/?,(; 6 o);

(P, < ) is a partial ordering.
Two conditions are orthogonalp ± q if u ± v for some (any) « e /?, u e q.

7.8 Lemma, (a) If u,v e Q and u ■ v =£ 0, //¡e« uv ^ u and uv =s i?.
(b) u ± u for nou e Q.

Proof, (a) is obvious; (b) is Axiom 11(d).

7.9 Lemma. For every p,q G P, p ± q if and only if there is no r g P such that
r ^ p and r ^ a.

Proof. In other words, u ■ v + 0 iff there is a w such that w =¿ « and w =s i?. If
wi? =£ 0, then let w — uv.
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Conversely, let uv = 0 and assume that w is such that w =sc u and w =£ v. First,
because w =á u and o 1 «, we have v ± w. Second, because w =s v and w ± v, we
have iv ± w, a contradiction.   D

7.10 Lemma. If p is not stronger than q, then there exists an r g P such that r < /?
and r ± q.

Proof. If u ^ v, then there exists a w such that vw? = 0 and wu =t= 0. Hence
wu ^. u and wm ± v.   G

7.11 Definition. A partially ordered set (P, <) is separative if it has the property
stated in Lemma 7.10.

It is well known (see [4, §17]) that every separative partially ordered set is densely
embedded in a unique complete Boolean algebra 33. Thus we let S3 be the complete
Boolean algebra that has the partial order (P, < ) defined above as a dense set.

7.12 Definition. For a g Si, let a+= a V 0, a"= a A 0.

7.13 Lemma, (a) a = a + + a~,
(b) a > 0 iffa + = a iffa~= 0, and
(c)ifu > 0, then (ua) + = ua+ and(ua)~= ua~.

Proof. Axiom 11(e), (f).
7.14 Definition. Let u g Q, a, b g Si:

u\\- a = b    if ua = ub,        u Ih a < b    if ua < ub.

(We say that u forces a = b, u forces a < />.)

7.15 Lemma, u Ih a < 0 if and only ifu Ih a + = 0.

Proof. By Lemma 7.13.    D

7.16 Lemma, (a) Ifv^u and u\\- a = b, then v Ih a = b.
(b) Ifv^-u and w Ih a < ¿?, í/ie« o Ih a < ¿.

Proof, (a) We may assume that b = 0. If u Ih a = 0, then «a + = 0 and wa~= 0. If
a + = 0, then va + = 0, and we are done. If a + > 0, then a + g Q and, because a+±u and
u =i w, we have a + ± v, and so va + = 0. Similarly, ua"= 0, and so va = 0.

(b) This follows from (a) and Lemma 7.15.    D
7.17 Definition. Let w g Q,a,b eSi.

u Ih a ¥= b    if no v =£ u forces a = b,
u\\- a < b    if « Ih a < /? and u \\- a ¥= b.

7.18 Lemma, (a) If v ^. u and u\\- a ± b, then v Ih a =£ ¿?.
(b) //ü =«: m awa" « Ih a < /?, then v \\- a < b.

Proof, (a) From definition and transitivity of =¿ .
(b) From (a) and Lemma 7.16(b).   D

7.19 Lemma, u Ih u > Ofor every u g Q.
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Proof. Clearly, u Ih u > 0. To show that u Ih u > 0, we have to show that no
v =*: u forces u = 0. Let v =s u and assume that v Ih u = 0. Because v ± u and v ^ u,
we have t? ± v, a contradiction.   D

7.20 Lemma. Let u <= Q, a, b <= Si.
(a) u Ih a # /? iff there is no v =£ u such that v \\- a = b,
(b) h Ih a = i iff there is no v =s u such that v Ih a =£ /?,
(c) w Ih a < ¿? iff there is nov*iu such that v Ih a > /?, aM^
(d) w Ih a < b iff there is nov^-u such that v Ih a > b.

Proof. The implications from left to right are obvious, as no v simultaneously
forces a = b and a ¥= b, etc. Besides, we may assume that ¿? = 0.

