
Aachen
Department of Computer Science

Technical Report

Abstraction and Refinement of
Probabilistic Automata using
Modal Stochastic Games

Falak Sher

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2015-10

RWTH Aachen · Department of Computer Science · April 2015

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

Abstraction and Refinement of
Probabilistic Automata using

Modal Stochastic Games

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften

der RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Falak Sher, M.Sc.

aus

Baqarpur, Daska, Sialkot, Pakistan

Berichter: Prof. Dr. Ir. Joost-Pieter Katoen

Prof. Dr. Lijun Zhang

Tag der mündlichen Prüfung: 24. April 2015

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

Falak Sher
Lehrstuhl Informatik 2
chfalak@gmail.com

Aachener Informatik Bericht AIB-2015-10

Herausgeber: Fachgruppe Informatik
RWTH Aachen University
Ahornstr. 55
52074 Aachen
GERMANY

ISSN 0935-3232

Abstract

Formal methods are mathematical techniques used in the development of trustworthy ICT systems. Their
application ensures correct specifications and error-free implementations of systems providing guaran-
tees on their functional requirements and probabilistic behaviours, e.g., performance, reliability, etc.
Model checking is one of such techniques that systematically and exhaustively explores all possible con-
figurations of systems’ models to verify certain properties. One of the challenges faced by this approach
is to design efficient algorithms for exploring all configurations of systems’ model. The number of states
for realistic systems is usually extremely high and sometimes even infinitely-many — known as the state
space explosion problem. This problem restricts the applicability of model checking algorithms.

Abstraction is a reduction technique that removes information from system models irrelevant to the prop-
erty of interest; and consequently induces additional behaviour. The abstract models over- and/or under-
approximate the behaviour of concrete models. For example, existential abstract models like Segala’s
probabilistic automata (PA) over-approximate while modal abstract models over- and under-approximate
the behaviour of concrete models. The game-based abstract models, such as Condon’s stochastic games
(SGs), are different in a sense that they keep the behaviour from the abstraction process (handled by, say,
player-two) separate from the concrete behaviour (handled by, say, player-one). Both modal and game-
based abstract models allow for bounding the reachability probabilities in concrete models from below
and from above. In fact, abstraction-refinement algorithms initially construct coarser abstract models
and then gradually refine them until the bounds on the reachability probabilities of concrete models are
sufficiently tight.

We orthogonally combine the techniques of modal and game-based abstractions. This yields modal
stochastic games in which player-two completely handles behaviour induced by abstraction whereas
player-one handles behaviour induced by abstraction and from concrete models. Due to this additional
non-deterministic behaviour in player-one states, bounds on reachability probabilities in modal stochas-
tic games are at most as tight as in stochastic games, but modal games are comparatively smaller in size.
Moreover, our modal game-based abstraction is compositional in a sense that individual components can
be abstracted separately and then plugged together constituting an overall model of a system.

Existing abstraction techniques in the literature are state-based. That is to say, abstract models derive
their transitions from that of the concrete states and, thus, simulate concrete models in a step-wise man-
ner. Exploiting the fact that probabilistic systems are not just stochastic processes but transformers of
probabilities as well, we treat distributions over states (rather than states) as first-class citizens and lift
the notion of abstraction from states to distributions over states. We also define (alternating) simula-
tion relations between concrete and abstract models. We show that game-based abstraction is not the
optimal abstraction preserving extremal reachability probabilities. Furthermore, we illustrate that our
distribution-based abstraction may induce more precise and concise models than state-based abstraction.

Finally, we propose a state-based and a distribution-based abstraction-refinement framework for PA. It
refines a modal stochastic game in two nested loops. The inner-loop iteratively refines player-one states
until the effect of non-deterministic behaviour induced in them by the abstraction process has no impact
anymore on the reachability probabilities of player-two states. The outer-loop refines player-two states
until their reachability probabilities bound that of their corresponding concrete states within a certain

i

given range. This yields the smallest possible modal abstraction for a given state-space partitioning, that
bounds the reachability probabilities of concrete model within a given range.

ii

Zusammenfassung

Formale Methoden sind mathematische Techniken, die in der Entwicklung zuverlässiger Systeme ange-
wandt werden. Ihre Anwendung garantiert korrekte Spezifikationen und fehlerfreie Implementierungen
von Systemen dadurch, dass Garantien für funktionale Anforderungen und probabilistisches Verhalten
gegeben werden, zum Beispiel bezüglich Performanz, Zuverlässigkeit usw. Model Checking is eine
solche Technik die systematisch und vollständig alle möglichen Systemkonfigurationen eine System-
models untersucht um bestimmte Eigenschaften zu verifizieren. Eine der Herausforderungen für diesen
Ansatz ist es, effiziente Algorithmen zu entwerfen um alle möglichen Systemkonfigurationen zu unter-
suchen. Die Anzahl an Zuständen für realistische Systeme ist im Allgemeinen extrem hoch und manch-
mal sogar unendlich — dies ist bekannt als die Explosion des Zustandsraumes. Dieses Problem schränkt
die Anwendbarkeit von Model Checking ein.

Abstraktion ist eine Reduzierungstechnik welche Informationen aus dem Systemmodell entfernt, welche
irrelevant für die untersuchte Eigenschaft sind; konsequenterweise wird zuätzliches Verhalten hinzugefü-
gt. Das abstrakte Modell über- und/oder unterapproximiert das Verhalten konkreter Modelle. Zum
Beispiel, existentielle abstrakte Modelle wie Segalas probabilistische Automaten (PA) überapproximieren
das Verhalten konkreter Modelle während modale abstrakt Modelle es über- und unterapproximieren.
Spielbasierte Modelle, wie zum Beispiel Condon’s stochastische Spiele (SGs), unterscheiden sich dadur-
ch dass sie das Verhalten abstrakter Prozesse (kontrolliert durch Spieler 2) von dem konkreten Verhal-
ten (kontrolliert durch Spieler 1) getrennt wird. Sowohl modale und spielbasierte Abstraktionsmod-
elle ermöglichen es, Erreichbarkeitswahrscheinlichkeiten in konkreten Modellen von unten und oben zu
beschränken. Tatsächlich konstruieren Abstraktionsverfeinerungsalgorithmen initial gröbere abstrakte
Modelle und verfeinern diese dann schrittweise bis die Grenzen für Erreichbarkeitswahrscheinlichkeiten
ausreichend genau sind.

Wir kombinieren die Techniken modaler und spielbasierter Abstraktion in orthogonaler Art und Weise.
Dies ergibt modale stochastische Spiele wo Spieler 2 vollständig das Verhalten kontrolliert, welches
durch Abstraktion entsteht, während Spieler 1 Verhalten kontrolliert, welches durch Abstraktion und
durch das konkrete Modell entsteht. Durch dieses zusätzliche nichtdeterministische Verhalten in Spieler
1-Zuständen sind Grenzen für Errreichbarkeitswahrscheinlihkeiten in modalen stochastischen Spielen
mindestens so genau wie in stochastischen Spielen, während modale Spiele vergleichsweise kleiner sind.
Zudem ist unsere modale spielbasierte Abstraction kompositionell in dem Sinne, dass einzelne Kompo-
nenten auch einzeln abstrahiert und dann zusammengefügt werden können, was ein Gesamtmodell des
Systems ergibt.

Vorhandene Abstraktionstechniken aus der Literatur sind zustandsbasiert. Das heißt, abstrakte Modelle
leiten ihre Transitionen von denen konkreter Zustände ab und simulieren daher schrittweise konkrete
Modelle. Wir nutzen aus, dass probabilistische Systeme nicht nur stochastische Prozesse sind sondern
auch Wahrscheinlichkeitstransformer und behandeln Verteilungen über Zuständen (anstatt Zuständen)
als Bürger erster Klasse und heben das Konzept der Abstraktion von Zuständen auf Verteilungen über
Zuständen. Außerdem definieren wir (alternierende) Simulationsrelationen zwischen konkreten und ab-
strakten Modellen. Wir zeigen, dass spielbasierte Abstraktion nicht die optimale Strategie ist um extreme
Erreichbarkeitswahrscheinlichkeiten zu erhalten. Darüber hinaus zeigen wir, dass unsere verteilungs-
basierte Abstraktion präzisere und prägnantere Modelle erzeugen kann als zustandsbasierte Abstraktion.

iii

Schlußendlich stellen wir ein zustandsbasiertes und ein verteilungsbasiertes Abstraktionsverfeinerungs-
Rahmenwerk für PAs vor. Es verfeinert ein modales stochastisches Spiel in zwei geschachtelten Schleifen.
Die innere Schleife verfeinert schrittweise Spieler 1-Zustände solange bis nichtdeterministisches Ver-
halten induziert durch den Abstraktionsprozess keinen Einfluss mehr auf Erreichbarkeitswahrschein-
lichkeiten von Spieler 2-Zuständen hat. Die äußere Schleife verfeinert Spieler 2-Zustände bis ihre Er-
reichbarkeitswahrscheinlichkeit die von zugehörigen Zuständen innerhalb eines bestimmten Bereiches
beschränkt. Dies ergibt die kleinste mögliche modale Abstraktion für eine gegebene Zustandspartition-
ierung, welche Erreichbarkeitswahrscheinlichkeiten innerhalb eines bestimmten Bereiches beschränkt.

iv

Acknowledgements

Man is so helpless in this world that he cannot take even a single breath but with the consent of Allah. All
praises goes to Him Who gave me health, resources and nice people around that made my life comfortable
and enjoyable. Regarding my studies at RWTH Aachen University, I am thankful to my supervisor, Joost-
Pieter Katoen, whose guidance and support helped me completing my thesis successfully. Moreover, I
am thankful to all my colleagues for their help in studies and in other activities like reading letters for
me, filling out forms in German language :), etc. Particularly, Souymodip Chakraborty and Christoph
Matheja helped me a lot in preparing for my final Ph.D. exam.

Last but not the least, I would like to thank my family members for their unconditional love and support
in my life; my parents, my brother and sister, my wife and my little princes, Shanaya Falak Sher, all
helped me in one way or the other. Particularly, the sacrifices of my father and mother are uncountable
and I will never be able to pay them back. Without their encouragement, patience and commitment, I
would not have achieved this success.

v

Contents

1 Introduction 1
1.1 Model Checking . 2
1.2 Abstraction . 2
1.3 Contributions . 4
1.4 Outline of the thesis . 8

2 Preliminaries 9
2.1 Notations . 9
2.2 Stochastic Processes . 10
2.3 Discrete-time Stochastic Models . 10

2.3.1 Discrete-time Markov chains (DTMC) . 10
2.3.2 Probabilistic Automata (PA) . 11
2.3.3 Alternating Two-Player Stochastic Games (SGs) 12
2.3.4 (Simple) Probabilistic Game Automata (PGA) 13

2.4 Simulation Relations on PA . 17
2.4.1 Segala’s Probabilistic (Bi)Simulation Relations 18

2.5 Bisimulation Minimization . 19

3 Relations on Stochastic Games 21
3.1 Simulation Relations . 21

3.1.1 State-based Simulation Relation . 21
3.1.2 Distribution-based Simulation Relation . 23
3.1.3 State-based vs. Distribution-based Simulation Relations 26

3.2 Alternating Simulation Relations . 27
3.2.1 State-based Alternating Simulation Relation . 27
3.2.2 Distribution-based Alternating Simulation Relation 28
3.2.3 State-based vs. Distribution-based Alternating Relations 29

3.3 Reachability Probabilities and (Alternating) Simulation Relations 29
3.4 Summary and Discussion . 31

4 Stochastic Games with Modalites 35
4.1 Modal Transition Systems (MTS) . 36
4.2 Abstract Probabilistic Game Automata (APGA) . 37
4.3 Refinement Relations for APGA . 39

4.3.1 State-based Refinement Relation . 39
4.3.2 Distribution-based Refinement Relation . 42

4.4 Approximation of APGA . 45
4.5 Extreme Games and Reachability Analysis . 48
4.6 Composition of Stochastic Games . 50
4.7 Summary and Discussion . 53

vii

CONTENTS

5 Modal Abstraction of Stochastic Games 55
5.1 Abstraction of APGA . 57

5.1.1 State-based Abstraction of APGA . 57
5.1.2 Distribution-based Abstraction of APGA . 62
5.1.3 State- vs. Distribution-based Abstractions of APGA 69

5.2 Compositional Abstraction . 70
5.3 Preservation of Reachability Probabilities . 72
5.4 Distribution-based Game Abstraction of MDPs . 74
5.5 Summary and Discussion . 75

6 A Modal Abstraction-Refinement Framework 77
6.1 State-based Abstraction-Refinement Framework . 78

6.1.1 Stable Abstractions . 79
6.1.2 Refinement of Player-one States . 85
6.1.3 Refinement of Player-two States . 88

6.2 Distribution-based Abstraction-Refinement Framework 92
6.2.1 Refinement of Player-one States . 93
6.2.2 Refinement of Player-two States . 95

6.3 Summary and Discussion . 97

7 Conclusion 99

Bibliography 101

viii

1
Introduction

In today’s world, almost every aspect of our society, e.g. energy requirements, medical treatments, com-
munication, etc., is directly or indirectly dependent on information and communication technology (ICT)
systems. With the advancement in science and technology, these systems not only get bigger and bigger
but their interaction with each other also increases. This trend poses multidimensional challenges to the
developers of these systems, for example, how to correctly specify the requirements of systems, how to
design systems from their requirements, how to verify that the resultant systems comply with their re-
quirements, etc. This is because a flaw in the development of a system may result in catastrophic events
with severe financial penalties, loss of lives and lasting damages to the environment.

Conventionally, in industry the flaws at each stage of a development process are figured out by conduct-
ing a large number of tests. As it is not possible to test every scenario, assuring development of error-free
and reliable systems through this process alone is impossible. This, therefore, requires the development
of systems in some formal ways in order to have reliable and trust-worthy ICT systems; thus, necessitat-
ing the use of Formal Methods in the development of systems.

Formal methods are mathematical techniques used in the production of trustworthy ICT systems, e.g.,
static analysis, abstract interpretation [CC92, CC77], model checking [BK08], etc. Their application
during the development cycle of systems ensures their correct specifications and error-free implementa-
tions; and provides guarantees on their qualitative and quantitative aspects.

By qualitative aspects, we mean the functional behaviours of systems. For example, ”the gate of a
railway crossing is closed when a train passes by”, ”in case of fire, the fire alarm starts”, etc; and by
quantitative aspects, we mean probabilistic behaviours of systems. For example, ”in case of fire, the
fire alarm starts with probability at least 0.95”, ”a message is delivered with probability at least 0.9”,
etc. Therefore, the guarantees on qualitative aspects of system models help identifying whether the func-
tional requirements are correctly implemented, whereas guarantees on quantitative aspects help so for
non-functional requirements such as performance, reliability, robustness, etc., — which are only relevant
for systems with probabilistic behaviour.

Of the many formal methods techniques used for the verification of systems, this thesis mainly improves
upon model checking — a framework for the verification of systems models for certain aspects (proper-
ties) — of probabilistic systems. To be precise, we propose different techniques to reduce the size of huge
(even infinite) systems models (with probabilistic behaviour) such that they can be verified; thus pushing
the existing boundaries of model checking techniques. Moreover, among the different techniques used
for reduction, we deal with abstraction for discrete-time systems, i.e., systems evolving at discrete time
points.

1

CHAPTER 1. INTRODUCTION

1.1 Model Checking

Model checking approach has been used to verify qualitative as well as quantitative aspects of systems.
The basic concept behind this approach is to systematically and exhaustively explore all possible config-
urations of systems’ models and check whether certain requirements are fulfilled.

Of the challenges faced by model checking approach, three are the important ones: getting a mathe-
matical model of systems, formally specifying requirements (properties) to be verified, and designing
efficient algorithms that thoroughly explore all possible configurations of systems’ model.

In the literature, different ways to build mathematical models of systems have been suggested, e.g.,
models are developed in high-level modeling formalism like (probabilistic) state-charts [Har87, JHK02],
Petri nets [Pet62, Kud05, LMZL11], guarded-command languages [Dij75, HSM97], etc; or extracted
from a program code [CKSY05], etc. The properties of systems are given as formulas of some (prob-
abilistic) temporal logic — (probabilistic) linear temporal logic, (probabilistic) computation tree logic,
etc), as (probabilistic) automata or as statements of high-level specification languages. Similarly, differ-
ent model checking algorithms have been proposed in the literature.

To explore all configurations of systems models (specified in high-level formalisms), the model checking
algorithms need to convert them into underlying low-level models, i.e. labelled transition systems (LTS),
discrete-time Markov chains (DTMC) [BK08], etc. These underlying models are usually manifolds (or
may be infinitely) larger than their high-level descriptions — in case of probabilistic systems, as each
configuration keeps probabilities of taking transitions to next configurations, the models are relatively
bigger. This is known as the state space explosion problem, that restricts the applicability of model
checking approach to systems not bigger than a certain size. For relatively bigger systems, the model
checking algorithms say nothing about the satisfaction or refutation of properties, thus generating out-
of-memory error instead of yes or no. However, with certain reduction techniques such as bisimulation
minimization [KKZJ07], partial order reduction [GB06], abstraction [CGL94, DJL01] etc., systems with
billions of states are verifiable [CCG+02, KNP09, KZH+11].

1.2 Abstraction

Informally speaking, abstraction is a generalization that allows omitting details from the models of sys-
tems that are not relevant for the verification of the properties under consideration. The models induced
as a result are finite, small in size and have less information as compared to the concrete models (that
may be infinitely large). Usually, model checking frameworks construct coarser abstractions in the be-
ginning, and then gradually refine them until the abstract models have enough details for the verification
of properties. In the literature, different abstraction techniques have been proposed, we discuss a few of
them that are relevant to this thesis.

Existential abstraction: The abstract models obtained by this technique over-approximate the behaviour
of concrete models [CGL94, Seg95], i.e., for every (probabilistic) execution [Seg95] in the concrete
model, there is a (probabilistic) execution in the abstract model. This, therefore, allows for the verifica-
tion of those properties on concrete models that can be refuted by single (probabilistic) executions, i.e.,
safety properties in non-probabilistic systems, whereas one-sided bounds on quantitative properties —
upper/lower bound of maximum/minimum reachability probabilities — in probabilistic systems. That is
to say, if an abstract model satisfies a property, the concrete model also does so. But if the abstract model

2

1.2. ABSTRACTION

System Design Requirement

Model

Abstract Model Specification

Model
Checking

Out of Memory

No

False
Negative?

Yes

Yes

No

correct

abstract

Figure 1.1: Existential abstraction in the context of model checking.

refutes, no conclusion can be drawn about the validity in the concrete model. Therefore, in case of refuta-
tion an abstract counterexample that refutes the property is analysed on the concrete model to find out the
source of this behaviour. If the abstract counterexample corresponds to some concrete behaviour, then
the model is faulty and needs to be corrected. Otherwise, if the refutation is due to over-approximation of
concrete behaviour, then the abstraction is too coarse and needs to be refined. This procedure forms the
basis of the CEGAR approach (counter-example-guided abstraction-refinement) (CEGAR)[CGJ+03] for
non-probabilistic systems, and has been extended for probabilistic systems in [HWZ08] (see Fig. 1.1).

Modal abstraction: The abstract models [LT88b, DKL+13, KKLW12, KKN09] obtained by this tech-
nique have two transition functions: one over-approximates the behaviour of the concrete model — as
in existential abstraction — whereas the other under-approximates. Alternatively, a modal abstraction,
in fact, represents two abstractions of a concrete model: one over-approximates and the other under-
approximates its behaviour. Therefore, if an over(under)-approximating abstraction satisfies (refutes) a
safety property or a one-sided bound on a quantitative property, so does the concrete model. However, if
a property is neither satisfied nor refuted by the over- and under-approximating abstraction, e.g. modal
transition systems [LT88a], then an abstraction is too coarse, its verification is inconclusive and it needs
to be refined, as given in [SG07, dAR07] for non-probabilistic systems and in [KKLW12] for probabilis-
tic systems (see Fig. 1.2). Intuitively, an abstract model is analysed and those states which neither satisfy
nor refute the property are refined. By this way, refinement is done locally and the size of an abstract
model does grow very fast in an abstraction-refinement loop.

Game-based abstraction: This technique [KKNP10, WZ10] induces two-player turn-based games
[Sha53, Con92] as abstract models in which state spaces are partitioned into two sets, one for each
player. One player deals with the behaviour from the abstraction and the other from states of concrete

3

CHAPTER 1. INTRODUCTION

System Design Requirement

Model

Abstract Model Specification

Model
Checking

Out of Memory

No Don’t know Yes

refine

debug

abstract

Figure 1.2: Modal/Game-based abstraction in the context of model checking.

models. This, therefore, allows to keep the behaviour from abstraction separate from the behaviour from
concrete models. In probabilistic systems, game-based abstractions preserve extremal (maximum and
minimum) reachability probabilities to sets of states, i.e., the reachability probabilities in the abstract
models bound those in concrete models. For example, if the maximum probability to a set of, say,
bad states in a concrete model is 0.8, in game-based abstract models it would be given as an interval
[x−0.8,y + 0.8] for some x ∈ [0,0.8] and y ∈ [0,0.2]. The reason of given the maximum probability as
an interval in the abstract models is the additional behaviour induced by abstraction — if no additional
behaviour is induced by abstraction, the values of both x and y would be zero. Moreover, if the difference
between probability bounds is above a certain threshold for some states in the abstract model, they are
refined as in game-based abstraction refinement frameworks [KKNP10, WZ10] (see Fig. 1.2). In case
of non-probabilistic systems, the applicability of this technique is in those models where stake holders
compete with each other to achieve their goals [HJM03].

Compositional abstraction: In another approach to tackle the state space explosion problem, the
models of huge systems are not build in a monolithic way; rather using divide-and-conquer approach
the systems are broken down into components and each component is modelled and then abstracted
individually; and at the end abstract models are plugged together to get abstract models of complete
systems. This strategy, therefore, calls for high level formalisms to support compositional modeling as
in [BHH+09, HHK02] and abstraction techniques to be compositional [Kli10].

1.3 Contributions

The formalism that we deal with in this thesis for modeling discrete-time probabilistic systems is Segala’s
probabilistic automata (PA) [Seg95], that extend labelled transition systems by allowing targets of tran-

4

1.3. CONTRIBUTIONS

sitions to be distributions over states rather than simply states. PA are a slight extension of Markov
decision processes (MDPs) [Put94]. They allow for modeling functional and probabilistic behaviour of
systems in a compositional manner, which have been successfully exploited in modeling and verification
of randomized distributed algorithms, security protocols, etc.

To mention our contributions we first explain some existing game-based abstraction techniques of PA
and then describe how we improve upon these techniques.

In the literature, stochastic games (SGs) [Sha53, Con92] have been used as abstract models of PA. SGs
are turn-based two-player games in which one player has only non-deterministic behaviour whereas the
other player has non-deterministic as well as probabilistic behaviour.

In [KKNP10], SG-based abstractions, called game-based abstractions, of Markov decision processes
(MDPs) — PA with singleton action sets — have been proposed. In a game-based abstraction, one set of
states, say player-two states, represents the partition of the state space of an MDP and the other set, say
player-one states, represents the sets of states of the MDP that have the same step-wise behaviour after
abstraction.

In a slightly different way, [WZ10] proposes SG-based abstractions of PA, called menu-based abstrac-
tions. In a menu-based abstraction, like game-based abstraction, player-two states represent the partition
of the state space of a PA whereas player-one states represent the sets of transitions, for a particular action,
of the associated concrete states. Thus, each player-two state is associated with only those player-one
states that derive their transitions from the concrete states of the player-two state.

Both SG-based abstractions preserve extremal (maximum and minimum) reachability probabilities. Tho-
ugh menu-based abstractions are easier to implement than game-based abstractions, their reachability
probability bounds are at most as tight as that of game-based abstractions. Moreover, [WZ10] claims
that game-based abstraction is the optimal abstraction preserving reachability probabilities (best trans-
formers in terms of abstract interpretation), i.e., no abstraction induces tighter bounds than game-based
abstraction. Therefore, we concentrate on game-based abstraction [KKNP10] and describe how our tech-
niques compare to [KKNP10].

Next, we briefly explain our contributions towards improving upon the game-based abstraction for PA.
Broadly speaking, we devise compositional abstraction techniques that induce more precise (in terms
of reachability probabilities) as well as concise (in terms of number of states and transitions) abstract
models of PA than game-based abstraction, i.e., our abstract models are relatively smaller in size with
reachability probability bounds at least as tight as that of game-based abstractions. This shows that
game-based abstraction is not the optimal abstraction preserving reachability probabilities. Moreover,
our abstractions can be plugged together, thus generating the abstractions of systems in a compositional
way. In the sequel, SG-based abstractions mean game-based abstractions of [KKNP10].

Preliminary results of the material in this dissertation have been published in the following publications:

1. Falak Sher, Joost-Pieter Katoen. Tight Game Abstractions of Probabilistic Automata. Concurrency
Theory (CONCUR), Volume 8704 of LNCS, pages 576-592, 2014.

2. Benoit Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel Pedersen, Falak Sher,
Andrzej Wasowski. Abstract Probabilistic Automata. Information and Computation, Volume
232, pages 66-116, 2013.

5

CHAPTER 1. INTRODUCTION

3. Falak Sher, Joost-Pieter Katoen. Compositional Abstraction Techniques for Probabilistic Au-
tomata. IFIP Conference on Theoretical Computer Science (TCS), Springer Berlin Heidelberg,
Volume 7604 of LNCS, pages 325-341, 2012.

4. Benoit Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel Pedersen, Falak Sher,
Andrzej Wasowski. New Results on Abstract Probabilistic Automata. Applications of Concur-
rency to System Design (ACSD), IEEE, pages 118-127, 2011.

5. Benoit Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel Pedersen, Falak Sher,
Andrzej Wasowski. Abstract Probabilistic Automata. Verification, Model Checking and Ab-
stract Interpretation (VMCAI), Springer Berlin Heidelberg, Volume 6538 of LNCS, pages 324-
339, 2011.

In one direction, we propose non-game-based abstractions of PA, i.e., the state space of abstract models is
not partitioned into two sets, and in the other direction, we extend the game-based abstraction technique
of [KKNP10] for PA.

• In [DKL+13] (2nd publication above), we consider an extension of PA with modalities, i.e., re-
quired and possible transitions as in modal transition systems (MTS) [LT88a]. Abstract PA (APA)
have as semantics a (possibly infinite) set of PA, namely all PA that have at least all required transi-
tions and zero or more possible ones. Whereas sets of transitions are modelled by modalities, sets
of distributions are represented by constraint functions as in constraint Markov chains [CDL+11].
APA thus provide a model/framework for designing abstraction techniques for PA.

• In [SK12] (3rd publication above), we propose APA-based compositional abstraction techniques
of PA such that the same transitions of concrete states become the required transitions in the
associated abstract states, and the abstract states have at least the step-wise behaviour of concrete
states. We show that APA-based abstract models bound the reachability probabilities of PA.

Although the aforementioned SG-based as well as APA-based abstraction techniques are different in
nature, they have in common that the abstraction is state-based. That is to say, abstract models derive
their transitions from that of the concrete states and, thus, simulate concrete models in a step-wise man-
ner [JL91]. In more recent work, we propose an extension of game-based abstractions [KKNP10] of PA
by lifting abstraction from states to distributions over states.

• In [SK14] (1st publication above), we treat distributions rather than states as first-class citizens,
and relax state-based simulation to distribution-based simulations. Our abstractions yield (sim-
ple) probabilistic game automata (PGA) [CL88], 2-player turn-based stochastic games in which
moves of both players — as opposed to classical stochastic games (SGs) [Sha53, Con92] — yield
distributions over states. The new abstraction technique yields tighter upper and lower bounds on
(extremal) reachability probabilities than state-based abstraction. This shows the potential supe-
riority over state-based game-based MDP abstraction [KKNP10], and puts the optimality result
of [WZ10] in perspective.

• In [SK14], we define two distribution-based pre-orders between abstract and concrete PGA: simu-
lation and alternating simulation relations. Simulation relations are of interest when both players
have identical objectives, whereas alternating simulation relations are useful for competitive ob-
jectives. Both relations are shown to be pre-congruences w.r.t. parallel composition of (a class

6

1.3. CONTRIBUTIONS

of) PGA, enabling compositional abstraction of P(G)A. The pre-orders are the key to distribution-
based abstraction, a technique distinguishing the non-deterministic behaviour of concrete distri-
butions from that of the distributions induced by the abstraction. This enables merging concrete
distributions having similar behaviour in the abstraction.

Our APA-based and PGA-based abstractions of PA are not separately discussed in this thesis. The
reason being they are the special cases of the abstraction techniques that we discuss in this thesis. In
this thesis, we propose a new game-based modeling formalism that generalizes APA and PGA, called
abstract probabilistic game automata (APGA). Therefore, PA, SGs, APA and PGA are subclasses of
APGA. Moreover, APGA-based abstractions of PA are the natural extensions of our APA-based [SK12]
and PGA-based [SK14] abstractions.

• We consider an extension of probabilistic game automata (PGA) with modalities (i.e., required and
possible transitions) and constraint functions as for APA [DKL+13]. Abstract PGA (APGA) have
as semantics a set of PGA, and are equipped with the notions of state-based and distribution-based
refinement, showing that refinement relations between APGA imply (alternating) simulation rela-
tions between their implementations. We show that maximal and minimal reachability probabili-
ties in APGA can be bound by considering extremal games – those PGA that besides all required
transitions contain all possible transitions, and those that contain only required transitions for one
set and all possible transitions for the other set of states. Moreover, we define a composition oper-
ator for a class of APGA that act as abstract models of PA, and show that our refinement relations
are pre-congruences w.r.t. it, thus facilitating compositional abstraction of PA as APGA.

To define the APGA-based compositional abstraction techniques of PA, we combine the techniques of
[KKNP10], [SK12] and [SK14] in two ways.

• First, we combine the techniques of [KKNP10] and [SK12]; the abstract models are then a class
of APGA in which one of the players have only non-deterministic behaviour as in SGs. This is
called state-based abstraction of APGA. State-based abstraction differs from [KKNP10] in the
sense that the non-deterministic behaviour in concrete systems is not completely handled by one
set of states: in state-based APGA-based abstraction, concrete states are merged if they have the
same step-wise behaviour after abstraction; whereas in [KKNP10], they are merged iff they have
the same step-wise behaviour. Because of this, the bounds on extremal reachability probabilities
in state-based APGA-based models are at most as tight as in SG-based models, however, they are
at most the size of SG-based models.

• Second, we combine the techniques of [SK12] and [SK14]; the induced models are APGA with
both players having non-deterministic and probabilistic behaviour as in PGA. This is called distri-
bution-based abstraction of APGA. The difference between distribution-based abstraction and
[SK14] is the same as between state-based abstraction and [KKNP10], i.e., in distribution-based
APGA-based abstraction, (support sets of) concrete distributions are merged if they have the same
step-wise behaviour; whereas in [SK14], they are merged iff they have the same step-wise be-
haviour. Thus, the bounds on extremal reachability probabilities in distribution-based APGA-
based models are at most as tight as in PGA-based models; and they are at most the size of PGA-
based models.

• Both state-based and distribution-based abstractions are comparable with concrete models using
state-based and distribution-based refinement relations respectively, that are shown to be pre-

7

CHAPTER 1. INTRODUCTION

congruences w.r.t. parallel composition of (a large class of) APGA, enabling compositional ab-
straction of AP(G)A. Moreover, SG-based and APA-based abstractions are special cases of our
state-based abstraction; and similarly PGA-based abstraction is a special case of distribution-based
abstraction. We show that game-based abstraction of [KKNP10] is not the optimal abstraction
preserving extremal reachability probabilities. Furthermore, we illustrate with examples that our
distribution-based abstraction may induce more precise as well as concise models than our state-
based abstraction of APGA.

• We propose a state-based and a distribution-based abstraction-refinement framework for PA.
These frameworks are, in fact, inspired by the frameworks of [KKLW12] and [KKNP10] for modal
and game-based abstractions respectively. Intuitively, it iteratively refines a modal game-based
model until the effect of non-deterministic behaviour from the abstraction process in player-one
states have no impact on the reachability probabilities of player-two states; and, moreover, the
reachability probabilities of player-two states bound that of their corresponding concrete states
within a certain given range. Therefore, the resulting models are at least as large as (PGA-)SG-
based models, but they have the same precision as (PGA-)SG-based models. Moreover, we il-
lustrate with examples that our distribution-based abstraction-refinement framework may induce
abstract models having the tightest bounds on extremal reachability probabilities so far.

1.4 Outline of the thesis

• In Chapter 2, we define some basic notations and give background on probabilistic models used
in the remaining of the thesis. We also recall Segala’s simulation (bisimulation) relations for PA
[Seg95], and bisimulation minimization as a reduction technique.

• In Chapter 3, we discuss state-based and distribution-based (alternating) simulation relations for
PGA, and show that (alternating) simulation relations between PGA preserve their reachability
probabilities.

• In Chapter 4, we define abstract probabilistic game automata (APGA) — an extension of PGA
with required and possible modalities as well as constraint functions. We define state-based
and distribution-based refinement relations for APGA, and discuss approximation techniques for
APGA such that extremal reachability probabilities in APGA can be bound by considering their
extremal implementations.

• In Chapter 5, we define two compositional abstraction techniques for APGA — state-based and
distribution-based abstraction — and show that the abstract models bound the extremal reachabil-
ity probabilities of concrete models.

• In Chapter 6, we discuss state-based and distribution-based abstraction-refinement frameworks
of PA. We also show that our distribution-based framework may induce abstract models having the
tightest bounds on extremal reachability probabilities so far.

