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Abstraction and Control for Groups of Robots
Calin Belta, Member, IEEE, and Vijay Kumar, Senior Member, IEEE

Abstract—This paper addresses the general problem of control-
ling a large number of robots required to move as a group. We
propose an abstraction based on the definition of a map from the
configuration space of the robots to a lower dimensional mani-
fold , whose dimension is independent of the number of robots.
In this paper, we focus on planar fully actuated robots. We re-
quire that the manifold has a product structure = ,
where is a Lie group, which captures the position and orienta-
tion of the ensemble in the chosen world coordinate frame, and
is a shape manifold, which is an intrinsic characterization of the
team describing the “shape” as the area spanned by the robots.
We design decoupled controllers for the group and shape variables.
We derive controllers for individual robots that guarantee the de-
sired behavior on . These controllers can be realized by feedback
that depends only on the current state of the robot and the state of
the manifold . This has the practical advantage of reducing the
communication and sensing that is required and limiting the com-
plexity of individual robot controllers, even for large numbers of
robots.

Index Terms—Abstraction, control, Lie group, shape.

I. INTRODUCTION

THERE has been a great deal of interest in cooperative
robotics in the last few years, triggered mainly by the

technological advances in control techniques for single vehicles
and the explosion in computation and communication capabil-
ities. The research in the field of control and coordination for
multiple robots is currently progressing in areas like automated
highway systems, formation flight control, unmanned under-
water vehicles, satellite clustering, exploration, surveillance,
search and rescue, mapping of unknown or partially known
environments, distributed manipulation, and transportation of
large objects.

In this paper, we consider the problem of controlling a large
number of robots required to move as a team from an initial to a
final region of the space. For example, consider the problem of
moving 100 planar robots with arbitrary initial positions through
a tunnel while staying grouped so that the distance between each
pair does not exceed a certain value. The simplest approach in-
volves reference trajectories and control laws for each robot to
stay on the designed trajectory. While this is obviously feasible
[2], [22], it is intractable from a computational viewpoint. As the
number of robots increase, it is desirable to have a certain level
of abstraction. The motion generation/control problem should
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be solved in a lower dimensional space which captures the be-
havior of the group and the nature of the task.

One possible way of accomplishing this is to require the
robots to conform to one or more rigid virtual structures. In this
case, the motion-planning problem is reduced to a left invariant
control system on (or in the planar case), and
the individual trajectories are [ ] orbits [2], [3].
The literature on stabilization and control of virtual structures
is rather extensive. Most of the recent works model formations
using formation graphs, which are graphs whose nodes capture
the individual agent kinematics or dynamics, and whose edges
represent interagent constraints that must be satisfied [4], [13],
[17], [20]. Characterizations of rigid formations can be found in
[2] and [7]. The controllers guaranteeing local asymptotic sta-
bility of a given rigid formation can be derived using standard
techniques such as input–output linearization [4], input-to-state
stability [21], or Lyapunov energy-type functions. Examples
of such functions include positive definite convex formation
functions [5], [13] and biologically inspired artificial potential
functions [12]. The global minima of such functions exhibit

, 1, 2, 3 symmetry and expansion/contraction sym-
metries, which can be used to decouple the mission-control
problem into a formation-keeping subproblem and a maneuver
subproblem [12].

The same idea of artificial potential functions is used by sci-
entists studying behavior-based control [1] and swarming-type
behaviors [6]. In [14], the authors consider a distributed con-
trol approach for groups of robots, called the social potential
fields method, which is based on artificial spring force laws be-
tween individual robots and robot groups. Interesting simulation
results are included, but it is difficult to obtain proofs of con-
vergence with such approaches. A continuous-time model for
swarm aggregation is presented in [8], where it is proved that
a group of agents form a cohesive swarm if each pair is sub-
ject to a potential function which is attractive for large distances
and repulsive for small distances. The geometric pattern forma-
tion in swarms is approached in discrete time as well. In [18],
the authors propose a simple distributed heuristic algorithm for
convergence to a circle, while in [19], algorithms for converging
to a single point are presented.