(a) This is just Definition 7.17.
(b) First we observe that if u Ih a + = 0 and u Ih a"= 0, then u Ih a = 0. Hence

we may assume that a > 0, and if a = 0, then there is nothing to prove. Thus let
a > 0 and assume that u does not force a = 0; hence «a # 0. By Lemma 7.19,
a Ih a > 0 and, because v = ua =*: a, we have, by Lemma 7.18(a), that v Ih a > 0.
But t; =*: «.

(c) Assume that u does not force a < 0. Then wa ^ 0, and by Axiom III there is a
v > 0 such that /Ji/a > 0. Hence vu e Q and ow Ih a > 0. Since vua =£ 0, vu does not
force a = 0. By (b), there is a w =s; dm such that w Ih a # 0 and, by Lemma 7.16(b),
w Ih a > 0. Hence w Ih a > 0.

(d) Assume that m does not force a < b. Either u does not force a < b, in which
case there is a u =i w (by (c)) such that v \\- a > b, hence v Ih a > b. Or else « does
not force a # /? in which case there is a î; =s u (by (a)) such that v \\- a = b; hence
again o Ih a > 6.    D

7.21 Definition. Boolean values. For a, b e 31, we define (in á?)

la = bl=\/{p:p\\- a = b},       la < /?! = V{ P-P "" a < ¿},

la * i>] = V{/>:/> "- a * M,        [a < ¿?1 = V{/>:/> »- a < M-

As Ih is invariant under the equivalence (7.6), "/? Ih " makes sense. The operation
V is the Boolean-algebraic supremum. The Boolean algebra 33 contains P as a
subset.

7.22 Lemma, (a) [a # b\ = 1 - [a = ¿>],
(b)[a < 61 = [a<ft] • \\a * b\,
(c)[a = /?l =[a</?l -[a>/?l,
(d)[a <b\ = \-\a>b\.

Proof. Lemmas 7.16 and 7.18 through 7.20.   D
We shall embed st into the á?-valued complex numbers Ca. We need two more

lemmas first.

7.23 Lemma. Let a g 31. If p does not force a < 0, then there exists q < p and e > 0
such that q Ih a > e.
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Proof. Let u g Q and assume that u does not force a < 0. Then there is a v =s u
such that v Ih a > 0. Let m = c A 1. By Axiom 11(g), Vf > 0, and clearly w =sc i>;
hence h> Ih a > 0.

As wa £ 0, there is, by Axiom IV, some e > 0 such that wa < e. Since w < 1, we
have ew < e, and so wa £ e. Hence w does not force a < e, and by Lemma 7.20(c)
there is a z =*: w such that z Ih a > e.    D

7.24 Corollary. For a g Si and X g R,
[a<Xl = Alo<* + el-

E>0

7.25 Lemma. Let a g Si. For every p there is a q < p and some X g R such that
a Ih a < X.

Proof. Let u g Q; we may assume that a > 0. By Axiom V there is a v,
0 < v < u, and some p g R such that t;a < ju. By Lemma 7.19, u Ih u > 0. By
Lemma 7.23 there is a w =s u and an e > 0 such that w Ih i? > e; hence ew < vw?.
Hence ewa < vwa < jtia, and so w Ih a < X.    D

7.26 Corollary. Let a & Si:
A Ifl<Xl = 0, V Ifl< X] = 1.

*6« XeR

7.27 Definition. For every a g ^, let 77(a) g R^ be the unique á?-valued real a
such that

[a<Xl=[a<Xl    (allXeR),
i.e.

77(a) = f Xdla <X].
By Corollaries 7.24 and 7.26, the Boolean values [a < X] satisfy the conditions (4.2)
and so tr is well defined.

7.28 Lemma. For all a, b g Si and X g R,
if a < b, then fit (a) < -ir{b)] = 1,

[77(a) +v(b) = ir(a + b)\,

[77(a)-77(0) = it (a ■ ¿?)1 = 1,

lir(Xa) = X<n(a)l,
[77(0) = 01 = 1,        [77(1) = 11 = 1.

Proof. Exercise in Boolean-valued calculus.

