
Abstract Versus Concrete Computation
on Metric Partial Algebras

J. V. TUCKER
University of Wales, Swansea
and
J. I. ZUCKER
McMaster University

In the theory of computation on topological algebras there is a considerable gap between so-called
abstract and concrete models of computation. In concrete models, unlike abstract models, the com-
putations depend on the representation of the algebra. First, we show that with abstract models,
one needs algebras with partial operations, and computable functions that are both continuous
and many-valued. This many-valuedness is needed even to compute single-valued functions, and
so abstract models must be nondeterministic even to compute deterministic problems. As an ab-
stract model, we choose the “while”-array programming language, extended with a nondetermin-
istic “countable choice” assignment, called the WhileCC∗ model. Using this, we introduce the
concept of approximable many-valued computation on metric algebras. For our concrete model, we
choose metric algebras with effective representations. We prove: (1) for any metric algebra A with
an effective representation α, WhileCC∗ approximability implies computability in α, and (2) also
the converse, under certain reasonable conditions on A. From (1) and (2) we derive an equivalence
theorem between abstract and concrete computation on metric partial algebras. We give examples
of algebras where this equivalence holds.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of
Computation—Computatability theory; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Computatability theory; proof theory

General Terms: Theory, Verification

Additional Key Words and Phrases: Abstract computation, countable choice, data types, effective
Banach space, effective metric space, metric algebra, partial algebra, topological algebra

The research of the second author was supported by a grant from the Natural Sciences and Engi-
neering Research Council (Canada) and by a Visiting Fellowship from the Engineering and Physical
Sciences Research Council (U.K.).
Authors’ addresses: J. V. Tucker, Department of Computer Science, University of Wales, Swansea
SA2 8PP, Wales; email: J.V.Tucker@swansea.ac.uk.; J. I. Zucker, Department of Computing and
Software, McMaster University, Hamilton, Ontario L8S 4L7, Canada; email: zucker@mcmaster.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1529-3785/04/1000-0611 $5.00

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004, Pages 611–668.

612 • J. V. Tucker and J. I. Zucker

1. INTRODUCTION

The theory of data in computer science is based on many sorted algebras and
homomorphisms. The theory originated in the 1960s, and has developed a
wealth of theoretical concepts, methods, and techniques for the specification,
construction, and verification of software and hardware systems. It is a signif-
icant achievement in computer science and has exerted a profound influence
on programming [Goguen et al. 1978; Meseguer and Goguen 1985; Wirsing
1991]. However, given the absolutely fundamental nature of its subject matter—
data—there are many fascinating and significant open problems. An important
general problem is:

To develop a comprehensive theory of specification, computation, and
reasoning with infinite data.

By infinite data we mean real numbers, spaces of functions, streams of bits or
reals, waveforms, multidimensional graphics objects, video, and analogue and
digital interfaces. The application areas are obvious: scientific modeling and
simulation, embedded systems, graphics, and multimedia communications.

Data types of infinite data are modeled by topological many-sorted algebras.
In this article we consider computability theory on topological algebras and
investigate the problem

To compare and integrate high-level, representation independent, ab-
stract models of computation with low-level, representation depen-
dent, concrete models of computation in topological algebras.

Computability theory lies at the technical heart of theories of both specifi-
cation and reasoning about such systems. There are many disparate ways of
defining computable functions on topological algebras and some have (differ-
ent) significant mathematical theories. In the case of the real numbers one
can contrast the approaches in books such as Aberth [1980, 2001], Pour-El and
Richards [1989], Weihrauch [2000], and Blum et al. [1998].

Generally speaking, the models of computation for an algebra can be divided
into two kinds: the abstract and concrete.

With an abstract model of computation for an algebra, the programs and
algorithms do not depend on any representation of the algebra and are in-
variant under isomorphisms. Abstract models originated in the late 1950s in
formalizing flowcharts, and include program schemes and many languages that
have been used in the study of program semantics [de Bakker 1980; Apt and
Olderog 1991]. Examples of such models are the While programming language
over any algebra and the Blum-Cucker-Shub-Smale (BCSS) model [Blum et al.
1989; Blum et al. 1998] over the rings of real or complex numbers. The the-
ory of abstract models is stable: there are many models of computation and
the conditions under which they are equivalent are largely known [Tucker and
Zucker 1988, 2000]. For example, “ while” programs, flow charts, register ma-
chines, Kleene schemes, etc., are equivalent on any algebra; the BCSS models
are simply instances obtained by choosing the algebra to be a ring or ordered
ring.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 613

With a concrete model of computation for an algebra the programs and com-
putations are not invariant under isomorphisms, but depend on the choice of
a representation of the algebra. To understand invariance requires a study of
reductions and equivalences between “computable” representations. Complica-
tions arise in relating different concrete representations. Usually, the repre-
sentations are made from the set N of natural numbers, and computability on
an algebra is reduced to classical computability on N. Concrete models origi-
nated in the 1950s, in formalizing the computable functions on real numbers
[Grzegorczyk 1955, 1957; Lacombe 1955]. Examples of concrete models are com-
putability via

—effective metric spaces [Moschovakis 1964],
—computable sequence structures [Pour-El and Richards 1989],
—domain representations [Stoltenberg-Hansen and Tucker 1988, 1995; Edalat

1995, 1997],
—type two enumerability [Weihrauch 2000], and
—numbered topological spaces [Spreen 1998, 2001].

The theory of concrete models is not stable, though it seems to be converging:
the above models are known to be equivalent under conditions satisfied by many
(though not all) important spaces (see Stoltenberg-Hansen and Tucker [1999]
for equivalence results; also Weihrauch [2000], §9, for counterexamples). In the
case of the real numbers, the above concrete models (and others) are all known
to be equivalent to Grzegorczyk-Lacombe (GL) computability.

In the theory of computation on algebras, abstract models are implemented
by concrete models. Thus, the gap between the models is the gap between high-
level programming abstractions and low-level implementations, and can be
explored in terms of the following concepts:

—Soundness of abstract model: the functions computable in the abstract model
are also computable in the concrete model.

—Adequacy of abstract model: the functions computable in the concrete model
are computable in the abstract model.

—Completeness of abstract model: functions are computable in the abstract
model if, and only if, they are computable in the concrete model.

However, there is a considerable gap between abstract and concrete models of
computation, especially over topological data types. For example, the popular
abstract model in Blum et al. [1998] is not sound for the main concrete models
because of its assumptions about the total computability of relations such as
equality. Equality on the real numbers is not everywhere continuous, but in
all the concrete models computable functions are continuous (cf. Ceitin’s The-
orem [Ceitin 1959; Moschovakis 1964]). The connection between abstract and
concrete models of computation on the real numbers is examined in Tucker
and Zucker [1999], where approximation by “ while” programs over a particu-
lar algebra was shown to be equivalent to the standard concrete model of GL
computability over the unit interval.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

614 • J. V. Tucker and J. I. Zucker

First attempts at bridging the gap for all topological algebras in general
have been made in Brattka [1996, 1999], using a generalization of recursion
schemes (abstract computability) and Weihrauch’s type two enumerability (con-
crete computability). Here we investigate further the problems in comparing
the two classes of models and in establishing a unified and stable theory of
computation on topological algebras. We prove new theorems that bridge the
gap in the case of computations on metric algebras with partial operations.

By reflecting on a series of examples, we show that to compute functions on
topological algebras, it is necessary to consider

(i) algebras with partial operations,
(ii) computable functions that are both continuous and many-valued, and

(iii) approximations by abstract programs.

In particular, many-valued functions are needed in the abstract model, even to
compute single-valued functions. Thus, to prove an equivalence between ab-
stract and concrete models we must include a nondeterministic construct to
define many-valued functions, and in this way use nondeterministic abstract
models even to compute deterministic problems. We find that

imperative and other abstract programming models must be nonde-
terministic to express even simple programs on topological data types.

We choose the While programming language as an abstract model for comput-
ing on any data type, and extend it with the nondeterministic assignment of
countable choice

x := choose z : b(z, x, y),

where z is a natural number variable and b is a Boolean-valued operation. This
new model is called WhileCC ∗ computability (“CC ” for “countable choice,” “∗”
for array variables.) In particular, we introduce a notion of approximable many-
valued computation, and formulate and prove the continuity of their semantics.
We thus have the partial many-valued functions approximable by a WhileCC∗

program on A.
As a concrete model, we choose effective metric spaces; this is known to be

equivalent with several other concrete models. It is an elegant approach, we
feel, suitable for theoretical investigation and comparison with other models
of computability; some other choices of concrete model (among those listed
above) may be closer to practical techniques for exact computation with reals
(say).

In computation with effective metric spaces A we pick an enumeration α of a
subspace X of A, and construct the subspace Cα(X) of α-computable elements
of A, enumerated by α. We thus have the partial functions computable on Cα(X)
in the representation α.

We then prove two theorems that can be summarized (a little loosely) as
follows:

SOUNDNESS THEOREM: Let A be any metric partial algebra with an effective
representation α. Suppose Cα(X) is a subalgebra of A, effective under α. Then

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 615

any function F on A that is WhileCC ∗ approximable over A is computable on
Cα(X) in α.

This theorem is technically involved but quite general, and gives new insight
into the semantics of imperative programs applied to topological data types. The
converse theorem is more restricted in its data types:

ADEQUACY THEOREM: Let A be any metric partial algebra with an effective
representation α. Suppose the representation α is WhileCC ∗-computable and
dense. Then any function F : A → A that is computable on Cα(X) in α and
effectively locally uniformly continuous in α is WhileCC ∗-approximable over A.

These are combined into a Completeness Theorem. The proper statements of
these three theorems are given as Theorems A, B, and C (in Sections 8, 9, and
10). Some interesting applications to algebras of real numbers and to Banach
spaces are studied.

Here is the structure of the article. We begin, in Section 2, by explaining the
role of partiality, continuity, and many-valuedness in computation, using simple
examples on the real numbers. In Section 3 we describe topological and metric
partial algebras. In Section 4 we introduce the WhileCC ∗ language, give it an
algebraic semantics, and define approximable WhileCC ∗ computability. Sec-
tion 5 is devoted to examples. In Section 6 we prove the continuity of WhileCC ∗-
computable many-valued functions. In Section 7 we introduce our concrete
model, effective metric spaces, and prove a Soundness Theorem (Theorem A0)
for the special case of surjective enumerations of countable (not necessarly
metric) algebras. In Section 8 we define the subspace of elements computable
in a metric algebra, and then prove the more general Soundness Theorem
(Theorem A) and, in Section 9, the Adequacy Theorem (Theorem B). These are
combined into a Completeness Theorem (Theorem C) in Section 10. Concluding
remarks are made in Section 11.

This work is part of a research program—starting in Tucker and Zucker
[1988] and most recently surveyed in Tucker and Zucker [2000]—on the theory
of computability on algebras, and its applications. Specifically, it has developed
from our studies of real and complex number computation in Tucker and Zucker
[1992a, 1999, 2000], stream algebras in Tucker and Zucker [1992b, 1994], and
metric algebras in Tucker and Zucker [2002a].

2. PARTIALITY, CONTINUITY, MANY-VALUEDNESS, AND EXTENSIONALITY

When one considers the relation between abstract and concrete models, a num-
ber of intriguing problems appear. We explain them by considering a series of
examples. Then we formulate our strategy for solving these problems.

Our chosen abstract and concrete models are introduced later (in Sections 4
and 6, respectively), so we must explain the problems of computing on the real
number data type in general terms. First, we sketch the abstract and concrete
forms of the real number data type. The picture for topological algebras in
general will be clear from the examples.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

616 • J. V. Tucker and J. I. Zucker

2.1 Abstract Versus Concrete Data Types of Reals; Continuity; Partiality

2.1.1 Abstract and Concrete Data Types of Reals. To compute on the set
R of real numbers with an abstract model of computation, we have only to
select an algebra A in which R is a carrier set. Abstract computability on
an algebra A is computability relative to A: a function is computable over
A if it can be programmed from the operations of A using the programming
constructs of the abstract model. Clearly, there are infinitely many choices of
operations with which to make an algebra A, and hence there are infinitely
many choices of classes of abstractly computable functions. All the classes
of abstractly computable functions on R have decent mathematical theories,
resembling the theory of the computable functions on the natural numbers—
thanks to the general theory of computable functions on many-sorted algebras
[Tucker and Zucker 2000].

In contrast, to compute on R with a concrete model of computation, we choose
a representation map α : C → R from a structure C (typically a subset of the
naturals N or Baire space NN) based on the fact that the reals can be built from
the rationals, and hence the naturals, in a variety of equivalent ways (Cauchy
sequences, decimal expansions, etc.). Computability of functions on the reals
is investigated using the theory of computable functions on C, applied to R

via α.
To compare concrete with abstract models, we choose an algebra A in which

R is a carrier set and the operations of A are computable with respect to α.
For example, multiplication by 3 is not computable in the decimal represen-
tation, but the field operations on R are computable in the Cauchy sequence
representation.

In the examples in Section 2.2 below, we will take as our concrete model
the set CS ⊆ NN of fast Cauchy sequences, that is, sequences (kn) of naturals
such that for all n and all m > n, |rkm − rkn | < 2−n, where r0, r1, r2, . . . is some
standard enumeration of the rationals. Note that the canonical map α : CS → R

is continuous and onto.

2.1.2 Continuity. Computations with real numbers involve infinite data.
The topology of R defines a process of approximation for infinite data; the func-
tions on the data that are continuous in the topology are exactly the functions
that can be approximated to any desired degree of precision.

For abstract models, we assume the algebra A that contains R is a topological
algebra, that is, one in which the basic operations are continuous in its topolo-
gies. We expect further that all the computable functions will be continuous.
However, the class of functions that can be abstractly computed exactly turns
out to be quite limited; approximate computations are found to be necessary in
abstract models [Tucker and Zucker 1999].

In the concrete models, moreover, it follows from Ceitin’s Theorem
[Moschovakis 1964] that computable functions are continuous.

Thus, in both abstract and concrete approaches, an analysis of basic concepts
shows that computability implies continuity.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 617

2.1.3 Partiality. In computing with an abstract model on A, we assume A
has some Boolean-valued functions to test data. For example, in computing on
R we need the functions

=R : R2 → B and <R : R2 → B,

where B = {tt, ff} is the set of Booleans. This presents a problem, since total con-
tinuous Boolean-valued functions on the reals must be constant. Further, as was
shown in Tucker and Zucker [1999], the “ while” and “ while”-array computable
functions on connected total topological algebras are precisely the functions
explicitly definable by terms over the algebra.

To study the full range of real number computations, we must therefore rede-
fine these tests as partial Boolean-valued functions, where the undefinedness
corresponds intuitively to “divergence” or nontermination of the relevant algo-
rithm. Computation with partial algebras has interesting effects on the theory
of computable functions, as indicated in Tucker and Zucker [1999].

On the basis of these preliminary remarks, we turn to the examples.

2.2 Examples of Nondeterminism and Many-Valuedness

We look at three examples of computing functions on R.

Example 2.2.1 (Pivot Function). Define the function

piv: Rn →· {1, . . . , n}
by

piv(x1, . . . , xn) =
{

some i : xi �= 0 if such an i exists,
↑ otherwise, (1)

where “↑” denotes “divergence” or undefinedness.
Computation of the pivot is a crucial step in the Gaussian elimination algo-

rithm for inverting matrices.

Note that (depending on the precise semantics for the phrase “some i” in (1))
piv is nondeterministic or (alternatively) many-valued on dom(piv) = Rn\{0}.
Further:

(a) There is no single-valued function which satisfies the definition (1) and
is continuous on Rn. For such a function, being continuous and integer-
valued, would have to be constant on its domain Rn\{0}, with constant
value (say) j ∈ {1, . . . , n}. But its value on the x j -axis would have to be
different from j , leading to a contradiction.

(b) However there is a computable (and hence continuous!) single-valued func-
tion

piv0 : CSn →· {1, . . . , n} (2)

with a simple algorithm. (The space CS was defined in Section 2.1.1.) Note,
however, that piv0 is not extensional on CSn (i.e., not well defined on Rn),

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

618 • J. V. Tucker and J. I. Zucker

or (equivalently) the map (2) cannot be factored through Rn:

In effect, we can regain continuity (for a single-valued function) by foregoing
extensionality.

(c) Alternatively, we can maintain continuity and extensionality by giving up
single-valuedness. For the many-valued function

pivω : Rn → Pω({1, . . . , n})
(where Pω(. . .) denotes the set of countable subsets of . . .) defined by

k ∈ pivω(x1, . . . , xn) ⇐⇒ xk �= 0 k = 1, . . . , n
is extensional and continuous, where a function f : A → Pω(B) is defined
to be continuous iff for all open Y ⊆ B, f −1[Y](=df {x ∈ A | f (x) ∩ Y �= ∅})
is open in A. (We will consider continuity of many-valued functions system-
atically in Section 6.)

Remarks 2.2.2. (a) The many-valued function pivω is “tracked” (in a sense
to be elucidated in Section 7) by (any implementation of) piv0. (b) We could
only recover continuity of the piv function by giving up either extensionality
(as in (b) above) or single-valuedness (as in (c)). (c) Note, however, that the
complete Gaussian algorithm for inverting matrices is continuous and deter-
ministic (hence single-valued) and extensional, even though it contains piv0 as
an essential component!

Example 2.2.3 (“Choose” a Rational Arbitrarily Near a Real). Define a
function

F : R × N → N

by

F (x, n) = “some” k : d(x, rk) < 2−n, (3)

where (as before) r0, r1, r2, . . . is some standard enumeration of the rationals.
Note again:

(a) There is no single-valued, continuous function F satisfying (3), since such
a function, being continuous with discrete range space, would have to be
constant in the first argument.

(b) But there is a single-valued computable (and continuous) function
F0 : CS × N → N

trivially—just define

F0(ξ, n) = ξn.

This is, again, nonextensional on R.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 619

Fig. 1.

(c) Further, there is a many-valued, continuous, extensional function satisfy-
ing (3):

Fω : R × N → Pω(N),

where

Fω(x, n) = {k | d(x, rk) < 2−n}.
Example 2.2.4 (Finding the Root of a Function). (Adapted from [Weihrauch

2000].) Consider the function fa shown in Figure 1, where a is a real parameter.
It is defined by

fa(x) =




x + a + 2 if x ≤ −1,
a − x if −1 ≤ x ≤ 1,
x + a − 2 if 1 ≤ x.

This function has either one or three roots, depending on the size of a. For
a < −1, fa has a single (large positive) root; for a > 1, fa has a single (large
negative) root; and for −1 < a < 1, fa has three roots, two of which become
equal when a = ±1.

Let g be the (many-valued) function, such that g (a) gives all the nonrepeated
roots of fa. This is shown in Figure 2. Again we have the situation of the previous
examples:

(a) We cannot choose a (single) root of fa continuously as a function of a.
(b) However, one can easily choose and compute a root of fa continuously as a

function of a Cauchy sequence representation of a, that is, nonextensionally
in a.

(c) Finally, g (a), as a many-valued function of a, is continuous. (Note that
in order to have continuity, we must exclude the repeated roots of fa, at
a = ±1.)

Note that other examples of a similar nature abound, and can be handled
similarly—for example, the problem of finding, for a given real number x, an
integer n > x.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

620 • J. V. Tucker and J. I. Zucker

Fig. 2.

2.3 Solutions for the Abstract Model

In the above three examples we have presented a number of single-valued
functions f : Rn → R that we want to compute, and argued that

(i) they are not continuous; and hence
(ii) they cannot be abstractly computed on the abstract data type containing

R;
(iii) however they can be computed in the concrete data type CS;
(iv) they are selection functions for many-valued functions on R that are con-

tinuous.

At the level of concrete models of computation, there is no real problem with the
issues raised by these examples, since concrete models work only by computa-
tions on representations of the reals (say by Cauchy sequences), to be described
in Sections 6 and 8.

The real problem arises with the construction of abstract models of compu-
tation on the reals which should model the phenomena illustrated by these
examples, and should, moreover, correspond, in some sense, to the concrete
models. Thus we have the questions:

Can such continuous many-valued functions be computed on the ab-
stract data type A containing R using new abstract models of com-
putation? If they can, are the concrete and abstract models then
equivalent?

The rest of this article deals with these issues. We answer the above question
more generally, over many-sorted metric partial algebras A.

The solution presented in this paper is to extend the While∗ programming
language over A [Tucker and Zucker 2000] with a nondeterministic “countable

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 621

choice” programming construct, so that, in the rules of program term formation,

choose z : b

is a new term of type nat, where z is a variable of type nat and b is a term of
type bool. We will revisit the examples after giving the language definition in
Section 4.

Alternatively (and equivalently), one could use other abstract models;
for example, modify the µPR∗ function schemes [Tucker and Zucker 2000,
Section 9.1] by replacing the constructive least number (µ) operator, f (x)

µz ∈ N[g (x, z) = tt] (where g is Boolean-valued) by a nondeterministic choice
operator f (x)
 choose z ∈ N[g (x, z) = tt].

In Brattka [1999], a more elaborate set of recursive schemes over many-
sorted algebras, with many-valued operations, was presented.

3. TOPOLOGICAL PARTIAL ALGEBRAS AND CONTINUITY

We define some basic notions concerning topological and metric many-sorted
partial algebras. Much of this information is in Tucker and Zucker [2000], but
we introduce here the concept of partial algebra, with examples which are
important for later.

3.1 Basic Algebraic Definitions

A signature � (for a many-sorted partial algebra) is a pair consisting of (i)
a finite set Sort(�) of sorts, and (ii) a finite set Func (�) of typed function
symbols F : u → s, where u is a �-product type s1 × · · · × sm (m ≥ 0), with
s1, . . . , sm, s ∈ Sort(�). (The case m = 0 corresponds to constant symbols.) We
write u, v, . . . for �-product types.

A partial �-algebra A has, for each sort s of �, a nonempty carrier set As
of sort s, and, for each �-function symbol F : u → s, a partial function F A :
Au →· As, where we write Au =df As1 × · · · × Asm if u = s1 × · · · × sm. (The
notation f : X →· Y refers to a partial function from X to Y .) We also write
�(A) for the signature of A.

The algebra A is total if F A is total for each �-function symbol F . Without
such a totality assumption, A is called partial.

In this article we deal mainly with partial algebras. The default assumption
is that “algebra” refers to partial algebra. We will, nevertheless, for the sake of
emphasis, often speak explicitly of “partial algebras.”

Examples 3.1.1. (a) The algebra of Booleans has the carrier B = {tt, ff} of
sort bool. The signature �(B) and algebra B, respectively, can be displayed as
follows:

signature �(B)
sorts bool
functions true, false : → bool,

and, or : bool2 → bool
not : bool → bool

end

and

algebra B
carriers B

functions tt, ff : → B,
andB, orB : B2 → B

notB : B → B

end

.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

622 • J. V. Tucker and J. I. Zucker

Note that the signature can essentially be inferred from the algebra; indeed
from now on we will not define the signature where no confusion will arise.
Further, for notational simplicity, we will not always distinguish between
function names in the signature (true, etc.) and their intended interpretations
(trueB = tt, etc.)

(b) The algebra N 0 of naturals has a carrier N of sort nat, together with
the zero constant and successor function:

algebra N 0

carriers N

functions 0 : → N,
S : N → N

end

.

(c) The ring R0 of reals has a carrier R of sort real:

algebra R0

carriers R

functions 0, 1 : → R,
+, × : R2 → R,
− : R → R

end

.

(d) The field R1 of reals is formed by adding the multiplicative inverse to
the ring R0:

algebra R1

import R0

functions invR : R → R

end

,

where

invR(x) =
{

1/x if x �= 0,
↑ otherwise.

This is an example of a partial algebra. Other examples will be given later.

Throughout this work we make the following assumption about the signa-
tures �.

Assumption 3.1.2 (Instantiation Assumption). For every sort s of �, there
is a closed term of that sort, called the default term δs of that sort.

This guarantees the presence of default values δs
A in a �-algebra A at all

sorts s, and default tuples δu
A at all product types u.

3.2 Adding Booleans: Standard Signatures and Algebras

The algebra B of Booleans (Example 3.1.1(a)) plays an essential role in compu-
tation. This motivates the following definition.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 623

Definition 3.2.1 (Standard Signature). A signature � is standard if (i) it is
an expansion1 of �(B), and (ii) the function symbols of � include a conditional

ifs : bool × s2 → s

for all sorts s of � other than bool.

For a standard �, a �-sort s is called an equality sort if � includes an equality
operator

eqs : s2 → bool.

Definition 3.2.2 (Standard Algebra). Given a standard signature �, a �-
algebra A is a standard if (i) it is an expansion of B; (ii) the conditional operator
on each sort s has its standard interpretation in A (i.e., for b ∈ B and x, y ∈ As)

ifA
s (b, x, y) =

{
x if b = tt,
y if b = ff;

and (iii) the operator eqs is interpreted as a partial identity on each equality
sort s, that is, for any two elements of As, if they are identical, then the operator
at these arguments either returns tt or diverges, and if they are not identical,
then it either returns ff or diverges.

Remarks 3.2.3. (a) In practice, part (iii) of the above definition occurs as
one of three cases. First, the case

eqA
s (x, y) =

{
tt if x = y ,
ff otherwise,

that is, total equality, represents the situation where equality is “decidable” or
“computable” at sort s, for example, when s = nat. Second, the case

eqA
s (x, y) =

{
tt if x = y ,
↑ otherwise

represents typically the situation where equality is “semidecidable.” An exam-
ple is given by the initial term algebra of an recursively enumerable equational
theory. Third, the case

eqA
s (x, y) =

{
↑ if x = y ,
ff otherwise,

represents typically the situation where equality is “co-semidecidable.” Exam-
ples are given by the data types of streams and reals (cf. the discussion in Section
2.1.3 and Example 3.2.4(c)).

(b) Any many-sorted signature � can be standardized to a signature �B by
adjoining the sort bool together with the standard Boolean operations; and, cor-
respondingly, any algebra A can be standardised to an algebra AB by adjoining
the algebra B as well as the conditional and equality operators.

1Expansions of signatures and algebras are defined in Tucker and Zucker [2000], Definition 2.6.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

624 • J. V. Tucker and J. I. Zucker

Example 3.2.4 (Standard Algebras). (a) The simplest standard algebra is
the algebra B of the Booleans (Example 3.1.1(a)).

(b) A standard algebra of naturals N is formed by standardizing the algebra
N 0 (Example 3.1.1(b)), with (total) equality and order operations on N:

algebra N
import N 0, B
functions ifNnat : B × N2 → N,

eqN
nat, lsNnat : N2 → B

end

.

(c) A standard partial algebraRp on the reals is formed similarly by standard-
izing the field R1 (Example 3.1.1(d)), with partial equality and order operations
on R:

algebra R
import R1, B
functions ifRreal : B × R2 →· R,

eqR
real, lsRreal : R2 →· B

end

,

where

eqR
real(x, y) =

{
↑ if x = y ,
ff if x �= y ,

and lsRreal(x, y) =




tt if x < y ,
ff if x > y ,
↑ if x = y .

Discussion 3.2.5 (Semicomputability and Co-Semicomputability). The
significance of the partial equality and order operations in Example (c) above,
in connection with computability and continuity, has been touched on in
Section 2.1(c). The continuity of partial functions will be discussed in
Section 3.5 (and see in particular Example 3.5.4(b)). Regarding computability,
these definitions are intended to capture the intuition of the “semicomputabil-
ity” of order and “co-semicomputability” of equality on (a concrete model of) the
reals. For given two reals x and y , represented (say) by their infinite decimal
expansions, suppose their decimal digits are being read systematically, the nth
digit of both at step n. Then if x �= y or x < y , this will become apparent after
finitely many steps, but no finite number of steps can confirm that x = y .

Throughout this article, we will assume the following:

Assumption 3.2.6 (Standardness Assumption). The signature � and �-
algebra A are standard.

3.3 Adding Counters: N-Standard Signatures and Algebras

The standard algebraN of naturals (Example 3.2.4(b)) plays, likeB, an essential
role in computation. This motivates the following definitions:

Definition 3.3.1 (N-Standard Signature). A signature is N-standard if (i) it
is standard, and (ii) it is an expansion of �(N).

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 625

Definition 3.3.2 (N-Standard Algebra). Given an N-standard signature �,
a corresponding �-algebra A is N-standard if it is an expansion of N .

Note that any standard signature � can be N-standardized to a signature �N

by adjoining the sort nat, and the operations 0, S, eqnat, lsnat, and ifnat. Corre-
spondingly, any standard �-algebra A can be N-standardized to an algebra AN

by adjoining the carrier N together with the corresponding standard functions.

Examples 3.3.3 (N-Standard Algebras). The simplest N-standard algebra
is the algebra N (Example 3.2.4(b)). We can N-standardize the algebra Rp
(Example 3.2.4(c)) to form the algebra RN

p .

3.4 Adding Arrays: Algebras A∗ of Signature �∗

A standard signature �, and standard �-algebra A, can be expanded in two
stages:

(1◦) N-standardize these to form �N and AN , as in Section 3.3.
(2◦) Define, for each sort s of �, the carrier A∗

s to be the set of finite sequences
or arrays a∗ over As, of “starred sort” s∗.

The resulting algebras A∗ have signature �∗, which extends �N by including,
for each sort s of �, the new starred sorts s∗, and certain new function symbols.
Details are given in Tucker and Zucker [2000], Section 2.7 and (an equivalent
but simpler version) in Tucker and Zucker [1999], Section 2.4.

The significance of arrays for computation is that they provide finite but
unbounded memory. The reason for introducing starred sorts is the lack of
effective coding of finite sequences within abstract algebras in general (unlike
the case with N).

3.5 Topological Partial Algebras

We now add topologies to our partial algebras, with the requirement of conti-
nuity for the basic partial functions.

Definition 3.5.1. Given two topological spaces X and Y , a partial function
f : X →· Y is continuous iff for every open V ⊆ Y , f −1[V] is open in X , where

f −1[V] =df {x ∈ X | x ∈ dom(f) and f (x) ∈ Y }.
Remark 3.5.2. For later use, we recast this definition in the language of

metric spaces. Given two metric spaces X and Y , a partial function f : X →· Y
is continuous iff

∀a ∈ dom(f) ∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ) (x ∈ dom(f) ∧ f (x) ∈ B(f (a), ε)).

Definition 3.5.3. (a) A topological partial �-algebra is a partial �-algebra
with topologies on the carriers such that each of the basic �-functions is
continuous.

(b) An (N -)standard topological partial algebra is a topological partial
algebra which is also (N -)standard, such that the carriers B (and N) have the
discrete topology.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

626 • J. V. Tucker and J. I. Zucker

Examples 3.5.4. (a) Discrete algebras: The standard algebras B and N
of Booleans and naturals respectively, Sections 3.1 and 3.3, are topological
(total) algebras under the discrete topology. All functions on them are trivially
continuous, since the carriers are discrete.

(b) The partial real algebra Rp (Example 3.2.4(c)) and its N-standardized
version RN

p (Example 3.3.3(b)) can be construed as topological algebras, where
R has its usual topology, and B and N the discrete topology. Note that the
partial operations eqR

real and lsRreal are continuous. (Recall the discussion in
Subsection 2.1(c).)

(c) Partial interval algebras on the closed interval [0, 1] have the form

algebra I p

import Rp

carriers I
functions iI : I → R,

F1 : Im1 → I,
. . .

Fk : Imk → I
end

,

where I = [0, 1] (with its usual topology), iI is the embedding of I into R, and
Fi : Imi → I are continuous partial functions. There are also N-standard
versions:

algebra IN
p

import RN
p

carriers I
functions iI : I → R,

. . .

end

.

(d) The N-standard total real algebra RN
t is defined by

algebra RN
t

import R0, N , B
functions ifRreal : B × R2 → R,

divRnat : R × N → R,
end

.

HereR0 is the ring of reals (Example 3.1.1(c)),N is the standard algebra of natu-
rals (3.2.4(b)), and divnat is division of reals by naturals (total and continuous!—
just let divnat(xreal, 0nat) =df 0real).

Note that RN
t does not contain (total) Boolean-valued functions < or = on

the reals, since they are not continuous (cf. the partial functions eqreal and lsreal

of Rp).

Definition 3.5.5 (Extensions of Topology to AN and A∗). The various alge-
braic expansions of A detailed in Sections 3.3 and 3.4 induce corresponding
topological expansions.

(a) The topological N-standardization AN , of signature �N , is constructed
from A by giving the new carrier N the discrete topology.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 627

(b) The topological array algebra A∗, of signature �∗, is constructed from AN

by giving A∗
s the disjoint union topology of the sets (As)n of arrays of length n,

for all n ≥ 0, where each set (As)n is given the product topology of the sets As.
It can be seen that this is the topology on A∗ generated by the new functions,

that is, the weakest topology which makes them continuous. It can also be
described as follows. The basic open sets in A∗

s have the form

{a∗ ∈ A∗
s | Lgth(a∗) = n and a∗[i1] ∈ U1, . . . , a∗[ik] ∈ Uk}

for some n, k, i1, . . . , ik , where 0 ≤ k < n and 0 ≤ i1 < · · · < ik < n, and for
some open sets U1, . . . , Uk ⊆ As.

3.6 Metric Algebra

A particular type of topological algebra is a metric partial algebra. This is a
many-sorted standard partial algebra with an associated metric:

algebra A
import B, Rp

carriers A1, . . . , Ar ,
functions F A

1 : Au1 → As1 ,
. . .

F A
k : Auk → Ask ,

dA
1 : A2

1 → R,
. . .

dA
r : A2

r → R

end

,

where B and Rp are, respectively, the algebras of Booleans and reals
(Examples 3.1.1(a), 3.2.4(c)), the carriers A1, . . . , Ar are metric spaces with
metrics dA

1 , . . . , dA
r , respectively, F1, . . . , Fk are the �-function symbols other

than d1, . . . , dr , and the (partial) functions F A
i are all continuous with respect

to these metrics (cf. Definition 3.5.1).
Note that the carrier B (as well as N, if present) has the discrete metric,

defined by

d(x, y) =
{

0 if x = y ,
1 if x �= y ,

which induces the discrete topology.
We will often speak of a “metric algebra A,” without stating the metric

explicitly.

Example 3.6.1. Clearly, metric partial algebras can be viewed as special
cases of topological partial algebras. Thus the partial and total real algebras
Rp, RN

p , and RN
t (Examples 3.5.4) can be recast as metric algebras in an obvious

way.

Remark 3.6.2 (Extension of Metric to A∗). A metric algebra A can be ex-
panded to a metric algebra A∗ of arrays over A. Namely, given a metric ds
on As, we define a (bounded) metric d∗

s on A∗
s as follows: for a∗ = (a1, . . . , ak),

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

628 • J. V. Tucker and J. I. Zucker

b∗ = (b1, . . . , bl) ∈ A∗
s :

d∗
s (a∗, b∗) =

{
1 if k �= l ,

min
(
1, maxk−1

i=0 ds(a∗[i], b∗[i])
)

otherwise.

This gives the topology on A∗ induced by the topology on A (Definition 3.5.5)
[Engelking 1989].

Remark 3.6.3 (Product Metric on A). If A is a �-metric algebra, then for
each �-product sort u = s1 × · · · × sm, we can define a metric du on Au by

du((x1, . . . , xm), (y1, . . . , ym)) = m
max

i=1
(dsi (xi, yi))

or more generally, by the �p metric

du((x1, . . . , xm), (y1, . . . , ym)) =
(

m∑
i=1

(dsi (xi, yi))p

)1/p

(1 ≤ p ≤ ∞),

where p = ∞ corresponds to the “max” metric. This induces the product topol-
ogy on Au.

Remark 3.6.4 (W-Continuity). An alternative notion of continuity of partial
functions, used by Weihrauch and others [Weihrauch 2000; Brattka 1996], is
discussed in Electronic Appendix A.

4. “While” PROGRAMMING WITH COUNTABLE CHOICE

The programming language WhileCC = WhileCC(�) is an extension of
While(�) [Tucker and Zucker 2000, Section 3] with an extra “choose” rule
of term formation. We give the complete definition of its syntax and semantics,
using the algebraic operational semantics of Tucker and Zucker [2000].

Assume � is an N-standard signature, and A is an N-standard �-algebra.

4.1 Syntax of WhileCC(�)

We define four syntactic classes: variables, terms, statements, and procedures:

(a) Var = Var(�) is the class of �-program variables, and, for each �-sort s,
Vars is the class of program variables of sort s: as, bs, . . . , xs, ys,

(b) PTerm = PTerm(�) is the class of �-program terms t, . . . , and, for
each �-sort s, PTerms is the class of program terms of sort s. These are
generated by the rules

t ::= xs | F (t1, . . . , tn) | choose znat : b,

where s, s1, . . . , sn are �-sorts, F : s1 × · · · × sn → s is a �-function symbol,
ti ∈ PTermsi for i = 1, . . . , n (n ≥ 0), and b is a Boolean term, that is, a
term of sort bool.

The “choose” term has sort nat. Think of “choose” as a generalization
of the constructive least number operator least z : b which has the value k
in case b[z/k] is true and b[z/i] is defined and false for all i < k, and is
undefined in case no such k exists.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 629

Here “choose z : b” selects some value k such that b[z/k] is true, if
any such k exists (and is undefined otherwise). In our abstract seman-
tics, we will give the meaning as the set of all possible k’s (hence “countable
choice”). Any concrete model will select a particular k, according to the
implementation.

Note that the program terms extend the algebraic terms (i.e., the terms
over the signature �) by including in their construction the “choose”
operator, which is not an operation of �. An alternative formulation would
have “choose” not as part of the term construction, but rather as a new
atomic program statement: “choose z : b”. We prefer the present treatment,
as it leads to the construction of many-valued term semantics (as we will
see), which is interesting in itself, and which we would have to deal with
anyway if we were to extend our syntax to include (many-valued) function
procedure calls in our term construction.

We write t : s to indicate that t ∈ PTerms, and for u = s1 × · · · × sm,
we write t : u to indicate that t is a u-tuple of program terms, that is, a
tuple of program terms of sorts s1, . . . , sm. We also use the notation b, . . .

for Boolean terms.
(c) AtSt = AtSt(�) is the class of atomic statements Sat, . . . defined by

Sat ::= skip | div | x := t,

where “div” stands for “divergence” (nontermination), and x := t is a con-
current assignment, where for some product type u, t : u and x is a u-tuple
of distinct variables.

(d) Stmt = Stmt(�) is the class of statements S, . . . , generated by the rules

S ::= Sat | S1; S2 | if b then S1 else S2 fi | while b do S od.

(e) Proc = Proc(�) is the class of function procedures P, Q , These have
the form

P ≡ func in a out b aux c begin S end,

where a, b, and c are lists of input variables, output variables, and auxiliary
(or local) variables, respectively, and S is the body. Further, we stipulate
the following:
—a, b, and c each consist of distinct variables, and they are pairwise dis-

joint;
—all variables occurring in S must be among a, b, or c,
—the input variables a must not occur on the left-hand side of assignments

in S;
— initialization condition: S has the form Sinit; S′, where Sinit is a concur-

rent assignment which initializes all the output and auxiliary variables,
that is, assigns to each variable in b and c the default term (3.1.2) of
the same sort.

If a : u and b : v, then P is said to have type u → v, written P : u → v.
Its input type is u and its output type is v.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

630 • J. V. Tucker and J. I. Zucker

4.2 Algebraic Operational Semantics of WhileCC

We interpret programs as countably many-valued state transformations, and
function procedures as countably many-valued functions on A. Our approach
follows the algebraic operational semantics of Tucker and Zucker [2000],
Section 3.4. First we need some notation.

Notation 4.2.1.

(a) Pω(X) is the set of all countable subsets of a set X , including the empty
set.

(b) P+
ω (X) is the set of all countable nonempty subsets of X .

(c) We write Y ↑ for Y ∪ {↑}, where “↑” denotes divergence.
(d) We write f : X ⇒ Y for f : X → Pω(Y).
(e) We write f : X ⇒+ Y for f : X → P+

ω (Y).

We will interpret a WhileCC procedure P : u → s as a countably many-
valued function P A from Au to As

↑, that is, as a function

P A : Au → P+
ω (As

↑)

or, in the above notation:

P A : Au ⇒+ As
↑.

Remark 4.2.2 (Significance of “ ↑”). Notice that an output of, say, {2, 5, ↑}
is different from {2, 5}, since the former indicates the possibility of divergence.
So a semantic function will have, for inputs not in its domain, “↑” as a possible
output value.

Definition 4.2.3 (States). (a) For each �-algebra A, a state on A is a family
〈σ s | s ∈ Sort(�)〉 of functions

σ s : Vars → As.

Let State(A) be the set of states on A, with elements σ ,

(b) Let σ be a state over A, x ≡ (x1, . . . , xn) : u and a = (a1, . . . , an) ∈ Au (for
n ≥ 1). The variant σ {x/a} of σ is the state over A formed from σ by replacing
its value at xi by ai for i = 1, . . . , n.

We give a brief overview of algebraic operational semantics. This was used in
Tucker and Zucker [1988] for deterministic imperative languages with “ while”
and recursion (see Tucker and Zucker [2000] for the case of While(�)), but it
can be applied to a wide variety of imperative languages. It has also been used
to analyze compiler correctness [Stephenson 1996]. It can also be adapted, as
we will see, to a nondeterministic language such as WhileCC ∗.

Assume (i) we have a meaning function for atomic statements

〈|Sat|〉 : State(A) ⇒+ State(A)↑,

and (ii) we have defined a pair of functions

First : Stmt → AtSt,
Rest A : Stmt × State(A) ⇒+ Stmt,

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 631

where, for a statement S and state σ ,

First(S) is an atomic statement which gives the first step in the
execution of S (in any state), and Rest A(S, σ) is a statement (or,
in the present nondeterministic context, a finite set of statements)
which gives the rest of the execution in state σ .

From these we define the computation step function

CompStepA : Stmt × State(A) ⇒+ State(A)↑

by
CompStepA(S, σ) = 〈|First(S)|〉A

σ ,
from which, in turn, we can define (for the deterministic language of Tucker
and Zucker [2000]) a computation sequence or (for the present language) a com-
putation tree. The aim is to define a computation tree stage function

CompTreeStageA : Stmt × State(A) × N ⇒+ (State(A)↑)<ω,

where CompTreeStageA(S, σ , n) represents the first n stages of
CompTreeA(S, σ). Here (State(A)↑)<ω denotes the set of finite sequences
from State(A)↑, interpreted as finite initial segments of the paths through
the computation tree. From this are defined the semantics of statements and
procedures.

Remark 4.2.4. The intuition behind these semantics is that for any input
x ∈ Au, P A(x) is the set of all possible outcomes (including divergence), for all
possible implementations of the “choose” construct, including nonconstructive
implementations! So if (for a given input x) the only infinite paths through the
semantic computation tree are nonconstructive, then P A(x) will still include
“↑”. This is discussed further in Section 4.4(b).

We turn to the details of these definitions.
(a) Semantics of program terms. The meaning of t ∈ PTerms is a function

[[t]]A : State(A) ⇒+ As
↑.

The definition is by structural induction on t:

[[x]]A
σ = {σ (x)},

[[c]]A
σ = {cA},

[[F (t1, . . . , tm)]]A
σ = { y | ∃x1 ∈ A ∩ [[t1]]σ · · · ∃xm ∈ A ∩ [[tm]]σ :

F A(x1, . . . , xm)↓ y}
∪ {↑ | ∃x1 ∈ A ∩ [[t1]]σ · · · ∃xm ∈ A ∩ [[tm]]σ :

F A(x1, . . . , xm) ↑}
∪ {↑ | ↑ ∈ [[ti]]

A
σ for some i, 1 ≤ i ≤ m},

[[if(b, t1, t2)]]A
σ = { y | (tt ∈ [[b]]A

σ ∧ y ∈ [[t1]]A
σ) ∨

(ff ∈ [[b]]A
σ ∧ y ∈ [[t2]]A

σ)}
∪ {↑ | ↑ ∈ [[b]]A

σ },
[[choose z : b]]A

σ = {n ∈ N | tt ∈ [[b]]Aσ {z/n}}
∪ {↑ | ∀n ∈ N(ff ∈ [[b]]Aσ {z/n} ∨ ↑ ∈ [[b]]Aσ {z/n})}.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

632 • J. V. Tucker and J. I. Zucker

Notice that [[choose z : b]]A
σ could include both natural numbers and “↑”, since

for any n, [[b]] Aσ {z/n} could include both tt and ff.
(b) Semantics of atomic statements. The meaning of Sat ∈ AtSt is a function

〈|Sat|〉 : State(A) ⇒+ State(A)↑

defined by

〈|skip|〉A
σ = {σ },

〈|div|〉A
σ = {↑},

〈|x := t|〉Aσ = {σ {x/a} | a ∈ A ∩ [[t]]A
σ } ∪ {↑ | ↑ ∈ [[t]]A

σ }.
(c) The First and Rest operations. The operation

First : Stmt → AtSt

is defined exactly as in Tucker and Zucker [2000], Section 3.5, namely:

First(S) =




S if S is atomic,
First(S1) if S ≡ S1; S2,
skip otherwise.

The operation

Rest A : Stmt × State(A) ⇒+ Stmt

is defined as follows (cf. Tucker and Zucker [2000], Section 3.5):
Case 1. S is atomic. Then Rest A(S, σ) = {skip}.
Case 2. S ≡ S1; S2.

Case 2a. S1 is atomic. Then Rest A(S, σ) = {S2}.
Case 2b. S1 is not atomic. Then Rest A(S, σ) =

{S′; S2 | S′ ∈ Rest A(S1, σ)} ∪ {div | div ∈ Rest A(S1, σ)}.
Case 3. S ≡ if b then S1 else S2 fi. Then Rest A(S, σ) contains all of


S1 if tt ∈ [[b]]Aσ ,
S2 if ff ∈ [[b]]Aσ ,
div if ↑ ∈ [[b]]Aσ .

Note that more than one condition may hold.
Case 4. S ≡ while b do S0 od. Then Rest A(S, σ) contains all of


S0; S if tt ∈ [[b]]Aσ ,
skip if ff ∈ [[b]]Aσ ,
div if ↑ ∈ [[b]]Aσ .

Note again that more than one condition may hold.
(d) Computation step. From First we can define the computation step

function

CompStepA : Stmt × State(A) ⇒+ State(A)↑,

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 633

which is like the one-step computation function CompA
1 of Tucker and Zucker

[2000], Section 3.4, except for being multivalued:

CompStepA(S, σ) = 〈|First(S)|〉A
σ .

(e) The computation tree. The computation sequence, which is basic to the
semantics of While computations in Tucker and Zucker [2000], is replaced
here by a computation tree

CompTreeA(S, σ)

of a statement S at a state σ . This is an ω-branching tree, branching according to
all possible outcomes (i.e., “output states”) of the one-step computation function
CompStepA. Each node of this tree is labeled by either a state or “↑”.

Any actual (“concrete”) computation of statement S at state σ corresponds
to one of the paths through this tree. The possibilities for any such path are

(i) it is finite, ending in a leaf containing a state: the final state of the compu-
tation;

(ii) it is finite, ending in a leaf containing “↑” (local divergence);
(iii) it is infinite (global divergence).

Correspondingly, the function CompA of Tucker and Zucker [2000],
Section 3.4, is replaced by a computation tree stage function

CompTreeStageA : Stmt × State(A) × N ⇒+ (State(A)↑)<ω,

where CompTreeStageA(S, σ , n) represents the first n stages of
CompTreeA(S, σ). This is defined (like CompA) by a simple recursion
(“tail recursion”) on n:

Basis: CompTreeStageA(S, σ , 0) = {σ }, that is, just the root labeled by
σ .

Induction step: CompTreeStageA(S, σ , n) is formed by attaching to the root
{σ } the following:

(i) for S atomic: the leaf {σ ′}, for each σ ′ ∈ 〈|S|〉Aσ (where σ ′ may be a state
or ↑);

(ii) for S not atomic: the subtree CompTreeStageA(S′, σ ′, n − 1), for each
σ ′ ∈ CompStepA(S, σ) (σ ′ �= ↑) and S′ ∈ Rest A(S, σ), as well as the leaf
{↑} if “↑” ∈ CompStepA(S, σ).

Then CompTreeA(S, σ) is defined as the “limit” over n of CompTree
StageA(S, σ , n).

Note that only the leaves of CompTreeA(S, σ) may contain “↑” (“local di-
vergence”).

(f) Semantics of statements. From the semantic computation tree we can
easily define the input/output semantics of statements

[[S]]A : State(A) ⇒+ State(A)↑.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

634 • J. V. Tucker and J. I. Zucker

Namely,

[[S]]A
σ is the set of states and/or “↑” at all leaves in CompTreeA(S, σ),

together with “↑” if CompTreeA(S, σ) has an infinite path.

Note that, by its definition, [[S]]σ cannot be empty. It will contain (at least)
“↑” if there is at least one computation sequence leading to divergence, that is,
a path of the computation tree which is either infinite or ends in a “↑” leaf.

(g) Semantics of procedures. Finally, if

P ≡ func in a out b aux c begin S end (4)

is a procedure of type u → v, then its meaning in A is a function

P A : Au ⇒+ Av↑

defined as follows (cf. Tucker and Zucker [2000], Section 3.6). For x ∈ Au,

P A(x) = {σ ′(b) | σ ′ ∈ [[S]]A
σ } ∪ {↑ | ↑ ∈ [[S]]A

σ },
where σ is any state on A such that σ [a] = x. (From the initialization condition
(Section 4.1(e)) it follows by a “functionality lemma” [Tucker and Zucker 2000,
Section 3.6.1] that P A is well defined.)

Definition 4.2.5. A WhileCC procedure P : u → v is deterministic on A if
for all x ∈ Au, P A(x) is a singleton.

Remark 4.2.6 (Two Concepts of Deterministic Computation). One can dis-
tinguish between two notions of deterministic computation: (i) strong determin-
istic computation, the common concept, in which each step of the computation is
determinate; and (ii) weak deterministic computation, in which the output (or
divergence) is uniquely determined by (i.e., a unique function of) the input, but
the steps in the computation are not necessarily determinate. A good example
of (ii) is the Gaussian elimination algorithm (Examples 2.2.1 and 5.2.1) which,
although defining a unique function (the inverse of a matrix), incorporates the
(nondeterministic!) pivot function as a subroutine. In Definition 4.2.5 and else-
where in this article, we are concerned with the weak sense of deterministic
computation.

Definition 4.2.7.

(a) A many-valued function f : Au ⇒+ As
↑ is WhileCC computable on A if

there is a WhileCC procedure P such that f = P A.
(b) A partial function f : Au →· As is WhileCC computable on A if there is a

deterministic WhileCC procedure P : u → s such that, for all x ∈ Au,
(i) f (x) ↓ y =⇒ P A(x) = { y}, and

(ii) f (x)↑ =⇒ P A(x) = {↑}.
Remark 4.2.8 (Many-Valued Algebras). As we have seen, the semantics for

WhileCC procedures is given by countably many-valued functions. If we were
to start with algebras with many-valued basic operations, as in Brattka [1996,
1999], the algebraic operational semantics could handle this just as easily, by

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 635

adapting the clause for the basic �-function f in part (a) (“Semantics of program
terms”) of the semantic definition above.

4.3 The Language WhileCC∗(�)

In Tucker and Zucker [1999, 2000], we worked with the language While∗(�)
(rather than While(�)), formed by augmenting While with auxiliary array
and nat variables [Tucker and Zucker 2000, Section 3.13]. The importance
of While∗ computability lies in the fact that it forms the basis for a general-
ized Church-Turing Thesis for computability on abstract many-sorted algebras
[Tucker and Zucker 2000, Section 8].

Here, similarly, we will work with the language WhileCC ∗ = WhileCC ∗(�),
which can be viewed similarly as WhileCC(�) augmented by auxiliary array
and nat variables (or as While∗(�) augmented by the “choose” construct).

More precisely, a WhileCC ∗(�) procedure is a WhileCC(�∗) procedure in
which the input and output variables have sorts in � only. (However the aux-
iliary variables may have starred sorts or sort nat.)

Thus it defines a countably many-valued function on any standard �-algebra.

4.4 Some Computability Issues in the Semantics of WhileCC ∗ Procedures

Some interesting issues in the semantics of WhileCC ∗ arise already in the case
of computation over the algebra N of naturals (Example 3.2.4(b)).

(a) Eliminating “choose” from deterministic WhileCC ∗ on total algebras.
The “choose” operator can be eliminated from deterministic WhileCC∗ proce-
dures (cf. Definition 4.2.5 and Remark 4.2.6) over total algebras.

THEOREM 4.4.1. For any total �-algebra A and f : Au →· As,

f is WhileCC∗ computable over A ⇐⇒ f is While∗ computable over A.

PROOF. (⇒) Let P be a deterministic WhileCC ∗ procedure over A which
computes f . Since A is total, evaluation of any Boolean term b over A (relative
to a state) converges to tt or ff in A. Further, since P is deterministic, its output
for a given input is independent of the implementation. Hence every “choose”
term in P of the form choose z : b[z] can be replaced by a “ while” loop which
tests b[0], b[1], b[2], . . . in turn, that is, finds the least k for which b[k] is true,
if it exists, and diverges otherwise.

Applying this to the total algebraN , and recalling that While∗ computability
over N is equivalent to partial recursiveness (i.e., classical computability) over
N [Tucker and Zucker 2000], we have the following:

COROLLARY 4.4.2. For any f : Nm →· N,

f is WhileCC ∗ computable over N ⇐⇒ f is partial recursive over N.

(b) Recursive and nonrecursive implementations. The semantics P A of a pro-
cedure P (Section 4.2) is given, for an input x, by all paths of the computation
tree T = CompTreeA(S, σ) (where S is the body of P) representing all possible

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

636 • J. V. Tucker and J. I. Zucker

computation sequences for S starting at state σ , where σ [a] = x, that is, all pos-
sible implementations of instances of the “choose” construct occurring in the
execution of S starting at σ . This leads to interesting computation-theoretic
issues even in the simple case that A = N , where we can assume that T is
coded as a subset of N in a standard way. Now any path of T ending in a leaf
is finite, and therefore (trivially) recursive. An infinite path or computation
sequence (leading to divergence), however, may or may not be recursive. (See
Remark 4.2.4.)

THEOREM 4.4.3. There is a WhileCC ∗(N) procedure P such that its compu-
tation tree has an infinite path, but no recursive infinite path.

The construction of P is based on the construction of a recursive tree with
an infinite path, but no recursive infinite path [Odifreddi 1999, V.5.25]. Details
are given in Electronic Appendix B.

For this procedure P , ↑ ∈ P A(), that is, divergence is possible. However,
if we were to restrict computation sequences to be recursive, then divergence
would not be a possible outcome for P A(). The semantics, as we give it (i.e., all
possible computation sequences included, whether recursive or not) is simpler
than this alternative. In any case, as we will see, this choice will not affect
continuity considerations (cf. Lemmas 6.1.7 and 6.2.1).

4.5 Approximable WhileCC∗ Computability

The basic notion of computability that we will be using in working with metric
algebras is not so much computability, as rather computable approximability on
metric algebras, as discussed in Tucker and Zucker [1999], Section 9. We have
to adapt the definition given there to the nondeterministic case with countable
choice.

Let A be a metric �-algebra, u a �-product type, and s a �-type. Let

P : nat × u → s

be a WhileCC ∗(�N) procedure. Put

P A
n =df P A(n, ·) : Au ⇒+ As

↑.

Note that that for all x ∈ Au, P A
n (x) �= ∅.

Definition 4.5.1 (WhileCC ∗ Approximability to a Single-Valued Function).
Let f : Au →· As be a single-valued partial function on A.

(a) f is WhileCC ∗ approximable by P on A if for all n ∈ N and all x ∈ Au:

x ∈ dom(f) =⇒ ↑ /∈ P A
n (x) ⊆ B(f (x), 2−n). (5)

(b) f is strictly WhileCC∗ approximable by P on A if in addition to (5),

x /∈ dom(f) =⇒ P A
n (x) = {↑}. (6)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 637

Remarks 4.5.2.

(a) Clearly, WhileCC ∗ computability is a special case of WhileCC ∗ approx-
imability.

(b) For total f , the concepts of WhileCC ∗ approximability and strict
WhileCC∗ approximability coincide.

(c) If a single-valued function f is strictly approximable by P , then (from (5)
and (6)) for all x ∈ Au and all n:

f (x)↑ ⇐⇒ ↑ ∈ P A
n (x) ⇐⇒ P A

n (x) = {↑}.
Definition 4.5.3 (WhileCC ∗ Approximability to a Many-Valued Function).

Let f : Au ⇒ As be a countably many-valued function on A.
(a) f is WhileCC ∗ approximable by P on A if for all n ∈ N and all x ∈ Au:

f (x) �= ∅ =⇒ ↑ /∈ P A
n (x) ⊆ ⋃

y∈ f (x) B(y , 2−n)
and f (x) ⊆ ⋃

y∈P A
n (x) B(y , 2−n).

(7)

Note that (assuming ↑ /∈ P A
n (x)) the right-hand side of (7) implies

dH(f (x), P A
n (x)) ≤ 2−n, (8)

and is implied by

dH(f (x), P A
n (x)) < 2−n, (9)

where X denotes the closure of X , and dH is the Hausdorff metric on the set
of closed, bounded, nonempty subsets of As [Engelking 1989, 4.5.23]. (Actu-
ally, the Hausdorff metric applies only to the space of closed bounded sub-
sets of a given metric space, so (8) and (9) should be taken as heuristic
statements.)

In other words (assuming f (x) �= ∅), for all x ∈ Au and all n, each output of
f (x) lies within 2−n of some output of P A

n (x), and vice versa.
(b) f is strictly WhileCC ∗ approximable by P on A if in addition,

f (x) = ∅ =⇒ P A
n (x) = {↑}.

Remark 4.5.4 (Cf. Remark 4.5.2(c)). If a many-valued function f is strictly
approximable by P , then for all x ∈ Au and all n:

f (x) = ∅ ⇐⇒ ↑ ∈ P A
n (x) ⇐⇒ P A

n (x) = {↑}.

5. EXAMPLES OF WhileCC∗ EXACT AND APPROXIMATING
COMPUTATIONS

5.1 Discussion: Use of “choose” for Searching and Dovetailing

Following the examples in Section 2, the “choose” construct was introduced
to compute many-valued functions. Technically, this construct strengthens
the power of the While language in performing searches. In a partial al-
gebra, simple searches (e.g., “find some xk in an effectively enumerated set

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

638 • J. V. Tucker and J. I. Zucker

X = {x0, x1, x2, . . .} satisfying b(xk)”) will obviously fail in general if the search
simply follows the given enumeration of X (e.g., testing in turn whether b(x0),
b(x1), b(x2), . . . holds), since the computation of the Boolean predicate b(x) may
not terminate for some x.

This problem is overcome, at the concrete model level, by the use of scheduling
techniques such as interleaving or “dovetailing”: at stage n, do n steps in testing
whether b(xi) holds, for i = 0, . . . , n.

An important function of “choose,” which will recur in our examples, is to
simulate such scheduling techniques at the abstract model level. This allows
searches over any countable subset X of an algebra A that has a computable
enumeration enumX : N → X , since we can search X in A by assignments
such as

x := enumX (choose z : b(enumX (z))).

5.2 Examples

We now illustrate the use of the WhileCC ∗ language in topological partial alge-
bras with examples, which involve computations which are either many-valued,
or approximating, or both. The examples given in Section 2.2 to motivate many-
valued abstract computation are a good place to start. They can be displayed
in the following table:

Approximating
Exact computation computation

Single-valued Gaussian elimination ex , sin(x), etc.
Many-valued Approx. points in metric algebra All simple roots of

polynomial

Examples 5.2.1, 5.2.2, and 5.2.4 below are all based on the metric algebra
derived from RN

p (Example 3.3.3(b)).

Example 5.2.1 (Gaussian Elimination). This is a single-valued exact com-
putation. The algorithm can be found in any standard text of numerical com-
putation, for example, Heath [1997]. It is deterministic, but only in the weak
sense (cf. Remark 4.2.6), since it contains, as an essential component, the com-
putation of the pivot function (Section 2.2), which is many-valued, and can be
formalized simply with the “choose” construct:

func in x1, . . . , xn : real
out i : nat
aux k : nat

begin
i := choose k : (k = 1 and x1 �= 0) or

(k = 2 and x2 �= 0) or
. . .

(k = n and xn �= 0)
end.

.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 639

Example 5.2.2 (Approximations to ex). On the interval algebra IN
p (Exam-

ple 3.5.4(c)) we give a While procedure to approximate the function ex on I :

func in n : nat, {degree of approximation}
x : intvl {‘intvl’ is the sort of reals in the interval [0, 1]}

out s : real {partial sum of power series}
aux y : real, {current term of series}

k : nat {counter}
begin

k := 0;
y := 1;
s := 1;
while k < 2n+1 do

k := k + 1;
y := y × iI (x)/ iN (k); {y = xk/k !}
s := s + y {s = ∑k

i=0 x
i/i !}

od
end

.

Here iI : I → R is the embedding of I in R, which is primitive in �(IN
p), and

iN : N → R is the embedding of N in R, which is easily definable in While(RN
p).

Denoting the above function procedure by P , and IN
p by A, we have the

semantics

P A
n : I → R

with

P A
n (x) =

2n+1∑
i=0

xi

i !

and so for all x ∈ I ,

d
(
P A

n (x), ex) < 2−n,

that is, ex is While-approximable on IN
p by P .

This computation of ex is single-valued, but approximating.

Example 5.2.3 (“Choosing” a Member of an Enumerated Subspace Close to
an Arbitrary Element of a Metric Algebra). Given a metric algebra A with a
countable dense subspace C, and an enumeration enumC : N � C of C in the
signature, we want to compute a function f : A × N → C such that

f (a, n) = “some” x ∈ C such that d(a, x) < 2−n.

This is a generalization of the problem of approximating reals by rationals
(Example 2.2.3).

Here is a WhileCC∗ procedure (in pseudocode) for an exact computation of
f . (Note that the real-valued function 2−n is While-computable on RN

p , and

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

640 • J. V. Tucker and J. I. Zucker

hence on A.)

func in a : space, n : nat
out x : space
aux k : nat

begin
x := enumC(choose k : d(a, enumC(k)) < 2−n)

end

.

This computation is many-valued, but exact.

Example 5.2.4 (Finding Simple Roots of A Polynomial). We construct a
WhileCC procedure to approximate “some” simple root of a polynomial p(X)
with real coefficients, using the method of bisection. By a simple root of p(X)
we mean a real root at which p(X) changes sign. (See Heath [1997]. In practice,
a hybrid method is generally used, involving bisection, Newton’s method, etc.)

Fundamental to the bisection method is the concept of a bracket for p(X),
which means an interval [a, b] such that p(a) and p(b) have opposite signs.
By rational bracket, we mean a bracket with rational endpoints. We note the
following:

(1) Any bracket for p contains a root of p (by the Intermediate Value Theorem),
in fact a simple root of p.

(2) Conversely, any simple root of p is contained in a rational bracket for p of
arbitrarily small width.

(3) If x is a simple root of p, then any bracket for p of sufficiently small width
which contains x, contains no other simple root of p.

(4) If [a, b] is a bracket for p, then, putting m = (a + b)/2, exactly one of the
following holds:

(i) p(m) = 0; then m is a root of p (not necessarily simple);
(ii) p(m) has the same sign as p(a); then [m, b] is a bracket for p;

(iii) p(m) has the same sign as p(b); then [a, m] is a bracket for p.

It follows from the above that starting with any rational bracket J for p, we
can, by repeated bisection, find a nested sequence of rational brackets

J = J0, J1, J2, . . . , where
∞⋂

n=0

Jn = {x}

for some simple root x of p. Then, letting rn be the left-hand endpoint of Jn, we
have a fast Cauchy sequence 〈rn〉n with limit x.

One complication with our algorithm is the occurrence of case (i) in (4) above,
that is, the case that the midpoint m of the bracket is itself a root of p, since
by the co-semicomputability of equality (Discussion 3.2.5) on R we can only
verify when f (m) �= 0, not when f (m) = 0. We therefore proceed as follows.
By means of the “choose” construct, we search in the middle third (say) of the
bracket [a, b] for a “division point,” that is, a rational point d such that f (d) �=
0, producing either [a, d] or [d , b] as a subbracket. (So we use a “trisection,”
instead of “bisection,” method.)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 641

This new bracket may not halve the width of [a, b]; in the worst case its width
is 2/3(b − a). However a second iteration of this procedure leads to a bracket
of width at most (2/3)2 < 1/2 the width of [a, b], and so 2n iterations lead to a
bracket of width less than 2−n(b − a).

For convenience, we will use the following two conservative extensions to our
“official” programming notation:

(a) We simultaneously choose two naturals with a single condition:

k1, k2 := choose z1, z2 : b[z1, z2],

which is easily expressible in WhileCC by the use of a primitive recursive
pairing function pair on N and its inverses proj1, proj2:

k := choose z : b[proj1(z), proj2(z)];
k1, k2 := proj1(k), proj2(k).

(b) We choose a rational (of type real) satisfying a Boolean condition:

q := choose rreal :
(
“r is rational” and b[r]

)
.

Let rat : N → R be a While-computable enumeration of the rationals in R.
Then this can be interpreted as

q := rat
(
choose k : b[rat(k)]

)
.

Finally, a polynomial p(X) over R will be represented by an element p∗ of R∗:

p∗ = (a0, . . . , an−1) =
n−1∑
i=0

ai X n−i.

Its evaluation at a point c, denoted by p∗(c), is easily seen to be While(R)-
computable in p∗ and c.

Hence we can give a WhileCC∗ procedure for approximably computing some
simple root of an input polynomial, in the signature of Rp (see Figure 3).

For input natural n and polynomial p, the output is within 2−n of some simple
root of p. Further, for any simple root e of p, there is some implementation of
the “choose” operator which will give an output within 2−n of e. Finally, the
computation will diverge if, and only if, p has no simple roots.

This computation is both many-valued and approximating.

6. CONTINUITY OF COUNTABLY MANY-VALUED WhileCC∗ FUNCTIONS

In this section we define continuity for countably many-valued functions, and
then prove that countably many-valued functions computed by WhileCC ∗ pro-
grams are continuous.

6.1 Topology and Continuity with Countably Many Values and “↑”

The results in this subsection are mostly of a technical nature, and their proofs
are relegated to Electronic Appendix C. (Actually, all these results hold for
arbitrary many-valued functions f : X → P(Y), not necessarily countably
many-valued.) Recall Notation 4.2.1.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

642 • J. V. Tucker and J. I. Zucker

Fig. 3.

Definition 6.1.1 (Totality). The function f : X ⇒ Y is said to be total if
for all x ∈ X , f (x) is a nonempty subset of Y , that is, if f : X ⇒+ Y .

Our semantic functions (in Section 7) will typically be of the form

	 : Au ⇒+ Av↑. (10)

Remark 6.1.2. We think of the “deterministic version” of (10) as being a
total function 	, where for each x ∈ X , 	(x) is a singleton, containing ei-
ther an element of Av (to indicate convergence) or “↑” (to indicate divergence).
(Cf. Remark 4.2.2.)

We must now consider what it means for such a function (10) to be continuous.

Definition 6.1.3 (Continuity). Let f : X ⇒ Y , for topological spaces X , Y .
(a) For any V ⊆ Y ,

f −1[V] =df {x ∈ X | f (x) ∩ V �= ∅},
that is, x ∈ f −1[V] iff at least one of the elements of f (x) lies in V .

(b) f is continuous (with respect to X and Y) iff for all open V ⊆ Y , f −1[V]
is open in X .

Remarks 6.1.4. (a) For metric spaces X and Y , Definition 6.1.3(b) becomes
the following: f : X ⇒ Y is continuous iff

∀a ∈ X ∀b ∈ f (a) ∀ε > 0 ∃δ > 0 ∀x ∈ B(a, δ) (f (x) ∩ B(b, ε) �= ∅).

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 643

(b) Definition 6.1.3(b) reduces to the standard definition of continuity for
total single-valued functions from X to Y .

(c) It also reduces to the definition of continuity for partial single-valued
functions (Definition 3.5.1), as we will see below (Remark 6.1.9). We must first
see how to extend the topology on Y to that on Y ↑ (Definition 6.1.6 below).

Definition 6.1.5. For two functions f : X ⇒ Y , g : X ⇒ Y , we define

f � g ⇐⇒df for all x ∈ X , f (x) ⊆ g (x).

Definition 6.1.6. We extend the topology on Y to Y ↑ (= Y ∪ {↑}) by spec-
ifying that the only open set containing {↑} is Y ↑. (So Y ↑ is a “one-point
compactification” of Y .)

Now, given a function f : X ⇒ Y ↑, we define functions

f ↑ : X ⇒ Y ↑ and f − : X ⇒ Y

by

f ↑(x) = f (x) ∪ {↑} and f −(x) = f (x)\{↑}.
In other words, f ↑ adds “↑” to the set f (x) for each x ∈ X and f − removes
“↑” from every such set. This changes the semantics of f (see Remark 4.2.2),
but not its continuity properties, as will be seen from the following technical
lemma, which will be used in the proof of continuity of computable functions
below (Section 6.2).

LEMMA 6.1.7. Let f : X ⇒ Y and g : X ⇒+ Y ↑ be any two functions
such that

f � g � f ↑,

that is, for all x ∈ X , g (x) �= ∅, and either g (x) = f (x) or g (x) = f (x) ∪ {↑}.
Then

f is continuous ⇐⇒ g is continuous.

COROLLARY 6.1.8. Suppose f : X ⇒+ Y ↑ (i.e., f is total). Then

f is continuous ⇐⇒ f − is continuous ⇐⇒ f ↑ is continuous.

Remark 6.1.9 (Justification of Remark 6.1.4(c)). Let f : X →· Y be a single-
valued partial function. Define

f̌ : X ⇒ Y and f̂ : X ⇒+ Y ↑

by

f̌ (x) =
{

{ f (x)} if x ∈ dom(f)
∅ otherwise

and f̂ (x) =
{

{ f (x)} if x ∈ dom(f)
{↑} otherwise.

(We can view either f̌ or f̂ as “representing” f in the present context, cf.
Remark 6.1.2.) Then

f is continuous (according to Def. 3.5.1)
⇐⇒ f̌ is continuous (according to Def. 6.1.3)
⇐⇒ f̂ is continuous (according to Def. 6.1.3).

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

644 • J. V. Tucker and J. I. Zucker

The equivalence of the continuity of f and f̌ follows immediately from
the definitions. The equivalence of the continuity of f̌ and f̂ follows from
Lemma 6.1.7.

LEMMA 6.1.10. Given f : X ⇒ Y ↑, extend it to f̃ : X ↑ ⇒ Y ↑ by stipulating
that f̃ (↑) = ↑. If f is continuous and total, then f̃ is continuous.

Definition 6.1.11 (Composition). (a) Suppose f : X ⇒ Y and g : Y ⇒ Z .
We define g ◦ f : X ⇒ Z by

(g ◦ f) (x) =
⋃

{g (y) | y ∈ f (x)}.
(b) Suppose f : X ⇒ Y ↑ and g : Y ⇒ Z ↑. We define g ◦ f : X ⇒+ Z ↑ by

(g ◦ f) (x) =
⋃

{g (y) | y ∈ f (x) ∩ Y } ∪ {↑ | ↑ ∈ f (x)}.
PROPOSITION 6.1.12 (CONTINUITY OF COMPOSITION).

(a) If f : X ⇒ Y and g : Y ⇒ Z are continuous, then so is g ◦ f : X ⇒ Z .
(b) If f : X ⇒+ Y ↑ and g : Y ⇒+ Z ↑ are continuous, then so is g◦ f : X ⇒+ Z ↑.

Definition 6.1.13 (Union of Functions). Let fi : X ⇒ Y ↑ be a family of
functions for i ∈ I . Then we define

⊔

i∈I

fi : X ⇒ Y ↑

by (
⊔

i∈I

fi

)
(x) =

⋃
i∈I

fi(x).

LEMMA 6.1.14. If fi : X ⇒ Y ↑ is continuous for all i ∈ I , then so is
⊔

i∈I fi.

6.2 Continuity of WhileCC-Computable Functions

Let A be an N-standard topological �-algebra.
To prove that WhileCC∗ procedures on A are continuous, we first prove

that such procedures are (almost) equivalent to While procedures (without
“choose”) in an extended signature, which includes a symbol f : nat → nat for
an “oracle function.” Then we apply Lemma 6.1.7.

LEMMA 6.2.1 (ORACLE EQUIVALENCE LEMMA). Given a WhileCC(�) statement
S, and procedure

P ≡ func in a out b aux c begin S end,

we can effectively construct a While(�f) statement Sf and procedure

Pf ≡ func in a out b aux c begin Sf end

in a signature �f which extends � by a function symbol f : nat → nat, such
that, putting

P A
� =df

⊔

f ∈F
P A

f ,

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 645

where F = NN is the set of all functions f : N → N and P A
f is the interpretation

of Pf in A formed by interpreting f as f , we have

P A � P A
� � (P A)↑. (11)

(Recall Definition 6.1.5, and the definition of P A : Au ⇒+ Av↑ in Section
4.2(g).)

PROOF. Intuitively, f represents a possible implementation of the “choose”
operator: f(n) is a possible value for the nth call of this operator in any particular
implementation of P . We will then take the union of the interpretations over
all such possible implementations.

In more detail: Sf is constructed from S as follows. Let c be a new “counter,”
that is, an auxiliary nat variable which is not in S. First, by “splitting up”
assignments in S, and introducing more auxiliary nat variables, we rewrite S
in such a way that every occurrence of the “choose” construct is in the context
of an assignment of the form

z′ := choose z : b, (12)

where the Boolean term b does not contain the “choose” construct. Now replace
each assignment of the form (12) by the pair of assignments

c := c + 1;
if b〈z/f(c)〉 then z′ := f(c) else div

and initialize the value of c (at the beginning of the statement) to zero. The
result is a While∗(�f) procedure Pf with a body Sf which, for a given inter-
pretation f of f, “interprets” successive executions of “choose” by successive
values of f , when this is possible (i.e., b〈z/ f (c)〉 has tt as one of its values),
and, otherwise, causes the execution to diverge.

For those f which (for a given input) always give “good” values for all
the successive executions of “choose” assignments (12) in S, P A

f will give a
possible implementation of P . For all other f , P A

f will diverge. Since (for a
given input) each P A

f either simulates one possible implementation of suc-
cessive executions of “choose” in S or diverges, their “union” P A

� gives the
result of all possible implementations of “choose,” plus divergence; hence the
conclusion (11).

THEOREM 6.2.2. Let

P ≡ func in a out b aux c begin S end (13)

be a WhileCC procedure, where a : u and b : v. Then the interpretation

P A : Au ⇒+ Av↑

is continuous.

PROOF. In the notation of the Oracle Equivalence Lemma (6.2.1): P A
f is

continuous for all f ∈ F , by the continuity theorem for While [Tucker and

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

646 • J. V. Tucker and J. I. Zucker

Zucker 2000, Section 6.5]. Hence P A
� is continuous, by Lemma 6.1.14. Hence,

by (13) and Lemma 6.1.7, so is P A.

Remark 6.2.3. In the special case that P A is deterministic, that is, single-
valued:

P A : Au →· Av,

it follows by Remark 6.1.9 that P A is continuous according to our Definition
(3.5.1) of continuity for single-valued partial functions.

COROLLARY 6.2.4. A WhileCC ∗-computable function on A is continuous.

PROOF. Such a function is WhileCC-computable on A∗; hence (by
Theorem 6.2.2) continuous on A∗, and hence on A.

6.3 Continuity of WhileCC ∗-Approximable Functions

Recall Definition 4.5.1.

THEOREM 6.3.1. Let A be a metric �-algebra, and f : Au →· Av. If f is
WhileCC∗-approximable on A and dom(f) is open in Au, then f is continuous.

PROOF. Suppose f is approximable on A by the WhileCC ∗ procedure P :
nat × u → v. We will show that f is continuous, using Remark 3.5.2. Given
a ∈ dom(f) and ε > 0, choose N such that

2−N < ε/3. (14)

Then by Definition 4.5.1,

∅ �= P A
N (a) ⊆ B(f (a), 2−N). (15)

Choose b ∈ P A
N (a). By (15),

d(f (a), b) < 2−N . (16)

By Corollary 6.2.4, P A
N is continuous on A, and so by Remark 6.1.4(a), there

exists δ > 0 such that

∀x ∈ B(a, δ), P A
N (x) ∩ B(b, ε/3) �= ∅. (17)

Since dom(f) is open, we may assume that δ is small enough so that

B(a, δ) ⊆ dom(f).

Take any x ∈ B(a, δ). By Definition 4.5.1 again,

P A
N (x) ⊆ B(f (x), 2−N). (18)

By (17), choose y ∈ P A
N (x) ∩ B(b, ε/3). So

d(y , b) < ε/3 (19)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 647

and by (18)

d(f (x), y) < 2−N . (20)

Hence

d(f (x), f (a)) ≤ d(f (x), y) + d(y , b) + d(b, f (a))
< ε

by (20), (19), (16), and (14). The theorem follows by Remark 3.5.2.

7. CONCRETE COMPUTABILITY; SOUNDNESS OF WhileCC∗

COMPUTATION ON COUNTABLE ALGEBRAS

To compute on a metric algebra A using a concrete model of computation, we
choose a countable subspace X of A and an enumeration α : N → X .

In this section we step back from topological algebras and consider com-
putability on arbitrary countable algebras A. We show (Theorem A0) that if
A is enumerated by α and its basic functions are α-computable, then func-
tions that are WhileCC∗-computable on A are also α-computable. This is a
key lemma in the soundness theorem for WhileCC ∗ approximation in the next
section.

7.1 Enumerations and Tracking Functions for Partial Functions

Let X = 〈X s | s ∈ Sort(�)〉 be a family of nonempty sets, indexed by Sort(�).

Definition 7.1.1. An enumeration of X is a family

α = 〈αs :
s � X s | s ∈ Sort(�)〉

of surjective maps αs :
s � X s, for some family

 = 〈
s | s ∈ Sort(�)〉

of sets
s ⊆ N. The family X is said to be enumerated by α. We say that
α :
 � X is an enumeration of X , and call the pair (X , α) an enumerated
family of sets. (The notation “�” denotes surjections, or onto mappings.)

We also write
α,s for
s to make explicit the fact that
s = dom(αs).

Definition 7.1.2 (Tracking and Strict Tracking Functions). We use the no-
tation X u = X s1 ×· · ·×X sm and
u

α =
α,s1 ×· · ·×
α,sm , where u = s1 × · · · × sm.
Let f : X u →· X s and ϕ :
u

α →·
α,s.

(a) ϕ is a tracking function with respect to α, or α-tracking function, for f , if
the following diagram commutes:

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

648 • J. V. Tucker and J. I. Zucker

in the sense that for all k ∈
u
α

f (αu(k)) ↓ ⇒ ϕ(k) ↓ ∧ ϕ(k) ∈
α,s ∧ f (αu(k)) = αs(ϕ(k)).

(b) ϕ is a strict α-tracking function for f if in addition, for all k ∈
u
α

f (αu(k)) ↑ ⇒ ϕ(k) ↑.

Here we use the notation αu(k) = (αs1 (k1), . . . , αsm(km)), where k = (k1, . . . ,
km). (We will sometimes drop the type super- and subscripts.)

Definition 7.1.3 (α-Computability). (a) Suppose A is a Sort(�)-family, and
(X , α) an enumerated subfamily of A, that is, X s ⊆ As for all �-sorts s. Suppose
we have

f : Au →· As and ϕ : Nm →· N

such that

f � X u : X u →· X s and ϕ �
u
α :
u

α →·
α,s,

and ϕ �
u
α is a (strict) α-tracking function for f � X . We then say that ϕ is a

(strict) α-tracking function for f .
(b) Suppose now further that ϕ is a computable (i.e., recursive) partial func-

tion. Then f is said to be (strictly) α-computable.

Remarks 7.1.4. (a) In the situation of Definition 7.1.3, we are not concerned
with the behavior of f off X u, or the behavior of ϕ off
u

α.
(b) For total f , the concepts of tracking function and strict tracking function

coincide, as do the concepts of α-computability and strict α-computability.
(c) For convenience, we will always assume

α,bool = {0, 1}, αbool(0) = ff, αbool(1) = tt,

and also (when � is N-standard):

α,nat = N and αnat is the identity on N.

Assume now that A is a �-algebra and (X , α) is a Sort(�)-family of subsets
of A, enumerated by α.

Definition 7.1.5 (Enumerated �-Subalgebra). (X , α) is said to be an enu-
merated �-subalgebra of A if X is a �-subalgebra of A.

Definition 7.1.6 (�-Effective Subalgebra). Suppose A is a �-algebra and
(X , α) is an enumerated �-subalgebra. Then α is said to be

(a) �-effective if all the basic �-functions on A are α-computable; and
(b) strictly, �-effective if all the basic �-functions on A are strictly α-

computable.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 649

7.2 Soundness Theorem for Surjective Enumerations

For the rest of this section we will be considering the special case of Section 7.1
in which the enumerated subalgebra X is A itself, that is, we assume the enu-
meration is onto A. To emphasise this special situation, we will denote the
enumeration by

β :
β � A,

so that (A, β) is our enumerated �-algebra. Then given a function

f : Au →· As,

we have two notions of computability for f :

(i) abstract, that is, WhileCC ∗ computability, as described in Section 4; and
(ii) concrete, that is, β-computability, as in Definition 7.1.3, in the special case

that X = A.

We will prove a soundness theorem (Theorem A0), for these notions of abstract
and concrete computability, that is, (i)⇒(ii), assuming strict effectiveness of β.

A more general soundness theorem (Theorem A), with more general no-
tions of abstract computability (WhileCC∗ approximability) and concrete com-
putability (computability with respect to the computable closure of an enumer-
ation), will be proved in Section 8.

THEOREM A0 (SOUNDNESS FOR COUNTABLE ALGEBRAS). Let (A, β) be an enu-
merated N-standard �-algebra such that β is strictly �-effective. If f : Au →· As
is WhileCC ∗-computable on A, then f is strictly β-computable on A.

7.3 Proof of Soundness Theorem A0

Assume, then, that (A, β) is an enumerated N-standard �-algebra and β is
strictly �-effective. We must show that each of the semantic functions listed
in Section 4.2(a)–(g) has a computable strict tracking function. More precisely,
we work not with the semantic functions themselves, but with “localized” func-
tions representing them [Tucker and Zucker 2000, Section 4]. This amounts to
proving a series of results of the following form:

LEMMA SCHEME 7.3.1. For each WhileCC semantic representing function

	 : Au ⇒+ Av↑

representing one of the semantic functions listed in Section 4.2(a)–(g), there is
a computable tracking function with respect to β, that is, a function

ϕ :
u
β →·
v

β

which commutes the diagram

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

650 • J. V. Tucker and J. I. Zucker

in the sense that for all k, l ∈
u
β :

ϕ(k) ↓ l ⇒ βv(l) ∈ 	(βu(k)),
ϕ(k) ↑ ⇒ ↑ ∈ 	(βu(k)).

[This lemma scheme is proved in Electronic Appendix D.]

Remarks 7.3.2. (a) Here ϕ is a combination “strict tracking function” and
“selection function.” We can think of ϕ as giving one possible implementation
of 	. (Compare the representative functions for various semantic functions in
Tucker and Zucker [2000], Section 4.)

(b) We are not concerned with the behavior of ϕ on Nm\
u
β . (Cf. Remark

7.1.4(a).)

Theorem A0 then follows easily from this lemma scheme. (See Electronic
Appendix D).

8. SOUNDNESS OF WhileCC∗ APPROXIMATION

We return to the general situation introduced in Section 7.2, of a partial metric
�-algebra A with an enumerated subalgebra (X , α), and prove a more general
soundness theorem (Theorem A) for WhileCC ∗ approximation. From the enu-
meration α : N → X we will build the space Cα(X) of α-computable elements
of A, and enumerate it with α : N →· Cα(X).

8.1 Enumerated Subspace of Metric Algebra; Computational Closure

Let A be an N-standard metric �-algebra, and (X , α) an enumerated Sort(�)-
family 〈(X s, α) | s ∈ Sort(�)〉 of subsets X s ⊆ As (s ∈ Sort(�)). Each X s can
be viewed as a metric subspace of the metric space As. We call (X , α) a Sort(�)-
enumerated (metric) subspace of A. From (X , α) we define a family

Cα(X) = 〈Cα(X)s | s ∈ Sort(�)〉
of sets Cα(X)s of α-computable elements of As, that is, limits in As of effectively
convergent Cauchy sequences (to be defined below) of elements of X s, so that

X s ⊆ Cα(X)s ⊆ As,

with corresponding enumerations

αs :
α,s � Cα(X)s.

Writing α = 〈αs | s ∈ Sort(�)〉, we call the enumerated subspace (Cα(X), α)
the computable closure of (X , α) in A.

We will generally be interested in α-computable (rather than α-computable)
functions on A (cf. Definition 7.1.3), as our model of concrete computability on
A.

The sets
α,s ⊆ N consist of codes for Cα(X)s (with respect to α), that is,
pairs of numbers c = 〈e, m〉 where

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 651

(i) e is an index for a total recursive function defining a sequence α ◦ {e} in
X s, that is, the sequence

αs({e}(0)), αs({e}(1)), αs({e}(2)), . . . , (21)

of elements of X s, and
(ii) m is an index for a modulus of convergence for this sequence:

∀k, l ≥ {m}(n) : ds(α({e}(k)), α({e}(l))) < 2−n. (22)

For any such code c = 〈e, m〉 ∈
α,s, αs(c) is defined as the limit in As of the
Cauchy sequence (21), and Cα(X)s is the range of αs:

X s ⊆ Cα(X)s ⊆ A

αs↑ αs↑

α,s
α,s

Remarks 8.1.1. (a) (Fast Cauchy sequences) We may assume, when conve-
nient, that the modulus of convergence for a given code is the identity, that is,
replace (22) by the simpler

∀k, l ≥ n : ds(α({e}(k)), α({e}(l))) < 2−n

or, equivalently,

∀k > n : ds(α({e}(k)), α({e}(n))) < 2−n, (23)

because any code c = 〈e, m〉 satisfying (22) can be effectively replaced by a code
for the same element of Cα(X)s satisfying (23), namely c′ = 〈e′, m1〉, where
m1 is a standard code for the identity function on N, and e′ = comp(e, m),
where comp(x, y) is a primitive recursive function for “composition” of (in-
dices of) computable functions, that is, {comp(e, m)}(x)
 {e}({m}(x)). In the
case of a code c = 〈e, m1〉 satisfying (23), the sequence (21) is called a fast (α-
effective) Cauchy sequence. We may then, for simplicity, call e itself the “code,”
and the argument of αs. So we can shift between “c-codes” and “e-codes” as
convenient.

(b) In the case s = nat, we can simply take
α,nat =
α,nat = N, and αnat

and αnat as the identity mappings on N. Similarly, in the case s = bool, we
can take
α,bool =
α,bool = {0, 1}, with α(0) = α(0) = ff and α(1) = α(1) = tt.
(Cf. Remark 7.1.4(c).)

(c) (Closure of α-computability operation) The subspace (Cα(X), α) is “com-
putationally closed in A,” in the sense that the limit of a (fast) α-effective Cauchy
sequence of elements of Cα(X) is again in Cα(X), that is, Cα(Cα(X)) = Cα(X).
(Easy exercise.)

(d) (Decidability of
α,s) We usually assume that
α,s is decidable, in fact,
that
α,s = N for all s, which is typical in practice, unlike the case for
α. (See
Example 8.1.2.)

(e) (Extension of enumeration to A∗) Given an enumeration α of a �-subspace
X of A, we can extend this canonically to an enumeration α∗ of a �∗-subspace

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

652 • J. V. Tucker and J. I. Zucker

X ∗ of A∗. (Easy exercise.) This in turn generates an enumeration α∗ of a �∗-
subspace Cα(X)∗ of α∗-computable elements of A∗. It is easy to see that

(i) if Cα(X) is an �-subalgebra of A, then Cα(X)∗ is a �∗-subalgebra of A∗;
(ii) if α is (strictly) �-effective, then α∗ is (strictly) �∗-effective.

We will usually use this extension (of (X , α) and (Cα(X), α)) to A∗ implicitly,
that is, writing “α” instead of “α∗” etc.

Example 8.1.2 (Constructible Reals). The best known nontrivial example
of an enumerated subspace (X , α), and its extension to a subspace of α-
computable elements, is the following. Let A be the metric algebra Rp of reals
(Example 3.6.1), with signature �. Let X real be the set of rationals Q ⊂ R,
let
α,real = N, and let αreal : N → Q be a canonical enumeration of Q. Then
Cα(Q) =df Cα(X)real ⊂ R is the subspace of recursive or constructible reals. Note
that it is a subfield of R, and hence Cα(X) is a subalgebra of R. Further, it is
easily verified that α is strictly �(R)-effective. (Cf. Definition 7.1.6.) Note that

α,real = N, whereas
α,real is nonrecursive. (See Remark 8.1.1(d).)

8.2 Soundness Theorem for Effective Numberings

We now prove the first main theorem mentioned in the Introduction.

THEOREM A (SOUNDNESS). Let A be an N-standard metric �-algebra, and
(X , α) an enumerated Sort(�)-subspace. Suppose the enumerated Sort(�)-space
(Cα(X), α) of α-computable elements of A is a �-subalgebra of A, and α is
strictly �-effective. If f : Au →· As is WhileCC ∗-approximable on A, then f
is α-computable on A.

PROOF. The proof uses the Soundness Theorem A0 (Section 7), or rather the
Lemma Scheme 7.3.1 (specifically, part (g) of the proof) applied to the enumer-
ated subalgebra (Cα(X), α) in place of (A, β).

So suppose f : Au →· As is effectively uniformly WhileCC ∗-approximable on
A. Then there is a WhileCC∗(�) procedure

P : nat × u → s

such that for all n ∈ N and all x ∈ dom(f):

↑ /∈ P A
n (x) ⊆ B(f (x), 2−n) (24)

(see Definition 4.5.1). By Lemma Scheme 7.3.1 (specifically, part (g) of the proof,
applied to (Cα(X), α), in place of (A, β)) there is a computable function

ψ : N ×
u
α →·
α,s

which tracks P A strictly, in the sense that for all n ∈ N, e ∈
u
α and e′ ∈
α,s

(and writing ψn = ψ(n, ·)):

ψn(e) ↓ e′ ⇒ α(e′) ∈ P A
n (α(e)),

ψn(e) ↑ ⇒ ↑ ∈ P A
n (α(e)).

(25)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 653

We will show how to define a partial recursive α-tracking function

ϕ :
u
α →
α,s

for f as follows. Given any e ∈
u
α, suppose α(e) ∈ dom(f), that is,

f (α(e)) ↓ ∈ As. (26)

We must show how to define an α-tracking function ϕ for f , that is, such that

ϕ(e) ∈
α,s and α(ϕ(e)) = f (α(e)). (27)

By (24), for all n

↑ /∈ P A
n (α(e)) ⊆ B(f (α(e)), 2−n). (28)

Hence by (24), for all n

ψn(e) ↓ ∈
α,s (29)

and

α(ψn(e)) ∈ P A
n (α(e)). (30)

and so by (29) we may assume (by definition of
α) that for all n

α ◦ {ψn(e)} is a fast Cauchy sequence, with limit α(ψn(e)). (31)

Also by (29) and (28),

d(α(ψn(e)), f (α(e))) < 2−n. (32)

Now let e′ be a “canonical” index for the (partial) function

{e′} : n �→ {ψn(e)}(n) (33)

obtained uniformly effectively in e. So {e′} is the “diagonal” function formed from
the sequence of functions with indices ψn(e). Consider the sequence αs ◦ {e′},
that is,

αs({e′}(0)), αs({e′}(1)), αs({e′}(2)), (34)

CLAIM: (34) is a Cauchy sequence in As, with modulus of convergence λn(n+2).

PROOF OF CLAIM: For any n and k > n:

d(α({e′}(k)), α({e′}(n))
= d(α({ψk(e)}(k), α({ψn(e)}(n)) by Definition (9) of e′

≤ d(α({ψk(e)}(k)), α(ψk(e))) + d(α(ψk(e)), α(ψn(e))) + d(α(ψn(e)), α({ψn(e)}(n)))
= d1 + d2 + d3 (say)

where by (31)

d1 ≤ 2−k , d3 ≤ 2−n,

and by (32)

d2 ≤ d(α(ψk(e)), f (α(e))) + d(f (α(e)), α(ψn(e)))
< 2−k + 2−n.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

654 • J. V. Tucker and J. I. Zucker

Therefore
d(α({e′}(k)), α({e′}(n)) ≤ d1 + d2 + d3

< 2 · 2−k + 2 · 2−n

< 2−n+2.

This proves the claim.
Further, by the method of Remark 8.1.1(a) (composing {e′} with the modulus

of convergence), we can replace the index e′ by an e-code e′′ for a fast Cauchy
sequence:

{e′′}(n)
 {e′}(n + 2). (35)

Then we define

ϕ(e) = e′′. (36)

We show that ϕ is an α-tracking function for f , that is, (assuming (26)) we
show (27). Since α ◦ {e′′} is a fast Cauchy sequence, with the same limit in A
(if it exists) as α ◦ {e′} (by its definition (35)), to prove (24) it is enough to show
(by (24)) that

α({e′}(n)) → f (α(e)) as n → ∞. (37)

This follows since
d(α({e′}(n)), f (α(e))) = d(α({ψn(e)}(n)), f (α(e))) by Definition (9) of e′

≤ d(α({ψn(e)}(n)), α(ψn(e))) + d(α(ψn(e)), f (α(e)))
< 2−n + 2−n by (31) and (32)

= 2−n+1,

proving (24).
A deterministic version of Theorem A (i.e., without “choose”) was proved in

Stewart [1998].

9. ADEQUACY OF WhileCC∗ APPROXIMATION

9.1 Adequacy Theorem

In this section we will prove Theorem B, a converse to the result of the previous
section. Assume that A is an N-standard metric �-algebra, and (X , α) an
enumerated �-subspace, with α-computable closure (Cα(X), α).

Note that we are not assuming in this section that Cα(X) is a subalgebra
of A, or even that α is �-effective.

One of the assumptions in the theorem, “effective local uniform continuity
with respect to an open exhaustion,” must first be defined, as must “open
exhaustion.”

Definition 9.1.1 (Open Exhaustion). Let U be a subset of a metric space
X . An open exhaustion of U is a sequence of open subsets of X

V = (V0, V1, V2, . . .) such that
∞⋃

p=0

Vp = U.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 655

Remarks 9.1.2. (a) Clearly, if U has an open exhaustion, then U is open.
(b) It is helpful (though not necessary) to think of the sets of an exhaustion

as increasing: V0 ⊆ V1 ⊆ V2 ⊆

(c) Any open set U has the trivial exhaustion U, U,

(d) A simple nontrivial example of an open exhaustion is the standard open
exhaustion V of R, where Vp = (−p, p).

We also need an effective notion of open exhaustion:

Definition 9.1.3. An open exhaustion V of U ⊆ Au is WhileCC ∗-effective
in A if it satisfies the following two conditions:

(a) (WhileCC∗-effective Archimedean property of U with respect to V) There
is a WhileCC ∗ procedure Ploc : u → nat which, given x ∈ U , “locates” x in
V , that is, produces some p such that x ∈ Vp; more precisely:

P A
loc(x) =

{
{p | x ∈ Vp} if x ∈ U,
{↑} otherwise.

(b) (WhileCC∗-effective openness of V) There is a WhileCC ∗-computable
function γ : Au × N → N such that, for all p and all x ∈ Vp,

B(x, 2−γ (x, p)) ⊆ Vp.

Remarks 9.1.4. (a) Typically, the procedure Ploc(x) is realized in the form
“choose p : x ∈ Vp” where “x ∈ Vp” can formalized as a Boolean test in the
language.

(b) The standard open exhaustion of R (Remark 9.1.2(d)) is WhileCC ∗-
effective in RN

p .

Definition 9.1.5 (Effective Global and Local Uniform Continuity). Let X
and Y be metric spaces, and let f : X →· Y .

(a) We say f is effectively (globally) uniformly continuous iff dom(f) is
open and there is a recursive function δ : N → N such that for all n and all
x, y ∈ dom(f):

dX (x, y) < 2−δ(n) ⇒ dY (f (x), f (y)) < 2−n.

(b) We say f is effectively locally uniformly continuous with respect to an
open exhaustion V of dom(f) iff there is a recursive δ : N2 → N such that for
all p, n and all x, y ∈ Vp:

dX (x, y) < 2−δ(p,n) ⇒ dY (f (x), f (y)) < 2−n.

Example 9.1.6. This occurs typically when A is a countable union of
neighborhoods with compact closure; for example, in the algebra Rp of reals,
R is the union of the neighborhoods (−k, k) for k = 1, 2, Then a continuous
function f on R will be uniformly continuous on each of these neighbourhoods.

Remarks 9.1.7. (a) Effective global and local uniform continuity implies
continuity (as we would hope).

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

656 • J. V. Tucker and J. I. Zucker

(b) Effective global uniform continuity of f corresponds to the special case
of effective local uniform continuity with respect to the trivial exhaustion of
dom(f).

We are now ready for the theorem.

THEOREM B (ADEQUACY). Let A be an N-standard metric �-algebra, (X , α)
an enumerated Sort(�)-subspace, and (Cα(X), α) the Sort(�)-subspace of
α-computable elements of A. Suppose that for all �-sorts s:

(i) X s is dense in As, and
(ii) αs : N → As is WhileCC ∗-computable on A.

Let f : Au →· As be a function on A and V an open exhaustion of dom(f)
such that

(iii) V is WhileCC ∗-effective, and
(iv) f is effectively locally uniformly continuous with respect to V.

If f is α-computable on A, then f is WhileCC ∗-approximable on A.

Remark 9.1.8. From the proof of the theorem, it will be apparent that only
sorts s in the domain of f have to satisfy condition (i), and only sorts s in the
domain or range of f have to satisfy condition (ii).

The proof uses the following notation:

Notation 9.1.9 (Embedding X into its α-Computational Closure). By ele-
mentary recursion theory, there is a primitive recursive function const : N → N

such that for each k, const(k) is the index of the function on N with constant
value k, that is, for all n,

{const(k)}(n) = k.

Thus for all k, const(k) can be taken as a code for a fast Cauchy sequence in X
(see Remark 8.1.1(a)), making const an α, α-tracking function for the inclusion
map ι : X ↪→ Cα(X), in the sense that for each sort s the following diagram
commutes:

9.2 Proof of Theorem B

We give (in WhileCC ∗ pseudocode) an algorithm for a function

g : N × Au ⇒+ As
↑

which approximates f , in the sense that for all n and all x ∈ dom(f),

gn(x) ⊆ B(f (x), 2−n) ⊆ As. (38)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 657

With input n and x ∈ Au: assume x ∈ dom(f) (otherwise we don’t care about
the output).

(1◦) First, we want to find some p such that x ∈ Vp. This is WhileCC ∗-
computable, by the WhileCC∗-effectiveness of V (assumption (iii)). Note the
use of the “choose” construct in “finding” p (see Remark 9.1.4), even though
p will not be an explicit argument of g . Note that (still by (iii), and in the
notation of Definition 9.1.3)

B(x, 2−γ (x, p)) ⊆ Vp ⊆ dom(f). (39)

Now, using assumption (iv) and in the notation of Definition 9.1.5(b), compute

M := max(γ (x, p), δ(p, n + 1)) (40)

which (since γ is WhileCC ∗-computable and δ is recursive) is WhileCC ∗-
computable.

(2◦) Next we want to find some k such that

d(α(k), x) < 2−M . (41)

By the density assumption (i) such a k exists. Again, we can find such a k using
the “choose” construct. Note again the use of the “choose” construct in “finding”
k, even though k will not be an explicit argument of g . Now by (40) and (39),

B(x, 2−M) ⊆ B(x, 2−γ (x, p)) ⊆ dom(f),

and so by (41)

α(const(k)) = α(k) ∈ dom(f). (42)

By assumption, f has an α-tracking function ϕ. By (42),

ϕ(const(k)) ↓ ∈
α. (43)

(3◦) Compute ϕ(const(k)) ↓ e′. By (43), e′ ∈
α and

f (α(k)) = f (α(const(k))) = α(ϕ(const(k))) = α(e′).

Hence by (39), (40), and (41),

d(f (x), α(e′)) = d(f (x), f (α(k))) < 2−n−1. (44)

(4◦) Finally, compute

y := α({e′}(n + 1)). (45)

This is possible by assumption (ii). Then, since α◦{e′} is a fast Cauchy sequence,

d(y , α(e′)) = d(α({e′}(n + 1)), α(e′)) ≤ 2−n−1. (46)

Hence by (46) and (44),

d(y , f (x)) ≤ d(y , α(e′)) + d(α(e′), f (x))

< 2−n−1 + 2−n−1

= 2−n.

Now the value of y computed in (45) is the output of the algorithm for g . Note,
however, that this value depends on the actual implementation of the “choose”

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

658 • J. V. Tucker and J. I. Zucker

construct as used in the above algorithm. Therefore (in accordance with our
semantics for the abstract model) we define gn(x) to be the set of all such
y , for all possible implementations of “choose.” Then g satisfies (38), and is
WhileCC∗-computable, by the above discussion.

9.3 WhileCC ∗-Semicomputability of dom(f)

Here we point out a connection between WhileCC ∗-semicomputability of the
function domain and strict WhileCC ∗-approximability.

Definition 9.3.1. (a) The halting set of a WhileCC ∗ procedure P : u → v
on A is

{x ∈ Au | P A(x)\{↑} �= ∅}.
(b) A subset of Au is WhileCC ∗-semicomputable if it is the halting set of some
WhileCC ∗ procedure.

The following two lemmas have easy proofs.

LEMMA 9.3.2. If U has a WhileCC ∗-effective open exhaustion, then U is
WhileCC ∗-semicomputable. In fact, it is the halting set of Ploc (in the notation
of Definition 9.1.3).

LEMMA 9.3.3. Suppose dom(f) is WhileCC ∗-semicomputable. Then

f is WhileCC∗-approximable ⇐⇒ f is strictly WhileCC ∗-approximable.

(Recall Definition 4.5.1.) Hence we see, by Lemmas 9.3.2 and 9.3.3, that the
conclusion of Theorem B can be replaced by the (apparently) stronger state-
ment:

If f is α-computable on A, then f is strictly WhileCC ∗-approximable on A.

10. COMPLETENESS OF WhileCC∗ APPROXIMATION

Under certain assumptions, we can combine Theorems A and B into a single
equivalence, namely, Theorem C below. We will then look at several examples
of metric algebras where our abstract and concrete models are equivalent ac-
cording to this theorem.

10.1 Completeness

We are ready to state the completeness theorem for WhileCC ∗-approximability
relative to α-computability.

THEOREM C (COMPLETENESS). Let A be an N-standard metric �-algebra, and
(X , α) an enumerated Sort(�)-subspace. Suppose the enumerated Sort(�)-space
(Cα(X), α) of α-computable elements of A is a �-subalgebra of A. Assume also
that for all �-sorts s,

(i) α is strictly �-effective,
(ii) X s is dense in As, and

(iii) αs : N → As is WhileCC ∗-computable on A.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 659

Let f : Au →· As be a function on A and V an open exhaustion of dom(f) such
that

(iv) V is WhileCC ∗-effective, and

(v) f is effectively locally uniformly continuous with respect to V.

Then

f is WhileCC ∗-approximable on A ⇐⇒ f is α-computable on A.

PROOF. From Theorems A and B.

10.2 α-Semicomputability of dom(f)

(Compare Section 9.3.)

Definition 10.2.1 (α-Semicomputability). A subset of Au is α-
semicomputable if it is the domain of a strictly α-computable function.

LEMMA 10.2.2. If U ⊆ Au is α-semicomputable then

α−1[U] = {
e ∈
u

α

∣∣ α(e) ↓ ∈ U
} = S ∩
u

α

for some recursively enumerable set S ⊆ N.

Remark 10.2.3. If αu is onto Au, then the reverse implication of Lemma
10.2.2 holds.

LEMMA 10.2.4. Let f : Au →· As. Suppose dom(f) is α-semicomputable.
Then

f is α-computable ⇐⇒ f is strictly α-computable.

PROOF. (⇒) Since dom(f) is α-semicomputable, by Lemma 10.2.2 there is
a recursively enumerable set S such that{

e ∈
u
α

∥∥ α(e) ∈ dom(f)
} = S ∩
u

α.

Now if ϕ is a computable α-tracking function for F , it can be replaced by a strict
α-tracking function ϕ′, defined by

ϕ′(e)

{

ϕ(e) if e ∈ S,
↑ otherwise,

which is easily seen to be computable.

From this lemma and the discussion in Section 9.3, we have another form of
the Theorem C, in which α-computability of dom(f) is (also) assumed (condition
(vi) below).

THEOREM C+ (COMPLETENESS FOR FUNCTIONS WITH SEMICOMPUTABLE DOMAIN).
Let A be an N-standard metric �-algebra, and (X , α) an enumerated Sort(�)-
subspace. Suppose the enumerated Sort(�)-space (Cα(X), α) of α-computable

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

660 • J. V. Tucker and J. I. Zucker

elements of A is a �-subalgebra of A. Assume also that for all �-sorts s,

(i) α is strictly �-effective,
(ii) X s is dense in As, and

(iii) αs : N → As is WhileCC ∗-computable on A.
Let f : Au →· As be a function on A and V an open exhaustion of dom(f)
such that

(iv) V is WhileCC ∗-effective in A,
(v) f is effectively locally uniformly continuous with respect to V, and

(vi) dom(f) is α-semicomputable.

Then

f is (strictly) WhileCC ∗ approximable on A ⇐⇒
f is (strictly) α-computable on A.

Note that the word strictly may be omitted or inserted in either side at will.

10.3 Completeness for Total Effectively Uniformly Continuous Functions

A special case of the Completeness Theorem, with a simpler formulation, is ob-
tained by assuming that f is total and effectively globally uniformly continuous.

Note that since f is total, the difference between WhileCC ∗-approximability
and strict WhileCC∗-approximability, and between α-computability and strict
α-computability, vanish, and applying Theorem C or C+ (with the trivial exhaus-
tion of Au, which need not be mentioned explicitly) we obtain the following:

COROLLARY Ctot (COMPLETENESS FOR TOTAL EFFECTIVELY UNIFORMLY CONTINUOUS

FUNCTIONS). Let A be an N-standard metric �-algebra, and (X , α) an enumer-
ated Sort(�)-subspace. Suppose the enumerated Sort(�)-space (Cα(X), α) of
α-computable elements of A is a �-subalgebra of A. Assume also that for all
�-sorts s,

(i) α is strictly �-effective,
(ii) X s is dense in As, and

(iii) αs : N → As is WhileCC ∗-computable on A.
Let f : Au → As be a total function on A such that

(iv) f is effectively uniformly continuous.

Then

f is WhileCC ∗-approximable on A ⇐⇒ f is α-computable on A.

10.4 Examples of the Application of the Completeness Theorem

10.4.1 Canonical Enumerations. The purpose of this example is to make
plausible condition (iii) of Theorem C (and condition (ii) of Theorem B in Sec-
tion 9), that is, the assumption of WhileCC ∗-computability of the enumeration
α, by describing a commonly occurring situation which implies it.

Suppose (X , α) is an enumerated �-subalgebra of A.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 661

Definition 10.4.1. The enumeration α : N � X is effectively determined by
a system of generators G = 〈gs

0, gs
1, gs

2, . . .〉s ∈ Sort(�) if, and only if,

(i) G generates X as a �-subalgebra of A;

(ii) α is defined as the composition of the maps

N
enum�−−−−−−−−→ Term(�)

evalG−−−−−−−−→ X ,

where enum� is the inverse of the Gödel numbering of Term(�), and
evalG is the term evaluation induced by the mapping xs

i �→ gs
i , (i = 0, 1,

2, . . .) for some standard enumeration xs
0, xs

1, xs
2, . . . of the �-variables of

sort s; and
(iii) if, for any �-sort s, the sequence 〈gs

0, gs
1, gs

2, . . .〉 is finite, then each gs
i is

a �-constant, whereas if this sequence is infinite, then the map i �→ gs
i

is a �-function.

An enumeration constructed in this way is called canonical with respect to G.

Remark 10.4.2 (Totality of evalG). We assume here that evalG (and hence
α) is total. This is achieved by assuming that either (i) A is total, or (ii) Term(�)
is replaced by some decidable subset Term′(�) on which evalG is total (for
example, omitting all terms involving division by zero).

Either one of these assumptions holds in each of the following examples; for
example, (i) holds in example (b) below, and (ii) in example (c), resulting in the
same “canonical” enumeration α of Q in both cases (even though the algebras
are different).

LEMMA 10.4.3. If α is effectively determined by a system of generators, then
the canonical enumerations αs are While∗-computable for all �-sorts s.

PROOF. This follows from While∗-computability of term evaluation [Tucker
and Zucker 2000, Corollary 4.7].

The significance of the above definition and proposition is this: it is quite
common for an enumeration to be effectively determined by a system of gen-
erators; and in such a situation, condition (ii) in Theorem B, and (iii) in The-
orem C, will be (more than) satisfied. This will be the case in the following
examples.

10.4.2 Partial Real Algebra. Recall (Example 8.1.2) the enumeration α of
Q as a subspace of the N-standardized metric algebra RN

p of reals (Examples
3.5.4(b) and 3.6.1) and the corresponding enumeration α of the set Cα(Q) of
recursive reals. Note that α is canonical, being effectively determined by the
generators {0, 1}, and is hence While∗-computable over R. Further, Q is dense
in R, Cα(Q) is a subfield of R, and α is strictly �(R)-effective. We then have, as
another corollary to Theorem C+:

COROLLARY 10.4.4. Suppose f : Rn →· R is effectively locally uniformly con-
tinuous with respect to some WhileCC ∗-effective open exhaustion of dom(f),

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

662 • J. V. Tucker and J. I. Zucker

and suppose dom(f) is α-semicomputable. Then

f is (strictly) WhileCC∗-approximable on RN
p ⇐⇒

f is (strictly) α-computable on R.

(Here, again, the word strictly may be omitted or inserted in either side at will).
Examples of functions satisfying the assumption (and also the equivalence)

are all the common (partial) functions of elementary calculus, such as 1/x,
log x, and tan x.

Consider the special case of total functions on the unit interval I = [0, 1].
(Recall that a continuous function on I is uniformly continuous, so we may as
well assume effective global uniform continuity on I .) Applying Corollary Ctot to
the partial interval algebra IN

p (Example 3.5.4(c)) and a canonical enumeration
α of Q ∩ I , we obtain the following:

COROLLARY 10.4.5. Suppose f : In → I is effectively uniformly continuous.
Then

f is WhileCC ∗-approximable on IN
p ⇐⇒ f is α-computable on I.

10.4.3 Banach Spaces with Countable Bases. Let X be a Banach space over
R with a countable basis e0, e1, e2, . . ., which means that any element x ∈ X
can be represented uniquely as an infinite sum

x =
∞∑

i=0

riei

with coefficients ri ∈ R (where the infinite sum is understood as denoting con-
vergence of the partial sums in the norm of X). (Background on Banach space
theory can be found in any of the standard texts, for example, Royden [1963];
Taylor and Lay [1980].) To program with X , we construct a many-sorted algebra
X :

algebra X
import RN

p
carriers X
functions 0: → X ,

+ : X 2 → X ,
− : X → X ,
� : R × X → X ,
‖ · ‖ : X → R,
e : N → X ,
ifX : B × X 2 → X

end

,

where � is scalar multiplication, ‖ · ‖ is the norm function, and and e is
the enumeration of the basis: e(i) = ei. Note that the algebras B and N are
implicitly imported, as parts of RN

p , so that there are four carriers: X , R, B,
and N, of sorts vector, scalar, bool, and nat, respectively.

Let � = �(X). Let �0 be � without the norm function ‖ · ‖, and let X 0 be
the reduct2 of X to �0. Then �0 is the signature of an N-standardized vector
space over R, with explicit countable basis.

2Reducts of algebras are defined in Tucker and Zucker [2000, Definition 2.6].

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 663

This can be turned into a metric algebra in the standard way, by defining a
distance function on X in terms of the norm d(x, y) =df ‖x − y‖.

Let L(Q, e) ⊂ X be the set of all finite linear combinations of basis elements
from e with coefficients in Q. The following are easily shown:

—L(Q, e) is countable; in fact it has a canonical enumeration α : N � L(Q, e)
with respect to the generators e, which (by (a) above) is While∗-computable;

—L(Q, e) is dense in X ;
—L(Q, e), with scalar field Q (with carriers N and B) is a �0-subalgebra of X 0.

Now let (Cα(L(Q, e)), α) be the enumerated subspace of α-computable vectors.
Then

—Cα(L(Q, e)), with scalar field Cα(Q) (with carriers N and B) is also a �0-
subalgebra of X 0; and, moreover,

—α is strictly �0-effective.

However Cα(L(Q, e)) is not necessarily a normed subspace ofX , since it may not
be closed under ‖ · ‖, that is, ‖x‖ may not be in Cα(Q) for all x ∈ Cα(L(Q, e));
for example, if X is the space �p or Lp[0, 1] where p is a nonrecursive real
(see Examples 10.4.9 below). We must therefore make an explicit assumption
for the Banach space (X , ‖ · ‖) with respect to both the closure of Cα(L(Q, e))
under ‖ · ‖, and the α-computability of ‖ · ‖.

Assumption 10.4.6 (α-Computable Norm Assumption for (X , ‖ · ‖)). For all
x ∈ Cα(L(Q, e)), ‖x‖ ∈ Cα(Q). Further, the norm function ‖ · ‖ is α-computable.

As we will see, many common examples of Banach spaces satisfy this assump-
tion.

Note that Assumption 10.4.6 is equivalent to the following (apparently
weaker) assumption, which is often easier to prove:

Assumption 10.4.7 ((α, α)-Computable Norm Assumption for (X , ‖ · ‖)).
For all x ∈ L(Q, e), ‖x‖ ∈ Cα(Q). Further, ‖ · ‖ has a computable (α, α)-tracking
function, that is, a computable function ϕ : N → N such that the following
diagram commutes:

Suppose now that (X , ‖ · ‖) satisfies the α-computable norm assumption. Then
the �0-subalgebra Cα(L(Q, e)) of X 0 can be expanded to a �-subalgebra of X
(which we will also write as Cα(L(Q, e))), enumerated by α, which is strictly
�-effective.

Now let F : X → R be a (total) linear functional on X . F is said to be
bounded if for some real M ,

|F (x)| ≤ M‖x‖ for all x ∈ X . (47)

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

664 • J. V. Tucker and J. I. Zucker

Write ‖F‖ for the least M for which (47) holds. Then if F is bounded,

|F (x) − F (y)| ≤ ‖F‖ · ‖x − y‖ for all x, y ∈ X ,

and so F is uniformly continuous; in fact it is clearly effectively uniformly con-
tinuous. We may therefore apply Corollary Ctot to F .

COROLLARY 10.4.8. Let X be a Banach space over R with countable basis,
and let Cα(L(Q, e)) be the enumerated subspace of α-computable vectors, where
α is a canonical enumeration of the subspace L(Q, e). Suppose (X , ‖ · ‖) satisfies
the (α, α)-computable norm assumption. Then for any bounded linear functional
F on X ,

F is WhileCC ∗-approximable on X ⇐⇒ F is α-computable on X .

Here X is the N-standard algebra formed from X as above.
Finally we give examples of Banach spaces which satisfy the α-computable

norm assumption.

Examples 10.4.9 (Banach Spaces with Computable Norms). (a) For 1 ≤
p < ∞, we have the space �p of all sequences x = 〈xn〉∞n=0 of reals such that∑∞

n=0 |xn|p < ∞, with norm defined by

‖x‖p =
(∞∑

n=0

|xn|p

)1/p

,

and a countable basis given by ei = 〈ei,n〉∞n=0, where

ei,n =
{

1 if i = n,
0 otherwise.

It is easy to see that

if p is a recursive real, then �p satisfies the computable norm
assumption,

and so Corollary 10.4.8 can be applied to it.
(b) For 1 ≤ p < ∞, we have the space Lp[0, 1] of all Lebesgue measurable

functions x(t) on the unit interval [0, 1] such that
∫ 1

0 |x|p < ∞, with norm
defined by

‖x‖p =
(∫ 1

0
|x|p

)1/p

,

and a countable basis given by (for example) some standard enumeration of all
step functions on [0, 1] with rational values and (finitely many) rational points
of discontinuity, or of all polynomial functions on [0, 1] with rational coefficients.
Again, we see that

if p is a recursive real, then Lp[0, 1] satisfies the computable norm
assumption.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 665

(c) The space C[0, 1] of all continuous functions x(t) on [0, 1], with norm

‖x‖sup = sup
t∈I

|x(t)|

and a countable basis given by a standard enumeration of all zig-zag functions
on [0, 1] with (finitely many) turning points with rational coordinates, or of all
polynomial functions on [0, 1] with rational coefficients. Again,

C[0, 1] satisfies the computable norm assumption.

11. CONCLUSION

We have compared two theories of computable functions on topological alge-
bras, one based on an abstract, high-level model of programming and the other
based on a concrete, low-level implementation model. Our examples and re-
sults here, combined with our earlier results [Tucker and Zucker 1999, 2000]
and those of [Brattka 1996, 1999], show that the following are surprisingly
necessary features of a comprehensive theory of computation on topological
algebras:

1. The algebras have partial operations.
2. Functions are both continuous and many-valued.
3. Classical algorithms in analysis require nondeterministic constructs for

their proper expression in programming languages.
4. Indeed, many-valued subfunctions are needed to compute even single-valued

functions, and abstract models must be nondeterministic even to compute
deterministic problems.

5. Abstract models and effective approximations by abstract models are gen-
erally sound for concrete models.

6. Abstract models even with approximation or limit operators are adequate
to capture concrete models only in special circumstances.

7. Nevertheless there are interesting examples where equivalence holds.
8. The classical computable functions of analysis can be characterised by ab-

stract models of computation.

Specifically, we examined abstract computation by the basic imperative
model of “ while”-array programs. Many algorithms in practical computation
are presented in pseudocode based on the “ while” language. To meet the re-
quirement of feature 2 above we added the simplest form of countable choice to
the assignments of the language, and we defined the WhileCC ∗-approximable
computations. We proved a Soundness Theorem (Theorem A) and an Adequacy
Theorem (Theorem B), and combined these into a Completeness Theorem (The-
orem C), in the case of metric algebras with partial operations. We considered
algebras of real numbers and Banach spaces where equivalence theorems hold.

Interesting technical questions arise in working out the details of the com-
putability theory for the WhileCC ∗ model (cf. the theory for single-valued func-
tions on total algebras in Tucker and Zucker [2000]). Other important abstract
models of computation, for example the schemes in Brattka [1999], could be

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

666 • J. V. Tucker and J. I. Zucker

extended with nondeterminsitic constructs in order to establish equivalence
with concrete models. The topological properties of many-valued functions also
need investigation.

Returning to the general problem posed in the Introduction, the features
1–8 above suggest that new research directions are needed to develop a
comprehensive theory of specification, computation, and reasoning with infi-
nite data. What are the appropriate programming constructs for topological
computations? What specification techniques are appropriate for continuous
systems? What logics are needed to support verification of programs that ap-
proximate functions? Our work on computation suggests that some advanced
semantic features are needed; in particular, the nondeterminism that was im-
portant in programming methodologies of the late 1970s (for example, Dijkstra
[1976]) seems necessary for the proper development of topological program-
ming. There are plenty of algorithms in scientific modeling, numerical analysis,
and graphics to investigate, using such new theoretical tools.

Tucker and Zucker [2002b] is a sequel to this article.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.

ACKNOWLEDGMENTS

We thank Vasco Brattka and Kristian Stewart for valuable discussions, and
three anonymous referees for helpful comments.

REFERENCES

ABERTH, O. 1980. Computable Analysis. MIT Press, Cambridge, MA.
ABERTH, O. 2001. Computable Calculus. Addison-Wesley, Reading, MA.
APT, K. AND OLDEROG, E.-R. 1991. Verification of Sequential and Concurrent Programs. Springer-

Verlag, Berlin, Germany.
BLUM, L., CUCKER, F., SHUB, M., AND SMALE, S. 1998. Complexity and Real Computation. Springer-

Verlag, Berlin, Germany.
BLUM, L., SHUB, M., AND SMALE, S. 1989. On a theory of computation and complexity over the

real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math.
Soc. 21, 1–46.

BRATTKA, V. 1996. Recursive characterisation of computable real-valued functions and relations.
Theoret. Comput. Sci. 162, 45–77.

BRATTKA, V. 1999. Recursive and computable operations over topological structures. Ph.D. disser-
tation, FernUniversität Hagen, Fachbereich Informatik, Hagen, Germany. Informatik Berichte
255, FernUniversität Hagen, July 1999.

CEITIN, G. 1959. Algebraic operators in constructive complete separable metric spaces. Dok. Akad.
Nauk SSSR 128, 49–52.

DE BAKKER, J. 1980. Mathematical Theory of Program Correctness. Prentice Hall, Englewood
Cliffs, NJ.

DIJKSTRA, E. 1976. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ.
EDALAT, A. 1995. Dynamical systems, measures, and fractals via domain theory. Inform. Compu-

tat. 120, 32–48.
EDALAT, A. 1997. Domains for computation in mathematics, physics and exact real arithmetic.

Bull. Symbol. Log. 3, 401–452.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

Abstract Versus Concrete Computation • 667

ENGELKING, R. 1989. General Topology. Heldermann Verlag, Berlin, Lemge, Germany.
GOGUEN, J., THATCHER, J., AND WAGNER, E. 1978. An initial approach to the specification, correct-

ness and implementation of abstract data types. In Current Trends in Programming Methodology,
vol. 4: Data Structuring, R. Yeh, Ed. Prentice Hall, Englewood Cliffs, NJ, 80–149.

GRZEGORCZYK, A. 1955. Computable functions. Fundamenta Mathematicae 42, 168–202.
GRZEGORCZYK, A. 1957. On the defintions of computable real continuous functions. Fundamenta

Mathematicae 44, 61–71.
HEATH, M. 1997. Scientific Computing: An Introductory Survey. McGraw-Hill, New York, NY.
LACOMBE, D. 1955. Extension de la notion de fonction récursive aux fonctions d’une ou

plusieurs variables réelles, I, II, III. C.R. Acad. Sci. Paris. 240, 2470–2480; 241, 13–14, 151–
153.

MESEGUER, J. AND GOGUEN, J. 1985. Initiality, induction and computability. In Algebraic Methods
in Semantics, M. Nivat and J. Reynolds, Eds. Cambridge University Press, Cambridge, U.K.,
459–541.

MOSCHOVAKIS, Y. 1964. Recursive metric spaces. Fundamenta Mathematicae 55, 215–238.
ODIFREDDI, P. 1999. Classical Recursion Theory, 21st ed. North Holland, Amsterdam, The Nether-

lands.
POUR-EL, M. AND RICHARDS, J. 1989. Computability in Analysis and Physics. Springer-Verlag,

Berlin, Germany.
ROYDEN, H. 1963. Real Analysis. Macmillan, London, U.K.
SPREEN, D. 1998. On effective topological spaces. J. Symbol. Log. 63, 185–221.
SPREEN, D. 2001. Representations versus numberings: On the relationship of two computability

notions. Theoret. Comput. Sci. 263, 473–499.
STEPHENSON, K. 1996. An algebraic approach to syntax, semantics and computation. Ph.D. dis-

sertation, Department of Computer Science, University of Wales, Swansea, U.K.
STEWART, K. 1998. Concrete and abstract models of computation over metric algebras. Ph.D.

dissertation, Department of Computer Science, University of Wales, Swansea, U.K.
STOLTENBERG-HANSEN, V. AND TUCKER, J. 1988. Complete local rings as domains. J. Symbol. Log. 53,

603–624.
STOLTENBERG-HANSEN, V. AND TUCKER, J. 1995. Effective algebras. In Handbook of Logic in Com-

puter Science, S. Abramsky, D. Gabbay, and T. Maibaum, Eds. Vol. 4. Oxford University Press,
Oxford, U.K., 357–526.

STOLTENBERG-HANSEN, V. AND TUCKER, J. 1999. Concrete models of computation for topological
algebras. Theoret. Comput. Sci. 219, 347–378.

TAYLOR, A. AND LAY, D. 1980. Introduction to Functional Analysis. John Wiley & Sons, New York,
NY.

TUCKER, J. AND ZUCKER, J. 1988. Program Correctness over Abstract Data Types, with Error-State
Semantics. CWI Monographs, vol. 6. North Holland, Amsterdam, The Netherlands.

TUCKER, J. AND ZUCKER, J. 1992a. Examples of semicomputable sets of real and complex numbers.
In Constructivity in Computer Science: Summer Symposium, San Antonio, Texas, June 1991,
J. Myers, Jr. and M. O’Donnell, Eds. Lecture Notes in Computer Science, vol. 613. Springer-
Verlag, Berlin, Germany, 179–198.

TUCKER, J. AND ZUCKER, J. 1992b. Theory of computation over stream algebras, and its applica-
tions. In Mathematical Foundations of Computer Science 1992: 17th International Symposium,
Prague, I. Havel and V. Koubek, Eds. Lecture Notes in Computer Science, vol. 629. Springer-
Verlag, Berlin, Germany, 62–80.

TUCKER, J. AND ZUCKER, J. 1994. Computable functions on stream algebras. In Proof and Compu-
tation: NATO Advanced Study Institute International Summer School at Marktoberdorf, 1993,
H. Schwichtenberg, Ed. Springer-Verlag, Berlin, Germany, 341–382.

TUCKER, J. AND ZUCKER, J. 1999. Computation by ‘while’ programs on topological partial algebras.
Theoret. Comput. Sci. 219, 379–420.

TUCKER, J. AND ZUCKER, J. 2000. Computable functions and semicomputable sets on many-sorted
algebras. In Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, and T. Maibaum,
Eds. Vol. 5. Oxford University Press, Oxford, U.K., 317–523.

TUCKER, J. AND ZUCKER, J. 2002a. Abstract computability and algebraic specification. ACM Trans.
Computat. Log. 3, 279–333.

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

668 • J. V. Tucker and J. I. Zucker

TUCKER, J. AND ZUCKER, J. 2002b. Computable total functions on metric algebras, universal alge-
braic specifications and dynamical systems. Tech. rep. CAS 02-04-JZ, Department of Computing
& Software, McMaster University, Hamilton, Ont., Canada. (Accepted for publication in Journal
of Logic and Algebraic Programming.)

WEIHRAUCH, K. 2000. Computable Analysis: An Introduction. Springer-Verlag, Berlin, Germany.
WIRSING, M. 1991. Algebraic specification. In Handbook of Theoretical Computer Science, Vol. B:

Formal Methods and Semantics, J. van Leeuwen, Ed. North Holland, Amsterdam, The Nether-
lands, 675–788.

Received October 2001; revised April 2003; accepted April 2003

ACM Transactions on Computational Logic, Vol. 5, No. 4, October 2004.