It is worth reviewing some of the limitations of the ap-
proaches adopted in previous work. Imposing the constraint
of a virtual structure is practical in small groups, since the
complexity of the graph underlying it grows exponentially [4].
The optimal design of trajectories becomes prohibitively com-
plicated, even for small teams of robots [2]. Moreover, virtual
structures might unnecessarily constrain the problem. Second,
leader–follower architectures, such as the one proposed in [4],
require identification and ordering of the robots. This makes
the team behavior sensitive to failures. For example, if the

1552-3098/04$20.00 © 2004 IEEE
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team leader has a failure, any exception-handling scheme must
impact all of the robots that follow the leader. Finally, imposing
rigidity constraints [7] induces an inherent coupling between
the control systems on the symmetry group and the shape
space. For example, in [12], the authors have to limit the speed
of convergence on the symmetry group so that, while moving
as a group, the individual agents do not leave the local regions
of attractions guaranteeing convergence to the desired shape.

In this paper, we attempt to derive a formal abstraction for a
team of robots that can be used to control the position, orienta-
tion, and shape of the team. The abstraction is based on the def-
inition of a map from the configuration space of the robots
to a lower dimensional manifold , independent of the number
and ordering of the robots. We require that the manifold has
a product structure , where is a Lie group which
captures the dependence of the ensemble on the chosen world
coordinate frame and is a shape manifold, which is an intrinsic
description of the team. In addition, we impose that the shape
variables and the group variables be controlled in-
dependently, so that the user can easily command the indepen-
dent variables. For example, the user can change the shape of
the formation without modifying the group trajectory and vice
versa.

In order to ensure that the control computations scale well
with the number of robots, we require that each robot only have
access to its own state and the abstract state . From a
practical standpoint, it is easy for each robot to carry sensors
that yield estimates of its own state. The difficulty arises in
estimating the group and shape of the entire formation. Mea-
surements from overhead sensors (e.g., cameras on unmanned
aerial vehicles (UAVs) traveling with the robots) that are broad-
cast over a wireless network can be used to realize this feed-
back. While this communication architecture is easily classified
as centralized and the UAV needs to determine the state of all
robots, each ground robot does not need explicit information
about all the others, and the amount of data sent to the robots by
the UAV is small and does not scale with the number of robots.

In this paper, we restrict our attention to fully actuated mobile
robots in the plane so that is a subset of . pro-
vides the position and orientation of the group reference frame.
The shape variables describe the distribution of the robots
in the group reference frame. The problem is formulated in Sec-
tion II, and our geometric approach to solving it is outlined in
Section III. Sections IV–VI define an abstraction, discuss its sig-
nificance, and show that the requirements of the problem formu-
lated in Section II are satisfied. Illustrative simulation results are
included in Section VII. The paper concludes with a statement
of contributions and future work in Section VIII.

II. DEFINITIONS AND PROBLEM FORMULATION

Consider kinematically controlled robots with states be-
longing to manifold and control spaces . For planar fully
actuated agents, the states are position vectors ,

with respect to some world frame , and the
controls as follows:

(1)

Collecting all of the robot states together, we obtain a -di-
mensional control system

(2)

where , .
The motion (behavior) of the ensemble of robots is deter-

mined if the corresponding velocities are specified as follows.
Definition 1: (Behavior) Any vector field is called

a behavior.
Given a large number of robots evolving on the configuration

space , we want to be able to solve motion-generation/control
problems on a smaller dimensional space, which captures the
essential features of the group, according to the class of tasks to
be accomplished. We want the dimension of the control problem
to be independent of the number of agents and independent of
the possible ordering of the robots. These requirements will pro-
vide good scaling properties and control laws which are robust
to individual failures.

We also need to make sure that, after solving the task on the
small dimensional space, we can go back and generate control
laws for the individual agents. All of these ideas lead to the
following definitions.

Definition 2: (Abstraction) Any surjective submersion

(3)

is called an abstraction if it is invariant to permutations of the
robots and the dimension of is not dependent on the number
of robots . and are called abstract manifold and abstract
state, respectively.

It is assumed that the abstract state is physically significant
in accordance with the task to be accomplished.

In addition, if possible, it is desired that have a product
structure

(4)

where is a Lie group. An arbitrary defines the gross
position and orientation of the team in the world frame ,
and it is called the group variable. is called the shape
variable. The main idea is to have a control-suited description of
the team of robots in terms of the pose of a virtual structure,
which captures the dependence of the team on the world frame

, plus a shape , which is decoupled from and, therefore,
an intrinsic property of the formation. In other words, if is an
arbitrary element of , we require the map to satisfy

(5)

where represents the block diagonal action of the group el-
ement on the configuration , and represents the left
translation of by using the composition rule on the group

. Since we only approach planar robots in this paper, is a
subset of . represents a rigid displacement of all of the
robots by . Equation (5) shows that the map is left invariant,
which gives invariance of our to-be-designed control laws to the
pose of the world frame . Indeed, if the world frame
is displaced by , the shape is not affected, while the pose is
left translated by .
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Instead of designing high-dimensional behaviors , we
want to be able to describe collective behaviors in terms of
time-parameterized curves on the lower dimensional abstract
manifold .

Definition 3: (Abstract Behavior) Any vector field
is called an abstract behavior.

Let denote the differential (tangent) of the map . Note
that the submersion condition in Definition 2 guarantees the sur-
jectivity of the differential at any , which will guar-
antee the existence of vector fields pushed forward to any
abstract behavior .

The abstraction gives a decomposition of the space of be-
haviors on into behaviors which can be “seen” in the abstract
manifold and behaviors which cannot be seen in .

Definition 4: (Detectable behaviors) A behavior
which is mapped to a nonzero abstract behavior is
called a detectable behavior. A behavior which is not detectable
is called nondetectable.

Our goal in this paper is to generate individual control laws
which are mapped to desired abstract (collective) behaviors, i.e.,
wisely chosen low-dimension descriptions. Therefore, we will
not allow individual motions which cannot be captured in , be-
cause this would be a waste of energy. However, nondetectable
behaviors can be useful to accommodate specifications which
are not captured by .

We are now able to formulate the main problem.
Problem 1: (Control) Determine physically meaningful

formation abstractions , abstract behaviors , and cor-
responding individual robot control laws satisfying the
following requirements:

1) the abstract state is stationary if and only if all the
robots are stationary;

2) the abstract manifold has a product structure (4) and
satisfies the left invariance property (5);

3) the control systems on group and shape are decou-
pled;

4) if the state of the abstract manifold is bounded, then the
state of each robot is bounded.

Requirement 1) from Problem 1 guarantees that each indi-
vidual motion on can be “seen” in the small dimensional
manifold and, therefore, can be “penalized” by control. This
is equivalent to the detectability of the corresponding behavior

. If requirements 2) and 3) are satisfied, then one can de-
sign control laws for the interest variables on separately, e.g.,
change the pose of the formation while preserving the shape .
Requirement 4) is self-explanatory.

In addition to the requirements explicitly formulated in
Problem 1, it is desired that the energy spent by the individual
robots to produce a desired abstract behavior be kept to a
minimum. Also, the amount of interrobot communication in
the overall control architecture should be limited.

Remark 1: The description above can be easily extended to
accommodate underactuated robots with states belonging to
manifolds equipped with drift-free control distributions :

, where is the control space and is
the tangent bundle of . Then, a similar large control system
incorporating all of the individual underactuation constraints
can be obtained by collecting all robot states and
defining a control distribution obtained from the individual
control distributions through direct sum . The
canonical projections are defined by : ,
and : , . In this case, an abstract
behavior should incorporate the underactuation constraints.
They naturally arise on by pushing forward the allowed
control directions in (or its accesibility algebra) through .
The underactuated case will be studied in a future paper.

III. APPROACH

In this section, we characterize the solution to Problem 1.
First, note that the map gives a foliation [9] of the configu-
ration space . We assume that the abstract manifold has the
desired product structure . Let be the codistri-
bution spanned by the differential forms obtained by differenti-
ating each component of . Similarly, is the codistribution
determined by . Let and denote the corresponding an-
nihilating distributions, i.e.,

(6)

Let be any distribution so that and
. Similarly, denote by any distribution so

that and . Then

(7)

guarantees that, on the abstract manifold, at ,
changes in time whenever does. Similarly

(8)

corresponds to a change in the shape variable . The set of de-
tectable behaviors is given by . Requirement 1) from
Problem 1 can therefore be written as

(9)

In other words, system (2) is forbidden to move on a leaf
(motion which could not be “observed” on the abstract

manifold ) if and only if (9) is satisfied.
To formulate the decoupling condition between the control

of group and the shape of (item 3) of Problem 1), we
first require that the distributions and be independent,
i.e., , where 0 denotes the zero vector field. Then
the decoupling condition is satisfied if the codistribution corre-
sponding to annihilates the visible motion corresponding to
and the other way around. Explicitly

(10)
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This is easy to see if we differentiate in coordinates
to obtain . If is detectable [satisfies (9)], then we can
write , where and are some matrices
whose columns span and . does not affect if and
only if , which, if we go back to the coordinate-free
representation, means . Similar reasoning can be made
for the shape . and separately control and . They will
be the actual controls for group and shape, after some convenient
rescaling.

For 4), note that Problem 1 can actually be seen as an
input–output linearization problem [9] for the control system (2)
with output . The total relative degree is ,
since each robot is kinematically controlled. The vector field

guarantees some desired behavior of the output (which we
call the abstract state) , which will, of course, guarantee its
boundness. Now the hardest problem, as usual in input–output
linearization, is calculating and stabilizing the internal dy-
namics. This would imply, in general, finding the appropriate
coordinate transformation separating the internal dynamics
from output dynamics, calculating the corresponding zero
dynamics, and studying its stability. To avoid this, we try to
define the output map so that bounds on the output would
easily imply bounds on the state, so it will not be necessary to
explicitly calculate the internal dynamics.

Given a vector field , the set of all vector fields
which maps to is underdetermined. For sim-

plicity, let and denote the coordinates of and , re-
spectively. Then

(11)

The usual way of solving the undetermined linear equation (11)
is to find the minimum norm vector satisfying it. Even though
more general metrics (i.e., the kinetic energy metric [3]) can
be considered, we assume that is equipped with a Euclidean
metric. Then the solution to the minimization problem
under constraint (11) is given by

(12)

Note that, since is a submersion, are functionally
independent or, equivalently, is full-row rank, which implies
that is invertible. By writing ,

, (12) becomes

(13)

if .
Note that from (13) satisfies the detectability and decou-

pling conditions formulated in terms of distributions (9) and
(10) if, in coordinates, and are spanned by and ,
respectively. Indeed, the linear independence of and
implies the independence of and , and (10) is implied by

. Moreover, (6) implies that and are orthog-
onal. The same is true for and .

Finally, to limit the amount of interrobot communication in
the overall control architecture, we want to achieve an architec-
ture where the control law of a robot only depends on its own

state and the low-dimensional state of the team from the group
manifold, as follows:

(14)

IV. ABSTRACTION

In this section, we define a physically significant abstraction
(3) and show that it satisfies requirements 1)–3) from Problem
1. Satisfaction of requirement 4) will be proved in Section V.

For an arbitrary configuration , the group part of the
abstract state is defined by . Let

(15)

Define

(16)

The equation that we will use to define the rotational part
is

(17)

The precise definition of the rotation is given in coordinates in
(29). In this paper, we restrict our attention to a two-dimensional
(2-D) shape defined by

(18)

Since is one-dimensional (1-D), the dimension of the
abstract manifold is , independent of the number of
robots . Also, it is obvious that our definitions (15), (17), and
(18) of group and shape are invariant to permutations of robots,
as required by Definition 2. The submersion condition will be
studied later in this section.

Before we show that the abstraction defined above solves
Problem 1, we study its physical significance.

A. Significance

There are two slightly different interpretations of the abstrac-
tion defined by (15)–(18). Let

(19)

(20)

where is defined by (23). Note that, since
, and have the same eigenstructure.
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1) Spanning Rectangle: and in (15) and (20) can be seen
as the centroid and inertia tensor of the system of particles
with respect to the centroid and orientation . Let de-
fine a virtual frame with pose in . Then is
the expression of in the virtual frame . The rotation
(17) defines the orientation of the virtual frame so that the inertia
tensor of the system of points in is diagonal.
and are the eigenvalues of the tensor and are, there-
fore, measures of the spatial distribution of the robots along the
axis of the virtual frame .

It is interesting to note that the shape variables provide a
bound for the region occupied by the robots. From (18), it im-
mediately follows, for any , that

(21)

The conclusion can be stated as follows. An ensemble of
robots described by a five-dimensional (5-D) abstract variable

is enclosed in a rectangle centered
at and rotated by in the world frame .
The sides of the rectangle are given by and

.
We call the rectangle described by ( , , , ) the spanning

rectangle.
2) Concentration Ellipsoid: and given by (15) and (19)

can be interpreted as sample mean and covariance of a random
variable with realizations . If the random variable is known to
be normally distributed, then, for a sufficiently large , and

converge to the real parameters of the normal distribution.
in (17) is the rotation that diagonalizes the covariance, and
and are the eigenvalues of the covariance matrix. This means
that, for a large number of normally distributed robots, , , ,
and give the pose and semiaxes of a concentration ellipsoid.

Specifically, it is known that contours of constant probability
for normally distributed points in plane with mean and co-

variance are ellipses described by [16]

(22)

The ellipse in (22), called the equipotential or concentration
ellipse, has the property that percent of the points are inside it
and can be therefore used as a spanning region for our robots,
under the assumption that they are normally distributed. There-
fore, we can make the following statement: percent of a large
number of normally distributed robots described by a 5-D
abstract variable is enclosed in an
ellipse centered at , rotated by in the world frame

and with semiaxes and , where is given by
(22).

Even though the normal distribution assumption might seem
very restrictive, we show in Section IV-C that it is enough that
the robots be normally distributed in the initial configuration.
Our controls laws will preserve the normal distribution.

3) Spanning Rectangle Versus Concentration Ellip-
soid: The abstraction based on the spanning rectangle as
defined in Section IV-A1 has the advantage that it provides
a rigorous bound for the region occupied by the robots and
does not rely on any assumption on the distribution of the

robots. The main disadvantage is that this estimate becomes
too conservative when the number of robots is large. Indeed,
the lengths of the sides of the rectangle scale with , so
for a large the spanning rectangle might become very large,
even though the robots might be grouped around the centroid .

On the other hand, the size of a concentration ellipsoid as
defined in Section IV-A2 does not scale with the number of
robots, which makes this approach very attractive for very large

. However, it has the disadvantage of assuming a normally
distributed initial configuration of the team and does not provide
a rigorous bound for the region occupied by the robots. Roughly
speaking, is left out of the ellipse. Increasing will
decrease the number of the robots which be outside but will also
increase the size of the ellipsoid.

To have an idea of what is a “large” number for which
the second approach is more feasible, note that the spanning
rectangle and the rectangle in which the concentration ellipsoid
is inscribed are similar and the ratio is . The ratio
of their areas is therefore . For example, if ,
we have , and the spanning rectangle becomes larger
for . If , the area of the spanning rectangle is
10.7488 larger than the area of the rectangle circumscribing the
ellipse, and only one robot might be left out of the ellipse.

Remark 2: More shape variables can be defined by consid-
ering higher moments. For example, the fourth moment (kur-
tosis) might be used to quantify how uniformly the robots oc-
cupy the spanning region. More generally, a complete shape
space invariant to translations and rotations can be defined using
Jacobi coordinates. However, only a subset of this might be in-
teresting from a formation control point of view. Examples in-
clude dot products and triple products, which translate to dis-
tances, angles, areas, and volumes [10], [15].

On Requirement 2) of Problem 1, we have the following.
Proposition 1: The abstraction defined by (15), (17), and

(18) satisfies the left invariance property (5).
Proof: The proof is based on the invariance of the spec-

trum of a matrix to orthogonal transformations and is omitted.

B. Detectable Behaviors and Decoupling of Group and Shape

In this section, under the assumption that the configuration
space is equipped with a Euclidean metric, we construct
detectable behaviors and decoupled control systems for group
and shape, in accordance with requirements 1) and 4) from
Problem 1.

To this end, we need to bring our definitions of formation
variables (15), (17), and (18) to more convenient forms. Let

(23)

(24)
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where is the 2 2 identity matrix. Using a parameterization
, it is easy to see that the

matrices are symmetric and

(25)

(26)

Then, some simple calculations and the observation that is
skew-symmetric show that (17) defining the rotational part be-
comes

(27)

while the description of the shape (18) takes the form

(28)

Let the rotation be parameterized by . If the
amount of rotation is restricted to , a unique
solution of (27) is given by

(29)
where we use the Fortran notation for the inverse tan-
gent function, which, by definition, is restricted to take values
in .

We now characterize the set of detectable behaviors (9) for
the map given by (15), (29), and (28) together with definitions
(23) and (24).

First note that

(30)

Using (15), (29), and (28), it follows that

(31)

(32)

By differentiating (27) and using (15) and (28), we have

(33)

Then, the codistributions and , as defined in Section III,
are given by

(34)

and the control distributions corresponding to group and
shape are given by

(35)

(36)

where

...
... (37)

...
... (38)

is the identity matrix.
Therefore, in accordance with (9), Requirement 1) of

Problem 1 is satisfied if we restrict the behaviors to the set
given by (35)–(38).

We now show that the control distributions and are
orthogonal, so decoupled control systems can be designed for
group and shape, in accordance with Requirement 3) of Problem
1. Indeed, the two columns of are obviously orthogonal. It
is easy to see that , and are orthogonal to by
the definition of (15). Since , and are also
perpendicular. Finally, is orthogonal to both and
through (26) and (27) and by noting that is a skew-symmetric
matrix. We conclude that the two control distributions and

are orthogonal, so Requirement 3) of Problem 1 is verified.
Moreover, since orthogonal control directions are chosen as the
basis for and , each of the formation variables can be
individually controlled.

C. Individual Control Laws

The differential map : is given by

(39)
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Fig. 1. Control and communication architecture. The control law C of each
robot R is only dependent on its own state q and the abstract state a, which is
updated by an “observer.” An “abstract motion planner” prescribes the desired
abstract final state or trajectory a and the desired speed of convergence k .

The minimum norm vector on which is mapped to a
vector field in is given by (12). Some simple but rather
tedious calculations show that

(40)

Note that the controls , , , and act on orthogonal di-
rections so one can explicitly control each of the formation vari-
ables without affecting the others.

We define the individual controls as projections of the min-
imum norm vector (40) as follows:

(41)

Remark 3: Note that the overall control architecture imple-
menting (41) fits the structure in Fig. 1. Each robot needs to im-
plement controller , which is only dependent on its own state

and the small dimensional abstract state . An “observer”
is responsible for capturing all of the states and calculating
the value of the abstract state at each time instant. This archi-
tecture is compatible with our experimental platform, where a
blimp equipped with a camera and a processor moves together
with the team of ground robots.

Remark 4: is invertible if and only if and
, which is also equivalent to the submersion condition in

Definition 2. Also, the control law (41) is not defined at
and . The abstract behavior on should be designed so
that and , for all . A simple inspection of (18)
shows that the cases and physically correspond
to degenerate situations when all of the robots are on the and

axis of the formation frame , respectively.
Remark 5: If , the derivative of the orientation is

not defined, as seen from (33). Indeed, in this case, the robots
are equally distributed along the axes of the formation frame,
and there is no orientation information. When orientation is not
important for a certain application, a simpler abstraction might
be defined as in Section VI.

Remark 6: Note that if control law (41) is applied to all the
robots, then the team undergoes an affine transformation. In-
deed, the orbits of the affine group in are described by

, , , which, by differentiation,
gives , which is the same as (41) with

and
. Any affine transformation is known to preserve

collinearity, ratios of distances on lines, and parallelism. There-
fore, control law (41) can be used for formations in which pre-
serving properties like the ones mentioned above are important.
Even more interesting, it is known that affine transformations
preserve the normal distribution. This means that, if the robots
are initially normally distributed, by applying the control laws
(41), they remain normally distributed. The 5-D abstract state,
interpreted as sample mean and sample covariance , gives us
control over the pose, aspect ratio, and size of the concentration
ellipsoid as defined in Section IV-A2.

Remark 7: Another consequence of Remark 6 is that con-
trollers (41) guarantee collision avoidance under the assumption
that the affine map is nonsingular, which is equivalent to
and .

V. ABSTRACT BEHAVIOR

Equation (41) gives the control law which should be imple-
mented by controller , as shown in Fig. 1, if the output func-
tion is defined as in Section IV. At each time instant , the
control system on acquires all the states , updates its own
state in accordance to (15), (29), (28), (23), and (24), flows
along its designed control vector field , and disseminates its
state to all the robots.

Assume that the goal is to move the robots from arbitrary
initial positions to final rest positions of desired mean ,
orientation , and shape and .

An obvious choice of the control vector field
on the abstract manifold is

(42)

where is a positive definite matrix and , .
More generally, the task might require the robots to follow a

desired trajectory on . A
control vector field on can be of the form

(43)

Note that (42) [or (43)] only guarantees the desired behavior
on the abstract manifold . If the imposed trajectory is
bounded at all times, it is easy to see that is bounded. For
the problem to be well defined, we still need to make sure that
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the internal states are bounded (requirement 5) of Problem 1).
We have the following.

Proposition 2: If is bounded, then so are , .
Proof: It is enough to assume boundness of , , and

to prove boundness of . Assume that

(44)

(45)

(46)

First note that from (28), it follows that:

(47)

from which, by using (45) and (46), we have

Finally, using (44), we have

which concludes the proof.
In the stabilization to a point case, the boundness and glob-

ally asymptotic convergence to the desired values of the ab-
stract variables are guaranteed by (42). Proposition 2 proves the
boundness of the internal dynamics. We still need to study the
equilibria and regions of convergence for each robot. We have
the following proposition.

Proposition 3: For any , , , and , the closed-loop
system (41), (42), (15), (29), and (28) globally asymptotically
converges to the equilibrium manifold , , ,
and .

Proof: First, from (41), (15), (33), (31), and (32), it is easy
to see that the abstract state is in equilibrium if and only
if each robot is in equilibrium ( , ). There-
fore, the equilibria of the closed-loop system are sets described
by , , , and .

For the second part, consider the following Lyapunov func-
tion defined on :

(48)
and consider the derivative of along the vector field on , as
follows:

(49)

Therefore, , and if and only if
, , , and , which is also an

invariant set for the closed-loop system. According to the global
invariant set theorem (LaSalle), to prove the proposition, we
only have to prove that as . We prove
this by contradiction. Suppose and there exists some

so that . This implies

By an argument similar to the one used in the proof of Proposi-
tion 2, we can conclude that

which means that all are bounded, . But
implies that, for at least one ,

. Therefore, we reached a contradiction and the
theorem is proved.

Remark 8: If a robot in the team breaks or simply stops be-
cause of the collision with an obstacle, then, in general, the team
will not converge to the desired values of the abstract variable,
unless the robot stops in a position which is compatible with the
desired values of the abstract variable. In an experimental sce-
nario, we propose the following solution. If a robot breaks, it
should send a signal to the observer. After receiving the signal,
the observer should not take that robot into consideration any
more; the individual control laws should be changed by taking

. The convergence of the rest of the team to the
desired abstract values is guaranteed by the global asymptotic
stability property.

VI. CONTRACTIONS AND EXPANSIONS

When orientation is not relevant for a certain application, we
can define a simpler three-dimensional (3-D) abstraction as fol-
lows. The group is restricted to the position of the centroid .
Let be the new shape variable. Since ,
we have

(50)

For the new abstraction ( , ), it is easy to see that the left in-
variance property (5) is satisfied. Concerning the bound of the
region occupied by the robots, note that (50) implies

(51)

from which we conclude that the robots described by a 3-D
abstract variable are enclosed in a circle centered
at and with radius . The new control directions
become

...
... (52)

The decoupling is obvious by the definition of . Concerning
the internal dynamics, it is easy to check, following the proof of
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Fig. 2. Ninety-nine of N = 100 normally distributed planar robots are driven through a tunnel by designing 5-D controls for the corresponding equiprobability
ellipse. First row: the robots gather in front of the tunnel inside an ellipse whose shape and orientation allows passing through the tunnel. Second row: the robots
pass through the tunnel; the shape and orientation of the ellipse are kept constant. Third row: the robots spread out by keeping the pose of the ellipse fixed and
changing the shape.

Proposition 2, that is bounded if is bounded. The
individual control laws (41) become

(53)

It is easy to prove that control law (53) preserves the orientation
of the structure formed by the position vectors in the given
inertial frame and scale the pairwise distances by a factor pro-
portional to . The abstraction is therefore reduced in this
case to the position of the centroid and the scale factor of a geo-
metric figure of given shape and orientation determined by the
initial positions of the robots.

VII. SIMULATION RESULTS

This section presents simulations illustrating the theoretical
results proved in this paper. First, we show how a team of robots
can be driven through a tunnel by designing controls on a 5-D
space. For a very large number of initially normally distributed
robots, we control a equiprobability ellipsoid. For tens of robots,
we control the spanning rectangle. Finally, an expansion ex-
ample is included.

A. Tunnel Passing

Consider the task of driving a team of robots from arbitrary
initial positions through a tunnel of given geometry, and spread
out at the end of tunnel. Independent of the number of robots, the
problem can be reduced to a 5-D control problem using one of
the abstractions proposed in this paper. If the number of robots
is of the order of tens, the spanning rectangle as defined in Sec-
tion IV-A1 can be used. For hundreds and thousands of robots,
the spanning rectangle becomes too conservative. In this case, if
it is allowed to lose a very small percentage of them and if their

initial distribution is assumed normal, we propose the control of
a concentration ellipsoid, as described in Section IV-A2.

In both cases, we divide the task into three subtasks.

1) Gather the robots in front of the tunnel in such a shape
that they can pass through it.
2) Drive the robots through the tunnel.
3) Spread out at the end of the tunnel.

1) Control Using the Concentration Ellipsoid: Assume
and it is desired that “almost all” of the robots

accomplish the task. Assuming that the robots are normally
distributed in the initial configuration, they remain normally
distributed by applying the control laws (41), according to
Remark 6. If 99% is an acceptable quantization of “almost all,”
according to Section IV-A2, the problem can be reduced to a
5-D control problem for a concentration ellipsoid of probability

.
For the subtask of regrouping in front of the tunnel [step 1)],

we use the globally stabilizing controllers (41) and (42). Con-
sidering the geometry, position, and orientation of the tunnel, we
chose , , , and .
The chosen shape corresponds to semiaxes of and

along and , respectively. The abstract controller
parameters were , , and . Note
that in this first subtask both shape and pose are controlled. Four
snapshots from the produced motion are shown in the first row
of Fig. 2.

Since the ellipse from 1) is small enough and oriented to fit the
tunnel, no shape and orientation control is necessary to accom-
plish subtask 2). We use trajectory following controllers of type
(43) on to move the ellipse through the tunnel. If we want to
uniformly move the ellipse at [50 23] in 1 s while keeping shape
and orientation constant, we only have to control , therefore
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Fig. 3. N = 10 planar robots are driven through a tunnel by designing 5-D controls for the corresponding spanning rectangle. First row: the robots gather in
front of the tunnel inside a rectangle whose sides and orientation allow passing through the tunnel. Second row: the robots pass through the tunnel; the sides and
orientation of the rectangle are kept constant. Third row: the robots spread out by keeping the pose of the rectangle fixed and increasing the lengths of the sides.

Fig. 4. N = 30 robots experiencing an expansion using control law (53). The centroid is kept fixed. Orientation, parallelism, angles, and ratios of lengths are
preserved.

. We use (there-
fore ). The second row of Fig. 2 shows four instants
of the generated trajectories. As expected, shape and orientation
is preserved, therefore illustrating the control decoupling proved
in Section IV-B.

For the third subtask, we illustrate control of shape decou-
pled from pose, which is maintained constant. We again use the
globally stabilizing controllers (41) and (42) with , ,

, and . The obtained expansion is
shown in the last row of Fig. 2.

2) Control Using the Spanning Rectangle: If it is now re-
quired that all of the robots accomplish the task, we need to
use the spanning rectangle as an abstraction. The advantage is
that no assumption is being made on the initial distribution of
the robots. On the other hand, as stated in Section IV-A3, the
spanning rectangle becomes too conservative an estimation of
the region occupied by the robots, as the number of robots in-
creases.

We consider . The control procedure follows ex-
actly the one described in Section VII-A1. The control param-

eters are also the same. The only exception is that, for the first
subtask, we used and , which corre-
spond to a spanning rectangle of sides and

, which is thin enough to fit through the
tunnel. The simulation results are shown in Fig. 3.

B. Expansions

Consider robots, distributed on three concentric cir-
cles. We apply the geometric shape preserving control laws (53)
to illustrate contractions and expansions. We use global conver-
gence to a point for the abstract state . Fig. 4 shows a
pure expansion obtained with and with

and .

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a control method for a large number
of robots based on an abstraction of the team to a small di-
mensional manifold invariant to permutations of the robots and
whose dimension does not scale with the number of robots. The
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task to be accomplished by the team suggests a natural feedback
control system on the low-dimensional manifold. We focus on
planar fully actuated robots and show that it is possible to de-
fine an abstraction which has a product structure of a group and a
shape. We also prove that completely decoupled control systems
can be designed for group and shape. The individual control
laws which are mapped to the desired behavior of the team can
be realized by feedback depending only on the robots’ current
state and the small dimensional state on the abstraction mani-
fold. Future work will be directed toward incorporating more
shape variables, include underactuation constraints in the ab-
straction, extending the results to 3-D environments, and im-
plementing the obtained control architectures in our blimp–car
experimental platform.
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