7.29 Lemma. If a ¥= b, then 77(a) # 77(6).

Proof. It suffices to show that if a ¥= 0, then 77(a) # 0. If a =£ 0, then there is a
u > 0 such that u Ih a ¥= 0, and so [a = 0] # 1. By the definition of 77, [77(a) = 01
= [a = 01 (where the left Boolean value is defined in Va and the right Boolean
value is the one defined in 7.21), and because [77(0) = 01 = 1, we have 77(a) =£ 77(0).
D
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It remains to prove that 77 maps the bounded elements of Si onto a dense subset of
the bounded part of R^. As the step functions are dense in R^, and P is a dense
subset of S3, it suffices to prove the following lemma.

7.30 Lemma. For every p g P and every e > 0 there is an a g st such that
0 < a < ep.

Proof. Let /? g P and e > 0. Let u > 0 be such that u e /?. Let v = u A e. By
Axiom 11(g) we have v > 0. As v < e, we have [77(1?) < e] = 1. Every condition
orthogonal to u forces that v = 0, and so 1— /?<[t7(í;)=01. Now, because
[e/? = el = /? and [e/? = 01 = 1 - /?, we have [77(1)) < e/?l = 1, and so Tr(v) < e/?.
D

We end this section with an example.
7.31. Let st= C[0,1]. If u > 0 and v > 0 are continuous functions on [0,1], then

u =sc d just in case w(f) > 0 implies u(?) > 0. Hence 33 is the completion of the
partially ordered set of all open subsets of [0,1] (ordered by inclusion). That is, S3 is
the Boolean algebra of Borel sets modulo meager set or, equivalently, the algebra of
all regular open subsets [0,1], and the completion of st is the complete Stonean
algebra with projections 38.

8. More on convergence and completeness. In §3 we proved that if a Stonean
algebra st is complete, then every ^-Cauchy net has a 33-limit. We shall now prove
the converse. Then we discuss complete subalgebras of complete Stonean algebras.

8.1 Theorem. Letstbe the completion of a Stonean algebraste Then every a e stis
the 38-limit of a net inst0.

Proof. Every a e st has the form x + iy where x, y e Si, and every a e Si is
a ■ la > 01 + a ■ [a < 01; hence it suffices to show that every a > 0 is the áMimit
of a net in st0. For every e > 0 let

Ae = a maximal set of u e st0, 0 < u < a, such that the
(8.2) projections peu = [a — u < el are positive and mutually or-

thogonal.

8.3 Lemma. For each e > 0, the set Ae is a partition of unity.

Proof. We are to show that V/le = 1. Thus let us assume, for contradiction, that
there is a condition/?, orthogonal to each/?u, u e Ac. There is a stronger condition q
and numbers vx < v2 such that a Ih a — e < vx and q Ih v2 < a. Let v e st0 be such
that v ==: q; we may also assume that i> is bounded. Let X = ||i?|| and u = v2v/X. Then
« =í q, u < ï>2 and therefore m < a; also, ||w > j^H > 0 and so/?u = [a — e < u} > 0.
This contradicts the maximality of Ae.    D

8.4. Now we can finish the proof of Theorem 8.1. Let A = Ue>o^e and let D be the
set of all finite subsets E of A, ordered by inclusion. D is a directed set.

For each £={«,,...,«„} e D, let aF = «, V ■-• V un. Then a is a á?-limit of
the net {aE}, because for each e > 0 there is a partition {/?u: u G y4t} and {Eeu:
u g ,4p}, namely EFU = {u}, which attests to 33-hmEaE = a.    D
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8.5 Definition. A Stonean algebra is a-saturated if there exists no uncountable set
A such that a • b = 0 for all distinct a, b G A.

8.6 Lemma. A Stonean algebra is a-saturated if and only if its completion is
a-saturated. A complete Stonean algebra is a-saturated if and only if its Boolean
algebra of projections is a-saturated.   D

In case of Boolean algebras, this property is generally referred to as the countable
chain condition [9].

8.7 Theorem. Letstbe the completion of a a-saturated Stonean algebra st0. Then
every a G stis the 38-limit of a sequence in st0.

Proof. Let Ae be as in the proof of Theorem 8.1. Since st is a-saturated, each Ae is
countable. Let A = \Jf=xAx/k, let {«„} be any enumeration of A, and let a „ = ux V
• • • V u„. Then a = 33-\imn a„.   D

We shall now characterize completeness in terms of convergence of Cauchy nets.
Let st be a Stonean algebra, not necessarily complete. The definition of ^"-conver-
gence given in §3 is not well suited in this case, as st may have no non trivial projections.
Thus we first give a more general definition of ^-convergence that is applicable even
if stis not complete.

8.8 Definition. A partition of unity is a maximal set IF of positive reals such that
u ■ v = 0 whenever u, v g IF and u # v.

8.9 Definition, a is a 38-limit of a net {a„} if for every e > 0 there is a partition
of unity We and {N¿:u<= W} such that for all u g IF

\ua — uan\ < eu   whenever« > Nf.
(If stis complete, then the definition agrees with the definition in §3.) In terms of
forcing, we have

8.10 Lemma, a = áMim a„ if and only if
Ve > 0,    V/? G P 3N3q < p q Ih \a - a„\ < e.

8.11 Theorem. A Stonean algebra st is complete if and only if every 33-Cauchy net
has a 38-limit.

Proof. If st is complete, then every á?-Cauchy net is ^-convergent by Lemma
3.5(c). Conversely, let st0 be a Stonean algebra. Let sthe the completion of st0, so by
Theorem 8.1 every a g stis the 33-\imit of a net in st0. However, the âi'-convergence
in Theorem 8.1 refers to the ^-convergence defined in terms of the Boolean algebra
33 of projections in st. If we prove that 33 is included in st0, then every net in st0 that
is ^"-Cauchy in st is ^-Cauchy in st0, and hence its 33-\imit is in st0, by the
assumption of the theorem. That will prove that st0 = stand so st0 is complete.

We wish to show that S3 ç st0. Thus let a g 33. We construct the net {aE} inst0
as in the proof of Theorem 8.1. In particular, we define At by (8.2). The important
point is, however, that the projection [a - u < el is in P: it is the equivalence class
of

Dj-(l|-(l-«))V0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ABELIAN OPERATOR ALGEBRAS 155

a positive real inj^0. We have veu Ih 1 — e < u, and so {v^: u g Af} is a partition of
unity that witnesses the fact that the net {aE} is á?-Cauchy. The same argument
shows that a = áMim aE and so a g st0.   D

We now turn our attention to complete subalgebras:
8.12 Definition. stx is a complete subalgebra of a complete Stonean algebra^ if

stx is a complete Stonean algebra, with the same operations (including infinite
suprema) asja^.

8.13 Lemma, (a) Let stx be a complete subalgebra of st2 and let 38\ and 332 be,
respectively, the Boolean algebras of projections instx and inst2. Then 33\ is a complete
Boolean subalgebra of 332.

(b) The reals instx are all the fX dpx, where { px: X g R} c 33x.
(c) Let {a„} be a net in stx. Then { a„} is 38-convergent in stx if and only if it is

38-convergent as a net in st2 (and has the same 38-limit).

Proof, (a) and (b) follow from earlier consideration.
(c) One direction is trivial: if {a„} is ^-convergent in stx, then it is ^-convergent

in st2. The other direction is a consequence of absoluteness of the property "{a„} is
a Cauchy net of complex numbers" applied to the Boolean-valued models Va% and
its inner model Va\

8.14 Theorem. Let G be a subset of a complete Stonean algebra st. Then there is a
smallest complete subalgebra st0 of st that contains G. Moreover:

(a) Let 33 be the Boolean algebra of projections in st. The Boolean algebra 330 of
projections in st0 is the complete subalgebra of S3 generated by the projections px in
spectral resolutionds fXdpx of (real and imaginary parts of) elements of G.

(b) st0 is the closure of G under the finite operations +, -, scalar multiplication, *,
A and V, as well as 33-limits of nets.

(c) If stis a-saturated, then "nets" in (b) can be replaced by "sequences".

8.15 Definition. stQ is the complete subalgebra of st generated by G.
Proof. If a is real and a = ¡Xdpx, then/?x = [a < X], computed in any complete

subalgebra of st that contains a. Using this fact, (a) follows easily.
To prove (b) and (c), let st0 be the complete subalgebra generated by G, and let A

be the closure of G under the finite algebraic operations and ^-limits. Clearly,
A ç. st0 (here we use 8.13(c)).

First, we prove that [a > 01 g A for every real a g A. Let i = (a v 0) A 1, and
c = 1 - b. Then 0 < c < 1 and [a > 01 = [c < 1]. We use the fact that

[c = 11 =  lim c",
n-»oo

and hence [a > 0] G A.
It follows that [a < XI g A whenever a is the real (imaginary) part of some

g g G. These are generators of the complete Boolean subalgebra 330 of 33. The
elements of 380 can be obtained from the generators by successive applications of
finite Boolean operations and suprema of sets of mutually orthogonal elements. The
latter operation can be replaced by ^-limits of nets; moreover, if 33 is a-saturated,
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then nets can be replaced by sequences. Thus A contains 330. Now every real in st0
has the form

a = j X dpx = sup X • px = sup Xpx
XeR XeQ

(Q is the set of all rational numbers), where px g 330. It follows that a is the áMimit
of a net in A.    □

9. Measurable Stonean algebras.
9.1 Definition. A Stonean algebrad is measurable if it admits a measure, that is,

a a-additive probabilistic measure p on the set of all u > 0 such that:
(i) ,i(0) = 0, ,1(1) = 1,

(ii) p(u) > 0 for all« > 0,
(iii) if u ^ v, then p(u) < p(v), and
(iv) if UjUj = 0 for all distinct i, j e /, then

>(V «,)-£«,
The following lemma is immediate.

9.2 Lemma. The following are equivalent:
(a) stis measurable.
(b)st, the completion ofst, is measurable.
(c) S3, the Boolean algebra of projections ofst, is a measure algebra.

(For definition of measure algebra, see [9].)
The function p from 9.1 extends to a strictly positive a-additive probabilistic

measure on 33.

9.3 Lemma. Every measurable Stonean algebra is a-saturated.

Proof. Every measure algebra has the countable chain condition [9].    D
This allows to restrict questions related to convergence to sequences (instead of

nets).

9.4 Theorem F. Every measurable complete Stonean algebra is isomorphic to the
algebra of all measurable functions (mod = a.e.) on some measure space SC; bounded
elements correspond to functions in^Cx(SC).

Proof. This theorem, for Boolean-valued complex numbers given by measure
algebras, is essentially due to Scott and Solovay; cf. [11].

Let st be a measurable complete Stonean algebra, let 33 be its algebra of
projections, and let p be a measure on 33. Let SChe the Stone space of 33, and denote
also by p the complete measure induced by p (and M the it-measurable subsets of
SC). SC= (SC, ix, M) is a measurable space [3].

LetJt'(SC) be the set of all complex-valued functions defined almost everywhere
on SC. Following [11], we associate with each real-valued f ^J((SC) the (unique)
^-valued real af such that

Ifl/<X] = [{x&SC:f(x)^X}},   XgQ,
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where the equivalence class [S] denotes the element of 33 when 33 is identified with
#/null sets. If/ = g a.e. then af = ag.

Every a G R^ is represented this way: Let a = fX dpx. There exists {Sx: X g Q}
such that, for each X g Q, [Sx] = px, Sx = f)e>0Sx+e and r\XeQSx = 0. For
x^UXeQSx,\et

/(x) = suP{XgQ:x<£ Sx};

then a = af.
The correspondence / '■-» af is an isomorphism (between the real functions in

M(SC) and R^)—see [11, Lemma 4.4]—and induce an isomorphism between Jt(SC)
andst. Also,

[{XeSC:f(x) = g(x)}] =laf=ag\.

The bounded elements of st correspond to those a G Ca for which there is a X
such that [|a| < XI = 1. In the representation by measurable functions, a = af
where |/(x)| < X a.e. Hence bounded elements of st correspond to essentially
bounded functions in J((SC).   D

9.5 Theorem. A sequence {/„} inJ((SC)33-convergestofifandonly iff„(x) ->/(x)
a.e.

Proof. First assume that /„ -» 0. For each k there is a partition Wk and [Nf:
S g Wk) such that, for each S & Wk and every n > N¿, \f„(x)\ < \/k a.e. on S. We
may assume that |/„(x)| < \/k everywhere on S and that the S ^ Wk are pairwise
disjoint; and Yk = U{S: S g Wk} has full measure. Let Y = Uk=xYk. The set F has
full measure, and if x g Y, then for each k there is a S g Wk such that x g S, and
so/„(x) converges to 0.

Conversely, assume that/„(x) -» 0 a.e. For every k and N, let

AkN= { x g SC: f(x) -> 0 and N is the least W such that Vn > AT |/„(x)| < \/k ).

For each k, the AkN are disjoint measurable sets. Those of positive measure form the
partition IF¿; that attests to ^-convergence.   D

We remark that by Egoroff's Theorem [3], if /„ -» / a.e., then /„ -> / piecewise
uniformly. See also Theorem 9.8 below.

9.6 Definition [9]. A complete Boolean algebra 33 is weakly (S0, oo)-distributive if
it satisfies the following distributive law:

KVph-   V    A Ypu.
Ft ç / finite

We call a complete Stonean algebra weakly distributive if its algebra of projections
satisfies (9.6).

9.7 Lemma [9]. Every measure algebra is weakly (S0, cc)-distributive.   D

We remark that C(0,1) is not weakly distributive.
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The import of the following theorem is that for measurable Stonean algebras, the
two notions of convergence, ^-convergence and piecewise uniform convergence
coincide.

9.8 Theorem. Let stbe a complete Stonean algebra, stis weakly distributive if and
only if every 38-convergent net is piecewise uniformly convergent.

Proof. Let us first assume that st is weakly distributive. Definition 9.6 can be
reformulated as follows:

9.9. For every sequence {Wk}f=x of partitions of unity and very p G 33, p > 0,
there is a q ^ 33, 0<a</? and a sequence {Fk}f^x of finite sets, Fk c Wk, such
that

(9.10) q<\/{r:reFk)        (k = 1,2,...).

Let {a,,} be a ^-convergent net. For each k. let Wk be a partition (for e = \/k)
that witnesses ^-convergence and let {Nf: r g Wk} be such that n > Nrk implies
\ran - ra\ < \/k.

Let IF be a maximal set of pairwise orthogonal projections q such that there exists
a sequence {Fq)f=l of finite Fk ç Wk that satisfy (9.10). By weak distributivity
(9.9), IF is a partition of unity. We claim that, for each q G IF, {qan} converges
uniformly.

Fix a g IF. For each k, let

N = max{Nf: r^Fk).

By (9.10), if « ^ N, then \qan - qa\ < l/k, and so {qa„} converges uniformly.
Conversely, let us assume that st is not weakly distributive and let/?0, {Wk}™_x be

a counterexample to 9.9. It follows that every a g 33, 0 < q < p0, meets infinitely
many r g Wk for some k.

We assume that each Wk is countable and construct a sequence that is ^-conver-
gent but not piecewise uniformly convergent. A similar idea works for nets in the
general case. We also assume, without loss of generality, that/?0 = 1.

Let Wk = {pkn}f=x. For each k and each n, let akn = pk„/k and let us consider
the sequence {akn}. First we show that {akn} ^-converges to 0: Let k be given, let
IF be a common refinement of Wx,...,Wk and let a g IF. For each/ < k, q meets a
unique /? g Wj (in fact q < /?); say /? = pJt„yy Now if (/', n) is any (/', n) except for
finitely many values (1, «(1)),(2, n(2)),.. .,(k, n(k)), then either / < k and qain = 0
(because n =h n(i)), or /' > k and qain < 1/7. In either case, qain < \/k. Hence
^-lim ak„ = 0.

We now show that {akn} does not converge piecewise uniformly. Let IF be any
partition of unity and let a g IF. There is a Ac such that a meets infinitely many
pkn g Wk. Hence \\qakn\\ = l/k for infinitely many n, and so {qakn} does not
converge uniformly to 0.    D

To conclude this section we remark that the results can be generalized to the case
when 33 is not a measure algebra but a direct sum of measure algebras, st is not
necessarily a-saturated and the measure u on SC is not necessarily a-finite.
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10. Complete abelian algebras of operators. We shall now apply the general theory
to commuting normal operators in a Hilbert space. Let Jifbe a Hubert space and let
us consider normal, not necessarily bounded, operators on J(C.

10.1 Definition. A partition of unity is a maximal set of mutually orthogonal
projections. A partition of unity IF is a support for a normal operator A if, for every
P G IF, AP is a bounded operator and AP = PAP.

Two normal operators A and B are compatible if they have a common support IF,
and AP commutes with BP, for every P g IF.

The following theorem lists well-known facts about normal operators:

10.2 Theorem, (a) Every normal operator has the form A + iB, where A and B are
compatible self adjoint operators.

(b) Every selfadjont operator has a (unique) spectral resolution

A=fXdPx.

(c) Two normal operators are compatible if and only if the projections in their
respective spectral resolutions mutually commute.

10.3 Lemma. Let W be a partition of unity and let AP be, for each P e IF, a normal
operator such that APP = PAPP. Then there exists a unique normal A such that
ApP = APforallPe W.   D

We use the notation

(10.4) A =   £  APP.
PeW

10.5 Definition. Let A and B be compatible normal operators, with support IF:
(a) A + B = LPeW(AP + BP),
(b)A ■ B = ZP&W(AP ■ BP), and
(c) A < B if AP < BP for all P e IF.
The definition of +, • and ^ is independent of the choice of common support.

The operations + and • have the usual algebraic properties and < is a partial
ordering. Moreover, if S is a nonempty set of mutually compatible selfadjoint
operators that has an upper bound (in < ), then it has a least upper bound, sup S,
which is a normal operator compatible with all A e S.

10.6 Definition. A complete abelian algebra of operators st is a mutually
compatible set of normal operators that is closed under +, -, * and scalar
multiplication and such that sup 5 g st for every nonempty S c st that has an
upper bound in < .

10.7 Proposition, (a) Every complete abelian algebra of operators is a complete
Stonean algebra (with +, ■ and < defined in 10.5, and the usual * and scalar
multiplication).

(b) If stis a mutually compatible set of normal operators that is (under +, ■, etc. and
sup) a complete Stonean algebra, then stis a complete abelian algebra of operators.
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Proof, (a) A routine verification.
(b) The only reason why this is not entirely trivial is that we have to verify that if

S ç st has an upper bound in < , then S has an upper bound in st. Let A = sup S
and let A = /X dPx be the spectral resolution of A. For each X,

¿\ = A{U<X]:A-eS} est,
and so A g st.    D

10.8 Remark. If stis a complete abelian algebra of operators, then B(st) is a von
Neumann algebra.

Theorem E. Given a set G of mutually compatible normal operators there is a
smallest complete abelian algebra stsuch that G ç st.

We say that stis generated by G.

Proof. Let 33 be the complete Boolean algebra generated (in the lattice of
projections) by the set of all projections in spectral resolutions of all operators in G.
Let st(G) be the set of all normal operators whose spectral projections are in S3.
st(G) is a complete Stonean algebra, and hence a complete abelian algebra of
operators. If stis any complete abelian algebra of operators, then st is a complete
Stonean algebra and, by Theorem 8.14, st(G) is the complete subalgebra of
st generated by G; hcncest(G) Qst.   □

If st0 is an abelian von Neumann algebra of operators in J(f, then the complete
abelian algebra j?/generated by stQ consists of all normal operators affiliated with st0
(in the terminology of [5]). Also, stis the completion of st0, and st0 = B(st). If G
consists of a single unbounded normal operator, then stis isomorphic to the algebra
constructed in [2].

10.9. The kind of convergence usually associated with operators is the (strong)
operator convergence. It is easy to construct an example of a sequence of normal
operators converging to zero which is not ^-convergent. As for the converse, we note
the following lemma.

10.10 Lemma (Takeuti [15]). If {An} is a 33-convergent net of compatible normal
operators with limit A and if there is a X such that \\An — A\\ < X for all n, then An
converges strongly to A (i.e. An — A -> 0).

m
Proof. Assume that {An} -* 0. Let x g j(f and e > 0. There is a partition of

unity IF and {NP: P g IF} such that for all P g IF and n > NP, \\A„ - P\\ is small
relative to ||x||. Let F ç IF be finite such that HPew_FAnP is small. Then let
N = max{NP: P g F}, etc.    D

10.11. Let G be a mutually commuting set of normal bounded operators and let st
be the complete abelian algebra generated by G. By Theorem 8.14, st is the closure
of G under the finite algebraic operations and âMimits of nets. The bounded
operators in st can be obtained as áMimits of nets bounded by some X, and so it
follows by Lemma 10.10 that B(st) is the closure of G under +, •, *, V, A, scalar
multiplication and strong limits of nets. The unbounded operators in st are then
obtained from 33(st) as Y.P<BWAPP where the P's and Afs belong to the von
Neumann algebra 38(st).
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As will be discussed shortly, every complete abelian algebra of operators is weakly
distributive, and so every J'-convergent net is piecewise uniformly convergent. It
follows that if st is generated by G, then st is the closure of G under the finite
algebraic operations and piecewise uniform limits of nets.

10.12. The structure of any complete Stonean algebra st is determined by its
Boolean algebra 33 of projections. In the case when st is an algebra of operators, 38 is
not arbitrary. The Stone space SC of 33 admits a-additive Borel measures and it
follows that 33 is the direct sum of (possibly uncountably many) measure algebras (SC
has an open dense set which is a disjoint union of a-finite measure spaces; SC is
hyperstonean [14]). One consequence is that 33 is weakly distributive. Measure
algebras have been classified in [7]: every measure algebra is a direct sum of
homogeneous measure algebras, and every measure algebra is essentially given by
the product measure on the measure space {0,1}K for some k. This provides a
complete classification of complete abelian algebras of operators.

10.13. In the particular case when stis a complete abelian algebra of operators on
a separable Hilbert space, and if S3 is atomless, then 38 is a countably generated
atomless measure algebra, which is unique up to isomorphism, and so is isomorphic
to the algebra of Borel sets of reals mod Lebesgue measure zero sets. Then st is
isomorphic to the algebra of all measurable functions on R (mod = a.e.) and B(st)
corresponds to^?°°(R).

10.14 Definition. A complete Stonean algebra sthas a complete representation on
a Hilbert spaced if stis isomorphic to a complete abelian algebra of operators in
3Í?.

The preceding discussion reveals that a necessary condition for st to have a
complete representation on a Hilbert space is that stis the direct sum of measurable
aglebras. Thus, for instance, the completion of C[0,1] does not have a complete
representation because its Boolean algebra (Borel sets of reals mod meager sets) is
not weakly distributive.

Theorem G. Every measurable complete Stonean algebra sthas a complete represen-
tation on some Hilbert space Jt; if stis countably generated, then there is an 3? that is
separable.

Proof. The construction is, of course, well known. Let 33 be the Boolean algebras
of projections, let SC be the Stone space of 33, and let 3^= C£2(SC). stis isomorphic to
Jt(SC), and every / g Jt(SC) is represented by the multiplication operator Af(g) =
fg-   n

Added in proof (November 1984). 1. Professor Manasao Ozawa of the Tokyo
Institute of Technology has kindly brought to my attention existing work related to
the subject of this paper. In particular, the theory of vector lattices, or Riesz spaces
(cf. W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, North-Holland, Amster-
dam, 1971) is very close to our approach. In view of the representation of complete
Stonean algebras by normal functions (Theorem B), and a theorem of F. Maeda and
T. Ogasawara (cf. Representation of vector lattices, J. Sei. Hiroshima Univ. (A) 12
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(1942), 17-35), the real part of a complete Stonean algebra is a universally complete
Dedekind complete Archimedean Riesz space (in the terminology of Luxemburg and
Zaanen).

2. It was also pointed out to me by Professor Ozawa that in view of the
Representation Theorem B, the bounded part of a complete Stonean algebra is
exactly what is generally known as commutative AW* algebra (cf. I. Kaplansky,
Algebras of type I, Ann. of Math. 56 (1952), 460-472). I wish to add that in Boolean
valued analysis and type I AW* algebras, Proc. Japan Acad. Ser. A 59 (1983),
368-371, Ozawa gives the first application of forcing in this area. Ozawa's result
underscores the role of Boolean valued models.

3. fi-convergence is weaker than the order convergence, which is the convergence
usually associated with Riesz spaces (they coincide however for monotone se-
quences). For instance, the analog of Theorem D fails for order convergence.
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