8

2
Preliminaries

This chapter prepares a ground for this thesis by giving some notations and definitions relevant to this
thesis. It recaps the concept of some probabilistic modeling formalisms like Markov chains, probabilis-
tic automata, stochastic games, probabilistic game automata, etc. along with the reachability analysis
framework for probabilistic game automata. At the end, Segala’s simulation and bisimulation relations
are discussed along with the limitations of bisimulation minimization to tackle the state space explosion
problem in model checking of probabilistic systems.

2.1 Notations

Distributions. A distribution µ is a function on a countable set S iff µ : S→ [0,1] and 0<∑s∈S µ(s)≤ 1;
its support set is given as Supp(µ) = {s ∈ S | µ(s) > 0}; and its mass w.r.t. set S′ ⊆ S is given as
µ(S′) = ∑s∈S′ µ(s). Let |µ| = µ(S) denote the size of the distribution µ; µ is a full distribution iff
|µ| = 1, otherwise, it is a sub-distribution. Let Dist(S) and SDist(S) denote the set of full and sub-
distributions over S respectively. Let ιs ∈ Dist(S) denote the Dirac distribution for s ∈ S, i.e., ιs(s) = 1.
Let Dirac(S)⊆ Dist(S) denote the set of Dirac distributions over S.

A distribution µ ′′ can be split into sub-distributions µ and µ ′, say, represented as µ ′′ = µ ⊕ µ ′, iff
µ ′′(s) = µ(s)+ µ ′(s) for s ∈ S. Since ⊕ is associative and commutative, we use the notation

⊕
for finite

sums. Let SDist(µ) denote the set of all sub-distributions that have a support included in Supp(µ). A
distribution is sometimes represented as µ = Jµ(s)s | s ∈ Supp(µ)K, where J and K differentiate a set of
probabilities from an ordinary set.

For 0≤ c≤ 1, c·µ denotes the distribution defined by: (c·µ)(s) = c ·µ(s). For a distribution µ , the con-
ditional distribution w.r.t. a set A⊆ Supp(µ) is given as: µ↓A(s) = µ(s)

µ(A) for s ∈ A, and µ↓A(s) = 0 if s /∈ A;
if A = Supp(µ), we omit A and simply write µ↓. For example, for a sub-distribution µ = J0.1s1,0.3s2K
over S = {s1,s2}, the conditional distribution µ↓ is given as µ↓(s1) = µ(s1)

µ(S) = 0.1
0.4 = 0.25 and µ↓(s2) =

µ(s2)
µ(S) = 0.3

0.4 = 0.75.

Constraint functions. A constraint function, denoted ϕ , is an arithmetic expression on variables de-
noting probabilities over S. A set of distributions over S satisfying ϕ is the satisfaction set of ϕ , de-
noted sat(ϕ). For example, ϕ =

(
(x1 ≤ 0.5,x2 ≥ 0.5,0 ≤ x3 ≤ 1)∨ (x1 = 0.2,x2 = 0.2,x3 = 0.6)

)
∧

(x1 + x2 + x3 = 1) is a linear constraint function on the variables x1,x2 and x3 denoting probabilities
over S = {s1,s2,s3} respectively, with sat(ϕ) = {J0.5s1,0.5s2K,J0.2s1,0.2s2,0.6s3K}. For two constraint
functions φ and ϕ , we write φ = ϕ iff sat(φ) = sat(ϕ). Let CFunc(S) denote the set of (not necessarily
linear) constraint functions over S with non-empty satisfaction sets.

9

CHAPTER 2. PRELIMINARIES

Probability measures and spaces. Let Ω be a non-empty set and F ⊆ 2Ω. F is a σ -field on Ω iff:
(1) /0 ∈ F ; (2) A ∈ F ⇒ Ω\A ∈ F ; (3) A1,A2,A3, ... ∈ F ⇒ ⋃

i≥1 Ai ∈ F . The elements of F are
measurable sets and (Ω,F) is a measurable space. A function Pr : F → [0,1] is a probability mea-
sure on (Ω,F) iff Pr(Ω) = 1 and if A1,A2, ... are disjoint elements in F , then Pr(

⋃
i Ai) = ∑i Pr(Ai).

(Ω,F ,Pr) is called a measurable space. For any A ⊆F , there exists a unique smallest σ -field that
contains A [ADD00]; and given that A satisfies certain conditions [ADD00], a probability measure
defined on A can be uniquely extended to the σ -field containing A .

2.2 Stochastic Processes

The models that we deal with in this thesis are stochastic in nature, therefore, we recap the concept of
stochastic processes along with some of their properties as per the need of this work.

Definition 1. A stochastic process is a collection of random variables {X(t) | t ∈ T} defined over a
probability space.

For a stochastic process that evolves discretely like every second, every hourly, etc., we usually have
T = N, and it is called discrete-time stochastic process; otherwise, we have T = R≥0 that shows con-
tinuous evolution of the process, called continuous-time stochastic process. In this thesis, we only deal
with discrete-time processes, moreover, we also assume the domain of X(t) — called state space — to
be countable.

Markov and time-homogeneity properties. During the evolution of a stochastic process, if the proba-
bility to reach any state s′ after t ′ time units only depends on the current state s (and not on the states that
have been traversed to reach s), the process is said to hold Markov property. Formally,

Pr({X(t + t ′) = s′ | ∀y≤ t : X(y) = sy}) = Pr({X(t + t ′) = s′ | X(t) = st})

Moreover, if the above probability is even unaffected by the time span elapsed after reaching the current
state s at time t, then the process possesses the time-homogeneity property. Formally,

Pr({X(t + t ′) = s′ | X(t) = s}) = Pr({X(t ′) = s′ | X(0) = s})

2.3 Discrete-time Stochastic Models

In this section, we introduce some discrete-time stochastic models that are related to this thesis. These
models have been extensively used in modelling and quantitative verification of probabilistic systems
and algorithms like randomized distributed algorithms, communication protocols, etc, [Her90, Rab82].
We start with the simplest models discrete-time Markov chains.

2.3.1 Discrete-time Markov chains (DTMC)

Discrete-time Markov chains are fully probabilistic models suitable for modeling probabilistic systems
with no notion of non-determinism. They usually act as semantic models for other higher-level proba-
bilistic models. Formally,

10

2.3. DISCRETE-TIME STOCHASTIC MODELS

u0

u1 u2 u3 u4

u5

0.
6

0.4

0.5 0.
3

0.2

0.6 0.4

Figure 2.1: A DTMC L

Definition 2. (Discrete-time Markov Chains). A discrete-time Markov chain (DTMC) is a tuple L =
(S,∆,s0) where S is a non-empty countable set of states with initial state s0 ∈ S and ∆ : S→ Dist(S) is a
total probabilistic transition function.

The restriction of totality on transition functions ensures the deadlock freeness of DTMC. Note that our
assumption of unique initial states for DTMC does not restrict their modeling power. This is because any
model with a probability distribution µ0 over initial states can be converted into a system with a single
initial state s0 having ∆(s0) = µ0. In the sequel, L = (S,∆,s0) is a DTMC. We assume that in figures a
state without any outgoing transition is equipped with a self-loop, and we adopt this convention for all
models that we discuss in this thesis. In the figures, we depict the states of DTMC as circles.

Example 1. Consider the DTMC L in Fig. 2.1 in which for every state, the transitions to next states
are defined by a unique probability distribution function. Note that as per our assumption of deadlock-
freeness, a state ui is equipped with a self-loop, where i ∈ {1,2,3,4}, but for simplicity we do not draw
them.

2.3.2 Probabilistic Automata (PA)

Segala’s probabilistic automata [Seg95] are used for modelling probabilistic systems that have non-
deter-ministic behaviour and, therefore, can act asynchronously as well as synchronously. Informally,
PA are extensions of labelled transition systems (LTS) in which the target of an action-labelled transition
is a distribution over states instead of a single state. Let UAct be a countable universe actions including
the internal action τ . Formally,

Definition 3. (Probabilistic Automata). A Probabilistic Automaton (PA) is a tuple M = (S,A,∆,s0)
where S is a non-empty, countable set of states with initial state s0 ∈ S; A⊆UAct; and ∆⊆ S×A×Dist(S)
is a set of transitions.

We denote (s,a,µ)∈ ∆ by s a→ µ and Act(s) as the set of enabled actions from state s, i.e., Act(s) = {a∈
A | s a→ µ}; and Succ(s) = {u ∈ S | ∃s→ µ : µ(u) > 0} as the set of successor states of s. We say a PA
is finite if S and ∆ are finite sets. We assume that each state in PA has at least one action enabled from it
to ensure deadlock freeness. Note that DTMC is the subclass of PA in which A = {τ} and |Act(s)| = 1
for s ∈ S. Moreover, Markov decision processes (MDPs) are also the subclass of PA in which a ∈Act(s)
implies |∆(s,a)|= 1 for s∈ S. In the sequel, M = (S,A,∆,s0) is an infinitely branching PA. For depicting
PA, we use the same convention as for DTMC.

11

CHAPTER 2. PRELIMINARIES

s′0 s′1 s′2 s′3

s′4

c

a 0.
68

0.32

a

0.
8

0.2

c a

a

0.6

0.
4

as0 s1 s2 s3 s4

s5

c

a
0.2

0.48

0.32

a

0.5 0.
3

0.2

c a

a

0.6
0.

4

a

Figure 2.2: PA M (left) and M ′ (right) are bisimilar, i.e., M ∼pa M ′

Example 2. Consider the PA M in Fig. 2.2. The target of the transitions s1
a→ J0.5s2,0.3s3,0.2s4K, s1

a→
J0.2s2,0.48s3,0.32s4K and s5

a→ J0.6s3,0.4s4K are distributions over states; whereas for other transitions
the targets are Dirac distributions e.g. the a-transition from s4 has ιs3 as the target distribution (for
simplicity we omit “black dots” to represent Dirac distributions). Note that s0, s1 and s5 have more than
one target distributions for one action.

2.3.3 Alternating Two-Player Stochastic Games (SGs)

PA are not suitable for modeling probabilistic systems in which stakeholders compete among themselves
for certain objectives. For such system, stochastic games (SGs) have been proposed [Sha53, Con92].

An alternating two-player SG is a game of chance played between two players, say, player one and player
two. The game arena is a bipartite graph – having, say, S1 and S2 as sets of vertices – in which each player
owns a specific set of vertices; say, the players one and two own S1 and S2 respectively. The game is
started by player one and evolves in a turn-based fashion. Starting from the initial state in S1, player one
non-deterministically chooses an action-distribution pair. Based on the selected distribution, a state in
S2, say s2, is randomly selected and control is passed to player two. Player two non-deterministically
selects an enabled action in s2, uniquely picks a successor of s2 and passes control back to player one.
This goes on until some goal is achieved either by player one or player two.

Definition 4. (Stochastic Games). A Stochastic Game (SG) is a tuple S = (S,{S1,S2},A,∆,s0) where
S is a non-empty, countable set of states, disjointly partitioned into S1 and S2, with s0 ∈ S1; A ⊆ UAct;
and ∆⊆ (S1×A×Dist(S2))∪ (S2×A×Dirac(S1)) is a set of probabilistic transitions.

We assume that a game is started by player one in s0. Note that PA are SGs in which ∀s ∈ S2, a,b ∈ A :
(s a→ µ ∧ s b→ ν) implies µ = ν and |Supp(µ)| = 1. For depicting SGs we represent states in S1 and S2
as rectangles and double rectangles respectively. Moreover, we show player-one states inside player-two
states for simplicity. In the sequel, S = (S,{S1,S2},A,∆,s0) is an (possibly infinitely branching) SG.

Example 3. Consider the SG S in Fig. 2.3 with S1 = {s0,s1,s2,s3,s4} and S2 = {t1, t2, t3}. Note that
the target of a transition from every state in S2 is a Dirac distribution which is not the case for states in
S1. For example, s2 has an a-transition to J0.5t2,0.5t3K. For simplicity, we do not draw transitions from

12

2.3. DISCRETE-TIME STOCHASTIC MODELS

s0

s1

s2

s3

s4

t1

t2

t3

a

0.5

0.
5

b

a

a

a

0.
5

0.5

a

a

b
b

a

a

Figure 2.3: An SG S

s3 and s4.

Let player one start the game and choose state t1 with probability 0.5. It then passes control to player
two. Player two has two possibilities (s1 or s2). Let she choose state s2 and pass control back to player
one. Player one now has two choices, she can non-deterministically select one of the a-transitions and
continue the game. In this way, (possibility) infinite runs in S can be generated.

2.3.4 (Simple) Probabilistic Game Automata (PGA)

In SGs, player-one moves yield distributions over states, while player-two moves yield states. In PGA,
player-two moves also yield distributions over states. Formally,

Definition 5. (Simple Probabilistic Game Automata). A Simple Probabilistic Game Automaton (PGA)
is a tuple G = (S,{S1,S2},A,∆,s0) where S, S1, S2, A and s0 are as for SGs, and ∆⊆ (S1×A×Dist(S2))∪
(S2×A×Dist(S1)) is a set of probabilistic transitions.

PGA are simplified versions of the probabilistic game automata in [CL88]. SGs are the subclass of PGA
in which Dist(S1) is a set of Dirac distributions. In the sequel, G = (S,{S1,S2},A,∆,s0) is a (possibly
infinitely branching) PGA. For depicting PGA, we use the same convention as for SGs.

Example 4. Consider the PGA G in Fig. 2.4 with S1 = {s0,s1,s2,s3,s4} and S2 = {t1, t2, t3}. Note that in
G , both the players can make a non-deterministic as well as probabilistic choices. For example, unlike in
Fig. 2.3, the target of the a-transition from t1 is a distribution, i.e., J0.5s1,0.5s2K. The rest of the example
is trivial.

Paths: If |Act(s)|> 1 for a state s, a non-deterministic choice among the enabled actions in s occurs. A
path (also known as play) in a PGA represents a particular resolution of non-determinism by players one
and two at each state, as well as a resolution of the probabilistic choices. Formally,

13

CHAPTER 2. PRELIMINARIES

s0

s1

s2

s3

s4

t1

t2

t3

a

0.5

0.
5

b

a

a

a 0.
5

0.5

a 0.
5

0.5

b

b

a

a

Figure 2.4: A PGA G

Definition 6. For PGA G , a path from s10 ∈ S1 is given as:

π = s10

a10 ,µ10−−−−→ s20

a20 ,µ20−−−−→ s11 ...

where sik ∈ Si, aik ∈Act(sik), (sik ,aik ,µik)∈ ∆, µ1k(s2k)> 0 and µ2k(s1k+1)> 0 for all i∈ {1,2} and k≥ 0.
A path is finite if it has a finite number of transitions, otherwise infinite.

For a finite path πfin, let lasti(πfin) denote the last Si state in πfin for i ∈ {1,2}. Let Pathfin(G) and
Pathinf(G) denote the set of finite and infinite paths in a PGA G respectively, and Paths(G) = Pathfin(G)∪
Pathinf(G).

Schedulers: In order to analyse reachability properties on G , we resolve non-determinism at all game
states by means of a scheduler (also known as policy, strategy or adversary). Let κi be the scheduler for Si

states, i ∈ {1,2}. We consider deterministic memoryless (DM) schedulers as they suffice for reachability
probabilities on PGA. DM-schedulers select an action-distribution pair only on the basis of the current
state. More specifically, for bit x, a deterministic scheduler κ(1+x) maps a finite path πfin to a pair in
Act(last(1+x)(πfin))×Dist(S(2−x)); and a memoryless scheduler κ(1+x) assures that for finite paths πfin
and π ′fin, last(1+x)(πfin) = last(1+x)(π ′fin) implies κ(1+x)(πfin) = κ(1+x)(π ′fin).

A path π under a pair of DM-schedulers (κ1,κ2) is of the form π = s10

a10 ,µ10−−−−→ s20

a20 ,µ20−−−−→ s11 ... where
κi(sik) = (aik ,µik) for i ∈ {1,2} and k ≥ 0. Let Pathsκ1

κ2
(G) be the set of paths of PGA G under DM-

schedulers (κ1,κ2). The DM-schedulers (κ1,κ2) on PGA G induce a Markov chain with countably-many
states. This allows us to construct a measurable space (Pathsκ1

κ2
(G),F κ1

κ2 ,Prκ1
κ2) over the (infinite) paths

of G under (κ1,κ2) [BK08, Ch. 10]; and thus determining the probability for a certain set of paths of G
under (κ1,κ2). In the sequel, we consider only DM-schedulers.

Reachability Probabilities in PGA

This section discusses how optimal (i.e., maximal and minimal) reachability probabilities are defined for
PGA. We first define some notations and definitions.

14

2.3. DISCRETE-TIME STOCHASTIC MODELS

Optimal reachability probabilities: Let Prκ1
κ2(T) be the probability of the set of paths from the initial

state s0 that reach some set of states T ⊆ S under schedulers (κ1,κ2) for PGA G .

Definition 7. [CL88] For PGA G , the optimal probabilities of reaching T ⊆ S for players one and two
are defined respectively as: supκ1

infκ2 Prκ1
κ2(T) and infκ1supκ2

Prκ1
κ2(T).

Intuitively, the reachability probability to a set T of target states is optimal for player one under scheduler
κ iff for every scheduler κ2 of player two, infκ2 Prκ

κ2
(T) = supκ1

infκ2 Prκ1
κ2(T). Similarly, we can define

optimal reachability probability for player two. For PGA G and T ⊆ S, we write:

- maxH(T) = supκ1
infκ2 Prκ1

κ2(T) and maxN(T) = supκ1
supκ2

Prκ1
κ2(T)

- minH(T) = infκ1 infκ2 Prκ1
κ2(T) and minN(T) = infκ1supκ2

Prκ1
κ2(T).

Note that the values maxH(T) and minN(T) are the optimal reachability probabilities for players one and
two respectively, which can be achieved by DM-schedulers [CL88]. The values maxN(T) and minH(T) –
for which both players collaborate with each other – can be obtained similarly. For games with finite state
spaces these values can be computed through value iteration [BT91, Alf99] or by linear programming.

Closed PGA: To calculate the reachability probabilities of a PGA, we assume that it does not interact
with its environment. Therefore, we define a function that yields closed-versions of PGA — PGA in
which all actions are replaced with the internal action τ .

Definition 8. For PGA G , let PGA τ(G) = G ′ = (S′,{S′1,S′2},A′,∆′,s′0) with S′ = S, s′0 = s0, A′ = {τ}
and ∆′ = {(s,τ,µ) | (s,a,µ) ∈ ∆}.

Probability valuation transformer: Let w : S→ [0,1] be a probability valuation function mapping
a state s to the probability of reaching target states T ⊆ S from s. The probability valuation functions
W = {w | w : S→ [0,1]} form a complete lattice (W,≤,⊥,>) with order ≤, bottom element ⊥ ∈ W
and top element > ∈ W. We write w ≤ w′ iff w(s) ≤ w′(s); ⊥(s) = 0 and >(s) = 1 for s ∈ S. For a
set M ⊆W , the least upper bound is given as

⊔
M(s) = maxw∈M w(s), and the greatest lower bound asd

M(s) = minw∈M w(s) for s ∈ S. Let w(µ) = ∑s∈S µ(s) ·w(s) for µ ∈ Dist(S).

Definition 9. In PGA τ(G) with goal states T ⊆ S, let T0 ⊆ S be the set of states without outgoing transi-
tions. For reachability objectives 1,2 ∈ {min,max} for players one and two respectively, the probability
valuation transformer Prt12 : W→W is defined for w ∈W and s ∈ S as:

Prt12(w)(s) =

1 if s ∈ T

1 = max? 0 : 1 if s ∈ S1∩T0

2 = max? 0 : 1 if s ∈ S2∩T0

1{w(µ) | s τ→ µ} if s ∈ S1 \ (T ∪T0)

2{w(µ) | s τ→ µ} if s ∈ S2 \ (T ∪T0)

15

CHAPTER 2. PRELIMINARIES

s0 s2

s1

s3

s4

s5

s6

a

0.
1

0.3

0.1

0.
5

b

a 0.9

0.1

a
0.2

0.8

b

0.7

0.
3

a

a
0.5

0.5

s0 s2

s1

s3

s4

s5

s6

v0

t0

v1

t1

v2

t2

v3

t3

v4

t4

v5

t5

v6

t6

a

0.1

0.3

0.
1

0.
5

b

a 0.9

0.1

a
0.2

0.8

b

0.
7

0.3

a

a

0.5

0.5

a

b
a

a

b

a
a

a

Figure 2.5: A PA M (left) and its embedding G = αPA(M) (right)

For a state s ∈ T0, the reachability probability is set depending on the objective of its associated player:
if it is to maximize then the reachability probability is set to 0; otherwise 1. If s ∈ S1 \ (T ∪T0) then for
the next iteration the reachability probability of s is the optimal value of the set {w(µ) | s τ→ µ} w.r.t.
the objective 1; and if s ∈ S2 \ (T ∪T0), it is w.r.t. the objective 2. Note that Prt12 is a monotonic function
over W and, by Tarski’s theorem [T+55], has a least and a greatest fixpoint. This definition provides the
basis to compute reachability probabilities.

Example 5. For PGA G in Fig. 2.4, let 1 = max, 2 = min, T = {t3} and w0 be a probability valuation
function with w0(t3) = 1 and w0(v) = 0 for every v ∈ S\{t3}. Then w1 = Prt12(w0) with w1(t3) = 1,
w1(s1) = 0.5, w1(s2) = 1 and w1(v) = 0 for every v ∈ S\{t3,s1,s2}. Note that the probability valuation
function w with w(s0) = 0.25, w(s1) = 0.5, w(s2) = 1, w(s3) = 0, w(s4) = 0, w(t1) = 0.5, w(t2) = 0, and
w(t3) = 1 is a fixpoint of Prt12.

Embedding of PA into PGA

In the following, we show how a PA can be embedded into a PGA. For a state s ∈ S, let s be a copy of s.

Definition 10. For PA M , the bijective embedding function α : S→ S′2 induces the PGA α(M) = G ′ =
(S′,{S′1,S′2},A′,∆′,s′0) where A′ = A, S′1 = {s′ | s′ ∈ S′2}— S′1 is a copy of S′2 —, s′0 = α(s0) and for every
s′ ∈ S′2:

1. s′ a→ µ ′ iff α−1(s′) a→ µ and µ ′(u′) = µ(α−1(u′)) for all u′ ∈ S′2,

2. s′ a→ ιs′ iff α−1(s′) ∈ Supp(µ) for some u ∈ S such that (u,a,µ) ∈ ∆ in M .

Let αPA denote an embedding function for PA.

16

2.4. SIMULATION RELATIONS ON PA

Example 6. Let G = αPA(M) (see Fig. 2.5) with S2 = {t0, . . . , t6} and S1 = {v0, . . . ,v6}, α
−1
PA (ti) = si,

and ti = vi, for i = 0 to 6. For convenience, the si states are depicted inside the corresponding states vi

and ti. We have e.g., v2
b→ µ ′ with µ ′(t1) = 7

10 and µ ′(t3) = 3
10 and t1

b→ v1 and t3
b→ v3, as in PA M we

have s2
b→ µ with µ(s1) = 7

10 and µ(s3) = 3
10 .

Combined hyper-transitions

We now adapt hyper and combined transitions – convex combinations of sets of transitions – for PA [Seg95,
LSV07] to PGA.

Definition 11. For PGA G with s ∈ S and µ ∈ Dist(S), we write:

- µ
a→ η is a hyper-transition iff η =

⊕{µ(s) ·ρ | ∃s ∈ Supp(µ) : s a→ ρ}. Let ∆(µ,a) = {η | ∃η ∈
Dist(S) : µ

a→ η}; and ∆(µ) = {(a,ν) | ∃a ∈ A,ν ∈ Dist(S) : µ
a→ ν}.

- s a→c η is a combined transition iff there is a finite indexed set {(ci,ηi)}i∈I such that s a→ ηi and
ci ∈ R≥0 for all i ∈ I, ∑i∈I ci = 1 and η =

⊕
i∈I ci ·ηi.

- µ
a→c η is a combined hyper-transition iff η =

⊕{µ(s) ·ρ | ∃s ∈ Supp(µ) : s a→c ρ}.

2.4 Simulation Relations on PA

Simulation relations are used to compare the behaviour of systems. They have been extensively dis-
cussed both for non-probabilistic [Mil89, LV92] as well as probabilistic systems [Seg95, SL95, DKL+11,
SK12]. For non-probabilistic systems, they are defined over the states of systems; however, for proba-
bilistic cases, they have also been defined over the distributions over states [Seg95, EHZ10, DHR08].

The state-based notion of simulation for probabilistic systems [JL91] is a preorder on a state space re-
quiring that whenever state u simulates state s, then u can mimic the stepwise behaviour of s but may
have more behaviour. This notion can be lifted to distributions over states using weight functions [JL91]
as:

Definition 12. Let S be a finite, non-empty set of states, and let µ,µ ′ ∈ Dist(S). For R ⊆ S× S, µ ′

simulates µ w.r.t. R, denoted µRµ ′, iff there exists a weight function δ : S× S→ [0,1] such that for all
u,v ∈ S:

1. δ (u,v) > 0⇒ uRv,

2. ∑s∈S δ (u,s) = µ(u), and

3. ∑s∈S δ (s,v) = µ ′(v).

In [BEMC00], it has been shown that simulation preorders can be computed by reducing them to
maximum-flow problems in suitable networks.

17

CHAPTER 2. PRELIMINARIES

s0

s2

s1

s4

s3

s5

a

0.5

0.
5

ν
0.25

0.5

0.
25

a

a

a

Figure 2.6: s0 ≺paf J0.5s3,0.25s4,0.25s5K

2.4.1 Segala’s Probabilistic (Bi)Simulation Relations

We now recall Segala’s probabilistic simulation, forward simulation and bisimulation [Seg95, LSV07]
relations for PA.

Definition 13. (Simulation). R ⊆ S× S is a simulation relation on PA M iff for every sRs′, s a→ µ

implies s′ a→c µ ′ such that µRµ ′. If it also holds that s′ a→ µ ′ implies s a→c µ such that µRµ ′, then R is a
bisimulation relation.

We can lift ≺pa (∼pa) to PA in the usual way: M ≺pa M ′ (M ∼pa M ′) for PA M and M ′, with initial
states s0 and s′0, iff s0 ≺pa s′0 (s0 ∼pa s′0) in the disjoint union of M and M ′. In the sequel, we will adopt
this convention for all relations.

Note that R is defined at the level of states; whereas µRµ ′ denotes µ and µ ′ are related by Def. 12 w.r.t.
R.

Example 7. Ignoring the action labels of PA M (Fig. 2.2), M simulates the DTMC L (Fig. 2.1),
i.e., L ≺pa M as R =

⋃
i=0...5{(ui,si)} is a simulation relation between states of L and M . Moreover,

PA M and M ′ (Fig. 2.2) are bisimilar, i.e., R′ = {(s0,s′0),(s1,s′1),(s2,s′2),(s3,s′2),(s4,s′3),(s5,s′4)} is a
bisimulation relation relating the initial states of M and M ′.

Segala’s probabilistic forward simulation is based on distributions over states rather than states.

Definition 14. (Forward Simulation). R⊆ S×Dist(S) is a probabilistic forward simulation relation on
PA M iff for every sRµ , s a→ η implies µ

a→ η ′ such that ∀u ∈ Supp(η), ∃η ′u ∈ SDist(η ′) : uRη ′u↓. Let
≺paf be the largest forward simulation relation.

Note that for sRµ , an a-transition from s to some η implies a hyper a-transition from µ to η ′ such that
η ′ splits into sub-distributions as per the support of η , i.e., for every u ∈ Supp(η), there exists a sub-
distribution η ′u of η ′, and the conditional distribution of η ′u is related to u. Recall that every state can also
be represented by a Dirac distribution, and hence R is directly defined at the level of distributions over
states instead of states. Note that in uRη ′u↓, u and η ′u↓ are not related by Def. 12.

18

2.5. BISIMULATION MINIMIZATION

Example 8. In Fig. 2.6, s0 ≺paf J0.5s3,0.25s4,0.25s5K = ν as R = {(s1, ιs1),(s2, ιs2),(s0,J0.5s3,0.25s4,
0.25s5K)} is a probabilistic forward simulation relation. Let us check the conditions of Def. 14 for s0 and
ν . For the a-transition from s0 to J0.5s1,0.5s2K, there is an a-transition from ν to J0.5s1,0.5s2K, and the
condition of splitting the target distributions into sub-distributions trivially holds.

2.5 Bisimulation Minimization

Bisimulation relations, in fact, relate those states of a system that cannot be distinguished apart in any
aspect, i.e, they as well as their successors mimic the step-wise behaviour of each other. This provides a
recipe to reduce the state space of a system, by merging bisimilar states, without compromising its be-
haviour. Therefore, bisimulation is an important minimization technique that has been used for all kinds
of models. In fact, bisimulation is the coarsest equivalence that is compatible with trace equivalence, that
is, there cannot exist another equivalence that implies trace equivalence and that collapses more states.
Moreover, bisimulation minimization is a fully automated technique that can be done compositionally
and it preserves exact probabilities (of almost all interesting measures).

However, bisimulation is not always a suitable technique for reduction. It may, sometimes, not induce
a required reduction — in case of infinite state models, it is not always possible to reduce them to finite
state models using bisimulation minimization — that otherwise is possible using other aggressive reduc-
tion techniques based on grouping (possibly) non-bisimilar states like three-valued abstraction [Kli10],
etc. Such aggressive reduction techniques preserve simulation relations between concrete and abstract
models, and they are not always fully automated (or involve more complex algorithms).

In the next chapter, we introduce (alternating) simulation relations for PGA and show that they pre-
serve reachability probabilities. Later on in Ch. 4 and 5, these relations compare abstract with concrete
models.

19

3
Relations on Stochastic Games

In this chapter, we discuss relations for comparing stochastic games. Stochastic games have the notion of
players which, therefore, calls for defining two preorders (and equivalences) on their state spaces: simu-
lation and alternating simulation relations. Simulation relations are of interest when both of the players
have identical objectives, whereas alternating simulation relations are useful for competitive objectives.
We define simulation and alternating simulation relations at the level of states as well as distributions
over states and study their ordering. Moreover, we show that these relations preserve reachability prob-
abilities. Later on in Ch. 5, we discuss abstraction of PGA and show that (some implementations of)
abstract models are related to concrete models through these simulation relations. In Ch. 4, we also
show these relations to be pre-congruences w.r.t. parallel composition for (a class of) probabilistic game
automata (PGA), thus, enabling compositional abstraction of P(G)A.

3.1 Simulation Relations

Simulation relations are typically defined over the states of models; however in the probabilistic settings,
coarser relations have been considered over the distributions over states [Seg95, EHZ10, DHR08]. We
define simulation relations for PGA, that are state-based as well as distribution-based, and prove them to
be preorders.

3.1.1 State-based Simulation Relation

State-based simulation relations are preorders on a state space requiring that whenever a state s′ simulates
a state s, then s′ can mimic at least the step-wise behaviour of s. Formally,

Definition 15. (State-based Simulation). R⊆⋃ j∈{1,2} S j×S j is a state-based simulation (SBS) relation
on a PGA G iff for every sRs′,

• s a→ µ implies s′ a→c µ ′ with µRµ ′.

Let ≺sb be the largest SBS relation.

Def. 15 asserts that, for sRs′, an a-transition from s implies a combined a-transition from s′ such that
the resulting distributions are related (by Def. 12) w.r.t. R. Note that player-one(two) states can only be
related with player-one(two) states.

21

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

Proposition 1. For PGA G and G ′, G ≺sb G ′ implies τ(G)≺sb τ(G ′).

Lemma 1. Let µ1 ∈ Dist(U1), µ2 ∈ Dist(U2) and µ3 ∈ Dist(U3). Let R ⊆U1×U2 and R′ ⊆U2×U3 be
relations such that R′′ ⊆U1×U3 and R′′ = R◦R′ (composition of R and R′), then:

µ1Rµ2 and µ2R′µ3 implies µ1R′′µ3

Proof. In order to prove that µ1R′′µ3, we need to show that there exists a weight function for distributions
µ1 and µ3 w.r.t. relation R′′. Let δ and δ ′ be the weight functions for distributions µ1 and µ2 w.r.t. relation
R, and µ2 and µ3 w.r.t. relation R′ respectively. We define a weight function for distributions µ1 and µ3
w.r.t. relation R′′ such that for all u1 ∈U1, u2 ∈U2 and u3 ∈U3:

δ
′′(u1,u3) = ∑

u2∈U2

δ (u1,u2) ·δ ′(u2,u3)

µ2(u2)

and prove that it fulfils the three conditions of a weight function (Def. 12).

1. It follows trivially from the definition.

2. The proof of δ ′′(u1,U3) = µ1(u1) goes as follows:

∑
u3∈U3

δ
′′(u1,u3) = ∑

u3∈U3

∑
u2∈U2

δ (u1,u2) ·δ ′(u2,u3)

µ2(u2)

= ∑
u2∈U2

δ (u1,u2) ·∑u3∈U3 δ ′(u2,u3)

µ2(u2)

= ∑
u2∈U2

δ (u1,u2) ·δ ′(u2,U3)

µ2(u2)

= ∑
u2∈U2

δ (u1,u2) ·µ2(u2)

µ2(u2)

= µ1(u1)

3. This is proven along the same lines as case two.

Theorem 1. ≺sb is a preorder.

22

3.1. SIMULATION RELATIONS

Proof. Reflexivity: It follows trivially from Def. 15.

Transitivity: Let G = (S,{S1,S2},A,∆,s0), G ′ = (S′,{S′1,S′2},A,∆′,s′0) and G ′′ = (S′′,{S′′1 ,S′′2},A,∆′′,s′′0)
be PGA. Let G ≺sb G ′ and G ′ ≺sb G ′′, then we prove that G ≺sb G ′′ holds. Let R1 be an SBS relation
between G and G ′, and R2 between G ′ and G ′′. We define the relation R⊆ (S1×S′′1)∪ (S2×S′′2) as:

R = {(s,s′′) | sR1s′,s′R2s′′ for s′ ∈ S′}

and show that it fulfils the conditions of Def. 15.

Assume sRs′′, and let s a→ µ . As sR1s′, by Def. 15, s′ a→c µ ′ such that µR1µ ′. Similarly, as s′ a→c µ ′ and
s′R2s′′, it implies by Def. 15 that s′′ a→c µ ′′ with µ ′R2µ ′′. As µR1µ ′ and µ ′R2µ ′′, this implies by Lem. 1
that µRµ ′′.

Note that for PA, SBS relations coincide with Segala’s simulation (see Def. 13 on page 18) relations;
in that case R in Def. 15 is defined only for j = 1. The following proposition trivially follows from the
definitions of ≺sb and ≺pa.

Proposition 2. ≺sb =≺pa for PA.

3.1.2 Distribution-based Simulation Relation

Distribution-based simulation relations are preorders on distributions over a state space requiring that
whenever a distribution µ ′ simulates a distribution µ , then µ ′ can mimic at least the step-wise behaviour
of µ . Formally,

Definition 16. (Distribution-based Simulation). R ⊆ ⋃ j∈{1,2}Dist(S j)×Dist(S j) is a distribution-
based simulation (DBS) relation on a PGA G iff for every µRµ ′,

1. µ =
⊕

s′∈Supp(µ ′) µs′ and ∀s′ ∈ Supp(µ ′) : (µ ′(s′) = |µs′ | and µs′↓Rιs′), and

2. µ
a→ ρ implies µ ′ a→c ρ ′ such that |ρ| ≤ |ρ ′| and ρ↓Rρ ′↓.

Let ≺db be the largest DBS relation. We write s≺db s′ iff ιs ≺db ιs′ .

By condition (1), µ splits into sub-distributions as per the support of µ ′, i.e., for every s′ ∈ Supp(µ ′),
there exists a sub-distribution µs′ of µ such that the conditional distribution of µs′ is related to ιs′ . By
condition (2), an a-transition from µ to some ρ implies a combined a-transition from µ ′ to ρ ′ such that
the mass of ρ ′ is at least that of ρ and their conditional distributions are related.

Example 9. In Fig. 3.1, µ = J0.3u3,0.3u4,0.4u5K≺db ιu0 as R = {(ιu1 , ιu1),(ιu2 , ιu2),(J0.3u3,0.3u4,0.4u5
K, ιu0),(J0.5u1,0.5u2K,J0.5u1,0.5u2K)} is a DBS relation. Let us check the conditions of Def. 16 for µ

and ιu0 . The condition (1) trivially holds for µ and ιu0 . For the a-transition from µ to ρ = J0.3u1,0.3u2K,
there is an a-transition from ιu0 to ρ ′ = J0.5u1,0.5u2K such that |ρ| ≤ |ρ ′| and ρ↓Rρ ′. The same holds for
the b-transitions from µ and ιu0 , thus fulfilling condition (2). Note that no SBS relation exists associating
u0 with any other state in Fig. 3.1.

23

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

u0

u2

u1

u4

u3

u5

a

0.5

0.
5

b µ0.3

0.3

0.
4

a

a

b

Figure 3.1: J0.5u3,0.5u4K≺db ιu0 but ui 6≺sb u0 for i ∈ {3,4}.

v′0

v′1

v′2

v′3

v′4t ′0

t ′1

t ′2

t ′3

a 0.4

0.6
c

0.
25

0.75

b

b

a

c

c

c b

v0

v1

v2

v3

v4

v5
t0

t1

t2

t3

a

0.2

0.2

0.6

c

0.
5

0.5

c

b

a

c

c

c

b

Figure 3.2: G (left) ≺db G ′ (right).

The following example illustrates a DBS relation between two PGA which are not related by any SBS
relation.

Example 10. Consider PGA G and G ′ in Fig. 3.2. G ≺db G ′ as R = {(ιv3 , ιv′2
),(ιv2 , ιv′1

),(ιv5 , ιv′4
),(ιv4 , ιv′3

)}
∪{(J0.2v0,0.2v1,0.6v2K,J0.4v′0,0.6v′1K),(J0.2v0,0.2v1K↓, ιv′0

),(J0.25t1,0.75t2K,J0.25t ′1,0.75t ′2K),(J0.25v3,
0.75v4K,J0.25v′2,0.75v′3K)}∪

⋃
i=0...3{(ti, t ′i)} is a DBS relation. Let us consider the distributions µ =

J0.2v0,0.2v1,0.6v2K and µ ′ = J0.4v′0,0.6v′1K, and check the conditions of Def. 16. For v′0 ∈ supp(µ ′),
J0.2v0,0.2v1K is the sub-distribution of µ and J0.2v0,0.2v1K↓Rιv′0

holds. Similarly, for v′1 ∈ Supp(µ ′), we
have J0.6v2K as the sub-distribution of µ and ιv2Rιv′1

holds. Now for the b-transition from µ to J0.6t3K,
there is a b-transition from µ ′ to ιt ′3

such that |J0.6t3K| ≤ 1 and ιt3Rιt ′3
hold. Similarly, for the c-transition

from µ to ρ = J0.1t1,0.3t2K, there is a c-transition from µ ′ to ρ ′ = J0.1t ′1,0.3t ′2K such that |ρ|= |ρ ′| and
ρRρ ′ hold , thus, fulfilling the conditions of Def. 16. Note that no SBS relation exists between G and G ′

as v0 and v1 are not simulated by any state in G ′.

Unlike SBS relations (see Proposition 1), a DBS relation between two PGA does not imply a DBS
relation between their closed versions.

24

3.1. SIMULATION RELATIONS

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

a

0.
1

0.3

0.05

0.05

0.
5 a

0.2

0.3

0.
5

a

a
0.5

0.5

a

a

b

a
a

b

a

b a

0.
5

0.
5

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

v′0

t ′1

v′1

v′2

t ′2

v′3
t ′3

v′4
t ′4

a 0.5

0.5
a

a
0.5

0.5

a

b a

0.
5

0.5

b

a 0.
8

0.
2

a

a

Figure 3.3: For PA M (left) with G = αPA(M) and PGA G ′ (right), G ≺db G ′ and τ(G) 6≺db τ(G ′).

Proposition 3. For PGA G and G ′, G ≺db G ′ does not imply τ(G)≺db τ(G ′).

Example 11. Consider PA M (left) with G = αPA(M) and PGA G ′ (right) in Fig. 3.3. Note that
G ≺db G ′ whereas τ(G) 6≺db τ(G ′). Let us consider the distribution µ = J0.5v3,0.5v4K in PGA G ; note
that µ ≺db ιv′2

in PGA G ′. But in τ(G), there is a transition µ → J0.5t5,0.5t7K that is not simulated by
any transition from ιv′2

in τ(G ′).

Moreover, DBS relations are not comparable to Segala’s probabilistic forward simulation relations (see
Def. 14 on page 18).

Proposition 4. ≺db and ≺paf are incomparable for PA.

Example 12. Consider the distributions ν and µ in Fig. 2.6 and 3.1 respectively. By checking the
conditions of Def. 14 and 16, we find that s0 ≺paf J0.5s3,0.25s4,0.25s5K whereas s0 6≺db J0.5s3,0.25s4,
0.25s5K; and J0.3u3,0.3u4,0.4u5K≺db ιu0 whereas J0.3u3,0.3u4,0.4u5K 6≺paf ιu0 .

Theorem 2. ≺db is a preorder.

25

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

Proof. Reflexivity: It follows trivially from Def. 16.

Transitivity: Let G = (S,{S1,S2},A,∆,s0), G ′ = (S′,{S′1,S′2},A,∆′,s′0) and G ′′ = (S′′,{S′′1 ,S′′2},A,∆′′,s′′0)
be PGA. Let G ≺db G ′ and G ′ ≺db G ′′. We prove that G ≺db G ′′ holds. Let R1 be a DBS relation between
G and G ′, and R2 between G ′ and G ′′. We define the relation R ⊆ (Dist(S1)×Dist(S′′1))∪ (Dist(S2)×
Dist(S′′2)) as:

R = {(µ,µ ′′) | ∃µ
′ ∈ S′ : µR1µ

′ and µ
′R2µ

′′}
and show that it fulfils the conditions of Def. 16.

Assume µRµ ′′ where µR1µ ′ and µ ′R2µ ′′ for some µ ′ ∈ Dist(S′).

1. As R2 is a DBS relation and µ ′R2µ ′′, µ ′ can be split into sub-distributions according to the support
of µ ′′, i.e., µ ′ =

⊕
s′′∈Supp(µ ′′) µ ′s′′ such that |µ ′s′′ | = µ ′′(s′′) and µ ′s′′↓R2ιs′′ for all s′′ ∈ Supp(µ ′′).

Similarly, as R1 is a DBS relation and µR1µ ′, we have µ =
⊕

s′∈Supp(µ ′) µs′ such that |µs′ |= µ ′(s′)
and µs′↓R1ιs′ for all s′ ∈ Supp(µ ′).

Let s′′ ∈ Supp(µ ′′) such that µ ′s′′ is its corresponding sub-distribution of µ ′. As each state in the
support of µ ′s′′ has a corresponding sub-distribution in µ , we can create a sub-distribution of µ that
corresponds to µ ′s′′ and subsequently to s′′, i.e., µs′′ =

⊕
u′∈Supp(µ ′s′′)

µ ′s′′(u′) · (µu′↓). This shows that
µ can be split into sub-distributions according to the support of µ ′′.

Let s′′ ∈ Supp(µ ′′), then µ ′s′′ is a sub-distribution for s′′ in µ ′ which have a corresponding sub-
distribution µs′′ in µ . Thus, µ ′′(s′′) = |µ ′s′′ |= |µs′′ |. Now as µ ′R2µ ′′, by Def. 16 µ ′s′′↓R2ιs′′ ; and as
µR1µ ′ and by Def. 16 µu′↓R1ιu′ for every u′ ∈ Supp(µ ′s′′)⊆ Supp(µ ′), therefore µs′′↓R1µ ′s′′↓. Thus,
µs′′↓Rιs′′ .

2. Let µ
a→ ν . As µR1µ ′, by Def. 16, µ ′ a→c ν ′ such that |ν ′| ≥ |ν | and ν↓R1ν ′↓. Similarly, as µ ′ a→c ν ′

and µ ′R2µ ′′, it implies by Def. 16 that µ ′′ a→c ν ′′ with |ν ′′| ≥ |ν ′| and ν ′↓R2ν ′′↓ . As |ν | ≤ |ν ′| and
|ν ′| ≤ |ν ′′|, thus |ν | ≤ |ν ′′|; and as ν↓R1ν ′↓ and ν ′↓R2ν ′′↓ , thus ν↓Rν ′′↓ .

3.1.3 State-based vs. Distribution-based Simulation Relations

Although state-based simulation relations can be lifted from states to distributions over states (by Def.
12), ≺sb (lifted to distributions over states) and ≺db are not comparable in general. However, for closed
PGA, ≺sb is a subset of ≺db.

Proposition 5. ≺sb and ≺db are incomparable for PGA; and ≺sb ⊆≺db for closed PGA.

Example 9 illustrates that DBS relations do not imply SBS relations. Similarly, SBS relations do not
imply DBS relations, as illustrated by the following example.

Example 13. R =
⋃

i=0...2{(ti, t ′i)}∪
⋃

i=0...3{(vi,v′i)} is an SBS relation between PGA G and G ′ in Fig.
3.4. Note that a DBS relation cannot be defined between G and G ′. This is because the a-transition

26

3.2. ALTERNATING SIMULATION RELATIONS

v0

v1

v2

v3

t0

t1

t2

a 0.
4

0.6

a

b

a

b

a

v′0

v′1

v′2

v′3

t ′0

t ′1

t ′2

a 0.
4

0.6

a

a

b

a

b

a

a

Figure 3.4: For PGA G (left) and G ′ (right), G ≺sb G ′ but G 6≺db G ′.

from distribution J0.4v0,0.6v1K to J0.4t1K is not simulated by the a-transition from J0.4v′0,0.6v′1K to
J0.4t ′1,0.6t ′2K.

3.2 Alternating Simulation Relations

To compare two-player stochastic games with competitive objectives (e.g., if player one maximises the
probability to reach a certain goal state, her opponent (player two) will try to minimize this quantity), we
use alternating simulation relations.

3.2.1 State-based Alternating Simulation Relation

Like state-based simulation relations, state-based alternating simulation relations are intended to be pre-
orders on a state space requiring that whenever a state s′ simulates a state s, then if s′ ∈ S2, s′ can mimic
at least the step-wise behaviour of s; otherwise, if s′ ∈ S1, s can mimic at least the step-wise behaviour of
s′. Our state-based alternating simulation relations are inspired by the notions of alternating simulation
of [AHKV98] and strong probabilistic game simulation of [Kat10].

Definition 17. (State-based Alternating Simulation). R⊆ ⋃ j∈{1,2} S j×S j is a state-based alternating
simulation (SBAS) relation for a PGA G iff for every sRs′ the following holds:

1. if s,s′ ∈ S1, then s′ a→ µ ′ implies s a→c µ such that µRµ ′,

2. if s,s′ ∈ S2, then s a→ µ implies s′ a→c µ ′ such that µRµ ′.

Let 2sb be the largest SBAS relation. We write “s′ A-simulates s” iff s 2sb s′.

Intuitively, in case of player-one states, the behaviour of s′ is mimicked by that of s; whereas in case of
player-two states, it is the other way round. The condition (1) asserts that if s,s′ ∈ S1, then an a-transition
from s′ implies a combined a-transition from s and the resulting distributions are related (by Def. 12)
w.r.t. R. The condition (2) asserts that if s,s′ ∈ S2, the similar conditions as in (1) hold for every transition
from s.

27

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

Proposition 6. For PGA G and G ′, G 2sb G ′ implies τ(G) 2sb τ(G ′).

Theorem 3. 2sb is a preorder.

Proof. The proof of the above theorem follows the similar lines as that of Th. 1.

Remark 1. The strong probabilistic game simulation relation in [Kat10, Def. 6.10] is obtained by
lifting Def. 15 and 17 to player-two states (by considering hyper-transitions from player-one states) and
merging their conditions.

Note that for PA, SBAS relations coincide with SBS relations — if S1 = /0, then R⊆ S2×S2 and condition
(1) in Def. 17 becomes irrelevant. The following proposition follows directly from the definitions of ≺sb
and 2sb.

Proposition 7. ≺sb = 2sb for PA.

3.2.2 Distribution-based Alternating Simulation Relation

Like distribution-based simulation relations, distribution-based alternating simulation relations are in-
tended to be preorders on distributions over a state space requiring that whenever a distribution µ ′ simu-
lates a distribution µ , then if µ ′ ∈Dist(S2), µ ′ can mimic at least the step-wise behaviour of µ; otherwise,
if µ ′ ∈ Dist(S1), µ can mimic at least the step-wise behaviour of µ ′. Formally,

Definition 18. (Distribution-based Alternating Simulation). R ⊆ ⋃ j∈{1,2}Dist(S j)×Dist(S j) is a
distribution-based alternating simulation (DBAS) relation for a PGA G iff for every µRµ ′:

1. µ =
⊕

s′∈Supp(µ ′) µs′ and ∀s′ ∈ Supp(µ ′) : (µ ′(s′) = |µs′ | and µs′↓Rιs′),

2. if µ,µ ′ ∈ Dist(S1), µ ′ a→ ρ ′ implies µ
a→c ρ such that |ρ| ≥ |ρ ′| and ρ↓Rρ ′↓,

3. if µ,µ ′ ∈ Dist(S2), µ
a→ ρ implies µ ′ a→c ρ ′ such that |ρ| ≤ |ρ ′| and ρ↓Rρ ′↓.

Let 2db be the largest DBAS relation. We write “µ ′ A-simulates µ” iff µ 2db µ ′.

28

3.3. REACHABILITY PROBABILITIES AND (ALTERNATING) SIMULATION RELATIONS

The condition (1) is the same as in Def. 16. By condition (2), if µ,µ ′ ∈ Dist(S1), then an a-transition
from µ ′ to some ρ ′ implies a combined a-transition from µ to ρ such that the mass of ρ is at least that
of ρ ′ and their conditional distributions are related. And by condition (3), if µ,µ ′ ∈Dist(S2), the similar
conditions as in (2) hold for every transition from µ .

Theorem 4. 2db is a preorder.

Proof. The proof of the above theorem follows the similar lines as that of Th. 2.

Proposition 8. For PGA G and G ′, G 2db G ′ does not imply τ(G) 2db τ(G ′).

Moreover, like state-based relations (see Proposition 7), DBS relations coincide with DBAS relations for
PA. The following proposition follows directly from the definitions of ≺db and 2db.

Proposition 9. ≺db = 2db for PA.

3.2.3 State-based vs. Distribution-based Alternating Relations

Like simulation relations, alternating simulation relations are not comparable in general. However, for
closed PGA, 2sb is a subset of 2db.

Proposition 10. 2sb and 2db are incomparable in general; and 2sb ⊆2db for closed PGA.

3.3 Reachability Probabilities and (Alternating) Simulation Relations

In this section, we discuss that simulation/alternating simulation relations between closed PGA provide
bounds on their reachability probabilities when players collaborate/compete with each other. In fact,
simulation relations between PGA bound their maxN and minH values; whereas alternating simulation
relations bound their maxH and minN values.

Theorem 5. For x ∈ {sb,db}, and PGA G and G ′:

29

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

• Let G ≺x G ′, T ⊆ S with T ′ = {s′ ∈ S′ | ∃µ ∈ Dist(S) : µ(T) > 0 and µ ≺x s′}, then
minH(T ′)≤minH(T) and maxN(T)≤maxN(T ′).

• Let G 2x G ′, T ⊆ S with T ′′ = {s′ ∈ S′ | ∃µ ∈ Dist(S) : µ(T) > 0 and µ 2x s′}, then
minN(T)≤minN(T ′′) and maxH(T ′′)≤maxH(T).

Proof. We only prove these two claims for distribution-based relations, as the proof for state-based
relations is similar. Moreover, we give a proof for minN(T)≤minN(T ′′), as the proof for the other cases
(e.g., maxH(T ′′)≤maxH(T)) is similar to this.

For PGA G and G ′, let G 2db G ′. Let T ⊆ S be a set of goal states such that T ′′ = {s′ ∈ S′ | ∃µ ∈
Dist(S) : µ(T) > 0 and µ 2db s′}. Let G̃ be the closed version of the disjoint union of G and G ′ such
that T̃ = T ∪T ′′.

Let 1 = min and 2 = max be the objectives of players one and two respectively, such that Prtmin
max : W →W

(see Def. 9) is a probability valuation transformer function for G̃ .

We prove that ιs0 2db ιs′0
implies minN(T)≤minN(T ′′). The proof is by induction on ordered functions

in W .

Base case: For w0 = Prtmin
max(⊥), we have w0(u) = 1 if u ∈ T̃ and w0(u) = 0 otherwise.

For µ,η ∈ Dist(S̃) such that µ 2db η , we show w0(µ) ≤ w0(η). Let s ∈ Supp(η), then µs is a sub-
distribution of µ for s; and µs↓ 2db ιs (Def. 18). Let µs↓(T) > 0, then s ∈ T ′′, w0(µs↓) = ∑v∈T µs↓(v) ·
w0(v)≤ 1 and w0(s) = 1. Thus, ∑s∈Supp(η) η(s) ·w0(µs↓) = w0(µ)≤ w0(η) = ∑s∈Supp(η) w0(s).

Induction hypothesis: For wn = (Prtmin
max)n(⊥), let wn(ν) ≤ wn(ρ) for n ≥ 0 if ν 2db ρ for all ν ,ρ ∈

Dist(S̃). We show that it also holds for n + 1, i.e., wn+1(ν)≤ wn+1(ρ).

For µ,η ∈ Dist(S̃) such that µ 2db η , there are two cases:

1. µ,η ∈ Dist(S̃1): There are two cases:

• Let η→ η ′, then by Def. 18, µ→c µ ′ such that µ ′2db η ′. By induction hypothesis wn(µ ′)≤
wn(η ′). As 1 = min, therefore wn+1(µ) = minµ→cµ ′ wn(µ ′)≤minη→η ′ wn(η ′) = wn+1(η).

• Let Act(s) = /0 for all s ∈ Supp(η). By Def. 9 wn+1(s) = 1. Thus, wn+1(µ)≤ wn+1(η).

2. µ,η ∈ Dist(S̃2): There are two cases:

• Let µ→ µ ′, then by Def. 18, η→c η ′ such that µ ′2db η ′. By induction hypothesis wn(µ ′)≤
wn(η ′). As 2 = max, therefore wn+1(µ) = maxµ→µ ′ wn(µ ′)≤maxη→cη ′ wn(η ′) = wn+1(η).

• Let Act(s) = /0 for all s ∈ Supp(µ). By Def. 9 wn+1(s) = 0. Thus, wn+1(µ)≤ wn+1(η).

As Prt12 is a monotonic function over W , by Tarski’s theorem [T+55],it has a least and a greatest fixpoint,
i.e., w = Fix Prtmin

max(⊥). Moreover, as G 2db G ′, therefore ιs0 2db ιs′0
and from above w(ιs0) ≤ w(ιs′0

).
Hence, minN(T)≤minN(T ′′) holds.

30

3.4. SUMMARY AND DISCUSSION

s0 s1

s2

s3

s4s5

s6

s7

s8

s9

v0

v1

t1

v2

v3

v4

t2

v5

t3

v6

t4

0.
5

0.5

0.5

0.5

0.
5

0.5

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

v′0

t ′1

v′1

v′2

t ′2

v′3
t ′3

v′4
t ′4

0.5

0.5

0.5

0.5

0.
5

0.5

0.
8

0.
2

0.
5

0.5

Figure 3.5: For PGA G (left) and G ′ (right). G ≺db G ′ and G 2db G ′.

Example 14. Consider PGA G and G ′ in Fig. 3.5, where G ≺db G ′ and G 2db G ′. Let T = {t4} such
that T ′ = T ′′ = {t ′4} for Th. 5. Then the maximum probability in PGA G to T lies in [0.25,0.5], whereas
in G ′ it lies in [0.3,0.3] for T ′.

3.4 Summary and Discussion

In this chapter, we defined two (alternating) simulation preorders for PGA: a state-based as well as a
distribution-based one. Simulation relations are of interest when both players have identical objectives,
whereas alternating simulation relations are useful for competitive objectives; moreover, simulation and
alternating simulation relations coincide for models — like Segala’s PA — in which state spaces are
not partitioned. We showed that state-based and distribution-based relations are incomparable in general
but for closed PGA the former implies the latter. Moreover, state-based relations between PGA imply
state-based relations between their closed versions. A similar result for distribution-based relations does
not hold. Finally, both state-based and distribution-based relations preserve reachability probabilities.
An overview of the results of this chapter is given in Table 3.1.

Related work: The concept of distribution-based relation (probabilistic forward simulation) was first
introduced in [Seg95, LSV07] for PA. In [EHZ10], distribution-based weak bisimulation has been de-
fined for Markov automata — PA with exponentially distributed delays in states. In [DHR08], distri-
bution-based bisimulation was studied in the context of language equivalence of Rabin’s deterministic
PA; this was extended to the non-deterministic case in [FZ14]. More recently, in [HKK14] bisimula-
tion for probabilistic systems with uncountable state and action spaces has been defined, which extends
[FZ14].

The notion of state-based probabilistic alternating simulation has been discussed in [ZP10, Kat10], which

31

CHAPTER 3. RELATIONS ON STOCHASTIC GAMES

Simulation relations

State-based (≺sb) Distribution-based (≺db)

preorder + +

monotonicity of closing (τ) + -

For Segala’s PA ≺sb =≺pa ≺db 6=≺paf

For PGA G ≺sb G ′⇒ τ(G)≺sb τ(G ′) G ≺db G ′ 6⇒ τ(G)≺db τ(G ′)

For PGA ≺sb 6=≺db

For closed PGA ≺sb ⊆≺db

Alternating simulation relations

State-based (2sb) Distribution-based (2db)

preorder + +

monotonicity of closing (τ) + -

For Segala’s PA 2sb =≺sb =≺pa 2sb = 2db

For PGA G 2sb G ′⇒ τ(G) 2sb τ(G ′) G 2db G ′ 6⇒ τ(G) 2db τ(G ′)

For PGA 2sb 6= 2db

For closed PGA 2sb ⊆2db

Preservation of reachability probabilities

≺sb and ≺db yield minH and maxN

2sb and 2db yield minN and maxH

Table 3.1: Summary of (alternating) simulation relations.

can be obtained by merging our Def. 15 and 17 and lifting them to player-two states. In [ZP10], prob-
abilistic forward simulation ([Seg95, LSV07]) was extended to give alternating simulation relations for
games. This notion, however, is not comparable to our notion of distribution-based alternating simulation
relation.

Future extensions: In the literature, many algorithms have been proposed to check state-based relations
for probabilistic systems; however, very little has been done for distribution-based relations. To build
upon this work, one can consider:

• adapting the algorithm in [HKK14] — that checks distribution-based bisimulation relation for
probabilistic systems — for (alternating) simulation relations between stochastic games,

• defining weak variants of (alternating) simulation relations with and without preserving branching
structures of models, and

• logical characterization of (alternating) simulation relations.

32

3.4. SUMMARY AND DISCUSSION

In the next chapter, we introduce a new modeling formalism for stochastic games that extend PGA
with required and possible modalities, called abstract PGA (APGA). We equip APGA with notions of
refinements; define a composition operator for it; and show that refinement relations are pre-congruences
w.r.t. composition preserving reachability probabilities.

33

4
Stochastic Games with Modalites

Many researchers have introduced modeling formalisms that over- and under-approximate the behaviour
of probabilistic systems with different transition functions. In [KKLW12, KKN09], extensions of Markov
decision processes (MDPs) and interactive Markov chains (IMCs) are given that annotate transitions with
intervals of probabilities instead of single values, thus over- and under-approximating the probabilities
to target states. In contrast, abstract probabilistic automata (APA) [DKL+13] group transitions into pos-
sible and required sets — for over- and under-approximating the behaviour respectively — as in modal
transition systems (MTS) [LT88a], and model distributions by constraint functions (mathematical con-
straints that describe sets of probability distributions (see page 9)) as in constraint Markov chains (CMC)
[CDL+11]. To the best of our knowledge, no formalism, that over- and under-approximate the behaviour,
has been proposed for probabilistic systems with competing/collaborating stakeholders — such systems
are usually modelled as games with probabilistic transitions.

Two-player stochastic games (SGs) have been introduced in [Sha53, Con92] as mathematical models
for the modeling and analysis of non-deterministic probabilistic systems with competing/collaborating
players. In SGs, moves of one of the players yield distributions over states, while moves of the other
player just yield states. SGs are generalized to probabilistic game automata (PGA) [CL88] that allow
both players to make non-deterministic and probabilistic choices at their turns — in SGs one of the play-
ers have only non-deterministic choices at her turn.

Inspired by our earlier work on probabilistic automata (PA) [DKL+13], we present a three-valued ex-
tension of PGA by extending their transitions in two ways. We annotate transitions with required and
possible modalities, and give their targets as sets of probability distributions represented by constraint
functions. This yields abstract probabilistic game automata (APGA). APGA have as semantics sets of
PGA, namely all PGA that have at least all required transitions along with their target distributions and
zero or more possible transitions with at least one of their target distributions. We call these games im-
plementations of APGA.

For comparing APGA, we provide a refinement relation that implies the inclusion of sets of implementa-
tions of APGA. Refinement relations allow for the comparison of APGA at different levels of abstraction,
and are important for the step-wise design of system models. Similarly, we present a satisfaction rela-
tion — a special instance of a refinement relation — for deciding whether PGA are implementations of
APGA. As in [DHR08, EHZ10, HKK14, SK14], we treat probability distributions rather than states as
first-class citizens and relax state-based refinement to distribution-based refinement. We show that state-
based and distribution-based refinement relations are incomparable in general, but for closed APGA the
earlier implies the latter.

35

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

We also show that refinement of APGA implies (alternating) simulation relations [SK14] between their
implementations — alternating relations compare the behaviour of PGA in case of competing players,
whereas simulation relations are relevant for collaborating players.

Moreover, as APGA may have infinitely many possible implementations, we extend the technique in
[SK12] for approximating them such that a finite number of their implementations, called extreme prob-
abilistic game automata (EPGA), are sufficient for their extremal reachability analysis, i.e., the extremal
reachability probabilities of implementations of APGA are bounded by that of their EPGA.

Finally, we define a composition operator for a class of APGA that act as abstract models of PA, and
show that our refinement relations are pre-congruences w.r.t. it, thus facilitating APGA-based composi-
tional abstraction of PA (see Ch. 5).

Put in a nutshell, the major contributions of this chapter are:

• a three-valued extension of PGA (called APGA),

• a state-/distribution-based refinement relation for APGA that implies (alternating) simulation be-
tween their sets of implementations,

• a finite approximation of implementation sets of APGA,

• results showing that the extremal reachability probabilities of implementations of APGA are boun-
ded by that of their extremal implementations, and

• a composition operator for APGA showing refinement relations are pre-congruences w.r.t. it.

Another motivation for proposing a new formalism is the theory of abstraction of probabilistic systems.
In [SK14], PGA-based abstractions of PA are proposed that yield tighter bounds on probabilistic reach-
ability than SG-based abstractions [KKNP10]; whereas in [SK12], three-valued abstractions of PA are
proposed as APA that also yield bounds on probabilities. It would be of interest to propose APGA-based
abstractions of PA by combining the techniques of [SK14] and [SK12] and do reachability analysis.

4.1 Modal Transition Systems (MTS)

We start with a formalism that first introduced the notion of modalities, i.e., modal transition systems
(MTS) [LT88a]. MTS are proposed as modal abstractions (i.e. three-valued abstractions) of labelled-
transition systems (LTS). In the literature, MTS are given as pairs of LTS: one LTS over-approximates the
behaviour, whereas the other under-approximates the behaviour of a system. Alternatively, the transitions
of MTS are categorized into required and possible sets, where the required transitions must be present
whereas the possible transitions may be present in every implementation of MTS. (For details about
MTS, we refer to [HJS01, LT88b]). Formally,

Definition 19. (Modal Transition Systems). A Modal Transition System (MTS) is a tuple Q = (S,A,∆r,
∆p,s0) where S is a non-empty countable set of states with initial state s0 ∈ S, A⊆ UAct, ∆r ⊆ S×A×S
is a set of required transitions and ∆p ⊆ S×A×S is a set of possible transitions with ∆r ⊆ ∆p.

36

4.2. ABSTRACT PROBABILISTIC GAME AUTOMATA (APGA)

s0 s1 s2
c

a

b

s0 s1 s2
c a

Figure 4.1: The LTS T (left) is an implementations of the MTS Q (right).

In the sequel, Q = (S,A,∆r,∆p,s0) is an MTS. Note that Q is an LTS when ∆r = ∆p. For simplicity
we depict required transitions by solid lines, and possible transitions by dotted lines, and adopt this
convention for all models having the notion of modalities.

Example 15. Consider the MTS Q in Fig. 4.1 (right) in which transitions labelled with c and a are
required transitions whereas the transition labelled with b is a possible transition. The LTS T in Fig.
4.1 (left) is an implementation of Q in which the possible b-transition is not implemented.

4.2 Abstract Probabilistic Game Automata (APGA)

In this section, we introduce abstract probabilistic game automata (APGA) that can be used to abstractly
specify PGA. Informally, APGA extend PGA with the notion of modalities and constraint functions.
Therefore, in APGA, the transitions are classified into required and possible sets as in MTS, and the
targets of transitions are given as constraint functions as in constraint Markov chains (CMC) [CDL+11]
— DTMC with sets of probability distributions, represented by constraint functions, for each state —
representing (possibly infinite) sets of distributions over states. Formally,

Definition 20. (Abstract Probabilistic Game Automata). An Abstract Probabilistic Game Automaton
(APGA) is a tuple H = (S,{S1,S2},A,∆r,∆p,s0) with S, S1, S2, A, and s0 as in PGA, ∆p ⊆ S1+x×
A×CFunc(S2−x) is a set of possible transitions and ∆r ⊆ S1+x×A×CFunc(S2−x) is a set of required
transitions with ∆r ⊆ ∆p, where x is a bit.

We denote (s,a,ϕ)∈ ∆p by s a→p ϕ , and (s,a,ϕ)∈ ∆r by s a→r ϕ . Note that s a→p ϕ represents a (possibly
infinite) set of a-transitions from s whose target distributions are in sat(ϕ) (that may be an uncount-
ably large set). Thus, the implementations of an APGA can be infinitely branching. Like MTS, the
required transitions of APGA must be present (in some way) in their implementations, whereas possi-
ble transitions may or may not be present. However, the implementations must derive their transitions
from APGA. Note that PGA are APGA with ∆r = ∆p and ∀s ∈ S,a ∈ A : s a→ ϕ implies |sat(ϕ)| = 1.
Thus, games, stochastic games, (simple) probabilistic game automata and three-valued abstract games
[dAGJ04] are all sub-models of APGA.

Example 16. Fig. 4.2 represents an APGA. Note that the state s′1 has one required a-transition s′1
a→r ιt ′3

and one possible a-transition s′1
a→p ϕx with sat(ϕx) = {J0.5t ′2,0.5t ′3K,J0.8t ′2,0.2t ′3K}. In fact, the possible

a-transition represents two a-transitions with J0.5t ′2,0.5t ′3K and J0.8t ′2,0.2t ′3K as target distributions.

37

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

s′0

s′1

s′2

s′3

s′4

t ′1

t ′2

t ′3

a
0.5

0.
5

b

a

a

a

x 1

x
2

a 0.
5

0.5

b
b

a

a

ϕx = (x1 = 0.5,x2 = 0.5)∨ (x1 = 0.8,x2 = 0.2)

Figure 4.2: An APGA H ′

Abstract Probabilistic Automata (APA): We observe that APA [DKL+13, DKL+11], that extend PA
with the notion of modalities and constraint functions, can be represented as APGA. Formally, APA are
defined as:

Definition 21. (Abstract Probabilistic Automata). An Abstract Probabilistic Automaton (APA) is a
tuple N = (S,A,∆r,∆p,s0) with S, A, and s0 as before in PA, ∆p ⊆ S×A×CFunc(S) is a set of possible
transitions and ∆r ⊆ S×A×CFunc(S) is a set of required transitions with ∆r ⊆ ∆p.

Note that the class of APA, in which ∆p = ∆r and ∀s ∈ S,a ∈ A,x ∈ {p, r}: s a→x ϕ implies |sat(ϕ)|= 1,
coincides with PA; whereas, the class of APGA in which ∆p(S2) = ∆r(S2) and ∀s ∈ S2,a,b ∈ A: (s a→r

ϕ ∧ s b→r ϕ ′) implies ϕ = ϕ ′, |sat(ϕ)| = 1 and µ ∈ sat(ϕ) is a Dirac distribution, coincides with APA
(Fig. 4.3 represents an APA (left) and its equivalent APGA (right)). Thus, APGA can also model systems
that can be modelled with APA.

The notions of combined and hyper-transitions (Def. 11) are extended to possible and required transitions
in the obvious manner. Also the notion of closedness (Def. 8) is easily adapted to APGA.

In the sequel, we assume that for each state s in APGA, |∆p(s)| is finite and by definition so is the case
with |∆r(s)|. Moreover, ∀s ∈ S,a ∈ Act,x ∈ {r,p}: s a→x ϕ and s a→x φ implies ϕ = φ . Note that an
APGA can easily be converted into another APGA that satisfies the above assumptions but have the
same set of implementations. Furthermore, for simplicity in definitions, we write s a→p µ iff there exists
ϕ ∈ CFunc(S) with s a→p ϕ and µ ∈ ϕ . Similarly, we do this for required transitions in definitions.
Moreover, in figures we do not indicate the constraint functions but one of their distributions. In the
sequel, H = (S,{S1,S2},A,∆r,∆p,s0) is a finitely branching APGA.

38

4.3. REFINEMENT RELATIONS FOR APGA

s0

s1 s2 s3 s4

c

b
0.2

0.3 0.5

a

x1 x 2

x3

ϕx = (x1 = 0.4,x2 = 0.6)∨ x3 = 1
s0

s1 s2 s3 s4

t1 t2 t3 t4

c

a

x1

x
2

x3

b 0.2 0.
3

0.5

c a,b a,b a,b

ϕx = (x1 = 0.4,x2 = 0.6)∨ x3 = 1

Figure 4.3: An APA N (left) and its equivalent APGA H (right).

4.3 Refinement Relations for APGA

APGA at different abstraction levels are compared using refinement relations. Intuitively, a refinement
relation is intended to imply inclusion of sets of implementations of related APGA. A special class of
refinement relations, called satisfaction relations, relates implementations (concrete models, i.e., PGA)
with APGA (specifications). We propose state-based and distribution-based refinement relations for
APGA. We prove them to be preorders — a property that is necessary to compare successive refinements
of specifications — and study their relationship.

4.3.1 State-based Refinement Relation

Satisfaction relation: We start by giving a state-based definition of satisfaction relations that relate
PGA with their specifications, i.e., APGA.

Definition 22. (State-based Satisfaction). R ⊆ ⋃ j∈{1,2} S j × S′j is a state-based satisfaction (SBSA)
relation between PGA G and APGA H ′ iff for sRs′,

1. s a→ µ implies s′ a→pc µ ′ such that µRµ ′, and

2. s′ a→r µ ′ implies s a→c µ such that µRµ ′.

Let |=sb be the largest SBSA relation.

The condition (1) is the same as in Def. 15 except that it deals with possible (combined) transitions from
s′. The condition (2) asserts that for every required transition from s′, there is a combined transition from
s and the resulting distributions are related (by Def. 12) w.r.t. R. The set of state-based implementations
of APGA H ′ is HH ′Isb = {G | G |=sb H ′}.

Example 17. The relation R =
⋃

i=1...3(ti, t ′i)∪
⋃

i=0...4(si,s′i) is an SBSA relation between PGA G (Fig.
2.4) and APGA H ′ (Fig. 4.2). Let us consider (s1,s′1) ∈ R and check whether it fulfils the conditions of
Def. 22. For the required a-transition from s′1 to t ′2, there is an a-transition from s1 to t2 and (t2, t ′2) ∈ R.
Same is the case with the required b-transition from s′1. For the a-transition from s1 to J0.5t2,0.5t3K,

39

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

v0

v1

v2

v3

v4

v5
t0

t1

t2

t3

a

0.6

0.2
0.

2

a

b

b

a

b

b

a

0.6
0.4

v′0

v′1

v′2

v′3

v′4

v′5
t ′0

t ′1

t ′2

t ′3

a

0.6

0.2

0.
2

a

c

b

b

a

bc

b

a

Figure 4.4: H (left) �sb H ′ (right).

there is a possible a-transition from s′1 to J0.5t ′2,0.5t ′3K and J0.5t2,0.5t3KRJ0.5t ′2,0.5t ′3K. Similarly, the
conditions hold for the other pairs in R.

Refinement relation: State-based refinement relations are preorders on a state space requiring that
whenever a state s refines a state s′, then s′ mimics at least the step-wise possible behaviour of s, whereas
s mimics at least the step-wise required behaviour of s′. Formally,

Definition 23. (State-based Refinement). R⊆ ⋃ j∈{1,2} S j×S j is a state-based refinement (SBR) rela-
tion on APGA H iff for sRs′,

1. s a→p µ implies s′ a→pc µ ′ such that µRµ ′, and

2. s′ a→r µ ′ implies s a→rc µ such that µRµ ′.

Let �sb be the largest SBR relation.

The conditions (1) and (2) are the same as in Def. 22 except that in (1) the transition from s is a possible
transition, whereas in (2) the combined transition from s should be a required transition.

Example 18. APGA H refines H ′ (Fig. 4.4) as R =
⋃

i=0...5{(vi,v′i)} ∪
⋃

i=0...3{(ti, t ′i)} is an SBR
relation. Let us consider (v0,v′0) ∈ R and check whether it fulfils the conditions of Def. 23. For the
required a-transition from v′0 to t ′1, there is a required a-transition from v0 to t1 and (t1, t ′1) ∈ R. Although,
there is a c-transition from v′0, it is a possible transition and, therefore, it is not necessary for v0 to
implement it. However, for the a-transition from v0 to J0.6t0,0.4t1K, there is a combined a-transition
from v′0 to J0.6t ′0,0.4t ′1K and J0.6t0,0.4t1KRJ0.6t ′0,0.4t ′1K. Similarly, the conditions hold for the other
pairs in R.

40

4.3. REFINEMENT RELATIONS FOR APGA

Proposition 11. For APGA H and H ′, H �sb H ′ implies τ(H)�sb τ(H ′).

Theorem 6. �sb is a preorder.

Proof. Reflexivity: follows trivially from Def. 23.

Transitivity: Let H = (S,{S1,S2},A,∆r,∆p,s0), H ′= (S′,{S′1,S′2},A,∆′r,∆′p,s′0) and H ′′= (S′′,{S′′1 ,S′′2},
A,∆′′r ,∆

′′
p,s
′′
0) be APGA. Let H �sb H ′ and H ′ �sb H ′′, then we prove that H ≺sb H ′′ holds. Let

R1 be an SBR relation between H and H ′, and R2 between H ′ and H ′′. We define the relation
R⊆ (S1×S′′1)∪ (S2×S′′2) as:

R = {(s,s′′) | sR1s′,s′R2s′′ for s′ ∈ S′}

and show that it fulfils the conditions of Def. 23.

Assume sRs′′ such that sR1s′, s′R2s′′ for s′ ∈ S′.

1. Let s a→p µ . As sR1s′, by Def. 23, s′ a→pc µ ′ such that µR1µ ′. As s′ a→pc µ ′ and s′R2s′′, it implies
by Def. 23 that s′′ a→pc µ ′′ with µ ′R2µ ′′. As µR1µ ′ and µ ′R2µ ′′, this implies by Lem. 1 that µRµ ′′.

2. Let s′′ a→r µ ′′. As s′R2s′′, by Def. 23, s′ a→rc µ ′ such that µ ′R2µ ′′. As s′ a→rc µ ′ and sR1s′, it implies
by Def. 23 that s a→rc µ with µR1µ ′. As µR1µ ′ and µ ′R2µ ′′, this implies by Lem. 1 that µRµ ′′.

Corollary 1. H �sb H ′ implies HH Isb ⊆ HH ′Isb.

�sb coincides with the refinement relation for APA [SK12, Def. 9]; and its kernel coincides with Segala’s
probabilistic bisimulation relation (see Def. 13 on page 18) for PA.

Proposition 12. �sb ∩ �−1
sb =∼pa for PA.

41

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

4.3.2 Distribution-based Refinement Relation

Satisfaction relation: We start by giving a distribution-based definition of satisfaction relations that
relate PGA with their specifications, i.e., APGA.

Definition 24. (Distribution-based Satisfaction). R ⊆ ⋃ j∈{1,2}Dist(S j)×Dist(S j) is a distribution-
based satisfaction (DBSA) relation between PGA G and APGA H ′ iff for every µRµ ′,

1. µ =
⊕

s′∈Supp(µ ′) µs′ and ∀s′ ∈ Supp(µ ′) : (µ ′(s′) = |µs′ | and µs′↓Rιs′),

2. µ
a→ ρ implies µ ′ a→pc ρ ′ such that |ρ| ≤ |ρ ′| and ρ↓Rρ ′↓, and

3. µ ′ a→r ρ ′ implies µ
a→c ρ such that |ρ| ≥ |ρ ′| and ρ↓Rρ ′↓.

Let |=db be the largest DBSA relation.

The conditions (1) and (2) are the same as in Def. 16 except that the condition (2) deals with possible
(combined) transitions from s′. The condition (3) asserts that for every required transition from µ ′ to
some ρ ′, there is a combined transition from µ to some ρ , the mass of ρ is at least that of ρ ′ and their
conditional distributions are related. The set of distribution-based implementations of APGA H ′ is
HH ′Idb = {G | G |=db H ′}.

Refinement relation: Distribution-based refinement relations are preorders on distributions over a state
space requiring that whenever a distribution µ refines a distribution µ ′, then µ ′ mimics at least the step-
wise possible behaviour of µ whereas µ mimics at least the step-wise required behaviour of µ ′. Formally,

Definition 25. (Distribution-based Refinement). R ⊆ ⋃ j∈{1,2}Dist(S j)×Dist(S j) is a distribution-
based refinement (DBR) relation on an APGA H iff for every µRµ ′,

1. µ =
⊕

s′∈Supp(µ ′) µs′ and ∀s′ ∈ Supp(µ ′) : (µ ′(s′) = |µs′ | and µs′↓Rιs′),

2. µ
a→p ρ implies µ ′ a→pc ρ ′ such that |ρ| ≤ |ρ ′| and ρ↓Rρ ′↓, and

3. µ ′ a→r ρ ′ implies µ
a→rc ρ such that |ρ| ≥ |ρ ′| and ρ↓Rρ ′↓.

Let �db be the largest DBR relation.

The conditions (1), (2) and (3) are the same as in Def. 24 except that in (2) the transition from µ is a
possible transition, whereas in (3) the combined transition from µ should be a required transition. The
following two examples show the role of conditions (2) and (3) in Def. 25 in finding out DBR relations
between APGA.

Example 19. APGA H refines H ′ (Fig. 4.5) as R = {(ιv3 , ιv′2
),(ιv2 , ιv′1

),(ιv5 , ιv′4
),(ιv4 , ιv′3

)}∪{(J0.2v0,
0.2v1,0.6v2K,J0.4v′0,0.6v′1K),(J0.2v0,0.2v1K↓, ιv′0

),(J0.25t1,0.75t2K,J0.25t ′1,0.75t ′2K),(J0.25v3,0.75v4K,
J0.25v′2,0.75v′3K)}∪

⋃
i=0...3{(ti, t ′i)} is a DBR relation. Let us consider the distributions µ = J0.2v0,0.2v1,

0.6v2K and µ ′ = J0.4v′0,0.6v′1K, and check the conditions of Def. 25. In Example 10, we have already

42

4.3. REFINEMENT RELATIONS FOR APGA

v′0

v′1

v′2

v′3

v′4t ′0

t ′1

t ′2

t ′3

a 0.4

0.6

c

0.
25

0.75

b

b

a

c

c

c b

v0

v1

v2

v3

v4

v5
t0

t1

t2

t3

a

0.2

0.2

0.6

c

0.
5

0.5

c

b

a

c

c

c

b

Figure 4.5: H (left) �db H ′ (right).

v0

v1

v2

v3

t0

t1

t2

a 0.
3

0.7

b

b

a

b

b

v′0

v′1

v′2

v′3

t ′0

t ′1

t ′2

a 0.
7

0.3

b 0.
43

0.571

b

a

b

b

Figure 4.6: H (left) �db H ′ (right).

checked the conditions (1) and (2), let us check condition (3). For the required c-transition from µ ′ to
ρ ′ = J0.1t ′1,0.3t ′2K, there is a required c-transition from µ to ρ = J0.1t1,0.3t2K such that |ρ ′| ≤ |ρ| and
ρ↓Rρ ′↓ hold. Note that for t ′1, t

′
2 ∈ Supp(ρ ′), J0.1t1K and J0.3t2K are the relevant sub-distributions of ρ

respectively. Same is the case with b-transitions. Note that no SBR relation exists between H and H ′

as v0 and v1 do not refine any state in H ′.

Example 20. APGA H refines H ′ (Fig. 4.6) as R = {(J0.3v0,0.7v1K,J0.7v′0,0.3v′1K),(J0.3v0,0.4v1K↓, ιv′0
)}∪⋃i=0...2{(ti, t ′i))}∪

⋃
i=1...3{(vi,v′i))} is a DBR relation. Let us consider the distributions µ = J0.3v0,

0.7v1K and µ ′ = J0.7v′0,0.3v′1K, and check the conditions of Def. 25. For v′0 ∈ supp(µ ′), J0.3v0,0.4v1K is
the relevant sub-distribution of µ and J0.3v0,0.4v1K↓RJ0.7v′0K↓ holds. Similarly, for v′1 ∈ Supp(µ ′), we
have J0.3v1K as a relevant sub-distribution of µ and J0.3v1K↓RJ0.3v′1K↓ holds, thus fulfilling condition
(1). Now for the required b-transition from µ ′ to J0.3t ′2K, there is a required b-transition from µ to J0.7t2K
such that |J0.3t ′2K| ≤ |J0.7t2K| and J0.7t2K↓RJ0.3t ′2K↓ hold. Similarly, for the possible b-transition from µ

to J0.3t1,0.7t2K, there is a possible b-transition from µ ′ to J0.3t ′1,0.7t ′2K and J0.3t1,0.7t2KRJ0.3t ′1,0.7t ′2K

43

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

hold; thus, fulfilling conditions (2) and (3) of Def. 25. Note that no SBR relation exists between H and
H ′.

Like DBS relations (see Proposition 3 on page 25), a DBR relation between two APGA does not imply
a DBR relation between their closed versions.

Proposition 13. For APGA H and H ′, H �db H ′ does not imply τ(H)�db τ(H ′).

Theorem 7. �db is a preorder.

Proof. Reflexivity: follows trivially from Def. 25.

Transitivity: Let H = (S,{S1,S2},A,∆r,∆p,s0), H ′= (S′,{S′1,S′2},A,∆′r,∆′p,s′0) and H ′′= (S′′,{S′′1 ,S′′2},
A,∆′′r ,∆

′′
p,s
′′
0) be APGA. Let H �db H ′ and H ′ �db H ′′, then we prove that H �db H ′′. Let

R1 be the DBR relation between H and H ′, and R2 between H ′ and H ′′. We define the relation
R⊆ (Dist(S1)×Dist(S′′1))∪ (Dist(S2)×Dist(S′′2)) as:

R = {(µ,µ ′′) | µR1µ
′,µ ′R2µ

′′ for µ
′ ∈ Dist(S′)}

and show that it fulfils the conditions of Def. 25.

Assume µRµ ′′ where µR1µ ′ and µ ′R2µ ′′ for some µ ′ ∈ Dist(S′).

1. The proof of condition (1) is the same as in that of Th. 2.

2. Let µ
a→p ν . As µR1µ ′, by condition (2) of Def. 25, µ ′ a→pc ν ′ such that |ν ′| ≥ |ν | and ν↓R1ν ′↓.

Similarly, as µ ′ a→pc ν ′ and µ ′R2µ ′′, it implies by Def. 25 that µ ′′ a→pc ν ′′ with |ν ′′| ≥ |ν ′| and
ν ′↓R2ν ′′↓ . As |ν | ≥ |ν ′| and |ν ′| ≥ |ν ′′|, thus |ν | ≥ |ν ′′|; and as ν↓R1ν ′↓ and ν ′↓R2ν ′′↓ , thus ν↓Rν ′′↓ .

3. Let µ ′′ a→r ν ′′. As µ ′R2µ ′′, by condition (3) of Def. 25, µ ′ a→rc ν ′ such that |ν ′′| ≤ |ν ′| and ν ′↓R2ν ′′↓ .

Similarly, as µ ′ a→rc ν ′ and µR1µ ′, it implies by Def. 25 that µ
a→rc ν with |ν ′| ≤ |ν | and ν↓R1ν ′↓.

As |ν ′| ≤ |ν | and |ν ′′| ≤ |ν ′|, thus |ν ′′| ≤ |ν |; and as ν↓R1ν ′↓ and ν ′↓R2ν ′′↓ , thus ν↓Rν ′′↓ .

Corollary 2. H �db H ′ implies HH Idb ⊆ HH ′Idb.

44

4.4. APPROXIMATION OF APGA

State- vs. distribution-based refinements: �db is not comparable with�sb (lifted to distributions over
states). One can see that for µ �db ιs, the condition (3) of Def. 25 enforces that if µ

a→p ν , then |ν |= 1;
however, if µ �sb ιs, then 0 ≤ |ν | ≤ 1 by Def. 23. For closed APGA, the two refinement relations are
comparable.

Proposition 14. �sb and �db are incomparable for APGA; and �sb ⊆�db for closed APGA.

4.4 Approximation of APGA

In APGA, a transition with as target a constraint function ϕ represents a (possibly infinite) set of transi-
tions whose target distributions satisfy ϕ . Stated differently, APGA can be considered as finite symbolic
representations of infinitely branching PGA. On the other hand, the infinite cardinality of satisfaction
sets of constraint functions gives rise to infinitely-many implementations that even have the same state
space as that of APGA, thus, making the extremal reachability analysis of APGA impossible in general.

We, therefore, approximate the implementations of an APGA by a finite set; and (in Section 4.5) show
that two of these implementations are sufficient for extremal reachability analysis of APGA. We focus
our technique on APGA having polynomial constraints.

To have finitely-many implementations of an APGA, we approximate its constraint functions with the
ones having finite satisfaction sets. We adopt the strategy proposed in [SK12]. We over(under)-approxi-
mate polynomial constraint functions by linear ones whose satisfaction sets can be represented by their
extreme elements (distributions). In the following, we discuss how a polynomial constraint function is
over- and under-approximated. Let ϕc be a constraint function derived from ϕ such that sat(ϕc) = {µ =⊕

i∈I ci ·µi | ∃I ⊆ N+ : (∀i ∈ I : ci ∈ R≥0,µi ∈ sat(ϕ))∧∑i∈I ci = 1}.

For i ∈ N, let θi and ϕi be a linear constraint and a linear constraint function respectively in variables
denoting probabilities over S. Let ϕι = {ιs | s ∈ S} be a linear constraint function characterizing Dirac
distributions over S, and ϕµ be a linear constraint function characterizing only one distribution, i.e., µ .

Consider a polynomial constraint function φ representing a set of distributions over S. It at least contains
a linear constraint ∑s∈S xs = 1 which implies that φC ⊆ ϕC

ι . We can now generate a series of linear con-
straint functions ϕ0 = ϕι , ϕ1 = ϕ0∧θ0, ϕ2 = ϕ1∧θ1 and so on such that φC ⊆ ϕC

i+1 ⊆ ϕC
i for all i ≥ 0

and φC = limi→∞ ϕC
i . Every ϕi in the above series over-approximates φ , i.e., every µ in φC also exists in

ϕC
i .

Now we under-approximate φ by a linear constraint function. Let µ ∈ φ such that ϕµ = µ is a linear
constraint function. Like in the above case, we can generate a series of constraint functions ϕ0 = ϕµ ,
ϕ1 = ϕ0∨θ0, ϕ2 = ϕ1∨θ1 and so on such that φC ⊇ ϕC

i+1 ⊇ ϕC
i for all i≥ 0 and φC = limi→∞ ϕC

i . Every
ϕi in the above series under-approximates φ , i.e., every µ in ϕC

i also exists in φC.

Definition 26. (Constraint Approximation).[SK12] A function ς : CFunc(S)→CFunc(S) over-approxi-
mates a polynomial constraint function by a linear one iff the following holds for polynomial constraint
functions φ ,φ1,φ2 ∈ CFunc(S):

45

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

y

z

x

l1

l2

l3

(000)

(010)

(100)

(001)

r

y

z

x

l1
l2

l3

l4

l5

l6 l7

l8

l9

l10

l11

l12

(000)

(010)

(100)

(001)

r

Figure 4.7: An example polynomial constraint function (left) and a linear over-approximation (right).

1. ς(φ) is a linear constraint function with φ c ⊆ ς(φ)c, and

2. φ c
1 ⊆ φ c

2 ⇒ ς(φ1)c ⊆ ς(φ2)c.

Similarly, the function ς−1 under-approximates a polynomial constraint function by a linear one, i.e.,
φ c ⊇ ς−1(φ)c and φ c

1 ⊇ φ c
2 ⇒ ς−1(φ1)c ⊇ ς−1(φ2)c.

Moreover, we consider constraint approximating function ς1 to be more precise than ς2 iff ς1(ϕ)⊆ ς2(ϕ)
and ς

−1
1 (ϕ)⊇ ς

−1
2 (ϕ) for ϕ ∈ CFunc(S).

Example 21. Consider a polynomial constraint function φ = (x2 + y2 + z2 ≤ r2∧ x + y + z = 1) repre-
senting a set of distributions by a shaded-circular region of radius r within each triangle of Fig. 4.7
and 4.8. Let ς1 and ς2 be the constraint-approximating functions such that ς1(φ) represents the region
enclosed by the lines l1, l2, l3 and the sides of the left triangle in Fig. 4.7; and ς2(φ) represents the region
enclosed by the lines l1, . . . , l12 in the right triangle. Let ς

−1
2 (φ) represent the region enclosed by the lines

l1, . . . l6 in Fig.4.8. It is clear that ς2(φ) is an over-approximation and ς
−1
2 (φ) is an under-approximation

of φ , i.e., ς
−1
2 (φ)⊆ φ ⊆ ς2(φ). Moreover, ς2(φ) gives a better over-approximation of φ than ς1(φ), i.e.,

φ ⊆ ς2(φ)⊆ ς1(φ).

The notion of constraint-approximation can be lifted to APGA as:

Definition 27. Let H be an APGA with polynomial constraints, then the constraint-approximating func-
tion ς : CFunc(S)→ CFunc(S) induces the APGA H ′ = ς(H) where S, A and s0 are the same as in
H ; and for all s ∈ S,

1. (s,a,φ) ∈ ∆r iff (s,a,ς−1(φ)) ∈ ∆′r, and

46

4.4. APPROXIMATION OF APGA

y

z

x

l1

l2

l3

l4

l5

l6

(000)

(010)

(100)

(001)

r

Figure 4.8: Linear under-approximation of a polynomial constraint function.

2. (s,a,φ) ∈ ∆p iff (s,a,ς(φ)) ∈ ∆′p,

Note that by Def. 26, ς−1(φ)⊆ φ and φ ⊆ ς(φ). This implies that every required transition of s in H ′ is
also a required transition in H . However, the case of possible transitions is the other way around. This
leads to the fact that H refines H ′ as given by the following theorem:

Proposition 15. H �x ς(H) for x ∈ {sb,db}.

Proof. The proof of the above proposition follows directly from Def. 26.

After over(under)-approximating polynomial constraint functions by linear ones, the second issue is how
to deal with their satisfaction sets that may be countably infinite. We approximate them by finite sets by
considering their extreme distributions. The concept of extreme distributions is explained in [KKN09]
for interval constraints that can easily be extended for linear constraints. In the following, we define the
notion of extreme linear function and then use it to define extreme transitions for APGA:

Definition 28. [SK12] Let H be an APGA with linear constraints, and ϕ be a linear constraint function,
then:

1. ϕextr is an extreme linear function of ϕ iff sat(ϕextr) is the smallest finite subset of sat(ϕ) and
sat(ϕextr)

c = sat(ϕ)c.

2. s a→p ϕextr is an extreme possible transition iff s a→p ϕ . Similarly, we have an extreme required
transition. Moreover, Hextr represents a game with only extreme transitions.

47

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

Based on Def. 27 and 28, we are now in a position to approximate an APGA, say H , by an APGA, say
H ′, such that H ′ only has a finite set of implementations that have the same state space as that of H .
In the sequel, we assume that every APGA admitting infinite implementations is approximated in this
way.

4.5 Extreme Games and Reachability Analysis

In this section, we show that two implementations of an APGA, called extreme probabilistic game au-
tomata (EPGA), bound the extremal reachability probabilities of its implementations. In fact, one EPGA
bounds the probabilities in case of competing players; whereas the other EPGA does so in case of col-
laborating players.

Let the two implementations of APGA H be the PGA G ◦◦ and G •◦ , where G ◦◦ inherits its player-one and
player-two transitions, denoted by the upper and the lower circles in G ◦◦ respectively, from the possible
transitions in H , whereas G •◦ inherits its player-one transitions from the required transitions and the
player-two transitions from the possible transitions in H . Formally,

Definition 29. (Extremal Games). For ? ∈ {•,◦}, G ?
◦ is an EPGA of H iff S, A and s0 in G ?

◦ are the
same as in H ,
∆(S2) = {(s,a,µ) | ∃s ∈ S2,a ∈ Act : (s,a,ϕ) ∈ ∆p∧µ ∈ sat(ϕ)},
and if ? = ◦, then
∆(S1) = {(s,a,µ) | ∃s ∈ S1,a ∈ Act : (s,a,ϕ) ∈ ∆p∧µ ∈ sat(ϕ)}, else
∆(S1) = {(s,a,µ) | ∃s ∈ S1,a ∈ Act : (s,a,ϕ) ∈ ∆r∧µ ∈ sat(ϕ)}.

In the sequel, G ?
◦ = (S,{S1,S2},A,∆,s0) is an EPGA of H for ? ∈ {•,◦}.

The following lemma establishes a relationship between the (state-based and the distribution-based)
implementations of an APGA H and its EPGA.

Lemma 2. Let G ∈ HH Ix, then G ≺x G ◦◦ and G 2x G •◦ for x ∈ {sb,db}.

Proof. We only give proof for distribution-based relations.

Let R ⊆ (Dist(S′1)×Dist(S1))∪ (Dist(S′2)×Dist(S2)) be a distribution-based satisfaction relation be-
tween G ′ ∈ HH Idb and H .

• As per Def. 29, the state space of H and G ◦◦ is the same. We show that R is also a distribution-
based simulation relation between G ′ and EPGA G ◦◦ of H .

Let µ ′Rµ . We show that it fulfils the conditions of Def. 16.

1. As R is a distribution-based satisfaction relation, the condition of splitting µ ′ into sub-
distributions as per the support of µ trivially holds, and

48

4.5. EXTREME GAMES AND REACHABILITY ANALYSIS

2. Let µ ′ a→ η ′. By condition (2) of Def. 24, µ
a→pc η with |η ′| ≤ |η | and η ′↓Rη↓. By Def. 29,

every possible transition of H is also a transition in G ◦◦ , µ
a→c η exists in G ◦◦ as well.

• As per Def. 29, the state space of H and G •◦ is the same. We show that R is a distribution-based
alternating simulation relation between G ′ and EPGA G •◦ of H .

Let µ ′Rµ . We show that it fulfils the conditions of Def. 18.

1. As R is a distribution-based satisfaction relation, the condition of splitting µ ′ into sub-
distributions as per the support of µ trivially holds,

2. Let µ ′ ∈ Dist(S′2) and µ ′ a→ η ′. By condition (2) of Def. 24, µ
a→pc η with |η ′| ≤ |η | and

η ′↓Rη↓. By Def. 29, every possible transition from a player-two state in H is a transition in

G •◦ , µ
a→c η exists in G •◦ as well.

3. Let µ ∈ Dist(S1) and µ
a→ η . By Def. 29, every transition from a player-one state in G •◦ is a

required transition in H , µ
a→r η exists in H . By condition (3) of Def. 24, µ ′ a→c η ′ with

|η ′| ≥ |η | and η ′↓Rη↓.

Note that state-based implementations of H are related to its EPGA through state-based relations,
whereas distribution-based implementations are related through distribution-based relations. Moreover,
as G ◦◦ simulates and G •◦ A-simulates every (state-based and distribution-based) implementation of H ,
therefore, they suffice for the extremal reachability analysis of H . (Note that the other two extreme
implementations, i.e., G •• and G ◦• , are simulated and A-simulated by G ◦◦ and G •◦ respectively.)

Theorem 8. H �x H ′ implies G ◦◦ ≺x G ◦
′
◦ and G •◦ 2x G •

′
◦ for x ∈ {sb,db}.

Proof. The proof of Th. 8 follows directly from Def. 23 and 25.

Moreover, it implies that G ◦
′
◦ simulates every implementation of H and H ′; whereas G •

′
◦ A-simulates

them. Thus, H ′ bounds the extremal reachability probabilities of H in case of competing/collaborating
players.

We show that EPGA of an APGA bound extremal reachability probabilities of its implementations with
competing/collaborating players. In fact, G •◦ bounds extremal reachability probabilities of implemen-
tations of H in case of competing players, whereas G ◦◦ does so otherwise. This is based on the fact
that EPGA simulate/A-simulate each (state-based and distribution-based) implementation of an APGA
as given by Lem. 2.

Theorem 9. Let G ◦
′
◦ and G •

′′
◦ be the EPGA of H . Let G ∈ HH Ix for x ∈ {sb,db} such that T ⊆ S is a

set of goal states in G , then

49

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

1. for goal states T ′ = {s′ ∈ S′ | ∃µ ∈ Dist(S) : µ(T) > 0 and µ ≺x s′} in G ◦
′
◦ ,

minH(T ′)≤minH(T) and maxN(T)≤maxN(T ′), and

2. for goal states T ′′ = {s′′ ∈ S′′ | ∃µ ∈ Dist(S) : µ(T) > 0 and µ 2x s′′} in G •
′′
◦ ,

minN(T)≤minN(T ′′) and maxH(T ′′)≤maxH(T).

Proof. The proof of the above theorem follows from Lem. 2 and Th. 5.

We now extend the above results for APGA that are in a refinement relation with each other. As dis-
cussed before, for APGA that refine each other, their EPGA are in a simulation/alternating simulation
relation with each other. Therefore, their extremal reachability probabilities are comparable. In fact,
when H refines H ′, then the extremal reachability probabilities of the EPGA of H ′ bound that of all
implementations of H . Formally,

Theorem 10. Let H �x H ′ for x ∈ {sb,db}, and let T ⊆ S such that T ′ = {s′ ∈ S′ | ∃µ ∈ Dist(S) :
µ(T) = 1 and µ �x s′}, then:

1. minH(T ′)≤minH(T) and maxN(T)≤maxN(T ′),

2. minN(T)≤minN(T ′) and maxH(T ′)≤maxH(T).

Proof. The proof of the above theorem follows from Th. 5 and 8.

Example 22. Consider APGA H and H ′ in Fig. 4.6, where H �db H ′. Let T = {t2} such that
T ′ = {t ′2} (in Th. 10). Then the maximum probability in (each implementation of) APGA H to T lies in
[0.7,1], whereas in H ′ it lies in [0.3,1] for T ′. (Recall that we only consider required transitions from
player one states to calculate the lower bound of the maximum probability to target state.)

4.6 Composition of Stochastic Games

We define a composition operator for the class of APGA that satisfies the following property:

Property 1. For APGA H , ∀s ∈ S2 : a ∈ Act(s) iff ∃u ∈ S1 : u a→p ν and ν(s) > 0.

The class of APGA, satisfying the above property, can represent abstractions of PA (that we discuss
in Ch. 5). In this way our operator generalizes composition operators for LTS, MTS, PA and APA.
Composition operator is defined in a TCSP-like manner, i.e., it is parametrized by a set of actions that
need to be performed simultaneously by both games; other actions occur autonomously. Formally,

50

4.6. COMPOSITION OF STOCHASTIC GAMES

Definition 30. For APGA H and H ′, the composition w.r.t. synchronization set Ā ⊆ (A∩A′)\{τ} is
given as: H ‖ĀH ′ = (S×S′,{S1×S′1,S×S′\S1×S′1},A∪A′,∆′r,∆

′
p,(s0,s′0)), where for all a ∈ A∪A′,

(s,s′) ∈ S×S′ and x ∈ {rc,pc}, (s,s′) a→x (µ‖µ ′) iff one of the following holds:

1. if (s,s′) ∈ S1×S′1, then:

(a) a ∈ Ā, s a→x µ and s′ a→x µ ′, or

(b) a ∈ A, s a→x µ and ιs′ = µ ′, or

(c) a ∈ A′, s′ a→x µ ′ and ιs = µ ,

2. if (s,s′) ∈ S2×S′2, then a ∈ Ā, s a→x µ and s′ a→x µ ′,

3. otherwise,

(a) s ∈ S2, s a→x µ and ιs′ = µ ′, or

(b) s′ ∈ S′2, s′ a→x µ ′ and ιs = µ .

As every required transition is a possible transition, the above definition does not restrict the synchro-
nization of only required transitions; it also allows synchronization of required transitions with possible
transitions. Note that the state space of our composite game is disjointly dividable based on the actions
which are enabled. Although, we allow composition of S1(S2) states with that of S′2(S′1) states, but only
a player two can make a move in such a state. The conditions (1) to (3) apply to required as well as to
possible transitions. (1) asserts that states in S1×S′1 can either synchronize with each other or act inde-
pendently. Note that a state in S2×S′2 is only reached by a synchronizing action performed by players of
type one in some S1×S′1 state; and (2) asserts that the next state is reached only by some synchronizing
action. (3) tells that for a state in S(1+x)× S′(2−x), where x is a bit, no synchronization occurs and only
a player two can make a move independently. Note that such a state can only be reached by a non-
synchronizing action.

The above definition asserts that the composition of two APGA whose constraints are systems of linear
inequalities (or polynomial constraints) leads to an APGA with polynomial constraints because com-
position of linear inequalities results in polynomial constraints (which are closed under composition)
[DKL+11]. Thus, like APA [DKL+11], the class of APGA having polynomial constraints is closed
under composition.

Theorem 11. For any set Ā and x ∈ {sb,db}, �x is a pre-congruence w.r.t. ||Ā .

We only prove this for the distribution-based refinement relation. The proof for the other case is similar.

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0), H ′ = (S′,{S′1,S′2},A,∆′r,∆′p,s′0) and Ĥ = (Ŝ,{Ŝ1, Ŝ2}, Â, ∆̂r,

∆̂p, ŝ0), Ĥ ′ = (Ŝ′,{Ŝ′1, Ŝ′2}, Â, ∆̂′r, ∆̂′p, ŝ′0) be APGA. Let Ā ⊆ A∩ Â such that H ‖ĀĤ = (S× Ŝ,{S1×
Ŝ1,S× Ŝ\S1× Ŝ1},A∪ Â, ∆̃r, ∆̃p,(s0, ŝ0)) and H ′‖ĀĤ ′= (S′× Ŝ′,{S′1× Ŝ′1,S

′× Ŝ′\S′1× Ŝ′1},A∪ Â, ∆̃′r, ∆̃
′
p,

(s′0, ŝ
′
0)). Let H �db H ′ and Ĥ �db Ĥ ′, then we prove that H ‖ĀĤ �db H ′‖ĀĤ ′ holds. Let R1

51

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

be a DBR relation between H and H ′, and R2 between Ĥ and Ĥ ′. We define the relation R ⊆
(Dist(S1× Ŝ1)×Dist(S′1× Ŝ′1))∪ (Dist(S2× Ŝ2)×Dist(S′2× Ŝ′2)) as:

R = {(µ‖µ̂,µ ′‖µ̂ ′) | µR1µ
′, µ̂R2µ̂

′}

and show that it fulfils the conditions of Def. 25 (�db).

Let (µ‖µ̂) R (µ ′‖µ̂ ′).

1. Let (s′, ŝ′)∈ Supp(µ ′‖µ̂ ′). As µR1µ ′ and s′ ∈ Supp(µ ′), by Def. 25, we have a sub-distribution µs′

of µ with |µs′ |= µ ′(s′) and µs′↓R1ιs′ . Similarly, as µ̂R2µ̂ ′, we have a sub-distribution µ̂ŝ′ of µ̂ with
|µ̂ŝ′ |= µ̂ ′(ŝ′) and µ̂ŝ′↓R2ιŝ′ . Therefore, for s′‖ŝ′ we have a sub-distribution (µ‖µ̂)(s′,ŝ′) = µs′‖µ̂ŝ′ of
µ‖µ̂ with |µs′‖µ̂ŝ′ |= µ ′‖µ̂ ′((s′, ŝ′)) and (µs′‖µ̂ŝ′)↓Rι(s′,ŝ′).

2. Let µ‖µ̂ a→p η‖η̂ . There are four possible cases by Def. 30:

(a) Let µ‖µ̂ ∈ Dist(S1)‖Dist(Ŝ1). There are three possible cases:

i. if a ∈ Ā, then µ
a→p η and µ̂

a→p η̂ . As µR1µ ′, by condition (2) of Def. 25, we have
µ ′ a→pc η ′ with |η | ≤ |η ′| and η↓R1η ′↓. Similarly, as µ̂R2µ̂ ′, we have µ̂ ′ a→pc η̂ ′ with

|η̂ | ≤ |η̂ ′| and η̂↓R2η̂ ′↓. Therefore, µ ′‖µ̂ ′ a→pc η ′‖η̂ ′ and |η‖η̂ | ≤ |η ′‖η̂ ′|. As η↓R1η ′↓
and η̂↓R2η̂ ′↓, we have (η‖η̂)↓R(η ′‖η̂ ′)↓.

ii. if a ∈ A\Ā, then µ
a→p η and µ̂ = η̂ . As µR1µ ′, by condition (2) of Def. 25, we

have µ ′ a→pc η ′ with |η | ≤ |η ′| and η↓R1η ′↓. Therefore, µ ′‖µ̂ ′ a→pc η ′‖µ̂ ′ and |η‖µ̂| ≤
|η ′‖µ̂ ′|. As η↓R1η ′↓ and µ̂R2µ̂ ′, we have (η‖µ̂)↓R(η ′‖µ̂ ′)↓.

iii. if a ∈ Â\Ā, then proof is the same as in the previous case.

(b) Let µ‖µ̂ ∈ Dist(S2)‖Dist(Ŝ2). The proof is similar to the previous case.

(c) Let µ‖µ̂ ∈ Dist(S2)‖Dist(Ŝ1). The proof is similar to the previous case.

(d) Let µ‖µ̂ ∈ Dist(S1)‖Dist(Ŝ2). The proof is similar to the previous case.

3. Let µ ′‖µ̂ ′ a→r η ′‖η̂ ′. There are four possible cases by Def. 30:

(a) Let µ‖µ̂ ∈ Dist(S1)‖Dist(Ŝ1). There are three possible cases:

i. if a ∈ Ā, then µ ′ a→r η ′ and µ̂ ′ a→ η̂ ′. As µR1µ ′, by condition (3) of Def. 25, we
have µ

a→rc η with |η | ≥ |η ′| and η↓R1η ′↓. Similarly, as µ̂R2µ̂ ′, we have µ̂
a→rc η̂ with

|η̂ | ≥ |η̂ ′| and η̂↓R2η̂ ′↓. Therefore, µ‖µ̂ a→rc η‖η̂ and |η‖η̂ | ≤ |η ′‖η̂ ′|. As η↓R1η ′↓ and
η̂↓R2η̂ ′↓, we have (η‖η̂)↓R(η ′‖η̂ ′)↓.

ii. if a ∈ A\Ā, then µ ′ a→r η ′ and µ̂ ′ = η̂ ′. As µR1µ ′, by condition (3) of Def. 25, we have
µ

a→rc η with |η | ≥ |η ′| and η↓R1η ′↓. Therefore, µ‖µ̂ a→rc η‖µ̂ and |η‖µ̂| ≥ |η ′‖µ̂ ′|.
As η↓R1η ′↓ and µ̂R2µ̂ ′, we have (η‖µ̂)↓R(η ′‖µ̂ ′)↓.

iii. if a ∈ Â\Ā, then proof is the same as in the previous case.

(b) Let µ‖µ̂ ∈ Dist(S2)‖Dist(Ŝ2). The proof is similar to the previous case.

(c) Let µ‖µ̂ ∈ Dist(S2)‖Dist(Ŝ1). The proof is similar to the previous case.

(d) Let µ‖µ̂ ∈ Dist(S1)‖Dist(Ŝ2). The proof is similar to the previous case.

52

4.7. SUMMARY AND DISCUSSION

4.7 Summary and Discussion

In this chapter, we considered an extension of probabilistic game automata (PGA) with modalities (i.e.,
required and possible transitions) and constraint functions as for PA in [DKL+13]. Abstract PGA
(APGA), therefore, over- and under-approximate the behaviour of PGA. We equipped APGA with the
notion of refinement that is state-based as well as distribution-based, showing that refinement relations
between APGA imply (alternating) simulation relations between their implementations. As APGA may
have infinite sets of implementations, we proposed their approximations to have finite sets of implemen-
tations. We also showed that maximal and minimal reachability probabilities in APGA can be bound by
considering extremal games – those PGA that besides all required transitions contain all possible transi-
tions, and those that contain only required transitions for one set and all possible transitions for the other
set of states. Finally, we defined a composition operator for the class of APGA that can be abstractions of
PA, and showed that our refinement relations are pre-congruences w.r.t. it, thus facilitating APGA-based
compositional abstraction of PA. An overview of the results of this chapter is given in Table 4.1.

Related work: Several works have introduced modal abstractions of probabilistic systems [KKLW12,
KKN09, DKL+13]. In [KKLW12], interval-based abstraction of MDPs has been introduced by giv-
ing probabilities of transitions as intervals instead of single values, yielding interval Markov chains.
Thus, (the upper and the lower bound of) each interval over- and under-approximates the probability
to the target state. In [KKN09], this technique has been extended to interactive Markov chains (IMC)
— a combination of PA and continuous-time Markov chains (CTMC) — yielding abstract interactive
Markov chains that allow for compositional modeling of systems. In the setting of games, the abstract
models most closely related to APGA are three-valued abstract games [dAGJ04] in which transitions are
grouped into possible and required sets.

Many researchers have worked on parallel composition of probabilistic systems; the earliest work in this
direction is in [Seg95] which defines a composition operator for PA; and in [KKN09] for interactive
Markov chains. To the best of our knowledge, no parallel compositional operator has been defined for
game-based modal abstractions of probabilistic systems.

Furthermore, apart from parallel composition, researchers are also dealing with logical composition of
probabilistic systems, i.e., defining specifications of systems in a compositional way [CDL+11, DKL+13].
Intuitively, by conjunction of a set of sub-specifications (given as APA), a composed specification is
obtained that only contains the common parts of sub-specifications. Technically speaking, the set of
implementations of a composed APA is the intersection of that of the composing APA.

Future extensions: One can consider:

• giving efficient algorithms for finding state-based and distribution-based refinement relations be-
tween APGA, and approximating APGA to have finite set of implementations,

• logical characterization of refinement relations for APGA, and

• defining a complete specification theory for APGA following the lines in [Lar90].

In the next chapter, we propose state-based and distribution-based compositional abstraction techniques
of APGA, thus presenting APGA as abstract models of P(G)A. We show that APGA are related with their

53

CHAPTER 4. STOCHASTIC GAMES WITH MODALITES

Refinement relations

State-based (�sb) Distribution-based (�db)

preorder + +

monotonicity of closing + -

pre-congruence w.r.t. ||Ā + +

For Segala’s PA �sb ∩ �−1
sb =∼pa

For APGA H �sb H ′⇒ HH Isb ⊆ HH ′Isb H �db H ′⇒ HH Idb ⊆ HH ′Idb

For x ∈ {sb,db}: H �x H ′ G ◦◦ ≺sb G ◦
′
◦ and G •◦ 2sb G •

′
◦ G ◦◦ ≺db G ◦

′
◦ and G •◦ 2db G •

′
◦

For APGA �sb 6=�db

For closed APGA �sb ⊆�db

Preservation of reachability probabilities

�sb and �db yield minH and minN as well as maxH and maxN

Table 4.1: Summary of refinement relations.

concrete models through refinement relations, thus, showing that abstract models preserve the reachabil-
ity probabilities of concrete models.

54

5
Modal Abstraction of Stochastic Games

Informally speaking, abstraction is a technique that allows omitting unnecessary details from system
models for the verification of properties. The models induced as a result are aimed to be finite and
smaller in size as compared to the concrete models, moreover, they have at least the behaviour of the
concrete models.

In the literature, a popular abstraction mechanism is to merge states of systems’ models in different ways.
In the most basic technique, states are merged together by simply collecting their behaviour, that as a
result induces additional non-deterministic behaviour in the abstract states. Due to this, abstract mod-
els have at least the behaviour of concrete models and are, thus, comparable using simulation relations.
When such abstract models are analysed, say for extremal reachability probabilities, they provide safe
over-approximations for concrete models.

In [SK12], we have extended the above technique for probabilistic automata (PA); we categorize the
behaviour of abstract states into required and possible behaviour as in modal transition systems (MTS)
[LT88a] — the behaviour common among all concrete states of an abstract state becomes its required
behaviour, whereas their complete behaviour becomes its possible behaviour. The abstract models in-
duced as a result are abstract PA (APA) [DKL+13] — PA with required and possible modalities; and are
comparable with concrete models using refinement relations. Moreover, this approach allows for bound-
ing the extremal reachability probabilities of concrete models from above and below. Note that because
of the non-deterministic behaviour from abstraction, these bounds do not coincide with that of concrete
models.

Another interesting and fruitful direction is given in [KKNP10] aggregating states in such a way that
the non-deterministic behaviour in concrete systems is handled by one set of states while the non-
determinism from abstraction is handled by another set of states. This naturally yields turn-based stochas-
tic two-player games (SGs) [Sha53, Con92], where one player controls the non-determinism in the con-
crete models, whereas the other is in charge of the non-determinism from the abstraction. SG-based
abstraction also yields upper and lower bounds on extremal reachability probabilities, and significantly
improves these bounds as evidently shown by several case studies [KKNP10]. Besides, SG-based ab-
straction is proven to be the optimal in the sense of abstract interpretation [WZ10], i.e., with the given
partition of the state space of a system, no other abstraction technique can induce more precise model
than the SG-based abstraction.

In [SK14], we extend the technique of [KKNP10] from states to distributions over states for PA; we con-
sider the non-deterministic behaviour of concrete systems at the level of distributions over states rather
than at the level of states themselves. The abstract models are then probabilistic game automata (PGA)

55

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

— stochastic games in which both the players have non-deterministic and probabilistic behaviour. In
PGA-based abstract models, one set of states represents the non-deterministic behaviour of distributions
over states in concrete systems, whereas the other set represents the (probabilistic) behaviour from ab-
straction. Our PGA-based abstract models yield tighter upper and lower bounds on extremal reachability
probabilities than SG-based models [KKNP10]. Moreover, they (PGA-based abstract models) are com-
parable with concrete models using our distribution-based (alternating) simulation relations (see Def.
16 and 18 on pages 23 and 28 respectively).

In this chapter, we combine the techniques of [KKNP10], [SK12] and [SK14] in two ways. In the
first way, we combine the techniques of [KKNP10] and [SK12]; the induced models are then a class
of abstract probabilistic game automata (APGA) — PGA with required and possible modalities — in
which one of the players have only non-deterministic behaviour. This is called state-based abstraction of
APGA. State-based abstraction differs from [KKNP10] in a sense that the non-deterministic behaviour in
concrete systems is not completely handled by one set of states: in state-based abstraction, concrete states
are merged together if they have the same step-wise behaviour after abstraction; whereas in [KKNP10],
concrete states are merged together iff they have the same step-wise behaviour. Because of this, the
bounds on extremal reachability probabilities in state-based APGA-based models are at most as tight as
in SG-based models, however, they are at most the size of SG-based models. Our abstract models are
comparable with concrete models using state-based refinement relations (see Def. 23 on page 40). We
show that game-based abstraction [KKNP10] is a special case of our state-based abstraction.

In the second way, we combine the techniques of [SK12] and [SK14]; the induced models are APGA
with both players having non-deterministic and probabilistic behaviour. This is called distribution-based
abstraction of APGA. The difference between distribution-based abstraction and [SK14] is the same as
between state-based abstraction and [KKNP10], i.e., in distribution-based abstraction, (support sets of)
concrete distributions are merged together if they have the same step-wise behaviour after abstraction;
whereas in [SK14], they are merged together iff they have the same step-wise behaviour. Thus, the
bounds on extremal reachability probabilities in distribution-based APGA-based models are at most as
tight as in PGA-based models; and they are at most the size of PGA-based models. Moreover, they are
comparable with concrete models using distribution-based refinement relation (see Def. 25 on page 42).
We show that our PGA-based abstraction in [SK14] is a special case of our distribution-based abstrac-
tion. Furthermore, we illustrate with examples that our distribution-based abstraction may induce more
precise as well as concise models than our state-based abstraction.

Moreover, we show that our state-based abstractions are defined in a sense that for all partitions of a con-
crete state space, it is possible to induce abstract models. But, this is not the case with our distribution-
based abstractions, where it might be the case that for some partition of a state space, the abstract
model is not defined. However, for closed systems – which do not interact with outside environment
—, distribution-based abstractions are also defined.

Put in a nutshell, the major contributions of this chapter are:

• a state-based abstraction of APGA showing concrete models refine abstractions using state-based
refinement relation,

• a distribution-based abstraction of APGA showing concrete models refine abstractions using
distribution-based refinement relation,

56

5.1. ABSTRACTION OF APGA

• results showing that APGA-based abstract models bound the extremal reachability probabilities of
concrete models,

• results showing that the distribution-based abstract models are more precise (as well as concise in
some cases) than the state-based abstract models, and

• APGA-based abstraction techniques are compositional.

Finally, for simplicity in figures we only provide examples of abstraction of PA — a subclass of APGA.
Moreover, to compare the sizes of concrete models with their abstractions (in terms of number of states
and transitions), we take the sizes of probabilistic transitions equal to the cardinality of the support sets
of their target distributions, e.g., the size of a transition s a→ µ is equal to |Supp(µ)|.

5.1 Abstraction of APGA

In this section, we consider abstractions of APGA that can mimic their step-wise behaviour. Let H be
an APGA with S = S1∪S2. Intuitively, the sub-state space S1/S2 of H is partitioned and each partition
is represented by a single state in the abstract sub-state space S′1/S′2 — S′ = S′1 ∪ S′2. In fact, at first a
suitable partition of S2 is decided, that then constrains the partition of S1. For a given partition of S2,
we propose two different ways for the partition of S1 and for defining the transitions of abstract states.
In the first way, the conditions for the partition of S1 are defined at the level of states, and S′ states
derive their transitions from that of S, called state-based abstraction. Whereas in the second way, the
conditions are defined at the level of distributions over S1 states, and S′ states derive their transitions from
that of distributions over S, called distribution-based abstraction. In the sequel, we show that the latter
technique induces more precise models than the former one.

Let (α,γ) be an abstraction-concretization pair such that α : S→ S′ is a surjection and γ : S′→ 2S is the
corresponding concretization function. That is, α(s) is the abstract state of s whereas γ(s′) is the set of
concrete states abstracted by s′. The abstraction of distribution µ is given as α(µ)(s′) = µ(γ(s′)). The
functions α and γ are lifted to sets of states or sets of distributions in a point-wise manner.

5.1.1 State-based Abstraction of APGA

In state-based abstraction, we assert that S1 states that have the same set of transitions (under S′2) must
be assigned to the same abstract state. For defining transitions of abstract states, we adopt the way used
for APA in [SK12]; for s′ ∈ S′1, the required transitions that are similar among the concrete states of s′

become the required transitions (after abstraction) of s′, and every transition of a concrete state becomes
a possible transition (after abstraction) of s′; whereas for S′2 states, only possible transitions are defined
for them. This is intuitive as the required transitions for S′2 states play no role in the analysis of extremal
reachability probabilities (see Th. 9 on page 49).

Definition 31. (State-based Game Abstraction). For APGA H , the abstraction function α : S→ S′

induces the APGA H ′ = α(H) where

• A′ = A;

• S′i = α(Si) for i ∈ {1,2};

57

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

s0 s2

s1

s3

s4

s5

s6

a

0.
1

0.3

0.1

0.
5

b

a 0.9

0.1

a
0.2

0.8

c

b

0.7

0.
3

a

a
0.5

0.5

s0 s2

s1

s3

s4

s5

s6

v0

t0

v1

t1

v2

t2

v3

t3

v4

t4

v5

t5

v6

t6

a

0.1

0.3

0.
1

0.
5

b

a 0.9

0.1

a
0.2

0.8

b
c

0.
7

0.3

a

a

0.5

0.5

a

b
a

b

c

a

a
a

a

Figure 5.1: A PA M (left) and its embedding H = αPA(M) (right)

• ∀s,u ∈ S1 : α(∆x(s)) = α(∆x(u)) for x ∈ {p, r} implies α(s) = α(u);

and for every s′ ∈ S′:

1. if s′ ∈ S′1, then:

(a) s′ a→r µ ′ iff ∀s ∈ γ(s′) : s a→rc µ such that α(µ) = µ ′,

(b) ∃s ∈ γ(s′) : s a→p µ implies s′ a→pc µ ′ such that α(µ) = µ ′,

(c) s′ a→p µ ′ implies ∃s ∈ γ(s′) : s a→p µ such that α(µ) = µ ′,

2. if s′ ∈ S′2, then:

(a) ∃s ∈ γ(s′) : s a→p µ implies s′ a→pc µ ′ such that α(µ) = µ ′.

(b) s′ a→p µ ′ implies ∃s ∈ γ(s′) : s a→p µ such that α(µ) = µ ′.

In the sequel, (αsb,γsb) denotes a pair of state-based abstraction-concretization functions, and let Abstsb
be the set of state-based abstraction functions for APGA.

The above definition asserts that every two states in S1 having the same transitions (after abstraction) are
grouped together. The condition (1) deals with player-one states in the abstract model, and by (1a) for
every required a-transition from an abstract state s′ to µ ′, there is a required combined transition from
every concrete state s of s′ to some µ such that µ is abstracted by µ ′. By (1b) the behaviour of each
concrete state (after abstraction) is present in its corresponding abstract state, i.e., if a concrete state s
can perform a possible a-transition to some µ , then its abstract state s′ performs a possible combined

58

5.1. ABSTRACTION OF APGA

s0

s2

s1

s3

s4

s5

s6

s7

a

0.
1

0.
3

0.05

0.05

0.
5

a 0.9

0.1

a

0.2

0.
8

a

a

a

bb

Figure 5.2: A PA M

a-transition to some µ ′ such that µ is abstracted by µ ′. By (1c) the possible behaviour of an abstract state
is derived from its corresponding concrete states. The condition (2) deals with player-two states and (2a)
and (2b) are identical to (1b) and (1c) respectively.

Example 23. Let H ′ = αsb(H) (Fig. 5.3 left) be the induced state-based abstract model of APGA
H (Fig. 5.1) with γsb(t ′0) = {t0}, γsb(t ′1) = {t1, t2, t3}, γsb(t ′2) = {t4, t5} and γsb(t ′3) = {t6} as well as
γsb(v′0) = {v0}, γsb(v′1) = {v1,v2}, γsb(v′2) = {v3}, γsb(v′3) = {v4,v5} and γsb(v′4) = {v6}. Let us consider
the abstract state v′1, it has a required a-transition to t ′2 because both of its concrete states (v1 and v2)
have required a-transitions with target distributions over t4 and t5 (the concrete states of t ′3). By a similar
reason there exists a required b-transition from v′1 to t ′1. However, only v2 has a required c-transition
to t3, therefore, v′1 has a possible c-transition to t ′1 (the abstract state of t3). The rest of the example is
trivial.

Lemma 3. For a state-based abstraction function α ∈ Abstsb, let η ∈ Dist(S) and η ′ ∈ Dist(α(S)). Let
R⊆ S×α(S), then:

η
′ = α(η) implies ηRη

′.

Proof. In order to prove that ηRη ′, we define a weight function for distributions η and α(η) w.r.t.
relation R such that for all s ∈ S and s′ ∈ α(S):

δ (s,s′) = η(s) · ιs′(α(s))

and prove that it fulfils the three properties of a weight function (Def. 12 on page 17).

1. Let s′ = α(s) and η(s) > 0, it implies that δ (s,s′) > 0 and sRs′,

59

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

s0

s2

s1

s3

s4

s5

s6

v′0

t ′0

v′1

v′2

t ′1

v′3

t ′2

v′4
t ′3

a

0.5 0.5

b

c

a

a

a

0.
5

0.
5

a

ac

b

b

a

a

s0

s2

s1

s3

s4

s5

s6

v̂0

t̂0

v̂1

v̂2

t̂1

v̂3

t̂2

v̂4

t̂3

a 0.5

0.
5

b
c

a

a

a

0.
5

0.5

a

0.7

0.
3

a,b

b

0.
5

0.5

a
a

c

Figure 5.3: For APGA H (Fig. 5.1 right), H ′ = αsb(H) (left) and Ĥ = αdb(H) (right)

2. The proof for δ (s,α(S)) = η(s) goes as:

∑s′∈α(S)
δ (s,s′) = ∑s′∈α(S)

η(s) · ιs′(α(s))

δ (s,α(S)) = ∑s′∈α(S):s′=α(s) η(s)

δ (s,α(S)) = η(s)

3. The proof for δ (S,s′) = η ′(s′) goes as:

∑s∈S δ (s,s′) = ∑s∈S η(s) · ιs′(α(s))

δ (S,s′) = ∑s∈S:s′=α(s) η(s)

= η
′(s′)

The following theorem establishes that concrete models refine their state-based abstractions.

Theorem 12. H �sb αsb(H).

60

5.1. ABSTRACTION OF APGA

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0) be an APGA and let αsb : S→ S′ such that αsb(H) = H ′ =
(S′,{S′1,S′2},A,∆′r,∆′p,s′0) is the induced APGA. We define the relation R⊆ (S1×S′1)∪ (S2×S′2) as:

R = {(s,αsb(s)) | s ∈ S}
and show that it fulfils the conditions of Def. 23.

Let sRs′, then s ∈ γsb(s′).

1. Let s′ a→r µ ′. By condition (1a) of Def. 31, s a→rc µ such that αsb(µ) = µ ′. Thus, by Lem. 3 µRµ ′

holds.

2. Let s a→p µ and s ∈ S1. By condition (1b) of Def. 31, s′ a→pc µ ′ such that αsb(µ) = µ ′ hold. Thus,
by Lem. 3 µRµ ′ holds.

3. Let s a→p µ and s ∈ S2. By condition (2a) of Def. 31, s′ a→pc µ ′ such that αsb(µ) = µ ′ hold. Thus,
by Lem. 3 µRµ ′ holds.

State-based abstraction of APGA vs. closed APGA. Observe that the abstract models obtained by first
closing APGA and then abstracting them may be different from the ones obtained by first abstracting
and then closing, i.e., τ(αsb(H)) may not be the same as αsb(τ(H)) for APGA H . For example, if
every concrete state in a partition has a transition with the same distribution, say µ , as its target, then the
corresponding abstract state would have a required transition with target distribution αsb(µ) in case of a
closed concrete game; otherwise it might have a possible transition if action labels of concrete transitions
are different. However, τ(αsb(H)) and αsb(τ(H)) are in a refinement relation as given by the following
proposition.

Proposition 16. For APGA H , αsb(τ(H))�sb τ(αsb(H)).

Thus, by Th. 10 (page 50) abstractions of closed APGA give more precise models than abstractions of
open APGA.

State-based APGA-based vs. game-based abstraction [KKNP10] of PA. State-based APGA-based
abstraction differs from [KKNP10] in a sense that the non-deterministic behaviour in a PA is not com-
pletely handled by one set of states: APGA-based abstraction merges concrete states if they have the
same step-wise behaviour after abstraction; whereas SG-based abstraction does so iff they have the same
step-wise behaviour. Consequently, the bounds on reachability probabilities in APGA-based abstrac-
tions are at most as tight as in SG-based abstractions, however, they are at most the sizes of SG-based
abstractions.

Proposition 17. αsb coincides with game-based abstraction [KKNP10] of PA iff all player-one transi-
tions are required transitions in the abstraction.

61

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

s0

s2

s1

s3

s4

s5

s6

s7

ṽ0

t̃0

ṽ1

ṽ2

ṽ3

t̃1

ṽ4

t̃2

ṽ5

t̃3

a
0.5

0.
5

b

a

a

a

a

a
a

a

b a
a

s0

s2

s1

s3

s4

s5

s6

s7

v′0
t ′0

v′1

v′2

t ′1

v′3

t ′2

v′4
t ′3

a
0.5

0.
5

b

a

a

a

0.5

0.5

a

0.
8

0.2
b

a
a

Figure 5.4: For PA M (Fig. 5.2), H = αPA(M) with H̃ = αsb(H) (left) and H ′ = αdb(H) (right).

Example 24. Let H = αPA(M) for PA M (Fig. 5.2) and H̃ = αsb(H) (Fig. 5.4 left). Note that in
H̃ only those player one states of H are merged that have the same behaviour under S̃2. Therefore, αsb
induces a game-based abstraction of PA M , thus showing game-based abstraction is a special case of
state-based abstraction.

5.1.2 Distribution-based Abstraction of APGA

We start this section with the definition of maximal singular-distributions, which is then used in defining
the conditions for the partition of S1 states as well as for defining the transitions of abstract states.
Intuitively, the support sets of maximal singular-distributions are unique in an APGA; and we require
that the support sets of such distributions be abstracted by a single state. Moreover, maximal singular-
distributions whose hyper-transitions are the same after abstraction must be abstracted by the same state.
To formally define the notion of a maximal singular-distribution, we need to define the notion of a
maximal sub-distribution of a distribution.

Definition 32. A sub-distribution η ∈ SDist(S) is a maximal sub-distribution of a distribution µ iff
∀s ∈ Supp(η) : η(s) = µ(s). Let MaxSDist(µ) denote the set of maximal sub-distributions of µ .

Informally, a distribution µ is a singular-distribution in an APGA H if for every other distribution ρ

with Supp(µ)∩Supp(ρ) 6= /0, there exists a maximal sub-distribution η of ρ such that η↓ = µ . Formally,

Definition 33. In an APGA H , a distribution µ ∈ Dist(S) is a singular-distribution iff

∀ν ∈ Dist(S) : Supp(µ)∩Supp(ν) 6= /0 implies ∃ν ′ ∈MaxSDist(ν) with ν
′
↓ = µ.

62

5.1. ABSTRACTION OF APGA

s0

s1

s2

s3

µ

0.2

0.4

0.4

ν

0.1

0.2

0.2

0.5

u0

u1

η

0.5

0.5

ρ

0.8

0.2

Figure 5.5: Distribution µ is a maximal singular-distribution, whereas ν , η and ρ are not singular-
distributions. Note that every maximal sub-distribution ν ′ of ν is a singular-distribution if Supp(ν ′) ⊆
Supp(µ) or Supp(ν ′)∩Supp(µ) = /0.

Let SingDist(S) ⊆ Dist(S) denote the set of singular-distributions over S in an APGA H , and let
MaxSingDist(S) = {µ ∈ SingDist(S) | ∀ρ ∈ SingDist(S) : Supp(ρ)⊆ Supp(µ) or Supp(ρ)∩Supp(µ) =
/0} denote the set of maximal singular-distributions.

Thus, a maximal singular-distribution µ is a distribution such that every other singular-distribution is ei-
ther a maximal sub-distribution of µ or does not share any state with µ . Note that every Dirac distribution
over S is a singular-distribution, i.e., ιs ∈ SingDist(S) for s ∈ S.

Example 25. In Fig. 5.5, the distribution µ is a maximal singular-distribution: Supp(µ)∩Supp(ν) =
Supp(µ) = {s0,s1,s2} and µ = J0.1s0,0.2s2,0.2s3K↓ where J0.1s0,0.2s2,0.2s3K is a maximal sub-distri-
bution of ν; and for every singular-distribution µ ′ over {s0,s1,s2,s3}, either Supp(µ ′) ⊆ Supp(µ) or
Supp(µ ′)∩Supp(µ) = /0. For example, J0.2s0,0.4s1K↓ and ιs3 are singular-distributions, and {s0,s1} ⊆
Supp(µ) and {s3} ∩ Supp(µ) = /0 respectively. Moreover, neither η nor ρ is a singular-distribution
whereas ιu0 and ιu1 are.

In case of distribution-based abstraction, we require that every maximal singular-distribution over S1 is
abstracted by a Dirac distribution, and two maximal singular-distributions that have the same behaviour
(under S′2) are abstracted by the same Dirac distribution; thus restricting the partition of S1 states for a
given S′2. Moreover, we derive the transitions of S′ states from their concrete distributions. For s′ ∈ S′1, the
required transitions that are the same among distributions over concrete states of s′ become the required
transitions (after abstraction) of s′, and every transition of a concrete distribution becomes a possible
transition (after abstraction) of s′. Like in state-based abstraction, for S′2 states only possible transitions
are defined.

Definition 34. (Distribution-based Game Abstraction). For APGA H , the abstraction function α :
S→ S′ induces the APGA H ′ = α(H) where

• A′ = A;

• S′i = α(Si) for i ∈ {1,2};

• ∀ρ ∈MaxSingDist(S1) : |Supp(α(ρ))|= 1;

63

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

• ∀ν ,η ∈MaxSingDist(S1): α(∆x(ν)) = α(∆x(η)) for all x ∈ {p, r} implies α(ν) = α(η);

and for all µ ′ ∈ Dist(S′):

1. ∀s′ ∈ Supp(µ ′), µ ∈ γ(µ ′) : ∃µs′ ∈MaxSDist(µ) : µ ′(s′) = |µs′ |∧α(µs′)↓ = ιs′ ,

2. if µ ′ ∈ Dist(S′1), then:

(a) µ ′ a→r ρ ′ iff ∀µ ∈ γ(µ ′) : µ
a→rc ρ such that |ρ| ≥ |ρ ′| and α(ρ)↓ = ρ ′↓,

(b) ∃µ ∈ γ(µ ′) : µ
a→p ρ implies µ ′ a→pc ρ ′ such that |ρ| ≤ |ρ ′| and α(ρ)↓ = ρ ′↓,

(c) µ ′ a→p ρ ′ implies ∃µ ∈ γ(µ ′) : µ
a→p ρ such that |ρ| ≤ |ρ ′| and α(ρ)↓ = ρ ′↓,

3. if µ ′ ∈ Dist(S′2), then:

(a) ∃µ ∈ γ(µ ′) : µ
a→p ρ implies µ ′ a→pc ρ ′ such that |ρ| ≤ |ρ ′| and α(ρ)↓ = ρ ′↓,

(b) µ ′ a→p ρ ′ implies ∃µ ∈ γ(µ ′) : µ
a→p ρ such that |ρ| ≤ |ρ ′| and α(ρ)↓ = ρ ′↓.

In the sequel, (αdb,γdb) denotes a pair of distribution-based abstraction-concretization functions, and let
Abstdb be a set of distribution-based abstraction functions for APGA.

By Def. 34 every maximal singular-distribution over S1 is abstracted by some Dirac distribution, say ιs′ ;
this then also implies that γ(ιs′) contains all maximal singular-distributions that are defined over con-
crete states of s′. Thus, every distribution that is abstracted by ιs′ is a convex combination of maximal
singular-distributions in γdb(ιs′). Moreover, it also implies that all transitions of s′ are derived from that
of maximal singular-distributions in γdb(ιs′).

Furthermore, by Def. 34 every two maximal singular-distributions ν ,η ∈MaxSingDist(S1) having the
same required and possible transitions under S′2 are abstracted by the same Dirac distribution.

The condition (1) guarantees the splitting of every concrete distribution µ ∈ γdb(µ ′) into maximal sub-
distributions as per the support of the abstract distribution µ ′ in such a way that the (conditional) distribu-
tion µs′↓ is also abstracted by its corresponding abstract distribution, i.e., ιs′ . The condition (2) deals with
player one distributions, and (2a) asserts that for every required a-transition from an abstract distribution
µ ′ to ρ ′, there is a required combined a-transition from every corresponding concrete distribution µ to
some ρ such that the mass of ρ ′ is at most that of ρ and (the conditional distribution of) ρ is abstracted
by (that of) ρ ′; (2b) asserts that for every possible a-transition from a concrete distribution µ to ρ , there
is a possible combined a-transition from the abstract distribution µ ′ to some ρ ′ such that the mass of ρ ′ is
at least that of ρ and (the conditional distribution of) ρ is abstracted by (that of) ρ ′; whereas (2c) asserts
that the behaviour of abstract distribution is derived from its corresponding concrete distributions. The
condition (3) deals with player two distributions and (3a) and (3b) are similar to (2b) and (2c) respec-
tively.

The following example shows that a maximal singular-distribution is always abstracted by a Dirac dis-
tribution in distribution-based abstraction.

Example 26. Let H ′ = αdb(αPA(M)) (right) for PA M (left) in Fig. 5.6 with γdb(t ′0) = {t0}, γdb(t ′1) =
{t1, t2, t3}, γdb(t ′2) = {t4, t5} as well as γdb(v′0) = {v0}, γdb(v′1) = {v1,v2}, γdb(v′2) = {v3} and γdb(v′3) =

64

5.1. ABSTRACTION OF APGA

s0

s1

s2

s3

s4

s5
a 0.

2

0.20.6

a

0.
5

0.5 a

a

a

s0

s1

s2

s3

s4

s5v′0
t ′0

v′1

v′2

t ′1

v′3

t ′2

a

a

0.
4

0.6

a

a

a

a

Figure 5.6: For PA M (left), H ′ = αdb(αPA(M)) (right).

{v4,v5}. Note that J0.5v1,0.5v2K is a maximal singular-distribution (which is also a (conditional) max-
imal sub-distribution of J0.2v1,0.2v2,0.6v3K) and therefore its support set {v1,v2} is abstracted by v′1.
Had we not merged v1 and v2, this would not be a distribution-based abstraction — which asserts that a
maximal singular-distribution is abstracted by a Dirac distribution.

Note that if MaxSingDist(S1) = Dirac(S1) for APGA H , then a state-based abstraction coincides with
a distribution-based abstraction provided they have the same partition of player two state space.

Proposition 18. For APGA H , if MaxSingDist(S1) = Dirac(S1) and αsb(S2) = αdb(S2), then αsb(H)
coincides with αdb(H) ignoring transitions from player two states.

The following example illustrates how the transitions of abstract distributions are derived from their
corresponding concrete distributions.

Example 27. Let Ĥ = αdb(H) (right Fig. 5.3 on page 60) for APGA H (Fig.5.1 on page 58)
where γdb(t̂0) = {t0}, γdb(t̂1) = {t1, t2, t3}, γdb(t̂2) = {t4, t5} and γdb(t̂3) = {t6} as well as γdb(v̂0) =
{v0}, γdb(v̂1) = {v1,v2}, γdb(v̂2) = {v3}, γdb(v̂3) = {v4,v5} and γdb(v̂4) = {v6}. Consider ιt̂1 with
γdb(ιt̂1) = {J0.2t1,0.6t2, 0.2t3K, ιt1 , ιt3}. Let us check whether the transitions from J0.2t1,0.6t2,0.2t3K
are present in ιt̂1 . For J0.2t1,0.6t2,0.2t3K

a→ J0.2v1,0.6v2,0.2v3K, there is ιt̂1
a→pc J0.8v̂1,0.2v̂2K with

J0.2v1,0.6v2,0.2v3K↓ ∈ γdb(J0.8v̂1,0.2v̂2K). Similarly, for J0.2t1,0.6t2,0.2t3K
b→ J0.2v1,0.2v3K, there is

ιt̂1
b→p J0.5v̂1,0.5v̂2K with J0.2v1,0.2v3K↓ ∈ γdb(J0.5v̂1,0.5v̂2K). Same is the case for the c-transition from

J0.2v1,0.6v2,0.2v3K and ιt̂1 .

Now consider ιv̂1 with γdb(ιv̂1) = {ιv1 , ιv2 ,J0.25v1,0.75v2K}— ιv1 , ιv2 ∈ γdb(ιv̂1) as ιv1 , ιv2 ∈MaxSingDist
(S1). As ιv1

a→r J0.9t4,0.1t5K, ιv2

a→r J0.8t4,0.2t5K and J0.25v1,0.75v2K
a→r J0.825t4,0.175t5K with J0.9t4,

65

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

0.1t5K, J0.8t4,0.2t5K and J0.825t4,0.175t5K∈ γdb(ιt̂2), therefore, ιv̂1

a→r ιt̂2 . This also applies to b-transitions.
Now consider ιv2

c→r ιt3 . As there is no c-transition from ιv1 , we have ιv̂1

c→p ιt̂1 .

In the following example, we illustrate that maximal singular-distributions that have the same behaviour
are abstracted by the same Dirac distribution.

Example 28. For PA M (Fig. 5.8 on page 70), let H = αPA(M) be its induced game. Let Ĥ =
αdb(H) (Fig. 5.9 right) be the distribution-based abstract model of H with γdb(t̂0) = {t0}, γdb(t̂1) =
{t5}, γdb(t̂2) = {t1, t2, t3, t4}, γdb(t̂3) = {t6, t7}, γdb(t̂4) = {t8, t9} and γdb(v̂0) = {v0}), γdb(v̂1) = {v1,v2}),
γdb(v̂2) = {v3,v4,v5}), γdb(v̂3) = {v6,v7}), and γdb(v̂4) = {v8,v9}). Note that as the behaviour of concrete
maximal singular-distributions J0.5v3,0.5v4K and ιv5 are the same (under partition of player two state
space), therefore, they are abstracted by the same distribution, i.e., ιv̂2 .

Distribution-based abstraction of APGA vs. closed APGA. It is observed that not for every partition
of S2, a distribution-based abstract model can be given, i.e., there exists no αdb fulfilling the conditions
of Def. 34. However, for closed versions of APGA, this is possible. Remember that the partition of S1 is
conditioned on the partition of S2 in both state-based and distribution-based abstractions.

Proposition 19. αdb(τ(H)) is defined for APGA H .

By this proposition, for every partition of S2 of a closed APGA, we can construct a distribution-based
abstract model. However, for some APGA (not closed) we can have partitions of state spaces that do not
define distribution-based abstract models. Moreover, although we do not aggregate any states when the
partition is trivially S, αdb is defined for this partition. In the sequel, we assume that αdb(H) is defined
for APGA H .

Moreover, like state-based abstraction of APGA (see page 61), distribution-based abstraction may also
induce different models for closed and open APGA; however, unlike state-based abstractions (see Propo-
sition 16 on page 61), they might not be related with each other. However, for a class of APGA (that
represents the embeddings of PA (see Property 1 on page 50)), the extreme probabilistic game automata
(see Def. 29 on page 48) of the abstractions of the closed and open models are related. (Recall that
EPGA G •◦ of APGA H inherits its player-one transitions from the required transitions of that of H ,
whereas player-two transitions from the possible transitions of that of H .)

Theorem 13. For PA M , let H = αPA(M) with H ′ = α ′db(τ(H)) and H ′′ = τ(α ′′db(H)). Then
α ′db(S) = α ′′db(S) implies G •

′
◦ 2db G •

′′
◦ .

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0) be an embedding of a PA. Let α ′db : S→ S′ and α ′′db : S→ S′′

such that α ′db(τ(H)) = H ′ = (S′,{S′1,S′2},{τ},∆′r,∆′p,s′0) and τ(α ′′db(H)) = H ′′ = (S′′,{S′′1 ,S′′2},{τ},

66

5.1. ABSTRACTION OF APGA

PA M H H ′ G •
′
◦

2
db α ′db(S) = α ′′db(S)

H ′′ G •
′′
◦

αPA α ′db ◦ τ

τ◦
α
′′db

implies

Figure 5.7: Graphical representation of Th. 13.

∆′′r ,∆
′′
p,s
′′
0) are the induced APGA with S′ = S′′. Let G •

′
◦ and G •

′′
◦ be the EPGA of H ′ and H ′′ respec-

tively. We define the relation R⊆ (Dist(S′1)×Dist(S′′1))∪(Dist(S′2)×Dist(S′′2)) on the state spaces of G •
′
◦

and G •
′′
◦ as:

R = {(α
′
db(µ),α ′′db(µ)) | µ ∈ Dist(S)}

and show that it fulfils the conditions of Def. 18 (page 28).

As S′= S′′, the condition (1) of Def. 18 trivially holds for every pair of distributions in R. This also allows
us to check the remaining conditions of Def. 18 only for those pairs in R that relate Dirac distributions.
Moreover, for s′ = s′′, γ ′db(ιs′) = γ ′′db(ιs′′). Let µ ′Rµ ′′ where µ ′ and µ ′′ are Dirac distributions.

1. Let µ ′ and µ ′′ be player one distributions, and µ ′′ τ→ ν ′′ in G •
′′
◦ . Then, by Def. 29, µ ′′ τ→r ν ′′

in τ(α ′′db(H)); and by Def. 8 for some a ∈ A, µ ′′ a→r ν ′′ in α ′′db(H). Let µ ∈ γ ′′db(µ ′′), then by
condition (2a) of Def. 34, µ

a→rc ν such that |ν ′′| = |ν | and α ′′db(ν) = ν ′′. Therefore, by Def. 8
µ

τ→rc ν also holds in τ(H). As µ ∈ γ ′db(µ ′) and γ ′db(µ ′) = γ ′′db(µ ′′), therefore, by condition (2a)
of Def. 34, µ ′ τ→r ν ′ in α ′db(τ(H)) such that |ν ′|= |ν | and α ′db(ν) = ν ′; and by Def. 29, µ ′ τ→ ν ′

in G •
′
◦ . As ν ′ = ν ′′ as well as S′ = S′′, therefore, ν ′Rν ′′ holds.

2. Let µ ′ and µ ′′ be player two distributions, and µ ′ τ→ ν ′ in G •
′
◦ . Then, by Def. 29, µ ′ τ→p ν ′ in

α ′db(τ(H)). Then by condition (3b) of Def. 34, there exists µ ∈ γ ′db(µ ′) and µ
τ→ ν such that

|ν ′| = |ν | and α ′db(ν) = ν ′. As ∀s ∈ Supp(µ) : |Succ(s)| = 1, therefore for some a ∈ A, µ
a→ ν

holds (Note that if for some u∈ Supp(µ) : |Succ(u)|> 1, this would not be a valid argument). Also
µ ∈ γ ′′db(µ ′′) and γ ′db(µ ′) = γ ′′db(µ ′′), therefore, by condition (3a) of Def. 34, µ ′′ a→pc ν ′′ in α ′′db(H)

such that |ν ′′|= |ν | and α ′′db(ν) = ν ′′; and µ ′′ τ→pc ν ′′ in τ(α ′′db(H)), and by Def. 29 µ ′′ τ→c ν ′′ in
G •

′′
◦ . As ν ′′ = ν ′ as well as S′ = S′′, therefore, ν ′Rν ′′ holds.

The graphical representation of Th. 13 is given in Fig. 5.7.

Theorem 14. H �db αdb(H).

67

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0) be an APGA and let αdb : S→ S′ such that αdb(H) = H ′ =
(S′,{S′1,S′2},A,∆′r,∆′p,s′0) is the induced APGA. We define the relation R ⊆ (Dist(S1)×Dist(S′1)) ∪
(Dist(S2)×Dist(S′2)) as:

R = {(µ,αdb(µ)) | µ ∈ Dist(S)}
and show that it fulfils the conditions of Def. 25 (on page 42).

Let µRµ ′, then µ ∈ γdb(µ ′).

1. Let s′ ∈ Supp(µ ′). By condition (1) of Def. 34, for s′ there exists a corresponding maximal sub-
distribution in MaxSDist(µ), i.e., µs′ such that |µs′ | = µ ′(s′) and αdb(µs′)↓ = ιs′ . Thus, µs′↓Rιs′

holds.

2. Let µ ′ a→r µ ′. By condition (2a) of Def. 34, µ
a→rc µ such that |µ ′| ≤ |µ| and αdb(µ)↓ = µ ′. Thus,

µ↓Rµ ′ holds.

3. Let µ
a→p µ and µ ∈ Dist(S1). By condition (2b) of Def. 34, µ ′ a→pc µ ′ such that |µ ′| ≥ |µ| and

αdb(µ)↓ = µ ′ hold. Thus, µ↓Rµ ′ holds.

4. Let µ
a→p µ and µ ∈ Dist(S2). By condition (3a) of Def. 34, µ ′ a→pc µ ′ such that |µ ′| ≥ |µ| and

αdb(µ)↓ = µ ′ hold. Thus, µ↓Rµ ′ holds.

In the following example, we observe that the distribution-based abstractions of an APGA obtained
by first abstracting and then closing is smaller in size than the one obtained by first closing and then
abstracting. By Th. 13 the EPGA of both the abstract models are related, that allows for computing the
extremal reachability probabilities (in case of competing players by Th. 9) on the smaller model.

Example 29. For PA M (Fig. 5.8), let H = αPA(M) be its induced game. Let Ĥ = αdb(H) (Fig.
5.9 right) be the distribution-based abstract model of H with γdb(t̂0) = {t0}, γdb(t̂1) = {t5}, γdb(t̂2) =
{t1, t2, t3, t4}, γdb(t̂3) = {t6, t7}, γdb(t̂4) = {t8, t9} and γdb(v̂0) = {v0}), γdb(v̂1) = {v1,v2}), γdb(v̂2) =
{v3,v4,v5}), γdb(v̂3) = {v6,v7}), and γdb(v̂4) = {v8,v9}). Let H ′ = αdb(τ(H)) (Fig.5.8 right) be the
distribution-based abstract model of closed H with the same partition as above. Let G •̂◦ and G •

′
◦ be the

EPGA of τ(Ĥ) and H ′, then G •
′
◦ 2db G •̂◦ as R =

⋃
i=0...4{(t ′i , t̂i),(v′i, v̂i)} is a DBAS relation.

Distribution-based APGA-based vs. PGA-based abstraction [SK14] of PA. The difference between
distribution-based APGA-based and PGA-based abstractions [SK14] are the same as between state-based
APGA-based and SG-based abstractions [KKNP10], i.e., APGA-based abstractions merge (support sets
of) maximal singular-distributions over player-one states if they have the same step-wise behaviour after
abstraction; whereas PGA-based abstractions do so iff they have the same step-wise behaviour. Conse-
quently, the bounds on reachability probabilities in distribution-based APGA-based abstractions are at
most as tight as in PGA-based abstractions; and they are at most the sizes of PGA-based abstractions.

Proposition 20. αdb coincides with PGA-based abstraction [SK14] of PA iff all player-one transitions
are required transitions in the abstraction.

68

5.1. ABSTRACTION OF APGA

Example 30. Let H = αPA(M) for PA M (Fig. 5.2) with H ′ = αdb(H) (Fig. 5.4 right). Note that
in H ′ only those player one maximal singular-distributions in H are merged together that have the
same behaviour under S′2. Therefore, αdb induces a PGA-based abstract model of M , thus showing
distribution-based abstraction of PGA is a special case of that of APGA.

5.1.3 State- vs. Distribution-based Abstractions of APGA

State-based abstraction is not a special case of distribution-based abstraction of APGA. In fact, for every
partition of S2, we can have a state-based abstract model of APGA, but not a distribution-based abstract
model (which is only possible for closed versions of APGA)

Now we prove that the distribution-based abstraction of APGA is more precise than the state-based
abstraction. In fact, when two abstract models, obtained by a state-based and a distribution-based ab-
straction, have the same state space; then the latter one is at least as precise as the former one (see Section
5.3).

Theorem 15. For APGA H and ≺∈ {≺sb,2sb}, αsb(S) = αdb(S) implies αdb(H)≺ αsb(H).

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0) be an APGA. Let α ′db : S→ S′ and α ′′sb : S→ S′′ such that
H ′ = α ′db(H) = (S′,{S′1,S′2},A,∆′r,∆′p,s′0) and H ′′ = α ′′sb(H) = (S′′,{S′′1 ,S′′2},A,∆′′r ,∆′′p,s′′0) are the
induced APGA with S′ = S′′. We define the relation R⊆ (S′1×S′′1)∪ (S′2×S′′2) as:

R = {(α
′
db(s),α ′′sb(s)) | s ∈ S}

and show that it fulfils the conditions of Def. 23 (page 40).

Let s′Rs′′, then:

1. Let s′ ∈ S′1 and s′ a→p µ ′. By condition (2c) of Def. 34, there exists µ ∈ γ ′db(ιs′): µ
a→p η such that

|µ ′| ≥ |η | and α ′db(η)↓ = µ ′. As γdb(s′) = γsb(s′′), this implies by condition (1b) of Def. 31 that
s′′ a→pc µ ′′ such that α ′′sb(µ)↓ = µ ′′. As α ′db(µ)↓ = µ ′ and α ′′sb(µ)↓ = µ ′′, thus µ ′Rµ ′′ as S′ = S′′.

2. Let s′ ∈ S′2 and s′ a→p µ ′. By condition (3b) of Def. 34, there exists µ ∈ γ ′db(ιs′): µ
a→p µ such that

|µ ′| ≥ |µ| and α ′db(µ)↓ = µ ′. As γdb(s′) = γsb(s′′), this implies by condition (2a) of Def. 31 that
s′′ a→pc µ ′′ such that α ′′sb(µ)↓ = µ ′′. As α ′db(µ)↓ = µ ′ and α ′′sb(µ)↓ = µ ′′, thus µ ′Rµ ′′ as S′ = S′′.

3. Let s′′ ∈ S′′1 and s′′ a→r µ ′′. By condition (1a) of Def. 31, for every s ∈ γ ′′sb(s′′): s a→rc µ such that
α ′′sb(µ) = µ ′′. As γdb(s′) = γsb(s′′), this implies by condition (2a) of Def. 34 that s′ a→rc µ ′ such
that α ′db(µ) = µ ′. As α ′db(µ) = µ ′ and α ′′sb(µ) = µ ′′, thus µ ′Rµ ′′ as S′ = S′′.

69

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

a

0.
1

0.3

0.05

0.05

0.
5

a

0.2

0.3

0.
5

a
b

a
0.5

0.5

a

a

b

a
a

b

a

b a

0.
5

0.
5

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

v′0
t ′0

t ′1

v′1

v′2

t ′2

v′3
t ′3

v′4
t ′4

0.5

0.5

0.
5

0.5

0.
5

0.5

0.
8

0.2

0.
5

0.5

Figure 5.8: PA M (left) and distribution-based abstraction of τ(M) — H = αdb(τ(M)) (right). Note
that |∆|= 19 and |S1|= 5 in H .

5.2 Compositional Abstraction

Like for APA [SK12], our abstraction techniques for APGA are compositional. Intuitively, the composite
APGA may be exponentially larger in size as compared to the composing ones. This problem could be
avoided by applying abstraction prior to composition.

Theorem 16. For APGA H and H ′, synchronization set Ā and abstraction functions αx, α ′x; α(H) ||Ā
α ′x(H

′) = (α×α ′x)(H ||ĀH ′) up to isomorphism, where x ∈ {sb,db} and αx×α ′x is defined as (αx×
α ′x)(s,s′) = (αx(s),α ′x(s′)).

We only prove for distribution-based abstraction as the proof for the other case is similar.

Proof. Let H = (S,{S1,S2},A,∆r,∆p,s0) and Ĥ = (Ŝ,{Ŝ1, Ŝ2}, Â, ∆̂r, ∆̂p, ŝ0) be APGA and let Ā ⊆
A∩ Â such that H ‖ĀĤ = (S× Ŝ,{S1× Ŝ1,S× Ŝ\S1× Ŝ1},A∪ Â, ∆̃r, ∆̃p,(s0, ŝ0)). Let αdb : S→ S′ and
α̂db : Ŝ→ Ŝ′ be the distribution-based abstraction functions: αdb(H) = H ′ = (S′,{S′1,S′2},A,∆′r,∆′p,s′0),
α̂db(Ĥ) = Ĥ ′ = (Ŝ′,{Ŝ′1, Ŝ′2}, Â, ∆̂′r, ∆̂′p, ŝ′0) and (αdb× α̂db)(H ‖ĀĤ) = (S′× Ŝ′,{S′1× Ŝ′1,S

′× Ŝ′\S′1×
Ŝ′1},A∪Â, ∆̃′r, ∆̃

′
p,(s′0, ŝ

′
0)). Let αdb(H)‖Āα̂db(Ĥ) = (S′× Ŝ′,{S′1× Ŝ′1,S

′× Ŝ′\S′1× Ŝ′1},A∪Â, ∆̃′′r , ∆̃
′′
p,(s′0,

ŝ′0)).

70

5.2. COMPOSITIONAL ABSTRACTION

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

ṽ0

t̃0

t̃1

ṽ1

ṽ2

t̃2

ṽ3

t̃3

ṽ4

t̃4

a 0.5

0.5
a

b a

0.
5

0.5a

a

b

a

0.
5

0.5

b

a
,b

a

a

a

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

v̂0

t̂0

t̂1

v̂1

v̂2

t̂2

v̂3

t̂3

v̂4

t̂4

a 0.5

0.5
a

b a 0.
5

0.5

a

b
a

0.
5

0.5

b

b
a

0.
8

0.2

a

a

Figure 5.9: For PA M (Fig. 5.8), H̃ = αsb(αPA(M)) (left) and Ĥ = αdb(αPA(M)) (right) with
|∆̃|= |∆̂|= 17 and |S̃1|= |Ŝ1|= 5. Note that Ŝ1 states have only required transitions.

Note that the signature of (αdb× α̂db)(H ‖ĀĤ) and αdb(H)‖Āα̂db(Ĥ) only differs on the sets of tran-
sitions. We establish the result by proving that ∆̃′r = ∆̃′′r and ∆̃′p = ∆̃′′p .

Let us prove ∆̃′p = ∆̃′′p . We prove this by showing that for every transition in ∆̃′p, there is a corresponding
combined transition in ∆̃′′p and vice versa. Let ∆̃′pc and ∆̃′′pc denote the sets of combined transitions in ∆̃′p
and ∆̃′′p respectively.

• ∆̃′p ⊆ ∆̃′′pc: For some a ∈ A∪ Â, let (s′, ŝ′) a→p µ ′‖µ̂ ′. We prove that this transition is also possible
from ∆̃′′pc.

1. Let (s′, ŝ′) ∈ S′1× Ŝ′1. As (s′, ŝ′) a→p µ ′‖µ̂ ′, by (2c) of Def. 34, there exists µ‖µ̂ ∈ (γdb×
γ̂db)(ιs′‖ιŝ′), µ‖µ̂ a→p η‖η̂ such that |η‖η̂ | ≤ |µ ′‖µ̂ ′| and (µ ′‖µ̂ ′)↓ = (αdb× α̂db)(η‖η̂)↓.
There are three possible cases by Def. 30:

(a) if a ∈ Ā, then µ
a→p η and µ̂

a→p η̂ . As |η | ≤ |αdb(η)| and µ
a→p η , by (2b) of Def. 34

s′ a→pc αdb(η)↓. Similarly, as |η̂ | ≤ |α̂db(η̂)| and µ̂
a→p η̂ , by (2b) of Def. 34 ŝ′ a→pc

α̂db(η̂)↓. As a is a synchronizing action, by Def. 30, (s′, ŝ′) a→pc (αdb(η)‖α̂db(η̂))↓.

(b) if a ∈ A\Ā, then µ
a→p η and µ̂ = η̂ . As |η | ≤ |αdb(η)| and µ

a→p η , by (2b) of Def. 34
s′ a→pc αdb(η)↓ and ιŝ′ = α̂db(µ̂)↓. As a ∈ A\Ā1, by Def. 30, (s′, ŝ′) a→pc αdb(η)↓‖ιŝ′ .

(c) if a ∈ Â\Ā, then the proof is the same as in the previous case.

2. Let s′‖ŝ′ ∈ S′2‖Ŝ′2. The proof goes on the same lines as the previous case.

3. Let s′‖ŝ′ ∈ S′1‖Ŝ′2. The proof goes on the same lines as the previous case.

4. Let s′‖ŝ′ ∈ S′2‖Ŝ′1. The proof goes on the same lines as the previous case.

• ∆̃′′p ⊆ ∆̃′pc: The proof goes on the same lines as the previous case.

71

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

Let us prove ∆̃′r = ∆̃′′r .

• ∆̃′r ⊆ ∆̃′′r : For some a ∈ A∪ Â, let (s′, ŝ′) a→r µ ′‖µ̂ ′. We prove that this transition is also possible
from ∆̃′′r .

As (s′, ŝ′) a→r µ ′‖µ̂ ′, by (2a) of Def. 34 for every µ‖µ̂ ∈ (γdb× γ̂db)(ιs′‖ιŝ′), µ‖µ̂ a→rc η‖η̂ such
that |η‖η̂ | ≥ |µ ′‖µ̂ ′| and (µ ′‖µ̂ ′)↓ = (αdb× α̂db)(η‖η̂)↓. There are three possible cases by Def.
30:

1. if a∈ Ā, then µ
a→rc η and µ̂

a→rc η̂ . As |η | ≥ |αdb(η)| and µ
a→rc η ; and this holds for every

distribution in γdb(ιs′), by (2a) of Def. 34 s′ a→r αdb(η)↓. Similarly, as |η̂ | ≥ |α̂db(η̂)| and
µ̂

a→rc η̂ , and this holds for every distribution in γ̂db(ιŝ′), by (2a) of Def. 34 ŝ′ a→r α̂db(η̂)↓.
As a is a synchronizing action, by Def. 30 (s′, ŝ′) a→r (αdb(η)‖α̂db(η̂))↓.

2. if a ∈ A\Ā, then µ
a→rc η and µ̂ = η̂ . As |η | ≥ |αdb(η)| and µ

a→rc η ; and this holds for
every distribution in γdb(ιs′), by Def. 34 s′ a→r αdb(η)↓ and ιŝ′ = α̂db(µ̂)↓. As a ∈ A\Ā1, by
(2a) of Def. 30 (s′, ŝ′) a→r αdb(η)↓‖ιŝ′ .

3. if a ∈ Â\Ā, then the proof goes on the same lines as the previous case.

• ∆̃′′r ⊆ ∆̃′r: The proof goes on the same lines as the previous case.

5.3 Preservation of Reachability Probabilities

This section discusses that the extremal (i.e., maximal and minimal) reachability probabilities of closed
APGA are preserved under (state-based and distribution-based) abstraction. This can be shown by
analysing only EPGA of abstract models as they simulate/A-simulate every implementation of abstract
models (by Lem. 2).

Corollary 3. For APGA H and x ∈ {sb,db} with H ′ = αx(H). Let T ⊆ S such that T ′ = αx(T). Then
minH(T ′)≤minH(T)≤minN(T)≤minN(T ′) and maxH(T ′)≤maxH(T)≤maxN(T)≤maxN(T ′).

The above corollary follows from Th. 10. Next, we show that distribution-based abstraction of APGA is
more precise than the state-based abstraction.

Corollary 4. For APGA H , Hsb = αsb(H) and Hdb = αdb(H) with Ssb = Sdb. Let T ⊆ S such
that Tsb = αsb(T) and Tdb = αdb(T). Then minH(Tsb) ≤ minH(Tdb) ≤ minN(Tdb) ≤ minN(Tsb) and
maxH(Tsb)≤maxH(Tdb)≤maxN(Tdb)≤maxN(Tsb).

72

5.3. PRESERVATION OF REACHABILITY PROBABILITIES

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

v̂0

t̂0

v̂1

v̂2

v̂3

v̂4

t̂1

v̂5

t̂2

v̂6

t̂3

v̂7

t̂4

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.
5

Figure 5.10: For PA M (Fig. 5.8), Ĥ = αsb(αPA(M)) with |∆̂|= 26, |Ŝ1|= 8 and |Ŝ2|= 5.

The above corollary is a direct consequence of Th. 15 and Corollary 3.

Example 31. The maximum probability in PA M (Fig. 5.8) to reach states {s6,s7} equals 0.975. By
Corollary 3, this probability lies in [0.5,1] for the state-based abstraction τ(H̃) (Fig. 5.9 left). Instead,
distribution-based abstraction H ′ (Fig. 5.8 right) yields [0.95,1] — recall that to calculate the lower
bound of the maximum probability only required transitions of player one are considered (see Th. 15).
Moreover, by Corollary 4, H ′ has tighter bounds than τ(H̃). Although the number of transitions in H ′

is slightly more than in H̃ (|∆̃|= 17 versus |∆′|= 19), but H ′ is substantially more precise.

By Th. 13 and 9, distribution-based abstraction τ(Ĥ) (Fig. 5.9 right) also bounds the maximum proba-
bility from below at 0.95. Note that the sizes of τ(Ĥ) and τ(H̃) coincide.

The following example shows that the bounds on reachability probabilities in state-based APGA-based
abstractions of PA are at most as tight as in SG-based abstractions, however, they are at most the sizes of
SG-based abstractions. A similar example can also be given for distribution-based abstractions.

Example 32. Consider the game-based abstraction Ĥ (Fig. 5.10) of PA M (Fig. 5.8). Note that
the maximum probability to reach states {s6,s7} lies in [0.75,1] in Ĥ whereas in state-based APGA-
based abstraction τ(H̃) (Fig. 5.9 left), it lies in [0.5,1]. Note that both S̃2 and Ŝ2 represent the same
partitioning of the concrete state-space, but the reachability probability bounds of S̃2 contains that of Ŝ2.
Moreover, τ(H̃) is considerably smaller than Ĥ in terms of numbers of states and transitions.

73

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

5.4 Distribution-based Game Abstraction of MDPs

In [KKNP10], abstract models of Markov decision processes (MDPs) are given as stochastic games
(SGs). These abstractions coincide with our (special case of) state-based abstractions (see Proposition
5.1.1 on page 62). When applying this to MDPs, the abstract models induced by our (special case of)
distribution-based abstraction are PGA (see Proposition 20 on page 68). By Th. 15, our distribution-
based abstraction induces more precise abstract models than state-based abstraction (on the same abstract
state space). This shows the superiority of our distribution-based abstraction technique over [KKNP10].
The following corollary follows from Def. 8 and Th. 15. It asserts that our distribution-based abstraction
induces more precise abstractions than [KKNP10].

Corollary 5. For PA M ′, let G = αPA(M ′). If αsb(S) = αdb(S), then: αdb(τ(G)) ≺sb αsb(τ(G)) and
αdb(τ(G)) 2sb αsb(τ(G)).

One may argue that although PGA-based abstract models of MDP are at least as precise as SG-based ones
this comes at the expense of larger games, — e.g. more space is required to store the target distributions
of player two transitions. The following example shows that for abstracting G — an embedding on an
MDP — with αdb(S2) = αsb(S2), αdb(G) is at least as precise as αsb(G) and |αdb(S)| ≤ |αsb(S)|.

Example 33. Consider PA M (Fig. 5.2 right) with its state-based abstraction H̃ (Fig. 5.4 left) and
distribution-based abstraction H ′ (Fig. 5.4 right). The maximum probability to {s5,s6} is 0.95 in M . By
Corollary 3, this probability lies in [0.5,1] for the state-based abstraction τ(H̃). Instead, distribution-
based abstraction τ(H ′) yields [0.95,1]. Note that |∆̃|= |∆′|= 13, but S̃1 = 6 and S′1 = 5. Furthermore,
by ignoring player-two transitions — such that the successor states from player-two states are decided
non-deterministically — yields [0.5,1] in H̃ and [0.75,1] in H ′ whereas ∆′ = 11.

Example 34. In Example 31, ignoring player-two transitions yields [0.5,1] in H̃ and [0.75,1] in H ′.

As a side result of our achievement, we put the result of [WZ10, Th. 2] in perspective: game-based ab-
straction [KKNP10] is the optimal abstraction defined on states, but not the optimal abstraction preserv-
ing reachability probabilities. Technically speaking, the pair of abstraction-concretization functions, in
Wachter’s abstract interpretation framework for MDPs [WZ10], is defined at the level of states rather then
at the level of distributions. As the abstract valuation transformer is defined in terms of the abstraction-
concretization pair and the concrete valuation transformer, therefore the abstract valuation transformer is
the most precise transformer in case of state-based abstractions.

Remark 2. The game-based abstraction of MDPs [KKNP10] is the optimal state-based abstraction
preserving reachability probabilities, but not the optimal distribution-based abstraction.

74

5.5. SUMMARY AND DISCUSSION

5.5 Summary and Discussion

In this chapter, we proposed two compositional abstraction techniques of APGA: a state-based and a
distribution-based abstraction. In state-based abstraction, we combined the techniques of [KKNP10] and
[SK12] yielding a class of APGA in which one of the players has only non-deterministic behaviour as
in SGs. Whereas in distribution-based abstraction, we combined the techniques of [SK12] and [SK14]
yielding APGA with both players having non-deterministic and probabilistic behaviour as in PGA. Our
state-based (distribution-based) abstraction differs from [KKNP10] ([SK14]) in a sense that the non-
deterministic behaviour in concrete systems is not completely handled by one set of states: in state-based
(distribution-based) abstraction, concrete states (support sets of concrete distributions) are merged if they
have the same step-wise behaviour after abstraction; whereas in [KKNP10] ([SK14]), they are merged iff
they have the same step-wise behaviour. Because of this, the bounds on extremal reachability probabil-
ities in state-based (distribution-based) APGA-based models are at most as tight as in SG(PGA)-based
models, however, they are at most the size of SG(PGA)-based models.

Both state-based and distribution-based abstractions are comparable with concrete models using state-
based and distribution-based refinement relations respectively, thus, showing that abstract models pre-
serve the reachability probabilities of concrete models. Moreover, we showed that game-based abstrac-
tion [KKNP10] is not the optimal abstraction preserving reachability probabilities. Furthermore, we
illustrated with examples that our distribution-based abstraction may induce more precise as well as
more concise models than our state-based abstraction. An overview of the results of this chapter is given
in Table 5.1.

Related work: In the literature, many modal abstraction techniques have been discussed for probabilis-
tic systems. In [KKLW12], abstractions of MDPs have been given as interval Markov chains in which
probabilities of transitions are given as intervals instead of single values. This interval-based technique
has then been extended to define abstract models of interactive Markov chains (IMC) in [KKN09]. In
another direction [KKLW08], interval abstraction is generalized for CTMC by considering sequences of
transitions of length, say k, as abstract transitions. The abstract models induced as a result k-stepwise
simulate the concrete models. In the setting of games, most notable abstraction techniques are game-
based abstraction [KKNP10] and menu-based abstraction [WZ10] (discussed in Ch. 1). In [Kat10],
game-based abstraction technique of MDPs has been generalized: the abstract models are still stochastic
games but they over- and under-approximate the behaviour of concrete models; however, in such games
there is no direct correspondence between concrete states of MDPs (that have the same transitions after
abstraction) and abstract states. More recently in [BFH+14], game-based and menu-based abstraction
techniques have been combined to abstract Markov automata in which game-based technique is em-
ployed to abstract Markovian states — states with exponentially distributed delay transitions — and
menu-based technique for probabilistic states.

Future extensions: One can extend this work by:

• determining a class of PA for which distribution-based abstraction is defined, i.e., it exists for every
possible partition of the state space,

• designing efficient algorithms to construct APGA-based state-based (distribution-based) abstract
models of PA from their high-level descriptions, e.g., using predicate-abstraction techniques
[CKSY05, KKNP08].

75

CHAPTER 5. MODAL ABSTRACTION OF STOCHASTIC GAMES

Modal game-based abstraction

For α ∈ {αsb,αdb} and APGA H State-based (αsb) Distribution-based (αdb)

α(H) is defined + for closed APGA

α(H) refines H + + (provided exists)

α(τ(H)) refines τ(H) + +

compositional + + (provided exists)

For x ∈ {sb,db}, α(τ(H))�x τ(α(H)) + -

H ′ = α(H) with ∆′p(S′1) = ∆′r(S′1) α is SG-based abstraction α is PGA-based abstraction

H ′ = α ′(τ(H))∧H ′′ = τ(α ′′(H)), G •
′
◦ 2sb G •

′′
◦ , and G •

′
◦ 2db G •

′′
◦

then α ′(S) = α ′′(S) implies G ◦
′
◦ ≺sb G ◦

′′
◦ -

MaxSingDist(S1) = Dirac(S1)∧αsb(S2) = αdb(S2)⇒
αsb(H) = αdb(H), ignoring player two transitions.

For ≺∈ {≺sb,2sb} αsb(S) = αdb(S)⇒ αdb(H)≺ αsb(H)

Preservation of reachability probabilities

αsb and αdb yield minH and minN as well as maxH and maxN

Table 5.1: Summary of modal game-based abstraction.

• exploring whether our PGA-based distribution-based abstraction of MDPs is optimal w.r.t. reacha-
bility probabilities using the framework of abstract interpretation like [WZ10] did for game-based
abstraction [KKNP10] of MDPs, and

• repeating the above exercise for our APGA-based abstractions of MDPs, and showing whether it
is optimal w.r.t. properties in probabilistic extension of modal µ-calculus [Mio12]. For this, one
need to consider an extension of the work done for non-probabilistic models in [SG06], where
the optimality of non-probabilistic modal abstractions was proved w.r.t. properties in modal µ-
calculus.

In the next chapter, we propose a state-based and a distribution-based abstraction-refinement framework
for PA, which are inspired by the frameworks of [KKLW12] and [KKNP10]. Intuitively, they eliminate
from abstract models the effect of non-deterministic behaviour induced by abstraction in such a way that
the extremal reachability probabilities of one set of abstract states totally depend on the non-deterministic
behaviour from concrete (distributions over) states, as is the case with (PGA-)SG-based abstractions.

76

6
A Modal Abstraction-Refinement Framework

In this chapter, we present a state-based and a distribution-based framework to automatically generate
APGA-based abstractions of closed PA aimed at the verification of reachability properties, i.e., maxi-
mum/minimum probabilities to reach some goal states.

In the previous chapters, we showed that the analysis of APGA-based abstractions of PA yields lower
and upper bounds on the reachability probabilities of the PA; we analysed two extremal implementations
of such abstractions to obtain these bounds (see Section 4.5 on page 48, and Section 5.3 on page 72).
Moreover, we also observed that these bounds may not be optimal for a given partitioning of the state
space (see Example 32 on page 73). In this chapter, we show that it is possible to automatically obtain
a modal game-based abstraction for a given state-space partitioning of a PA that optimally bounds the
reachability probabilities of the PA with an a priori given tolerance.

We start our abstraction-refinement process by abstracting a closed PA for a given state-space partition-
ing (see Def. 31 and 34 on pages 57 and 63 respectively). We then verify the abstract model yielding
lower and upper bounds on the reachability probabilities for the goal states in the PA. As in APGA-based
abstractions the non-deterministic behaviour from abstraction is present both in player-one states and in
player-two states, we first incrementally refine only player-one states until the behaviour from abstrac-
tion in player-one states has no impact anymore on the reachability probabilities of the corresponding
player-two states. This is guaranteed by the fact that any further refinement of player-one states has no
impact on the reachability probabilities of player-two states.

After this step, we check whether the difference between upper- and lower-bounds on reachability proba-
bilities is within an allowed range, say ε ∈R[0,1], for a set of player-two states (that are of interest). If not,
then these states are refined. The first step is then repeated for the new abstraction. The above two steps
form the inner and the outer loops of our abstraction-refinement framework: the inner-loop refines player-
one states whereas the outer-loop refines player-two states. Fig. 6.1 shows our abstraction-refinement
framework.

Our refinement strategy for both player-one and player-two states is based on optimal probability valu-
ation functions that map states to reachability probabilities in case of competing/collaborating players.
For player-two states, it is almost the same as strategy-based refinement of Kattenbelt et al. [KKNP10].
Our refinement strategy induces a strictly finer partition in each iteration. Moreover, it guarantees that if
an abstract state is partitioned, its concrete states that have the same behaviour (i.e., their sets of transi-
tions are identical after abstraction) remain together in one of the new partition blocks. This is true for
both player-one and player-two abstract states. Furthermore, for a given error bound ε , our abstraction-
refinement (outer-)loop eventually terminates for finite-state closed PA. This is also true in case of an

77

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

infinite PA with a finite bisimulation quotient provided bisimilar concrete states are grouped together in
the same partition blocks (player-two state).

We show that the model obtained after each iteration of the inner-loop is in a refinement relation (see
Def. 23 and 25 on pages 40 and 42 respectively) with the abstract model; and, thus, each refined model
is comparatively more precise by Th. 10 (page 50). Similarly, after each iteration of the outer-loop, the
player-two states in the refined model have comparatively tighter bounds on the reachability probabilities
(of the PA).

The abstraction-refinement framework for MDPs [KKNP10] is a special case of our state-based frame-
work in which the inner loop does nothing. This is because in SG-based abstractions of MDPs the player-
one states have no non-deterministic behaviour from abstraction (all player-one transitions are required
transitions). We show that the reachability probabilities of player-two states in an APGA-based state-
based abstraction of an MDP (after refinement) are the same as in the SG-based abstraction generated
with the same state-space partitioning. However, the size of the player-one state space in our abstraction
is at most that of in SG-based abstraction. The same is also true for our APGA-based distribution-based
abstractions and PGA-based abstractions [SK14] (see page 68).

Put in a nutshell, the major contributions of this chapter are:

• a state-based (and a distribution-based) abstraction-refinement framework for (closed) PA,

• results showing that our state-based abstractions (after refinement) and SG-based abstractions
of [KKNP10] have the same reachability probabilities for player-two states, but our models are
smaller in size,

• examples showing that our distribution-based abstractions (after refinement) and PGA-based ab-
stractions have the same reachability probabilities for player-two states, but our former models are
smaller in size, and

• examples showing that the abstract models resulting from the distribution-based abstraction-refine-
ment framework are more precise than the ones resulting from the state-based framework, and their
sizes are comparable.

6.1 State-based Abstraction-Refinement Framework

In this section, we discuss the refinement process for state-based abstractions (see Def. 31 on page 57)
of PA aimed at the verification of a given reachability property.

Let M be a closed finite PA with H ′ = αPA(M) and T ′ ⊆ S′2 a set of goal states. Let Prx(T ′) be the
reachability probability for T ′, where x ∈ {min,max}. Let Abstsb(H ′) be the set of state-based abstrac-
tion functions defined on H ′ such that γ(α(T ′)) = T ′ for all α ∈ Abstsb(H ′), i.e., α does not merge T ′

states with S′2\T ′ states. Let H = αsb(H ′) and T = αsb(T ′) for αsb ∈ Abstsb(H ′).

Depending on the probability Prx(T ′), let 1,2 ∈ {min,max} with 1 6= 2. Let w11,w12 ∈W be the proba-
bility valuation transformers (see page 15) such that w12 = Fix Prt12(⊥) (player-one and player-two have
different objectives, i.e., 1 and 2 respectively) and w11 = Fix Prt11(⊥) (player-one and player-two have
the same objectives, i.e., 1) are defined on EPGA G ◦◦ of H — an implementation of H having the same
state space and the transitions as that of H (see Def. 29 on page 48). Recall that w12 and w11 map a

78

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

Closed PA: M ,
Abstraction: α ,

Property: Prx(T),
x ∈ {min,max}

Error bound: ε ∈ R[0,1]

l0

Abstraction:
H = α(αPA(M))

l1

Bounds on Prx(T)
for S2 states

l2

Refinement of S1
states impacts the

reachability
probabilities of S2

states?

l3

Reachability
probabilities of S2

states are ≤
ε-apart?

l4

New abstraction: α

l5

An abstraction of M
such that the bounds on
Prx(T) are ≤ ε-apart.

l6

abstract analyse

Yes, refine S1 states

NoNo, refine S2 states

Yes

abstract

Figure 6.1: State(Distribution)-based abstraction-refinement framework for PA, where the inner-loop
(l1, l2, l3, l5, l1) refines the player-one states while the outer-loop (l1, l2, l3, l4, l5, l1) refines the player-
two states.

state s ∈ S to reachability probabilities of goal states T = αsb(T ′) in case of competing and collaborating
players respectively (see Def. 9 on page 15), and thus define bounds on Prx(T) for state s.

In the sequel, we assume that (αsb,γsb), H ′, H , 1, 2, w11 and w12 are given; unless otherwise specified.
Moreover, we assume that the optimal valuation functions are defined on all APGA in the same way as
we defined w11 and w12 on H .

In the following, we step-by-step explain our framework given in Fig. 6.1. We first check whether
the reachability probabilities of player-two states in H are affected by the non-deterministic behaviour
induced by the abstraction process in their corresponding player-one states. Alternatively, we check
whether the refinement of player-one states alone affect the reachability probabilities of player-two states.

6.1.1 Stable Abstractions

Recall that the player-one states of an abstraction represent behaviour of concrete states, i.e. they inherit
their transitions from their corresponding concrete states. If all concrete states of a player-one state have
the same transitions (after abstraction), then the abstraction process has not induced any behaviour in
that state; and the player-one state has only required transitions. Otherwise, it has possible transitions
and required transitions depending on whether the concrete states have some common transitions (after
abstraction) (see Def. 31 on page 57). We consider the required transitions of player-one states as the

79

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s1

s2

s3

s4

t1

t2

t3

0.
5

0.5

s′1

s′2

s′3

s′4

t ′1

t ′2

t ′3

0.
5

0.5

Figure 6.2: APGA H (left) and H ′ (right).

behaviour derived from concrete states, and the possible transitions as the behaviour induced by the
abstraction process.

State s ∈ S2 in APGA H is called stable whenever the reachability probability of s w.r.t. w12:

a) coincides with that of one of its direct successors that obtains it via a required transition, and

b) remains unchanged by any refinement of only its direct successor states.

Example 35. Consider the APGA H in Fig. 6.2 (left) with 1 = max, 2 = min and goal states T = {t2}.
The minimal reachability probability of t1 is 0.5 and it depends on the possible transition of s2. Hence,
t1 is an unstable state as condition (a) is violated.

Now consider the APGA H ′ Fig. 6.2 (right) with the same objectives as above and goal states T ′ = {t ′2}.
The state t ′1 is stable as its reachability probability is 0.5 that is the same as that of the required transition
of s′2. Moreover, any refinement of only s′2 will not impact the reachability probability of t ′1.

To formalize the notion of a stable player-two state, we first define the notion of a stable player-one state.
A player-one state is stable w.r.t. w12 and player-two states if its reachability probability depends on one
of its required transitions. Otherwise, it is unstable. Recall that w(µ) = ∑s∈S µ(s) ·w(s) for µ ∈Dist(S).

Definition 35. (Stable Player-one States) State s ∈ S1 in APGA H is stable w.r.t. w12 and S2 iff
w12(s) = w12(µ) for some µ ∈ ∆r(s). Distribution η ∈ Dist(S1) is stable iff ∀u ∈ Supp(η): u is stable.

Example 36. APGA H (Fig. 6.4 left) is an abstraction of PA M (Fig. 6.3). Let 1 = min, 2 = max
and T = {t3} with w = Fix Prt12(⊥) where w(v0) = 0.25, w(v1) = 0, w(v2) = 0.5, w(v3) = 0, w(v4) = 0,
w(t0) = 0, w(t1) = 0.5, w(t2) = 0 and w(t3) = 1. Note that v1 has two transitions: a required and a
possible transition. As the reachability probability of v1 depends on its required transition, v1 is stable.

80

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

s0 s2

s1

s3

s4

s5

s6

0.
1

0.3

0.1

0.
5

0.9

0.1

0.2

0.
8

0.5

0.5

Figure 6.3: A PA M .

Intuitively speaking, if the reachability probability of a player-two state depends on a stable player-one
state, then it will remain unchanged by a refinement of just any of its stable direct successor states. This is
because refinement preserves required transitions. Therefore, the reachability probability of a player-two
state may only be affected by refining an unstable direct successor state.

Lemma 4. The refinement of stable player-one states alone preserves the reachability probabilities.

Proof. Let APGA H with w = w12. We show that the partitioning of stable player-one states alone in a
refinement of H preserves the reachability probabilities. We give a proof for the case in which only one
player-one state is split.

Let α̂ ∈ Abstsb(H ′) : Ĥ = α̂(H ′) with Ŝ2 = S2. Let {v̂1, v̂2} be the partition blocks of a stable state
v ∈ S1 such that Ŝ1 \{v̂1, v̂2}= S1 \{v}.
As v is stable, by Def. 35 w(v) = w(µ) for some µ ∈ ∆r(v). As γ̂(v̂i)⊆ γ(v) for i ∈ {1,2}, ∆r(v)⊆ ∆̂r(vi)
and ∆̂p(vi) ⊆ ∆p(v) (by Def. 31). Therefore, it holds that w(µ) = 1{w(µ),xi} where xi = 1{w(ρ) | ρ ∈
∆̂p(v̂i)} for i ∈ {1,2}.
This allows us to define a probability valuation function ŵ on Ĥ w.r.t. 1, 2 and T̂ = T as: ŵ(s) = w(s)
for all s ∈ S2 ∪ S1 \ {v} and ŵ(v̂i) = w(µ) for i ∈ {1,2}. Moreover, as w(v) = ŵ(v̂i), for i ∈ {1,2}, it
trivially follows that ŵ is a fixpoint of Prt12.

Remark 3. The refinement of unstable direct successors of a player-two state may impact its reachability
probability.

81

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s0

s2

s1

s3

s4

s5

s6

v0

t0

v1

v2

t1

v3

t2

v4

t3

0.5 0.5

0.
5

0.
5

s0

s2

s1

s3

s4

s5

s6

v̂0

t̂0

v̂1

v̂2

t̂1

t̂2

v̂3

t̂3

v̂4

t̂4

0.4

0.
1

0.5

0.
5

0.5

Figure 6.4: For 1 = min and 2 = max, H (left) is a stable abstraction of PA M (Fig. 6.3) w.r.t. T = {t3};
whereas Ĥ (right) is a bounded abstraction w.r.t. T = {t̂4} and ε = 0.4.

Now, we formalize the notion of a stable player-two state.

Definition 36. (Stable Player-two State) State s ∈ S2 in APGA H is stable w.r.t. w12 iff there exists
some stable v ∈ Succ(s) satisfying:

1. w12(s) = w12(v), and

2. for all unstable u ∈ Succ(s): w12(v) = 2{w12(v),w12(η)} for every η ∈ ∆p(u).

Intuitively speaking, if condition (2) holds none of the transitions from any successor of s can change the
reachability probability of s in any refinement. Therefore, the refinement of direct successors, whether
stable or unstable, of a stable player-two state alone does not change the bounds on its reachability
probabilities.

Example 37. Let 1 = min and 2 = max for APGA H (left in Fig. 6.6) with w = Fix Prt12(⊥) for
T = {t3}, where w(v0) = 0.25, w(v1) = 0, w(v2) = 0.5, w(v3) = 0, w(v4) = 0, w(t0) = 0, w(t1) = 0.5,
w(t2) = 0 and w(t3) = 1. (Note that this APGA is a copy of Fig. 6.4 left, except that v1 → t2 is now
a possible transition.) The reachability probability of t1 depends on a stable successor v2, i.e., w(t1) =
0.5 = max{w(v1) = 0,w(v2) = 0.5} (fulfilling condition (1) of Def. 36). Moreover, as w(v2) = 0.5 =
max{w(ιt1) = 0.5,w(ιt2) = 0,w(v2) = 0.5} (fulfilling condition (2) of Def. 36), therefore the possible

82

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

s0 s2

s1

s3

s4

s5

s6

0.
1

0.3

0.1

0.
5

0.9

0.1

0.7

0.
3

0.5

0.5

s0

s2

s1

s3

s4

s5

s6

v0

t0

v1

v2

v3

t1

v4

t2

v5

t3

0.5 0.5

0.
5

0.5

Figure 6.5: PA M (left) with its game-based abstraction ([KKNP10]) H (right).

transitions of unstable state v1 have no impact on the reachability probability of t1 in any refinement of
v1. Thus, t1 is stable. Note that in APGA Ĥ (right in Fig. 6.6), the state t̂1 is not stable w.r.t. the above
objectives as the reachability probability of t̂1 does not depend on a stable successor.

Theorem 17. The reachability probabilities of stable player-two states are invariant to the refinement of
their direct successors alone.

Proof. Let APGA H with w = w12. We show that the splitting of direct successors of stable player-two
states alone in a refinement of H preserves the reachability probabilities of player-two states. We give a
proof for the case in which only one player-one state is split.

Let α̂ ∈ Abstsb(H ′) : Ĥ = α̂(H ′) with Ŝ2 = S2. Let {v̂1, v̂2} be the partition blocks of a state v ∈ S1
such that Ŝ1 \{v̂1, v̂2}= S1 \{v}. There are two possible cases:

1. v is a stable player-one state. Then by Lemma 4, Ĥ preserves the reachability probabilities.

2. v is an unstable direct successor of a stable state s ∈ S2. As s is stable, by Def. 36 w(s) = w(t)
for some stable t ∈ Succ(s); and w(t) = 2{w(t),w(η)} for every η ∈ ∆p(v). As ∆p(v) = ∆̂p(v̂1)∪
∆̂p(v̂2), we can write w(t) = 2{w(t),xi} where xi = 1{w(ρ) | ρ ∈ ∆̂p(v̂i)} for i ∈ {1,2}.
This allows us to define a probability valuation function ŵ on Ĥ w.r.t. 1, 2 and T̂ = T as: ŵ(s) =

83

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s0

s2

s1

s3

s4

s5

s6

v0

t0

v1

v2

t1

v3

t2

v4

t3

0.5 0.5

0.
5

0.
5

s0

s1

s2

s3

s4

s5

s6

v̂0

t̂0

v̂1

t̂1

v̂2

t̂2

v̂3

t̂3

0.5 0.5

0.
5

0.
5

Figure 6.6: H (left) and Ĥ (right) are state-based abstract models of PA M in Fig. 6.5 with H �sb Ĥ .

w(s) for all s ∈ S2 ∪ S1 \ {v} and ŵ(v̂i) = xi for i ∈ {1,2}. Moreover, as ŵ(s) = w(t) does not
depend on ŵ(v̂i) for i ∈ {1,2}— ŵ(s) = ŵ(t) = 2{ŵ(t), ŵ(v1), ŵ(v2)}—, it trivially follows that
ŵ is a fixpoint of Prt12.

We now lift the notion of stability from states to APGA, and call an APGA H a stable abstraction if all
its player-two states are stable. Formally,

Definition 37. APGA H is stable iff every S2 state is stable.

If H is a stable abstraction, we call the abstraction function αsb generating H (H = αsb(H ′)) a stable
abstraction function. Any implementation of a stable abstraction, having the same player-two state space,
preserve the reachability probabilities of player-two states. The following proposition follows from Def.
37.

Proposition 21. If ∆r(S1) = ∆p(S1) in APGA H , then H is stable.

We are now in a position to check whether the refinement of player-one states impacts the reachability
probabilities of player-two states in an abstraction (see location l3 in Fig. 6.1). This can be verified

84

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

by checking whether every player-two state is stable or not (see Def. 36). If the answer is yes, we
consider refining player-two states if further tightening of the reachability probability bounds is required.
Otherwise, we refine some player-one states as given in the next section.

6.1.2 Refinement of Player-one States

In this subsection, we discuss the refinement of (unstable) player-one states. As the refinement of direct
successors — whether stable or unstable — of a stable player-two state has no impact on its reachability
probability (see Th. 17), we only consider the unstable direct successors of unstable player-two states
for refinement. We call them effectively unstable player-one states.

Definition 38. State s ∈ S1 in APGA H is effectively unstable iff s is unstable and there exists an
unstable u ∈ S2 : s ∈ Succ(u).

Let EUS(H) = {s ∈ S1 | ∃u ∈ S2 : u is unstable and s ∈ Succ(u) is unstable} be the set of effectively
unstable states in H .

Remark 4. An unstable direct successor s1 of a stable player-two state u1 differs from an unstable direct
successor s2 of an unstable player-two state u2 in such a way that the refinement of s1 does not impact
the reachability probability of u1. However, the refinement of s2 may impact the reachability probability
of u2. Note that it is not guaranteed that the refinement of s2 will impact the reachability probability of
u2.

We split each effectively unstable state into two blocks.

Definition 39. For state s ∈ EUS(H), let µ ∈ ∆p(s) : w12(s) = w12(µ). Then,

• B1(s) = {s′ ∈ γsb(s) | ∃ρ ′ ∈ ∆′(s′) : αsb(ρ ′) = µ}

• B2(s) = γsb(s)\B1(s)

Theorem 18. For state s ∈ EUS(H), B1(s) is a proper subset of γsb(s).

Proof. The proof is by contradiction. Let s ∈ EUS(H). Assume B1(s) = γsb(s), then for every s′ ∈
γsb(s), ∃ρ ′ ∈ ∆′(s′) : αsb(ρ ′) = µ, where µ ∈ ∆p(s) : w12(s) = w12(µ). This implies that all concrete
states of s have a transition to some ρ ′ with αsb(ρ ′) = αsb(µ ′). Then µ ∈ ∆r(s) and s is not an unstable
state. Hence, contradiction.

85

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

The following function splits effectively unstable states in an abstraction, and yields a new partitioning
of the state space of H ′ (i.e., the embedding of PA M). In fact, this function describes the functionality
of the inner-loop of our framework (see Fig. 6.1).

Definition 40. (Inner Abstraction Transformer). The abstraction transformer function IAT : Abstsb
(H ′)→ Abstsb(H ′) is defined for α ∈ Abstsb(H ′): H = α(H ′) and s′ ∈ S′ as:

IAT(α)(s′) =

α(s′) if α(s′) ∈ S2, or α(s′) ∈ S1\EUS(H).

B1(α(s′)) if α(s′) ∈ EUS(H): s′ ∈ B1(α(s′)).

B2(α(s′)) if α(s′) ∈ EUS(H): s′ ∈ B2(α(s′)).

Note that the function IAT maps s′ to the same partition block as α does if α(s′) is an S2 state or not an
effectively unstable S1 state. If α(s′) = s is an effectively unstable S1 state, then s′ is either mapped to
partition block B1(s) or to B2(s). In case there is no effectively unstable S1 state, there is no partition of
the state space. In other words, then IAT(α) = α . Note that in this way, all concrete states of s that have
the same transitions (after abstraction) are assigned to the same new partition block.

Example 38. APGA Ĥ (right Fig. 6.6) is a state-based abstraction of PA M (left in Fig. 6.5). Let
1 = min and 2 = max for Ĥ with ŵ = Fix Prt12(⊥) for T̂ = {t̂2}, where ŵ(v̂0) = 0.5, ŵ(v̂1) = 0, ŵ(v̂2) = 0,
ŵ(v̂3) = 0, ŵ(t̂0) = 0, ŵ(t̂1) = 0, ŵ(t̂2) = 1 and ŵ(t̂3) = 0. Note that t̂1 has only one successor, i.e. v̂1,
having only possible transitions. Therefore, Ĥ is not a stable abstraction of PA M .

Let us discuss how to refine Ĥ . Let H ′ = αPA(M). For the successor state v̂1 of t̂1, we have v̂1→ ιt̂3
with ŵ(ιt̂3) = ŵ(v̂1) = 0. We separate the concrete states of v̂1 that have a transition (after abstraction)
to ιt̂3 , and the only concrete state is v′3. Therefore, v̂1 is partitioned into two blocks v1 = {v′1,v′2} and
v2 = {v′3}; and H (left in Fig. 6.6) is the APGA induced by the new partitioning of the state space of
H ′. Note that H is a stable abstraction w.r.t. 1, 2 and T = {t2}; and moreover H �sb Ĥ .

It is possible to refine all effectively unstable player-one states in H in a single iteration. This will result
in a faster convergence of the abstract-refine loop towards a stable abstraction of M . However, at the
expense of a larger state space. Instead of refining every effectively unstable state in a single iteration,
one may consider refining a selection of them. In this way, unnecessary refinements of some effectively
unstable states in the next iteration may be avoided because of splitting of states in the current iteration.

Theorem 19. IAT(α)�sb α for α ∈ Abstsb(H ′) .

Proof. Let H ′ = (S′,{S′1,S′2},{τ},∆′r,∆′p,s′0) be an embedding of PA M with α : S′→ S ∈ Abstsb(H ′)
such that α(H ′) = H = (S,{S1,S2},{τ},∆r,∆p,s0) is the induced APGA. Let α ′′ = IAT(α) : S′→ S′′

such that α ′′(H ′) = H ′′ = (S′′,{S′′1 ,S′′2},{τ},∆′′r ,∆′′p,s′′0) is the induced APGA. We define the relation
R⊆ (S′′1×S1)∪ (S′′2×S2) as:

R = {(α
′′(s),α(s)) | s ∈ S′}

86

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

and show that it fulfils the conditions of Def. 23 (page 40).

Let s′′Rs, then by Def. 40 either γ ′′(s′′)⊂ γ(s) (if s is split) or γ ′′(s′′) = γ(s):

1. Let s τ→r µ . By condition (1a) of Def. 31, ∀s′ ∈ γ(s) : s′ τ→rc µ ′s′ such that α(µ ′s′) = µ . As
γ ′′(s′′)⊆ γ(s), by condition (1a) of Def. 31 s′′ τ→r µ ′′ such that α ′′(µ ′s′) = µ ′′. As S′′2 = S2, µ = µ ′′

and thus µ ′′Rµ .

2. Let s′′ τ→p µ ′′ and s′′ ∈ S′′1 . By condition (1c) of Def. 31, ∃s′ ∈ γ ′′(s′′) : s′ τ→p µ ′s′ such that α ′′(µ ′s′) =

µ ′′. As γ ′′(s′′) ⊆ γ(s), by condition (1b) of Def. 31 s τ→pc µ such that α(µ ′s′) = µ . As S′′2 = S2,
µ ′′ = µ and thus µ ′′Rµ .

3. Let s′′ τ→p ιu′′ and s′′ ∈ S′′2 . By condition (2b) of Def. 31, ∃s′ ∈ γ ′′(s′′) : s′ τ→p ιu′ such that α ′′(ιu′) =

ιu′′ . As s′ ∈ γ(s), by condition (2a) of Def. 31 s τ→pc ιu such that α(ιu′) = ιu. Thus, u′′Ru holds.

The fixpoint of the function IAT (Def. 40) is guaranteed to exist for the embeddings of finite PA. This
therefore provides the basis to iteratively refine player-one states in an abstraction α(H ′), for α ∈
Abstsb(H ′), such that Fix IAT(α)(H ′) is a stable abstraction of H ′.

Theorem 20. For α ∈ Abstsb(H ′), Fix IAT(α)(H ′) is a stable abstraction of APGA H ′.

Proof. For PA M let H ′ = αPA(M) with T ′ ⊆ S′2. Let α ∈ Abstsb(H ′) with w = Fix Prt12(⊥) defined
on H = Fix IAT(α)(H ′) for the objectives 1,2 ∈ {min,max} and goal states Fix IAT(α) (T ′). We
need to prove that every s ∈ S2 is stable, i.e., it satisfies the conditions of Def. 36.

The proof is by contradiction. Assume H is not a stable abstraction. Let s ∈ S2 be an unstable state.
This implies that there exists at least one unstable player-one state in Succ(s) — if all states in Succ(s)
are stable, then s is stable. Let v ∈ Succ(s) be an unstable state. As s is unstable and v is unstable, then
v is effectively unstable (by Def. 38). Therefore, γ(v) is split into two partition blocks by Def. 39. This
implies that H is not generated by a fixpoint of IAT. Hence, contradiction.

The following corollary follows from Th. 20, and shows that for a given partitioning of states of PA M ,
the game-based abstraction [KKNP10] is as precise as the state-based APGA-based abstraction (see Def.
31 page 57) when refined to a stable abstraction (see Def. 37). However, the size of the latter is at most
the size of the former.

Corollary 6. For APGA H ′, let H̃ be a game-based abstraction [KKNP10] and α̂(H ′) = Ĥ
be a state-based abstraction of H ′ with S̃2 = Ŝ2. Let w̃12 and w12 be defined on H̃ and H =
Fix IAT(α̂)(H ′) respectively. Then,

87

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

1. ∀s̃ ∈ S̃2,s ∈ S2 : w̃(s̃) = w(s), and

2. |S̃1| ≥ |S1| ≥ |Ŝ1|.

Example 39. APGA H (right) is a game-based abstraction [KKNP10] of PA M (left) in Fig. 6.5;
whereas the left APGA in Fig. 6.6, say H ′′, is a stable abstraction of M w.r.t. the objectives 1 = min,
2 = max and T = {t3}. Note that both models have the same reachability probabilities to t3 (i.e., 0.25)
from the initial states. Moreover, |S1|= 6 and |S′′1 |= 5, and |∆|= 12 and |∆′′|= 11.

In the following example, we show that APGA-based abstraction can be significantly smaller than game-
based abstraction having the same player-two state space.

Example 40. For PA M (Fig. 6.8 page 94), in Fig. 6.10 (page 96) H̃ (left) is a game-based-abstraction
[KKNP10] with |∆̃| = 33 and |S̃1| = 11, and Ĥ (right) is a state-based APGA-based abstraction with
|∆̂|= 23 and |Ŝ1|= 7. Note that Ĥ is a stable abstraction w.r.t. 1 = max, 2 = min and T = {t̂3}.

6.1.3 Refinement of Player-two States

In this subsection we describe the functionality of the outer-loop of our framework (see Fig. 6.1). Let H
be a stable abstraction of APGA H ′ w.r.t. w12. We will determine whether the bounds on reachability
probabilities of S2 states, calculated by w12 and w11 on H , are at most ε-apart. If they are so, we are
done; otherwise, we refine some (player-two) states whose bounds on reachability probabilities are not
ε-apart.

Definition 41. (Bounded Abstraction) State s ∈ S in APGA H is ε-bounded iff |w12(s)−w11(s)| ≤ ε

for a given ε ∈R[0,1]. Distribution η ∈Dist(S) is ε-bounded iff |w12(µ)−w11(µ)| ≤ ε . H is ε-bounded
iff ∀s ∈ S : s is ε-bounded.

Lemma 5. If all successors of a state s are ε-bounded, then s is ε-bounded.

Proof. We prove only for player-one states with 1 = min and 2 = max. The proof for the other case is
similar.

Let H be a stable abstraction of H ′ with w11 and w12 defined on it. Let s ∈ S1 with ε-bounded direct

88

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

successors Succ(s). Let µ ∈ ∆p(s) such that w11(s) = w11(µ), i.e., the lower-bound of the minimum
probability of s is w11(µ). First we show that w11(µ) and w12(µ) are ε-bounded.

|w12(µ)−w11(µ)|= | ∑
t∈Supp(µ)

µ(t) ·w12(t)− ∑
t∈Supp(µ)

µ(t) ·w11(t)|

= | ∑
t∈Supp(µ)

µ(t) · (w12(t)−w11(t))|

≤ | ∑
t∈Supp(µ)

µ(t) · ε| as t is ε-bounded

= ε

Now we show that w12(s) ≤ w12(µ), i.e., the upper-bound of the minimum probability of s is at most
w12(µ). Let η ∈ ∆p(s): w12(µ) ≤ w12(η). Then as per the objective of player-one (i.e., 1 = min),
w12(µ) = min{w12(µ),w12(η)}. This implies that w12(s)≤ w12(µ). As w12(s)≤ w12(µ) and w11(s) =
w11(µ), |w12(s)−w11(s)| ≤ |w12(µ)−w11(µ)| ≤ ε .

The following corollary follows from the above lemma.

Corollary 7. In APGA H , a state s, with w(s) = w(µ) for w ∈ {w11,w12} and µ ∈ ∆p(s), is ε-bounded
iff µ is ε-bounded.

The following proposition asserts that for embeddings of PA the reachability probability bounds coincide.
This is because of the fact that each player-two state has only one direct successor state in embeddings
of PA.

Proposition 22. H ′ (the embedding of PA M) is ε-bounded with ε = 0.

The following corollary follows from the above proposition. It expresses that APGA in which reachabil-
ity probability bounds of player-two states depend only on one of their direct successors are ε-bounded.
It is trivial to reduce such APGA (by removing player-one states and their associated transitions on which
player-two states are not dependent for their reachability probabilities) without changing the reachability
probabilities of the player-two states.

Corollary 8. If ∀s ∈ S2, w(s) = w(u) for w ∈ {w11,w12} and some u ∈ Succ(s), then APGA H is
ε-bounded.

Let UB(H)ε = {s ∈ S2 is ε-unbounded | ∃u,v ∈ Succ(s) : u 6= v∧w12(s) = w12(u)∧w11(s) = w11(v)}
be the set of ε-unbounded player-two states in H whose reachability probability bounds depend on

89

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

two different successors. Note that for an unbounded APGA H , UB(H)ε 6= /0 — if for all s ∈ S2:
v ∈ Succ(s) it holds that w12(s) = w12(v) and w11(s) = w11(v), then by Corollary 8 H is ε-bounded. We
split each state in UB(H)ε into two blocks.

Definition 42. State s ∈ UB(H)ε can be split into two partition blocks as:

• P1(s) = {s′ ∈ γsb(s) | ∃ιu′ ∈ ∆′(s′) : w12(s) = w12(αsb(u′))}

• P2(s) = γsb(s)\P1(s)

The above definition separates concrete states of an unbounded state s, whose (player-one) abstract states’
reachability probability bounds coincide with w12(s), from other concrete states. Note that for any s ∈
UB(H)ε it holds that neither P1(s) = /0 nor P2(s) = /0. This is because the reachability probability
bounds of s depend on two different successors.

Theorem 21. For state s ∈ UB(H)ε , P1(s) is a proper subset of γsb(s).

Proof. The proof is by contradiction. For s ∈ UB(H)ε , assume P1(s) = γsb(s). Then by Def. 42 for
every s′ ∈ γsb(s), ∃ιu′ ∈ ∆′(s′) : w12(s) = w12(αsb(u′)). This implies that w12(s) = w12(v) and w11(s) =
w11(v) for some v ∈ Succ(s). But then s /∈ UB(H)ε . Hence, contradiction.

The following function splits unbounded states in UB(H)ε and yields a new partitioning of the state
space of H ′ (i.e., the embedding of PA M). In fact, this function describes the functionality of the
outer-loop of our framework (see Fig. 6.1).

Definition 43. (Outer Abstraction Transformer). The abstraction transformer function OAT : Abstsb
(H ′)→ Abstsb(H ′) is defined for α̂ ∈ Abstsb(H ′): H = Fix IAT(α̂)(H ′) and s′ ∈ S′ as:

OAT(α = Fix IAT(α̂))(s′) =

α(s′) if α(s′) ∈ S1 or α(s′) ∈ S2\UB(H)ε .

P1(α(s′)) if α(s′) ∈ UB(H)ε : s′ ∈ P1(α(s′)).

P2(α(s′)) if α(s′) ∈ UB(H)ε : s′ ∈ P2(α(s′)).

Note that the function OAT maps s′ to the same partition block as α does if α(s′) is a player-one state
or a player-two state that is not an element of UB(H)ε . If α(s′) = s is an element of UB(H)ε , then s′

is mapped to P1(s) if there exists ιu′ ∈ ∆′(s′) : w12(s) = w12(αsb(u′)). Otherwise, it is mapped onto the
other partition block, i.e., P2(s). In case all player-two states are bounded, there is no partitioning of the
state space. In other words, then OAT(α) = α .

Example 41. For ε = 0.4, 1 = min, 2 = max and T = {t3}, the APGA H (left) in Fig. 6.4 is not an
ε-bounded abstraction of PA M in Fig. 6.3, as the difference between reachability probability bounds
of t1 is 0.5 = |0.5− 0| > ε (0 is the probability with 1 = min and 2 = min). It is possible to refine

90

6.1. STATE-BASED ABSTRACTION-REFINEMENT FRAMEWORK

H in order to have reachability probability bounds of t1 at most ε-apart. Ĥ (Fig. 6.4 right) is an
ε-bounded abstraction of M obtained by partitioning the concrete states of t1 in H into two blocks, i.e.,
P1 = {s3} = v′2 and P2 = {s1,s2} = v′1. Note that 0 = |0− 0| < ε and 0 = |0.5− 0.5| < ε for t̂1 and t̂2
respectively.

The following theorem asserts that for α̃ ∈ Abstsb(H ′) with α = Fix IAT(α̃), the model induced by
Fix IAT(OAT(α)) has at least as tight bounds on the reachability probabilities of player two states as
the model induced by α . Note that the bounds on reachability probabilities are compared only for stable
abstractions.

Theorem 22. For α̃ ∈ Abstsb(H ′) with α = Fix IAT(α̃), Fix IAT(OAT(α))(H ′) has at least as tight
bounds on the reachability probabilities of player-two states as α(H ′).

Proof. Let H ′ = αPA(M) for PA M , and let α̃ ∈ Abstsb(H ′) with α = Fix IAT(α̃).

Let H = α(H ′) be a stable abstraction (by Th. 20), and let H ′′ = α ′′sb(H ′) be a state-based abstraction
with ∆′′r (S′′1) = ∆′′p(S′′1) and S2 = S′′2 . Then, by Corollary 6 ∀s ∈ S2,s′′ ∈ S′′2 , s = s′′ implies w12(s) =
w′′12(s′′), where w12 and w′′12 are defined on H and H ′′ respectively.

Similarly, let Ĥ = Fix IAT(OAT(α))(H ′) be a stable abstraction (by Th. 20), and let Ĥ ′ = α̂ ′sb(H̃)
be a state-based abstraction with ∆̂′r(Ŝ′1) = ∆̂′p(Ŝ′1) and Ŝ2 = Ŝ′2. Then, by Corollary 6 ∀ŝ ∈ Ŝ2, ŝ′ ∈ Ŝ′2,
ŝ = ŝ′ implies ŵ12(ŝ) = ŵ′12(ŝ′), where ŵ12 and ŵ′12 are defined on Ĥ and Ĥ ′ respectively.

If we prove Ĥ ′ �sb H ′′, then by Th. 10, Ĥ ′ has tighter bounds than H ′′; and subsequently Ĥ has
tighter bounds than H . Let relation R⊆ Ŝ′×S′′ be:

R = {(α̂
′
sb(s),α ′′sb(s)) | s ∈ S′}

We show that R fulfils the conditions of Def. 23 (page 40).

Let ŝ′Rs′′,

1. Let s′′ τ→r µ ′′ and s′′ ∈ S′′1 . Let s ∈ γ ′′sb(s′′), by condition (1a) of Def. 31 s τ→rc µ such that α ′′sb(µ) =

µ ′′. As all player one transitions are required transitions in Ĥ ′, ŝ′ = α̂ ′sb(s) τ→r α̂ ′sb(µ) = µ̂ ′. Now
by Def. 42 ∀û′ ∈ Ŝ′2,∃!u′′ ∈ S′′2 : γ̂ ′sb(û′)⊆ γ ′′sb(u′′), i.e., S′′2 is an abstract state space of Ŝ′2. Then by
Lemma 3, µ̂ ′Rµ ′′.

2. Let ŝ′ τ→p ιv̂′ and ŝ′ ∈ Ŝ′2. By condition (2b) of Def. 31, ∃s ∈ γ̂ ′sb(ŝ′) : s τ→p ιv such that α̂ ′sb(v) = v̂′.
By condition (2a) of Def. 31, s′′ = α ′′sb(s) τ→pc α ′′sb(ιv) = v′′. Thus, v̂′Rv′′.

The fixpoint of the function OAT (Def. 43) is guaranteed to exist for the embeddings of finite PA (see
Proposition 22). This therefore provides the basis to iteratively compute the partitioning of the state space
of the model induced by α ∈ Abstsb(H ′) such that the model induced by Fix OAT(α) is an ε-bounded
abstraction. Note that an ε-bounded abstraction is also a stable abstraction.

91

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s
t u

τ τ

τ τ

Figure 6.7: APGA α>(H ′) for any APGA H ′.

Theorem 23. For α ∈ Abstsb(H ′), Fix OAT(α)(H ′) is an ε-bounded abstraction of H ′.

Proof. The proof is by contradiction. Let H ′ = αPA(M) for PA M , and let α ∈ Abstsb(H ′). Assume
H = Fix OAT(α)(H ′) is an ε-unbounded abstraction. Then, there exists at least one state in S2 that is
not ε-bounded and can be split by Def. 42. Then, H is not obtained by a fixpoint of OAT (by Def. 43).
Hence, contradiction.

In order to have more concise abstractions than game-based abstractions with ε-bounded player-two
states, one can abstract H ′ as α>(H ′) = ({s = α(S′1), t = α>(T ′),u = α>(S′2\T ′)},{{s},{t,u}},{τ}, /0,
{s→p t,s→p u, t →p s,u→p s},s) — recall that T ′ is a set of goal states in H ′ — (see Fig. 6.7), and
then refine it iteratively by Def. 43. The following corollary follows from Th. 23.

Corollary 9. Fix OAT(α>)(H ′) is at least as concise as game-based abstraction [KKNP10] of H ′

with the same set of ε-bounded player-two states.

6.2 Distribution-based Abstraction-Refinement Framework

The basic steps of the state-based and distribution-based abstraction-refinement frameworks are the
same (see Fig. 6.1). In this section, we claim that the state-based framework can be extended to the
distribution-based setting. In distribution-based setting, the notion of stability for player-two states is
lifted from states to distributions over states. Moreover, the splitting of player-one and player-two states
is defined at the level of distributions rather than states. Therefore, instead of repeating everything in the
previous section, we discuss only those definitions that need to be lifted from states to distributions over
states. Let H be a distribution-based abstraction of H ′, i.e., H = αdb(H ′).

The notion of stability for player-one states is as before (see Def. 35). The same applies to distributions
over player-one states. Let ð(s) = 1 if s ∈ S1 is stable; otherwise, ð(s) = 0. Now, we define stable
player-two states in distribution-based abstraction.

Definition 44. (Stable Player-two State) State s ∈ S2 in APGA H is stable w.r.t. w12 iff there exists
some stable µ ∈ ∆p(s):

1. w12(s) = w12(µ), and

92

6.2. DISTRIBUTION-BASED ABSTRACTION-REFINEMENT FRAMEWORK

2. ∀ unstable η ∈ ∆p(s): w12(µ) = 2{w12(µ),∑u∈S1 η(u) ·
(
ð(u)?w12(u) : 2{w12(ν) | ν ∈ ∆p(u)}

)
}.

Condition (1) asserts that w12(s) depends on some stable distribution µ ∈ ∆p(s). Condition (2) as-
serts that for every unstable distribution η ∈ ∆p(s), w12(µ) is the optimal value between w12(µ) and
x = ∑u∈S1 η(u) ·

(
ð(u)?w12(u) : 2{w12(ν) | ν ∈ ∆p(u)}

)
w.r.t. the objective 2. Note that to calculate x, we

change the objective only for unstable (player-one) states in the support of ν as their non-deterministic
behaviour from the abstraction process may affect the reachability probability of s in a refinement (hav-
ing the same player-two state space) of H .

Intuitively speaking, if condition (2) holds none of the transitions from any direct distribution of s can
change the reachability probability of s in any refinement. Therefore, the refinement of direct succes-
sors, whether stable or unstable, of a stable player-two state alone does not change the bounds on its
reachability probabilities.

Example 42. Consider the distribution-based abstraction H ′ (right) of PA M (left) in Fig. 6.8. Let
1 = max and 2 = min with w = Fix Prt12(⊥) for T = {t ′3}, where w(v′0) = 0.5, w(v′1) = 0.5, w(v′2) = 1,
w(v′3) = 1, w(v′4) = 0, w(v′5) = 0.5, w(t ′0) = 0, w(t ′1) = 0.5, w(t ′2) = 0 and w(t ′3) = 1. Let us check whether
t ′1 is stable. As w(t ′1) = w(ιv′1

) = 0.5 and ιv′1
∈ ∆̂p(t ′1) = {ιv′1

, ιv′2
,µ = J0.4v′2,0.6v′3K} is stable, condition

(1) of Def. 44 holds. Let us consider the only unstable distribution µ in ∆̂p(t ′1). As w(ιv′1
) = 0.5 =

min{w(ιv′1
) = 0.5,µ(v′2) ·w(v′2) + µ(v′3) · 0.4 = 0.4 + 0.6 ∗ 0.4 = 0.64}, condition (2) of Def. 44 holds.

Note that as v′3 is unstable we consider the minimum instead of the maximum probability from v′3 to T .
Thus, t ′1 is stable. Note that as all player-two states are stable, H ′ is stable.

Now assume a state-based APGA-based abstraction Ĥ ′ of PA M with the same state space partitioning
as for H ′. APGA Ĥ ′ can be obtained by merging the states v̂3 and v̂4 in the right APGA of Fig.
6.10. Note that APGA Ĥ ′ will not be a stable abstraction. This is because the abstract state, say v̂′3,
representing s10 and s11, will be unstable as it will have only possible transitions. v̂′3 therefore may affect
the reachability probability of its corresponding player-two state, say t̂ ′1. In order to check the stability of
t̂ ′1, we therefore will consider minimum (instead of maximum) reachability probability from v̂′3 to T which
is 0.4. This violates condition (2) of Def. 36.

6.2.1 Refinement of Player-one States

We now discuss how effectively unstable player-one states in EUS(H) (see Def. 38) are split. We split
each effectively unstable state into two blocks.

Definition 45. For state s ∈ EUS(H), let µ ∈ ∆p(s) : w12(s) = w12(µ). Then,

• B1(s) =
⋃{Supp(η ′) | η ′ ∈ γdb(ιs) : η ′→ ν ′∧αdb(ν ′) = µ}

• B2(s) = γdb(s)\B1(s)

Note that for any s ∈ EUS(H) it holds that neither B1(s) = /0 nor B2(s) = /0. This is because if all
distributions over concrete states of s have a transition to some ν ′ with αdb(ν ′) = µ , then s will not be

93

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9 s10

s11

0.
1

0.3

0.05

0.05

0.
5

0.2

0.3

0.5

0.5

0.5

0.5

0.
5

0.50.
10.4

0.60.4

0.6

0.4

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

v′0

t ′0

v′1

v′2

v′3

t ′1

v′4
t ′2

v′5
t ′3

0.5

0.5

0.
5

0.5

0.
5

0.5

0.
6

0.
4

0.6

0.4

0.5

0.5

Figure 6.8: PA M (left) with H ′ = αdb(αPA(M)) (right). H ′ is a stable abstraction w.r.t. 1 = max,
2 = min and T = {t ′3}, with |∆′|= 24, |S′1|= 6 and |S′2|= 4.

an unstable state. Recall that all distributions in γdb(ιs) are convex combinations of maximal singular-
distributions in γdb(ιs), and therefore it suffices to consider only maximal singular-distributions in γdb(ιs)
(see Def. 34 on page 63) to split s.

Moreover, by this way the maximal singular-distributions (over the concrete states of s) that have the
same transitions after abstraction are assigned to the same new partition block.

We can now use Def. 40 for refining player-one states, thus giving the functionality of the inner-loop of
our distribution-based framework (see Fig. 6.1).

Example 43. Consider the distribution-based abstraction Ĥ (Fig. 6.9 right) of PA M (Fig. 6.8 left).
Let 1 = max and 2 = min with w = Fix Prt12(⊥) for T = {t̂4} where w(v̂0) = 0.7, w(v̂1) = 0.5, w(v̂2) = 1,
w(v̂3) = 0, w(v̂4) = 0.7, w(t̂0) = 0, w(t̂1) = 1, w(t̂2) = 0.5, w(t̂3) = 0 and w(t̂4) = 1. Let us check whether
t̂2 is stable. As w(t̂2) = w(ιv̂1) = 0.5 and ιv̂1 ∈ ∆̂(t̂2) = {ιv̂1 , ιv̂2} is stable, condition (1) of Def. 44 holds.
As ιv̂2 ∈ ∆̂(t̂2) is unstable and w(ιv̂1) 6= min{w(ιv̂1) = 0.5,0}, condition (2) of Def. 44 does not hold (note
that as v̂2 is unstable we consider the minimum instead of the maximum probability from v̂2 to T). Thus,
t̂2 is unstable.

Now let us refine v̂2. As w(v̂2) = 1 is because of a possible transition from v̂2 to T , we find out which
concrete distributions in γdb(ιv̂2) = {J0.5v3,0.5v4K, ιv5 , ιv10 , ιv11} have a transition to concrete states of T

94

6.2. DISTRIBUTION-BASED ABSTRACTION-REFINEMENT FRAMEWORK

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9
s10

s11

v′0
t ′0

t ′1

v′1

v′2

v′3
t ′2

v′4
t ′3

v′5
t ′4

0.5

0.5

0.
5

0.5

0.5

0.5

0.
8

0.2

0.6
0.4

0.
5

0.5

0.4 0.6

0.6

0.4

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

v̂0

t̂0

t̂1

v̂1

v̂2

t̂2

v̂3

t̂3

v̂4

t̂4

0.5

0.5

0.
5

0.5

0.5

0.
5

0.
6

0.4

0.
5

0.5

0.4 0.6

0.6

0.4

Figure 6.9: For PA M (Fig. 6.8 left), Ĥ = αdb(αPA(M)) (right) and H ′ = IAT(αdb)(αPA(M)) (left).
H ′ is a stable abstraction w.r.t. 1 = max, 2 = min and T = {t ′4}, with |∆′|= 26 and |S′1|= 6.

with probability 1; and split γdb(ιv̂2) based on this information. We have B1(v′2) = {v3,v4,v5,v11} and
B2(v′2) = {v10} as all accept ιv10 in γdb(ιv̂2) have a transition to concrete states of T with probability 1.
The abstraction obtained after partitioning the concrete states of v̂2 is the APGA H ′ (Fig. 6.9 left). Note
that t ′2 is stable in H ′.

6.2.2 Refinement of Player-two States

Let UB(H)ε = {s ∈ S2 is ε-unbounded | ∃µ,ν ∈ ∆p(s) : µ 6= ν ∧w12(s) = w12(µ)∧w11(s) = w11(ν)}
be the set of ε-unbounded player-two states in H whose reachability probability bounds depend on two
different direct successor distributions. For an unbounded APGA H , we can show that UB(H)ε 6= /0
— if for all s ∈ S2: ν ∈ ∆p(s) it holds that w12(s) = w12(ν) and w11(s) = w11(ν), then it can be proved
that H is ε-bounded (see Corollary 8). Moreover, based on the definition of UB(H)ε , we see that each
state in UB(H)ε has at least two direct successor states. Therefore, we can split each state in UB(H)ε

into two blocks.

Definition 46. For state s ∈ UB(H)ε , let v ∈ Succ(s) : w11(v) 6= w12(v). Then,

• P1(s) = {s′ ∈ γdb(s) | Succ(s′)⊆ γdb(v)}

95

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

ṽ0

t̃0

ṽ1

ṽ2

ṽ3

ṽ4

ṽ5

ṽ6

ṽ7

t̃1

ṽ8

t̃2

ṽ9

ṽ10

t̃3

0.5

0.5

0.5

0.5

0.5

0.5

0.
5

0.5

0.6
0.4

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

v̂0

t̂0
v̂1

v̂2

v̂3

v̂4

t̂1

v̂5

t̂2

v̂6

t̂3

0.5

0.5

0.
5

0.5

0.5

0.5

0.6

0.4

Figure 6.10: For PA M (Fig. 6.8), H̃ (left) is a game-based-abstraction [KKNP10] with |∆̃| = 33 and
|S̃1| = 11, and Ĥ (right) is a state-based abstraction with |∆̂| = 23 and |Ŝ1| = 7. Note that Ĥ is stable
w.r.t. 1 = max, 2 = min and T = {t̂3}.

• P2(s) = γdb(s)\P1(s)

The above definition separates concrete states, whose direct successors are the concrete states of v ∈
Succ(s) : w11(v) 6= w12(v), of an unbounded state s from other concrete states. Note that for any
s ∈ UB(H)ε it holds that neither P1(s) = /0 nor P2(s) = /0. This is because in case all successors of
s have the same reachability probability bounds, s will not be an unbounded state. The above mentioned
way of splitting player-two states can also be used in state-based framework.

We can now use Def. 43 for refining player-one as well as player-two states, thus giving the functionality
of the outer-loop of our distribution-based framework (see Fig. 6.1).

Distribution-based APGA-based vs. PGA-based abstractions. In the following example, we show
that our distribution-based APGA-based abstraction (after refinement) is as precise as PGA-based ab-
straction [SK14] for the same player-two state spaces, but APGA-based abstraction is comparatively
smaller in size.

96

6.3. SUMMARY AND DISCUSSION

Example 44. Consider the distribution-based APGA-based abstraction H ′ (right) of PA M (left) in
Fig. 6.8. Assume H is a PGA-based abstraction of M with S2 = S′2. In H , the concrete states s1, s2,
s5, s8, s9, s10 and s11 will be abstracted by different player-one states. H is therefore larger in size than
H ′, but both of them bound the maximum probability to states {s8,s9} in M , which is 0.7, by [0.5,1].

APGA-based state-based vs. distribution-based abstractions. Finally, we present an example that
compares relative precision and concision of state-based and distribution-based APGA-based abstrac-
tions of a PA.

Example 45. The maximum probability in PA M (Fig. 6.8) to reach states {s8,s9} equals 0.7. By
Corollary 3, this probability lies in [0.4,1] for the game-based [KKNP10] and state-based APGA-based
abstractions H̃ and Ĥ respectively in Fig. 6.10. Instead, distribution-based abstraction H ′ (Fig. 6.8
right) yields [0.5,1]. Note that Ĥ and H ′ are stable abstractions w.r.t. 1 = max and 2 = min.

Moreover, although H̃ and Ĥ yield the same bounds, i.e., [0.4,1], but (in terms of number of transitions
and states) Ĥ is smaller than H̃ . Furthermore, the sizes of H ′ and Ĥ are comparable but H ′ yields
tighter bounds, i.e., [0.5,1].

We conjecture that the theorems given for state-based abstraction-refinement framework can be extended
to the distribution-based abstraction-refinement framework.

6.3 Summary and Discussion

In this chapter, we proposed a state-based and a distribution-based abstraction-refinement framework
that automatically generate APGA-based abstractions of closed PA having finitely many states. The
abstractions are aimed at the verification of reachability properties. A main characteristic of these frame-
works that distinguishes them from the abstraction-refinement framework for MDPs [KKNP10] is an
additional refinement loop that is embedded inside the main loop. The inner loop refines player-one
states until the non-deterministic behaviour from the abstraction process in player-one states has no im-
pact on the reachability probabilities of player-two states. The outer loop works in the same way as in
[KKNP10], i.e., it refines player-two states whose reachability probabilities are not at most ε-apart. We
showed that our APGA-based state-based and distribution-based abstractions (after refinement) are as
precise as game-based [KKNP10] and PGA-based abstractions [SK14] respectively for the same parti-
tioning of the concrete state spaces, but APGA-based abstractions may be smaller in size. Moreover, we
illustrated with examples that the distribution-based framework may induce more precise and concise
abstract models of PA than the state-based framework.

Related work: In the literature, different abstraction-refinement frameworks have been discussed,
e.g. the CEGAR framework [CGJ+00, HWZ08] for existential abstractions (see details on page 2);
three-valued analysis based frameworks [SG07, dAR07, KKLW12] for modal abstractions (see details
on page 3); game-based frameworks [KKNP10, WZ10] for game-based abstractions (see details on
page 3), etc. In fact, the framework of [KKNP10] is a special case of our state-based framework if the
process of abstraction does not induce any non-deterministic behaviour in player-one states. More re-
cently, an abstraction-refinement framework (MeGARA) [BFH+14] is given for Markov automata that
combines the techniques of [KKNP10] and [WZ10] for Markovian and non-Markovian states respec-
tively, i.e., Markovian states are abstracted using game-based abstraction [KKNP10] and non-Markovian

97

CHAPTER 6. A MODAL ABSTRACTION-REFINEMENT FRAMEWORK

states using Menu-based abstraction [WZ10] (see details on page 5). To the best of our knowledge, our
abstraction-refinement framework is unique in the sense that it combines modal frameworks with game-
based frameworks.

Future extensions: In our framework some of the definitions assume that player-one states have only
non-deterministic choices but not the probabilistic ones as in SGs. Therefore, it works well for PA and
not for PGA. Possible future work consists of:

• adopting our framework to PGA rather than PA,

• exploring new methods to decide which states should be refined to have a faster convergence with
minimal state space,

• generating modal game-based abstractions using predicate-abstraction techniques
[CKSY05, KKNP08], and adopting this framework to refine such models, and

• implementing our framework and conducting some case studies.

98

7
Conclusion

Among the different formal methods techniques used for the production of trustworthy ICT systems,
model checking is quite renowned. The main problem in its widespread application is the tremendous
(or even infinite) sizes of the state spaces of even small high-level models given as Petri nets, programs
in guarded command languages, etc, — known as the state space explosion problem. In the literature,
different methods have been proposed to tackle this problem, abstraction is one of the most prominent
ones. This thesis proposes some new abstraction techniques for probabilistic systems aiming at preserv-
ing the reachability probabilities of concrete models. This aims at extending the existing limits of model
checking of probabilistic systems.

The key aspect in our work is that we perceive probabilistic systems not just as stochastic processes but
transformers of probabilities as well. Therefore, we treated distributions over states rather than states as
first-class citizens and lifted the notion of abstraction from states to distributions over states. Moreover,
we also defined formal relationships between concrete and abstract models at the level of distributions
over states. To be precise, we gave game-based abstractions of probabilistic systems over the distri-
butions over states; and distribution-based simulation and alternating simulation relations to compare
concrete and abstract models. We showed that simulation relations preserve reachability probabilities in
case of collaborating players; whereas alternating simulation relations do so in case of competing play-
ers.

Moreover, we introduced modal game-based abstraction, by merging modal and game-based abstrac-
tion techniques. This yielded modal stochastic games in which player-two completely handles behaviour
induced by abstraction whereas player-one handles behaviour induced by abstraction and from concrete
models. Due to this additional non-deterministic behaviour in player-one states, the bounds of reachabil-
ity probabilities in modal stochastic games are at most as tight as in stochastic games, but modal games
are comparatively smaller in size. Modal stochastic games are compared with concrete models using
refinement relations preserving the reachability probabilities in case of both competing and collaborating
players. We also lifted the modal game-based abstraction from states to distributions over states and
showed with examples that in some cases this technique may induce more precise as well as concise
models than state-based modal game-based abstraction.

Furthermore, our abstraction techniques are compositional, i.e., they allow systems to be broken down
into components and abstract each component individually, which can then be plugged together to get
abstract models of complete systems.

Finally, we introduced a state-based and a distribution-based abstraction-refinement framework for prob-
abilistic automata. Intuitively, states of modal game-based abstractions are refined in two nested loops.

99

In the inner loop, player-one states are refined until the behaviour from abstraction in player-one states
has no impact on the reachability probabilities of player-two states; whereas in the outer loop, player-two
states are refined until the difference between probability bounds of player-two states does not exceed
certain threshold value.

Our contributions are theoretical in nature. It would be interesting to implement our proposed abstraction-
refinement framework and check its practical usefulness by performing some industrial case studies.

100

Bibliography

[ADD00] Robert B. Ash and Cathrine A. Doléans-Dade. Probability & Measure Theory, 2nd Edition.
Academic Press, 2000.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating
refinement relations. In Concurrency Theory, volume 1466 of LNCS, pages 163–178, 1998.

[Alf99] Luca de Alfaro. Computing minimum and maximum reachability times in probabilistic
systems. In Concurrency Theory, volume 1664 of LNCS, pages 66–81, 1999.

[BEMC00] Christel Baier, Bettina Engelen, and Mila E. Majster-Cederbaum. Deciding bisimilarity and
similarity for probabilistic processes. Computer and System Sciences, 60(1):187–231, 2000.

[BFH+14] Bettina Braitling, Luis Marı́a Ferrer Fioriti, Hassan Hatefi, Ralf Wimmer, Bernd Becker, and
Holger Hermanns. MeGARA: Menu-based game abstraction and abstraction refinement of
Markov automata. In Quantitative Aspects of Programming Languages and Systems, volume
154 of EPTCS, pages 48–63, 2014.

[BHH+09] Eckard Böde, Marc Herbstritt, Holger Hermanns, Sven Johr, Thomas Peikenkamp, Reza
Pulungan, Jan Rakow, Ralf Wimmer, and Bernd Becker. Compositional dependability eval-
uation for STATEMATE. IEEE Software Engineering, 35(2):274–292, 2009.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008.

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16:580–595, 1991.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Principles of
programming languages, pages 238–252, 1977.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Logic and Compu-
tation, 2(4):511–547, 1992.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco
Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. NuSMV version 2:
An opensource tool for symbolic model checking. In Computer-Aided Verification, volume
2404 of LNCS, 2002.

[CDL+11] Benoı̂t Caillaud, Benoı̂t Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and An-
drzej Wasowski. Constraint Markov chains. Theoretical Computer Science, 412(34):4373–
4404, 2011.

101

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Computer-Aided Verification, volume
1855 of LNCS, pages 154–169, 2000.

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal of
the ACM, 50(5):752–794, 2003.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
Programming Languages and Systems, 16(5):1512–1542, 1994.

[CKSY05] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SAT-based
predicate abstraction for ANSI-C. In Tools and Algorithms for the Construction and Analy-
sis of Systems, volume 3440 of LNCS, pages 570–574, 2005.

[CL88] Anne Condon and Richard E. Ladner. Probabilistic game automata. Computer and System
Sciences, 36(3):452–489, 1988.

[Con92] Anne Condon. The complexity of stochastic games. