
Abstracting Vehicle

Shape and Kinematic Constraints

from Obstacle Avoidance Methods

Javier Minguez a Luis Montano a José Santos-Victor b

aInstituto de Investigación en Ingenieŕıa de Aragón,

Departamento de Informática e Ingenieŕıa de Sistemas,

Universidad de Zaragoza, Spain

{jminguez,montano}@unizar.es

bInstituto Superior Técnico,

Instituto de Sistemas e Robótica

Lisboa, Portugal

jasv@isr.ist.utl.pt

Abstract

Most obstacle avoidance techniques do not take into account vehicle shape and
kinematic constraints. They assume a punctual and omnidirectional vehicle and thus
they are doomed to rely on approximations when used on real vehicles. Our main
contribution is a framework to consider shape and kinematics together in an exact
manner in the obstacle avoidance process, by abstracting these constraints from
the avoidance method usage. Our approach can be applied to many non-holonomic
vehicles with arbitrary shape.

For these vehicles, the configuration space is three-dimensional, while the control
space is two-dimensional. The main idea is to construct (centred on the robot at
any time) the two-dimensional manifold of the configuration space that is defined by
elementary circular paths. This manifold contains all the configurations that can be
attained at each step of the obstacle avoidance and is thus general for all methods.
Another important contribution of the paper is the exact calculus of the obstacle
representation in this manifold for any robot shape (i.e. the configuration regions
in collision). Finally, we propose a change of coordinates of this manifold so that
the elementary paths become straight lines. Therefore, the three-dimensional ob-
stacle avoidance problem with kinematic constraints is transformed into the simple
obstacle avoidance problem for a point moving in a two-dimensional space without
any kinematic restriction (the usual approximation in obstacle avoidance). Thus,
existing avoidance techniques become applicable.

The relevance of this proposal is to improve the domain of applicability of a wide
range of obstacle avoidance methods. We validated the technique by integrating two
avoidance methods in our framework and performing tests in the real robot.

Preprint submitted to Autonomous Robots 28 September 2005

1 Introduction

In order to endow vehicles with true versatility, they must execute tasks au-
tonomously in unknown, unstructured, dynamic and unpredictable environ-
ments. Under these circumstances, motion must be generated by an obsta-
cle avoidance method driven by sensory information. An obstacle avoidance
method is a procedure that, given a sensorial measurement (obstacle descrip-
tion) and a final position, calculates a collision free motion towards a target.
It works within a perception - action cycle where the motion is executed by
the vehicle and the process restarts (Figure 1). The result is an on-line mo-
tion sequence that drives the vehicle to the target while avoiding collisions.
The avoidance task is further complicated since many robots have shape and
kinematic constraints that limit motion.

Our work addresses the question of taking into account the vehicle shape and
kinematics in the obstacle avoidance paradigm. It is noteworthy that we are
not proposing another obstacle avoidance method. We go a step further by
proposing a methodology to encompass such constraints in an exact way in
the avoidance paradigm, which can be applicable to many existing methods
without any redesign. This issue is important because if the vehicle shape is
ignored in the avoidance problem, collisions will inevitably occur. In addition,
if the kinematics are ignored, the vehicle may not be able to execute the
computed motions. In both cases, the security of the task would be at risk,
which is especially important when vehicles perform tasks in dangerous or
hostile surroundings that could affect human safety.

In this work we analyze the system that avoids collisions with obstacles de-
tected by sensors. This functionality is only a subgroup of the complete mobil-
ity problem. Other aspects involve perception, motion planning, modelling and
control. They will not be addressed here, but are essential to construct a com-
plete navigation system. Related works include motion planning (Latombe
1991); localization and map building (Castellanos et al. 1999, Leonard &
Feder 2000, Dissanayake et al. 2001, Thrun et al. 2000); and supervision
(Buhmann et al. 1995, Koenig & Simmons 1998, Morisset & Gallab 2002).

1.1 Path Planning versus Obstacle Avoidance

Classically, the mobility problem has been addressed by computing a geomet-
ric path, free of collisions with obstacles (Latombe 1991). Nevertheless, when
the surroundings are unknown and unpredictable, these techniques fail, since

2

Robot
Obstacles
(sensors)

motion
Direction of

Obstacle Avoidance

(v,w)

Approximations

non Holonomic
Any Shape and

Goal

Figure 1. This Figure shows the operation diagram of an obstacle avoidance method.
At high frequency the process is as follows: the sensors gather information about
the obstacles that is processed by the method to compute a collision free motion
that drives the vehicle towards the target. The motion is executed and the process
restarts.

a pre-computed path would almost certainly hit obstacles. Reactive obstacle
avoidance is an alternative way to compute motion by introducing sensory
information within the control loop (Figure 1). The main cost of considering
the world state during execution is locality. For this reason, a trap situation
may arise whenever global reasoning is required. Despite this limitation, ob-
stacle avoidance techniques are mandatory to deal with mobility problems in
unknown and dynamic surroundings.

1.2 Shape and Kinematics in Obstacle Avoidance

In obstacle avoidance, there is no procedure to consider exactly the vehicle
shape and kinematics jointly. The avoidance problem with these constraints
has been addressed from two points of view: (i) by computing a set of collision-
free admissible motions and selecting next one of them. In a first stage, these
strategies compute a set of admissible commands (or admissible paths) that are
collision free and allow for stopping safely. Next, one command (or elementary
path) is selected with obstacle avoidance and convergence to the target criteria.
(ii) By applying an avoidance method first, and then turning the solution
into an admissible motion free of collisions. These strategies use the obstacle
avoidance as the heuristic to compute the motion direction, and then compute
the collision-free admissible command that better aligns the robot heading
with this direction.

In the first class of methods, some authors solve the problem in the con-
trol space (Fox et al. 1997, Simmons 1996) to compute the set of admissible
commands. At each step, they compute a set of collision-free commands, af-
ter which one of them is selected with an optimization process that favours

3

progress, security and convergence towards the target. The elegance and sim-
plicity of these methods have lead to extensions and applications in different
contexts (Ogren & Leonard 2002, Brock & Khatib 1999, Arras et al. 2002, Ko
& Simmons 1998). In addition, some techniques pre-compute a set of arcs
of circle (elementary paths), and choose one based on obstacle avoidance
and convergence towards the destination (Ulrich & Borenstein 2000, Hebert
et al. 1997, Feiten et al. 1994, Hait et al. 1999). Both types of techniques com-
pute motions that are admissible for the vehicles and consider shape. However,
in these techniques there is usually a discretization of the space of solutions
to compute an approximation of the set of collision-free motions (paths), and
depending on the shape of vehicle it could be necessarily to use a numerical
method or a dynamic simulation to check collisions. Another point is that it
is difficult to extrapolate these strategies to allow classical methods for con-
sidering the constraints.

A second class of techniques converts the solution of an obstacle avoidance
planner to admissible motions in every period. In (Luca & Oriolo 1994, Bem-
porad et al. 1996) the output of the obstacle avoidance method is modified by
a feedback action that aligns the vehicle with the direction solution in a least
squares sense. Although the vehicle shape is taken into account during the ap-
plication of the avoidance method, the motion is modified to comply with the
kinematics. The final motion is kinematically admissible but does not guaran-
tee collision avoidance with the exact shape. In (Minguez & Montano 2002)
a similar solution is proposed by dividing the problem into subproblems (mo-
tion, kinematics and shape). First, the obstacle avoidance method is used.
Next the direction solution is converted to admissible commands using a mo-
tion generator (Montano & Asensio 1997, Asensio & Montano 2002). Finally
the commands are modified, if necessary, verifying collisions by dynamic sim-
ulation. The advantage of these strategies is their generality, since they can
be used by many avoidance methods. However, they do not consider the ve-
hicle constraints together during the obstacle avoidance method stage, which
would lead to difficulties in situations where the holonomic solution cannot be
approximated, or when manoeuvrability is a determining factor.

1.3 Our Approach and Contributions

Most obstacle avoidance techniques do not consider the constraints men-
tioned previously. They assume a punctual and omnidirectional vehicle and
are doomed to rely on approximations. Our main contribution is a framework
to consider shape and kinematics together in an exact manner, in the ob-
stacle avoidance process, by abstracting these constraints from the avoidance
method usage. Our approach can be applied to many non holonomic vehicles
with arbitrary shape (in the paper we focus on a differential-drive).

4

Any Shape and
non Holonomic

Inverse
change of
coordinates

Robot
Obstacles
(sensors)

Direction of
motion

(v,w)

Goal’

Obstacles’

Abstraction Layer

Goal Obstacle Avoidance

Obstacles
and

coordinates
change of

Figure 2. In this work we abstract the shape and kinematics of the vehicle from
the avoidance method. The idea is to understand the method as a ”black-box” and
modify the representation of its inputs so that they implicitly have information
about these restrictions. The method is applied naturally, however its solutions
consider the restrictions (the method is ”unaware” of it).

For these vehicles, the configuration space is three-dimensional (Lozano-Perez
1983), while the control space is two-dimensional. The main idea is to con-
struct (centred on the robot at any time) the two-dimensional manifold of the
configuration space that is defined by elementary circular paths. This manifold
contains all the configurations that can be attained at each step of the obstacle
avoidance and is thus general for all methods. Another important contribution
of the paper is the exact calculus of the obstacle representation in this man-
ifold for any robot shape (i.e. the configuration regions in collision). Finally,
we propose a change of coordinates of this manifold in such a way that the
elementary paths become straight lines. Therefore, the three-dimensional ob-
stacle avoidance problem with kinematic constraints is transformed into the
simple obstacle avoidance problem of a point moving in a two-dimensional
space without any kinematic restriction (the usual approximation in obstacle
avoidance). Thus, many existing avoidance techniques become applicable.

With our approach, many existing or future obstacle avoidance methods can
be applicable to non holonomic vehicles with arbitrary shape, without any
redesign (Figure 2). For example, our approach can be used to extend tech-
niques such as potential field methods (Khatib 1986, Krogh & Thorpe 1986,
Tilove 1990, Borenstein & Koren 1989), the family of Vector Field Histogram
(Borenstein & Koren 1991, Ulrich & Borenstein 1998), or the Nearness Dia-
gram (Minguez & Montano 2004, Minguez et al. 2004). In this work we present
results with a potential field method (Khatib 1986) and the Nearness Diagram
(Minguez & Montano 2004).

The manuscript is distributed as follows. We describe in Section 2 the com-
putation of the manifold of the configuration space that contains all the con-
figurations reachable by admissible paths. In Sections 3 and 4 we show how

5

to compute the collision regions in this manifold and a change of coordinates
that turns the motions omnidirectional. We discuss the complete abstraction
layer in Section 5. In Section 6 we describe the experimental results and in
Section 7 we discus and draw the conclusions of our work.

2 Admissible Paths in Obstacle Avoidance

In this section we discuss how the kinematic structure of the vehicles consid-
ered here imply that all admissible paths must be arcs of circle. As a conse-
quence, we will show that the vehicle configurations are constrained on a two
dimensional manifold of the configuration space.

We focus our attention on differential-drive robots (unicycle model) moving on
a flat surface, where the Workspace W and the Configuration space C are IR2

and IR2×S1, respectively. A configuration q is the location and the orientation
q = (x, y, θ). The motion of these robots is constrained by:

−ẋsinθ + ẏcosθ = 0 (1)

Equation (1) is a non holonomic motion constraint. The effect is to reduce the
dimension of the motion space, in each configuration (Laumond et al. 1998).
Therefore, a motion command can be described by two parameters only. The
kinematic model of these vehicles can be expressed by:

ẋ

ẏ

θ̇

=

cosθ

sinθ

0

v+

0

0

1

w (2)

where v and w denote the linear and angular velocities 1 . During the execution
of a motion, we assume that velocities remain constant in each control period.
Then, the vehicle moves along a circular path or a straight line (see (Fox
et al. 1997) to characterize this assumption). All the methods discussed in the
previous section use this motion assumption. Notice that a straight motion and
a pure rotation are both circular paths with infinity and zero radii respectively.

1 In the syncro-drive robot these are also the controls. Other robots follow this
model up to a variable change. This distinction becomes more important when
dynamics are taken into account (actuator limits translate different into constraints
(v, w))

6

L

X

Y

θ

θ

(0,r)

r

(x,y)

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−2

0

2

4

6

8

Y coordinate
X coordinate

T
H

E
T

A
 c

o
o
rd

in
a
te

(a) (b)

Figure 3. Figure (a) given a point of IR2, there is only one circle that complies
with the motion constraints. Furthermore, the robot orientation is tangent to the
circle at every point; (b) the surface in the configuration space corresponds to the
manifold ARM [where qo = (0, 0, 0)]. This surface represents all the configurations
reached by circular paths from qo.

We characterize next a feasible circular motion. In the robot system of refer-
ence, an admissible circular path contains the origin, and the instantaneous
turning centre is on the Y -axis (Figure 3a). Then, if (x, y) is a point in the
workspace, there is only one circle going through {(x, y), (0, 0)} and having
its centre in the Y -axis. The radius of that circle is:

r =
x2 + y2

2y
(3)

In other words, the instantaneous turning centre is (0, r). Furthermore, the
robot orientation has to be tangent to the circle at all points:

θ = atan2(x, r − y) (4)

From Equation (3) and (4) we have,

θ = f(x, y) = atan2(2xy, x2 − y2) (5)

It is easy to see that function f is differentiable in IR2\(0, 0). Thus (x, y, f(x, y))
defines a two dimensional manifold in IR2 × S1 when (x, y) ∈ IR2\(0, 0). We
call this manifold Arc Reachable Manifold ARM(qo) since it contains all the
configurations attainable by elementary circular paths from the current robot
configuration qo (Figure 3b). Notice that ARM(qo) contains the configurations

7

attainable at each step of the obstacle avoidance. For simplicity of notation
we adopt ARM ≡ ARM(qo).

3 Calculus of the Robot Configurations in Collision

In the previous section we discussed how the attainable space of the configura-
tion space C is constrained to a manifold ARM in the case of circular motion.
In this section we describe an algorithm to compute the region of configu-
rations of this manifold in collision for any vehicle shape. In the following
development, obstacles are considered as a set of points (e.g. laser, see Figures
13 and 15).

The region that contains all the configurations in collision is the intersection
between the C-Obstacle boundary (configurations in collision) and ARM (con-
figurations attainable by circles). To compute it, we derive first a procedure to
determine a point of the collision region boundary, given an obstacle point and
a point of the robot boundary. Then, by using this procedure over a param-
eterization of the robot boundary, we can analytically describe the boundary
of the collision region for an arbitrary vehicle shape. The calculus is derived
in IR2 since it is the domain of ARM .

Let be pf = (xf , yf) and pi = (xi, yi) an obstacle point and a point in the
robot boundary. We want to determine the robot location ps = (xs, ys) over a
circular path such that pi and pf coincide (i.e. collision occurs). The location
ps represents the contribution of pi to the collision region boundary in ARM .
The calculus is based on the existence of a circle D with radius r such that
(0, 0) ∈ D, the centre of D lies on the Y -axis, and in location (xs, ys) ∈ D the
points pi and pf coincide (Figure 4). Then:

(xs, ys) = (r sin θ, r(1 − cos θ)) (6)

In order to solve this equation, we need to compute r and θ. We start by
computing the turning radius r. The distance from the rotation center pr =
(0, r) to pi and to pf has to be equal:

||pi − pr||
2 = ||pf − pr||

2 (7)

x2
i + (r − yi)

2 = x2
f + (r − yf)

2 (8)

to find the value of r:

r =
(y2

f − y2
i) + (x2

f − x2
i)

2(yf − yi)
(9)

8

θf

θi

p =(x ,y)s ss

p =(x ,y)f f f

p =(x ,y)i i i

(0,r)

Y

X

θ

(a)

Figure 4. This Figure shows how the motion over a circle leads a point of the robot
boundary (xi, yi) to the obstacle point (xf , yf), in the robot system of reference.
The robot location (xs, ys) represents the limit between collision and no collision,
that is, the boundary of C-Obstacle.

Secondly, we compute the rotation θ, as:

θ = θf − θi (10)

where θf denotes the angle towards the obstacle point and θi the angle of
the robot boundary both w.r.t the Y -axis. To solve Equation (6), we have to
calculate sin θ and (1 − cos θ). From Equation (10) we have:

sin θ = −
xf (yi − r) − (yf − r)xi

x2
f + (yf − r)2

(11)

1 − cos θ =
xf (xf − xi) + (yf − r)(yf − yi)

x2
f + (yf − r)2

Finally, replacing these expressions in Equation (6) we obtain the final solu-
tion.

xs =
(xf + yf).[(y

2
f − y2

i) + (x2
f − x2

i)]
2

(yf − yi)4 + 2(x2
f + x2

i)(yf − yi)2 + (x2
f − x2

i)
2

(12)

9

ys =
(yf − yi).[(y

2
f − y2

i) + (x2
f − x2

i)]
2

(yf − yi)4 + 2(x2
f + x2

i)(yf − yi)2 + (x2
f − x2

i)
2

For a given obstacle point pf and a point of the robot boundary pi, we obtain
a point ps of the boundary of the collision region in ARM .

Notice that this result can be used to express analytically the bounds of the
collision region of ARM by substituting (xi, yi) in the previous equation by a
parametric expression of the vehicle bounds. In other words, for an arbitrary
robot shape one can compute the analytical expression of the collision regions
in the configuration space reachable by circular paths. We denote the collision
region COARM . We describe next an example of this calculus for a cardioid-
shaped vehicle and for a polygonal robot.

Lets suppose that we have a “cardiod”-shaped robot (Figure 5a), whose bound-
ary is described by:

xi(λ) = a.(1 + cos λ)

yi(λ) = λ
(13)

with λ ∈ [0, π]. Replacing this equation in Equation (12) we obtain the CO1
ARM

corresponding to one obstacle point O1. The obstacle region is COARM =
⋃

i COi
ARM for all obstacle points Oi (Figure 5).

In the case of a polygonal robot, we represent each segment by its parametric
equation. Let p1 = (x1, y1) and p2 = (x2, y2) be the coordinates of one of the
segments of the robot boundary. We parameterize the segment:

xi(λ) = x1 + (x2 − x1).λ

yi(λ) = y1 + (y2 − y1).λ
(14)

where λ ∈ [0, 1]. Replacing this equation in Equation (12) we obtain the
transformation of a segment. By using this transformation for all the segments
of the robot we get COARM corresponding to the obstacle point. Figure 6 shows
an example.

Let be g the piece-wise function that describes the robot boundary. The com-
plexity of the calculus described is N ×M , where N is the number of obstacle
points and M the number of pieces of function g. For instance, M = 1 for a
circular robot or the cardioid-shaped robot, or M is equal to the number of
sides for a polygonal robot. Notice that we compute the exact representation
of the region in collision for any vehicle shape. Furthermore, the region of

10

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

O4

O3

O2
O1

(a)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

CO3
ARM

CO2
ARM CO1

ARM

CO4
ARM

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(b) (c)

Figure 5. This Figure shows the computation of the free space for a “car-
dioid”-shaped robot that moves over circular paths. (a) Robot and obstacles Oi;
(b) each obstacle point creates a region of collision locations COi

ARM that all to-
gether are COARM . The free space is the space outside these regions and all locations
within these regions are in collision; and (c) superposition of both the workspace
and the ARM , and some robot locations and the paths that lead to them. Notice
how locations out of the COARM are not in collision with the obstacle points.

collision can always be computed as long as g exists (the robot boundary can
be mathematically described by curves).

Summarizing, in this section we have described a procedure to compute exactly
the collision-free locations, for arbitrarily shaped robots, that move on circular
paths. We have given an example of a cardioid-shaped robot and a polygonal
robot. The calculus is exact, can be always applied and is not restricted to a

11

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

O

O

O

2

3 4

O1

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

T
H

E
T

A
 c

o
o
rd

in
a
te

Y coordinate
X coordinate

(a) (b)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

COARM
1

CO4

CO3

CO 2

ARM

ARM

ARM

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

COARM
1

CO4

CO3

CO 2

ARM

ARM

ARM

(c) (d)

Figure 6. This Figure shows the computation of the free space for a rectangular robot
that moves over circular paths. (a) Robot and obstacles Oi; (b) the C-Obstacles in
the configuration space that result from the four obstacle points. These volumes
contain all the configurations in collision with the obstacles; (c) each obstacle point
creates a region of collision locations COi

ARM that all together are COARM . The
free space is the space outside these regions. Graphically, these regions are the inter-
section between the volumes in (b) and the surface of Figure 3b. (d) Superposition
of both the workspace and the ARM , and some robot locations and the paths that
lead to them.

given vehicle shape.

The avoidance problem is now transformed to a point moving in a two-
dimensional space ARM , but still with kinematic constraints. In the next
section, we propose a change of coordinates of ARM so that the circular mo-
tions are described by straight motions (free of kinematic constraints).

12

(x,y)

L

X

Y

r

(0,r)

1

α ’

α’

px

Figure 7. This Figure shows how a differential-drive vehicle reaches a point of the
space (x, y) by a circular path (of radius r). On a point of the X- axis, the angle α

is tangent to the circle.

4 The Ego-Kinematic Coordinate Transformation

We have discussed how the admissible elementary paths of the vehicles consid-
ered are circles. We identified the manifold ARM of the configuration space,
as a function {IR2\(0, 0)}, which represents all the configurations reachable
under circular motions. We also provided a calculus to compute the exact
bounds of the collision region COARM on this manifold. In this section we
propose a change of coordinates of ARM so that elementary paths become
straight segments with the new coordinates.

The Ego-Kinematic change of coordinates transforms the domain of the man-
ifold IR2 into IR × S1,

IR2 → IR+
0 × S1

(x, y) → (L, α)
(15)

where the distance to a point is the arc length L measured over the circle that
reaches that point, and the angle univocally represents this circle (Figure 7).
Next, we discuss the computation of both coordinates.

In the robot system of reference, the radius r of the circle that goes through
point (x, y) is given by Equation (3) and the vehicle orientation θ in that point
by Equation (4). The distance to the point measured along the circle is the

13

α

X

Y

α

(x,y)

L

α

r

(0,r)

1

α =α

α=π−α

’

’

’

’’

px
−1

Figure 8. This Figure shows how, where the point is located in the positive X-axis,
the value of α is α′. If the point is in the negative axis, the problem is symmetrical
with respect to the Y -axis.

arc length:

L =

|x|, y = 0

|r.θ|, y 6= 0
=

|x|, y = 0

|x
2+y2

2y
.atan2(2xy, x2 − y2)|, y 6= 0

(16)

This distance is the first coordinate. The second coordinate has to identify
the circle univocally and give the sense of travel. The turning radius r is a
unique descriptor of the circle going through a point and that complies with
the motion constraints [Equation (3)]. However, this descriptor is unbounded
while we search a bounded representation. This is achieved through an angular
variable, constructed as follows. Let px be a point in the X-axis [for example
the (1, 0)] 2 . Let T be the line joining (0, r) and px. Then, α′ is the angle
comprised between the perpendicular line to T and the X-axis:

α′ = arctan(
1

r
) (17)

Given a turning radius, we obtain a tangent direction α′ (a bounded descriptor
of the circle that goes through a point). By using Equation (3), we get:

α′ = arctan(
2y

x2 + y2
) (18)

2 From a physical point of view, this point is equivalent to having a free wheel
at distance 1 from the origin on the X-axis, which aligns tangent to the circle of
motion with angle α′.

14

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

O1O2

O3

O4

L 1L 2

L 3
L 4

R1

X

Y

 0.5

 1

 1.5

 2

30

210

60

240

90

270

120

300

150

330

180 0

O1
’O2

’

O3
’

O4
’L 3

L 4

L 1

L 2
α =1 f(R)1

(a) (b)

Figure 9. This Figure shows how we express ARM in the new coordinates. (a) Four
points in IR2 and circular paths that go through them. (b) The points represented
in the new coordinates. Notice that to reach a point we need a motion direction
and a distance (rectilinear motion), whereas they fix a turning radius and the arc
length in workspace.

The second coordinate is then:

α =

α′, x ≥ 0

sign(y).π − α′, x < 0
(19)

where α′ is given by Equation (18). This definition implies that when x ≥ 0 the
direction of travel is ”forward” (the angle α is equal to α′, Figure 7), and when
x < 0 the motion is ”backward” (α is the result of the same calculus assuming
the symmetrical problem with respect to the Y -axis, Figure 8). Notice that
each value of αs univocally determines a turning radius, rs:

rs =

1
tan(αs)

, αs ∈ [−π
2
, π

2
]

1
tan(sign(sin(αs).π−αs))

, otherwise
(20)

The coordinate α distinguishes the direction of travel: cosαs ≥ 0 is ”forward”
motion while the opposite is ”backward” (although r and α do not differentiate
the direction).

With this parameterization of the domain of ARM , the coordinates of a point
depend on the distance measured along the admissible path (the arc length of
the circle L), and on a descriptor of the circular path that reaches the point
(since α describes one turning radius r). We call ARMP to ARM in the new

15

coordinates.

Figure 9 shows an example of the Ego-Kinematic coordinate transformation.
On the left there are four points Oi and the corresponding circular paths.
Points are represented in ARMP as O′

i (Figure 9b), so that they are reached
by rectilinear motions. In other words, to reach a point of ARM P we require
a direction α [which fixes a turning radius, by Equation (20)] and a distance L

(the arc length). Thus, the admissible paths in ARM P are rectilinear (omnidi-
rectional motion), whereas they represent circular admissible paths in ARM

(admissible paths in the workspace).

In summary, we represent ARM in a new coordinate system where the mo-
tion is omnidirectional (without kinematic constraints) whereas it represents
a motion over an admissible path for the robot. In the next section we use
the previous results related to robot shape and kinematics to construct the
abstraction layer.

5 Abstraction of the Shape and Kinematic Constraints from the

Obstacle Avoidance Method

In this section we use the previous results to abstract the shape and the
kinematics of the vehicle from obstacle avoidance methods. These techniques
work within a cycle, computing on-line collision free motion given a description
of the obstacles and a destination. The motion is executed by the vehicle and
the process restarts (Figure 1). The idea is to build an abstraction layer so
that the solutions computed consider the shape and the motion constraints
of the vehicle without redesigning the method (Figure 2). This is achieved by
including two stages: (i) incorporating the shape and the kinematics before
the method application and (ii) motion computation. At each iteration the
procedure is:

(1) Shape: construction of the region in collision with the obstacles COARM

(procedure described in Section 3).
(2) Kinematics: change of coordinates of the collision region COARM to COARMP

(procedure described in Section 4).
(3) Obstacle avoidance: application of the obstacle avoidance method in ARM P ,

to compute the most promising motion direction αsol.
(4) Motion: the direction solution αsol is transformed into a motion command

(v, w) as follows. First, we compute the radius solution rsol by using
Equation (20). Then, we compute a command (v, w) that preserves the
turning radius v = w.rsol. Any command on the line with slope rsol

(Figure 10) is valid. One strategy to select one command is to reduce the
module of the speed vector mv as a function of the distance to the closest

16

vm

vmmax

γsol =atan(r)sol

Vmax−Vmax

Wmax

−Wmax

(v,w)
−1

Figure 10. This Figure shows how to compute the motion command (v, w) within
the physical limits (maximum velocities vmax and wmax) given a turning radius
rsol. The module of the speed vector mv is reduced linearly with the distance to the
closest obstacle (when there are obstacles closer than a given distance to the robot).

obstacle:

mv =

mv
max, dobs ≥ dmin

mv
max.

dobs

dmin

, otherwise
(21)

where mv
max is the distance from the velocity origin to the rectangle of

maximum velocities, dobs is the distance to the closest obstacle in ARMP ,
and dmin is a distance threshold to check whether the velocity is maxi-
mum. The final command is:

(v, w) =

(mv. cos γsol,m
v. sin γsol), |αsol| ∈ [−π

2
, π

2
]

(−mv. cos γsol,m
v. sin γsol), otherwise

(22)

where γsol = arctan(r−1
sol). The sign preserves the ”forward” and ”back-

ward” motion. Finally, the command (v, w) is executed by the vehicle
and the process restarts.

Figure 11 illustrates an example by using a rectangular and differential-drive
robot, and a generic obstacle avoidance method that considers neither the
shape (assumes that the vehicle is a point) nor the motion constraints (as-
sumes that the vehicle is omnidirectional). The figure shows an iteration of
the process described. At a given moment, the robot gathers information about
the obstacles and the target (Figure 11a). The goal is to compute a motion
command that avoids collisions, while leading the robot towards the destina-
tion.

17

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
WORKING SPACE

Robot
Obstacle points

Turning radius
Goal

R

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
CONFIGURATION SPACE OF ONE MOTION COMMAND

X

Y

C-OBSTACLE

(a) (b)

 1

 2

 3

30

210

60

240

90

270

120

300

150

330

180 0

EGO-KINEMATIC SPACE

PFM SOLUTION

GOAL

solution
Avoidance method

Goal

(c)

Figure 11. Iteration of the obstacle avoidance process. A sensory description of the
obstacles (a) is used to compute the region of the configuration space in collision
with the robot (rectangular shape) over the manifold of circular paths, (b), where
the robot is represented by a point. The coordinates of the manifold are changed
(c) so that the motion is free of kinematic constraints and the robot is a point. Here
we use the avoidance method that computes the best motion direction ”Avoidance
method solution”, which represents an arc of circle in the workspace [”Turning
radius” in Figure (a)].

Stage (1): current sensory information is used to construct the region in col-
lision given the shape of the robot in ARM , i.e. the COARM (Figure 11b). In
this manifold the robot is a point.

Stage (2): the Ego-Kinematic coordinate transformation is applied to the do-
main of the manifold (Figure 11c), so that in ARMP the robot is represented
by a point and the motions are over straight segments (applicability conditions
of the obstacle avoidance method).

18

Stage (3): the avoidance method is used to obtain the motion direction that
avoids the obstacles while moving the robot towards the destination.

Stage (4): that direction is used to compute the movement, which corresponds
to a circular motion in the workspace (Figure 11a). The motion is kinemati-
cally admissible and takes into account the exact shape by construction. The
vehicle executes the motion command and the process restarts.

Notice that, with this methodology, the modifications introduced in the scheme
are the calculus of the new obstacle regions and a coordinate transformation.
For that reason the method performs the task ”being unaware” that it is
applied in a representation where the solutions consider the shape and the
kinematics of the vehicle. This is the key aspect of this approach.

In the following section we applied this scheme to two obstacle avoidance
methods on a real robot.

6 Experimental Results

The objective of this section is to validate our methodology with two obstacle
avoidance methods working on a real vehicle with shape (square) and kine-
matic constraints (differential-drive). First we describe the vehicle, the sensor
and the obstacle avoidance methods, and finally the experimental results.

6.1 Vehicle, Sensors and Obstacle Avoidance Methods

The vehicle is a Labmate available at the University of Zaragoza, Spain. This
robot is square (0.8m×0.8m) differential-drive (Figure 12). In order to collect
information about the obstacles, the vehicle was equipped with a 3D TRC
laser, with a maximum range of 6.5m, a precision of 0.025m, and a field of
view of 240◦ (a point by degree). All the calculations were carried out on a
microSun SparcII 60MHz.

In all the experiments the environments were completely unknown, dynamic
with a priori unpredictable behaviour (people moving) and unstructured (ob-
stacles such as cardboard, people, chairs, tables and boxes). Under these cir-
cumstances, an obstacle avoidance method is the right choice to move the
vehicle.

We selected two obstacle avoidance methods, a potential field method (Khatib
1986) (very formal and well known (Koren & Borenstein 1991)) and the near-
ness diagram navigation (Minguez & Montano 2004, Minguez et al. 2004) (an

19

Figure 12. The vehicle is square with differential traction and equipped with a laser
3D TRC.

heuristic method).

In the potential field method (PFM in short) the robot is modelled as a parti-
cle moving in the configuration space, affected by forces created by a potential
field. The target position creates a potential that attracts the particle, whilst
the obstacles create a repulsive potential. The movement is computed to follow
the direction of the artificial force resulting from the sum of both potentials
(most promising direction of motion). This method (in the obstacle avoidance
version) cannot be applied on the differential robot without approximations,
since the direction of the potential gradient does not comply with the non
holonomic motion constraint [Equation (1)]. In other words, the structure of
the potential does not represent the fact that in the configuration space not
all motions are allowed. On the other hand, considering shape would imply
constructing a representation of the obstacles in the three-dimensional config-
uration space, which would be difficult to carry out in real time.

The nearness diagram method (ND in short) is based on the situated-activity
paradigm of behavioural design (see (Arkin 1999) for a review). A set of situ-
ations describes the problem and how to act in each case (actions). The situ-
ations represent abstractions of all possible configurations between the robot,
obstacles and destination. For each case, there is an associated action repre-
sented by a motion law. During the execution phase (knowing the location of
obstacles, vehicle and destination), one of these situations is identified, and
the corresponding action is executed to compute the motion. The advantage
of this method is that it uses a ”divide and conquer” strategy based on situa-
tions to simplify the difficulty of navigation. Therefore, good results have been

20

obtained in difficult scenarios such as very cluttered situations that make it
hard to manoeuvre the vehicle. This method cannot be used on the considered
robot since it assumes that the robot is a point (or circular), and calculates
the most promising motion direction (assuming that the robot is holonomous,
analogue to the PFM).

Both methods assume that the robot is a point (they ignore the shape restric-
tion) and that can move in any direction (no kinematic constraint). When
used on this type of vehicle, shape and motion are approximated. In the next
section we show how we have applied both methods, without approximations,
using the proposed methodology.

6.2 Experiments

In the experiments we start by discussing how our methodology computes
motions that carry out the avoidance task while driving the vehicle to the
destination (the main task is not penalized by including the abstraction layer).
In addition, we show the improved robustness when taking into account the
constraints. Finally, we discuss that, when both methods are used without the
abstraction layer, the solutions cannot be executed without approximations
(very strong in some cases).

For the potential field method (PFM), we fixed the sampling period to 0.250sec,
since it represents the upper bound of the time to compute both, the COARMP

and the solution of the avoidance method, for each sensorial measurement
(laser). With this cycle time, we obtained fast reactions to the sensor infor-
mation. We set the maximum velocities to (vmax, wmax) = (0.3 m

sec
, 0.45 rd

sec
).

Figure 13 shows one of the experiments. The robot was driven to the des-
tination avoiding collisions with all the unexpected obstacles. This included
objects placed in random locations by a human (see the trajectory followed
and the points detected by the laser in Figure 13a, and some snapshots of the
motion in Figures 13b, c, d, e). The robot reached the destination in 99sec.

In all the experiments the shape of the vehicle was considered during the
avoidance, since the potential is applied to avoid the collision region of the
configuration space COARM . As a consequence, in some places the vehicle
manoeuvred in relatively dense surroundings. The kinematics of the vehicle
were taken into account during the whole experiment. This is because the
potential was applied in ARMP to calculate the best motion direction, which
fixes a turning radius and a command (v, w) that preserves it at every moment.
The turning radii computed during the experiment are depicted in Figure 14a,
and the velocity profiles of the experiment in Figure 14b.

21

x
Goal

Init

Snapshot 1

Snapshot 2

Snapshot 3
Snapshot 4

1 meter

(a)

Goal Goal

(b) (c) (d) (e)

Radius
solution

Goal

R
PFM
direction

Laser points

Robot

GOAL

R

Goal

PFM
direction

Radius solution

R

Goal

PFM
direction

Radius solution

PFM
direction

x

Radius
solution

R

Goal

(f) (g) (h) (i)

Figure 13. Experiment with the PFM method using the abstraction layer to take into
account the shape and kinematics constraints. (a) Path executed by the vehicle and
laser points collected in the experiment. (b)-(e) Some snapshots that correspond to
Figures (f)-(i) showing the laser measurement used, the robot location, the radius
solution using PFM in the ARMP and the direction that would be obtained by
PFM without using the abstraction.

We show specific moments of the experiment in Figures 13f, g, h, i with the
current sensorial measurements and the circle that corresponds to the radius
(these moments correspond to the snapshots of Figures 13b, c, d, e respec-
tively). Notice how the motion on these circles always avoids (in the short

22

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

10
3

RADIUS

TIME (sec)

R
A

D
IU

S
 (

m
)

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5
TRANSLATIONAL VELOCITY PROFILE

TIME (sec)

V
E

L
O

C
IT

Y
 (

m
/s

e
c
)

0 10 20 30 40 50 60 70 80 90 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
ROTATIONAL VELOCITY PROFILE

TIME (sec)

V
E

L
O

C
IT

Y
 (

ra
d

/s
e

c
)

(a) (b)

Figure 14. (a) Profile of the turning radius computed in the experiment with the
potential field method and (b) linear and angular velocities profiles.

term, i.e. during the sampling period 0.25sec) collisions (with the exact shape
of the robot). The global effect of the kinematic constraints is in the whole
trajectory, which is composed of arcs and straight segments (Figure 13a).

When the PFM is used but without the abstraction layer, the computed so-
lutions are directions of motion that cannot be executed by the robot, since
the admissible paths are arcs of circle (”PFM direction” in the Figures 13f, g,
h, i). Although in some cases the motions could be approximated, in general
this is not possible (Figures 13f, h the directions are lateral, which cannot be
executed by a differential robot).

The ND method was also integrated in the methodology. The sampling period
was 0.15sec with the same robot setup 3 . However, with this method there
was an additional constraint because it only computes forward motion 4 . Due
to that constraint we used a change of coordinates for vehicles that only move
forwards 5 .

3 As opposed to the PFM, the ND is a method that works in the workspace. In
the ND, the EKT transformation is applied directly to the obstacle points and not
to the C-obstacle region (that is not computed). This is why the ND version is less
time consuming than the PFM.
4 This is because its original implementation was for a holonomic robot with a sen-
sor of 180◦ of visibility. Under these conditions the instantaneous backward motion
was eliminated.
5 In this case, to reach a point of the space, the vehicle moves over a circle but always
forwards. In other words, to reach the point (x, y) in the Figure 8 the distance to
the point is 2πr − L instead of L [Equation (16)]. In addition, the angle α is not
required (since there is no backward motion) and α′ completely describes the circle
[Equation (18)].

23

Snapshot 2

Snapshot 1

Snapshot 3

Snapshot 4

GOAL

1 meter

(a)

Goal
Goal

(b) (c) (d) (e)

ND
direction

solution
Radius

Robot

Goal

R

Laser points

Radius
solution

ND
direction

R

Goal

ND
direction

R=0

Radius
solution

Goal

Radius
solution

ND
direction R

Goal

(f) (g) (h) (i)

Figure 15. Experiment with the ND method using the abstraction layer to take into
account the shape and kinematic constraints. (a) Path executed by the vehicle and
laser points collected in the experiment. (b)-(e) Some snapshots that correspond
to Figures (f)-(i) showing the laser measurement used at that moment, the robot
location, the radius solution using the ND in the ARMP and the direction obtained
by the ND without using the abstraction.

Figure 15 shows one of the experiments carried out where the vehicle was
driven to the target in an unknown, unstructured scenario constructed dynam-
ically (see the points gathered by the laser and the trajectory of the vehicle in

24

0 5 10 15 20 25 30 35 40 45
10

−3

10
−2

10
−1

10
0

10
1

10
2

RADIUS

TIME (sec)

R
A

D
IU

S
 (

m
)

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TRANSLATIONAL VELOCITY PROFILE

TIME (sec)

V
E

L
O

C
IT

Y
 (

m
/s

e
c
)

0 5 10 15 20 25 30 35 40

−0.4

−0.2

0

0.2

0.4

0.6
ROTATIONAL VELOCITY PROFILE

TIME (sec)

V
E

L
O

C
IT

Y
 (

ra
d
/s

e
c
)

(a) (b)

Figure 16. (a) Profile of the turning radius computed in the experiment with the
nearness diagram navigation and (b) linear angular velocity and velocity profiles.

Figure 15a, and some snapshots of the motion in Figures 15b, c, d, e). Notice
that the avoidance task and motion to the goal was successfully carried out
using the technique proposed. The robot reached the destination in 44sec.

Taking the shape into account was very important since it restricts manoeu-
vring in confined spaces (see Figure 15a, c). With respect to the kinematics,
the conclusions are similar to the PFM. We show the turning radii obtained
using the ND method in the ARMP in Figure 16a (notice that the manoeuvres
are more abrupt due to the fast reactions required in very confined spaces) and
the velocity profiles in Figure 16b. Some of these turning radii are illustrated
in Figures 15b-f,c-g,d-h,e-f at different moments. Notice that the motion on
the circles avoids collisions (within the short-time application of the method,
that is, the sampling period).

Finally, we show the ND solutions without using our abstraction layer in
Figures 15f, g, h, i as ”ND direction”. The most significant case arises in
Figure 15h. The direction is completely perpendicular to the robot, which
is physically impossible to execute. Nevertheless, in this situation, the ND
method with the abstraction layer computes a radius 0, that is equivalent to
turning on itself in that direction (desired behaviour).

Another conclusion of the experiments is that the abstraction layer allows for
applying some methods on robots with restrictions, but does not improve the
quality of a method. If a method has difficulties under some conditions, they
will be present if they arise in ARMP . For example, one difficulty of a potential
method is to drive the vehicle between two very close obstacles, or the appear-
ance of instabilities or oscillations in the motion (Koren & Borenstein 1991).
These difficulties also appeared when PFM was integrated in the abstraction
layer. Nevertheless the opposite is also true. If the method works well under
certain conditions, it will also perform well in ARMP if they appear. This is

25

the case of the ND method that is robust under conditions of extreme manoeu-
vrability (dense and complex scenarios). Similar results were obtained when
the ND was integrated in the abstraction layer (Figure 15a).

In summary, two reactive methods integrated with the abstraction carried out
the avoidance task while driving the vehicle to the destination. The computed
motions took into account the vehicle constraints, whereas when both methods
were used alone (without the abstraction) they compute solutions that could
not be executed by the vehicle without approximations (very strong in some
cases).

7 Discussion and Conclusions

We have presented a framework to abstract the shape and the kinematics of
a vehicle when using an obstacle avoidance method. The abstraction is based
on a calculus to compute the exact boundary of the region in collision in the
manifold of the configuration space defined by elementary circular paths, and
in a change of coordinates where the elementary motions become omnidirec-
tional. This construction is performed before applying the avoidance method
within the perception - motion cycle.

In what follows, we discuss the main characteristics of our approach regarding
obstacle avoidance methods, and next we address additional issues such as the
quality and locality of the solution.

7.1 Comparison with Existing Obstacle Avoidance Methods

Next we discuss aspects related to obstacle avoidance methods and compare
the approach with similar techniques that use the avoidance method before
and turn the approximated solutions into admissible commands.

The obstacle avoidance methods that consider these restrictions compute colli-
sions over a set of elementary circular paths. In some cases the set is composed
of circular arcs (Hebert et al. 1997, Feiten et al. 1994, Ulrich & Borenstein
1998, Hait et al. 1999), and in others is a set of commands (where each one
implies a circular path) (Fox et al. 1997, Simmons 1996, Schlegel 1998). The
complexity of this process is N × M × C, where N is the number of obstacle
points, M is the number of pieces of the piece-wise function that describes
the robot boundary and C is the number of pre-defined paths. The important
point is that when the shape is circular or polygonal, the intersection between
the robot outline and the obstacle over a circular path can be calculated (Fox

26

et al. 1997, Arras et al. 2002). Then, M = 1 in the case of circular robots and
M is the number of sides in the case of polygonal robots. However, this is true
as long as the intersection between the robot outline and the circular paths
to obstacles can be calculated. For instance, in the case of the cardioid-shape
vehicle, it has to be possible to solve the system formed by Equation (13) and
x2 + (y −R)2 = (R− c)2 (where c depends on the obstacle point and R is the
radius of the path inspected). If there is no exact solution, one can try to solve
the system with a numerical method or by projecting the robot position over
the path checking collisions (dynamic simulation). Both strategies increase the
complexity and could lead to an approximate solution.

In this work, the procedure to compute the exact region of the configuration
space in collision over the manifold of circular paths has a N ×M complexity.
The complexity of the calculus proposed is less than existing methods, but
more important the solution is exact and can always be computed (as long
as the boundary of the vehicle can be described by a piece-wise function).
Another important consequence is that this calculus allows for maintaining a
continuous representation the space of solutions of the method (that is why the
term ×C does not appear in complexity). Existing methods could benefit from
this procedure to reduce complexity, to straight forward consider any vehicle
shape or to avoid a discretization of the space of solutions of the method.

There are other techniques similar to ours but used after the avoidance tech-
nique (not before). For example (Luca & Oriolo 1994, Bemporad et al. 1996)
modify the output of the avoidance method by a feedback action and (Montano
& Asensio 1997, Asensio & Montano 2002) use a motion generator to align
the vehicle with the direction solution. These methods run into problems in
situations requiring high manoeuvrability (Bemporad et al. 1996) (due to the
approximation of the non holonomicity by a motion direction). The vehicle
shape could be considered after this stage by dynamic simulation (Minguez &
Montano 2002). In our technique the shape and the kinematics are taken into
account in the methodology before using the method (when the method is
used, the constraints have already been considered). In particular, situations
that required great manoeuvrability were overcome (Figure 15a).

7.2 Quality and Locality of the Solution

In the obstacle avoidance context, two key questions remain: the quality of
the motion regarding current techniques and the locality of the solution. As
discussed in the experiments, our method is a tool to allow an avoidance
technique to consider certain restrictions. The performance of an obstacle
avoidance method with this tool depends on the method and not on the tool.
Therefore, to draw conclusions about the motion quality of the reactive meth-

27

ods, they should be compared individually (see (Minguez & Montano 2004) for
a comparison of some methods). Nevertheless, the advantage of the abstrac-
tion with respect to existing techniques is generality, because many existing
or future methods could use the same methodology to address the vehicle
constraints.

The obstacle avoidance methods are local techniques to solve the motion prob-
lem, so cyclical motions and trap situations persist. This is a common char-
acteristic of these methods. Nevertheless, movement is improved in terms of
flexibility, adaptation and robustness in unknown, unstructured and dynamic
surroundings with an a-priori unpredictable behaviour (the sensory informa-
tion is included at a high frequency in the motion control loop, around 4 and
6.3 Hz in the experiments). The role of the technique presented here is to
consider the vehicle restrictions in the application of the method. Therefore,
this technique does not change the local nature of the method. In order to
deal with the locality of obstacle avoidance methods, hybrid systems should
be developed (see (Arkin 1999) for a discussion on different architectures and
(Minguez & Montano 2005) for a similar discussion in the motion context).
These systems are made up of a module of global deliberation (planning) and
an obstacle avoidance module (avoidance of collisions) whose synergy gener-
ates motion that avoids trap situations in (Ulrich & Borenstein 2000, Brock
& Khatib 1999, Minguez et al. 2001, Stachniss & Burgard 2002, Philipsen &
Siegwart 2003).

7.3 Final Remarks

Our belief is that this technique can be very useful to many researchers since it
provides a framework to improve the domain of applicability of a wide range of
obstacle avoidance methods (without significant modifications). To integrate
this framework in existing vehicles is straightforward. In our work, we used
it to extend two obstacle avoidance methods available in our laboratory. The
results demonstrate that the avoidance task is carried out successfully, while
the motions take into account the shape and kinematics. This was the objective
of this work.

Acknowledgements

We would like to thank the Computer and Robot Vision Lab at the Insti-
tuto de Sistemas e Robótica that hosted Javier Minguez during his visit to
the Instituto Superior Técnico, Lisbon, Portugal. Thanks is also given to the
Robotics and Artificial intelligence group directed by R. Chatila that hosted

28

Javier Minguez during his visit to the LAAS-CNRS, France. In particular we
thank J.P Laumond and F. Lamiraux for their fruitful comments and dis-
cussions during the preparation of this manuscript. This work was partially
supported by MCYT DPI2003-7986, DGA2004T04 and the Caja de Ahorros

de la Inmaculada de Aragón.

References

Arkin, R. (1999), Behavior-Based Robotics, The MIT Press.

Arras, K., Persson, J., Tomatis, N. & Siegwart, R. (2002), Real-time Obstacle
Avoidance for Polygonal Robots with a Reduced Dynamic Window, in ‘IEEE
Int. Conf. on Robotics and Automation’, Washington, USA, pp. 3050–3055.

Asensio, J. & Montano, L. (2002), A Kinematic and Dynamic Model-Based Motion
Controller for Mobile Robots, in ‘15th IFAC World Congress’, Barcelona, Spain.

Bemporad, A., Luca, A. D. & Oriolo, G. (1996), Local incremental planning for
car-like robot navigating among obstacles, in ‘IEEE International Conference
on Robotics and Automation’, Minneapolis, USA, pp. 1205–1211.

Borenstein, J. & Koren, Y. (1989), ‘Real-Time Obstacle Avoidance for Fast Mobile
Robots’, IEEE Transactions on Systems, Man and Cybernetics 19(5), 1179–
1187.

Borenstein, J. & Koren, Y. (1991), ‘The Vector Field Histogram–Fast Obstacle
Avoidance for Mobile Robots’, IEEE Transactions on Robotics and Automation

7, 278–288.

Brock, O. & Khatib, O. (1999), High-Speed Navigation Using the Global Dynamic
Window Approach, in ‘IEEE Int. Conf. on Robotics and Automation’, Detroit,
MI, pp. 341–346.

Buhmann, J. M., Burgard, W., Cremers, A. B., Fox, D., Hofmann, T., Schneider,
F. E., Strikos, J. & Thrun, S. (1995), ‘The mobile robot RHINO’, AI Magazine

16(2), 31–38.

Castellanos, J. A., Montiel, J., Neira, J. & Tardós, J. D. (1999), ‘The SPmap: A
probabilistic framework for simultaneous localization and map building’, IEEE

Trans. Robotics and Automation 15(5), 948–952.

Dissanayake, M. W. M. G., Newman, P., Durrant-Whyte, H. F., Clark, S. & Csorba,
M. (2001), ‘A solution to the simultaneous localization and map building (slam)
problem’, IEEE Trans. Robotics and Automation 17(3), 229–241.

Feiten, W., Bauer, R. & Lawitzky, G. (1994), Robust Obstacle Avoidance in
Unknown and Cramped Environments, in ‘IEEE Int. Conf. on Robotics and
Automation’, San Diego, USA, pp. 2412–2417.

29

Fox, D., Burgard, W. & Thrun, S. (1997), ‘The Dynamic Window Approach to
Collision Avoidance’, IEEE Robotics and Automation Magazine 4(1).

Hait, A., Simeon, T. & Taix, M. (1999), Robust motion planning for rough
terrain navigation, in ‘IEEE-RSJ Int. Conf. on Intelligent Robots and Systems’,
Kyongju, Korea, pp. 11–16.

Hebert, M., Thorpe, C. & Stentz, A. (1997), Intelligent Unmanned Ground Vehicles:

Autonomous Navigation Research at Carnegie Mellon, Kluwer Academic
Publishers.

Khatib, O. (1986), ‘Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots’, Int. Journal of Robotics Research 5, 90–98.

Ko, N. & Simmons, R. (1998), The lane curvature velocity method for local
obstacle avoidance, in ‘IEEE-RSJ Int. Conf. on Intelligent Robots and Systems’,
Victoria, Canada, pp. –.

Koenig, S. & Simmons, R. (1998), Xavier: A robot navigation architecture based on
partially observable markov decision process models, in R. B. D. Kortenkamp
& R. Murphy, eds, ‘Artificial Intelligence Based Mobile Robotics: Case Studies
of Successful Robot Systems’, MIT Press, pp. 91 – 122.

Koren, Y. & Borenstein, J. (1991), Potential Field Methods and Their Inherent
Limitations for Mobile Robot Navigation, in ‘IEEE Int. Conf. on Robotics and
Automation’, Vol. 2, Sacramento, CA, pp. 1398–1404.

Krogh, B. H. & Thorpe, C. E. (1986), Integrated Path Planning and Dynamic
Steering control for Autonomous Vehicles, in ‘IEEE Int. Conf. on Robotics and
Automation’, San Francisco, USA, pp. 1664–1669.

Latombe, J. C. (1991), Robot Motion Planning, Kluwer Academic.

Laumond, J., Sekhavat, S. & Lamiraux, F. (1998), ‘Guidelines in nonholonomic
motion planning for mobile robots’, Robot Motion Planning and Control 229.

Leonard, J. J. & Feder, H. J. S. (2000), A computationally efficient method for large-
scale concurrent mapping and localization, in D. Koditschek & J. Hollerbach,
eds, ‘Robotics Research: The Ninth International Symposium’, Springer Verlag,
Snowbird, Utah, pp. 169–176.

Lozano-Perez, T. (1983), ‘Spatial planning: A configuration space approach’, IEEE

Transactions on Computers 32(2), 108–120.

Luca, A. D. & Oriolo, G. (1994), Local incremental planning for nonholonomic
mobile robots, in ‘IEEE International Conference on Robotics and Automation’,
San Diego, USA, pp. 104–110.

Minguez, J. & Montano, L. (2002), Robot Navigation in Very Complex Dense
and Cluttered Indoor/Outdoor Environments, in ‘15th IFAC World Congress’,
Barcelona, Spain.

30

Minguez, J. & Montano, L. (2004), ‘Nearness Diagram (ND) Navigation: Collision
Avoidance in Troublesome Scenarios’, IEEE Transactions on Robotics and

Automation 20(1), 45–59.

Minguez, J. & Montano, L. (2005), ‘Autonomous sensor-based motion control
in unknown, dynamic and troublesome scenarios’, Journal of Robotics and

Autonomous Systems 52(4), 290–311.

Minguez, J., Montano, L., Simeon, N. & Alami, R. (2001), Global Nearness Diagram
Navigation (GND), in ‘IEEE International Conf. on Robotics and Automation’,
Seoul, Korea, pp. 33–39.

Minguez, J., Osuna, J. & Montano, L. (2004), A Divide and Conquer Strategy
to Achieve Reactive Collision Avoidance in Troublesome Scenarios, in ‘IEEE
International Conference on Robotics and Automation’, Minessota, USA.

Montano, L. & Asensio, J. (1997), Real-Time Robot Navigation in Unstructured
Environments Using a 3D Laser Rangefinder, in ‘IEEE-RSJ Int. Conf. on
Intelligent Robots and Systems’, Vol. 2, Grenoble, France, pp. 526–532.

Morisset, B. & Gallab, M. (2002), ‘Learning how to combine sensory-motor
modalities for a robust behavior’, Advances in Plan-Based Control of Robotic

Agents, Lecture Notes in Artificial Intelligence 2466, Springer pp. 157–178.

Ogren, P. & Leonard, N. (2002), A tractable convergent dynamic window approach
to obstacle avoidance, in ‘IEEE International Conference on Robotics and
Automation’, Laussane, Switzerland, pp. –.

Philipsen, R. & Siegwart, R. (2003), Smooth and efficient obstacle avoidance for
a tour guide robot, in ‘IEEE Int. Conf. on Robotics and Automation’, Taipei,
Taiwan.

Schlegel, C. (1998), Fast Local Obstacle Avoidance under Kinematic and Dynamic
Constraints for a Mobile Robot, in ‘IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems’, Canada.

Simmons, R. (1996), The Curvature-Velocity Method for Local Obstacle Avoidance,
in ‘IEEE Int. Conf. on Robotics and Automation’, Minneapolis, USA, pp. 3375–
3382.

Stachniss, C. & Burgard, W. (2002), An Integrated Approach to Goal-directed
Obstacle Avoidance under Dynamic Constraints for Dynamic Environments, in

‘IEEE-RSJ Int. Conf. on Intelligent Robots and Systems’, Switzerland, pp. 508–
513.

Thrun, S., Burgard, W. & Fox, D. (2000), A real-time algorithm for robot mapping
with applications to multirobot and 3d mapping, in ‘IEEE Int. Conf. on
Robotics and Automation’, San Francisco, CA, pp. 321–328.

Tilove, R. B. (1990), Local Obstacle Avoidance for Mobile Robots Based on
the Method of Artificial Potentials, in ‘IEEE Int. Conf. on Robotics and
Automation’, Vol. 2, Cincinatti, OH, pp. 566–571.

31

Ulrich, I. & Borenstein, J. (1998), VFH+: Reliable Obstacle Avoidance for Fast
Mobile Robots, in ‘IEEE Int. Conf. on Robotics and Automation’, pp. 1572–
1577.

Ulrich, I. & Borenstein, J. (2000), VFH*: Local Obstacle Avoidance with Look-
Ahead Verification, in ‘IEEE Int. Conf. on Robotics and Automation’, San
Francisco, USA, pp. 2505–2511.

32

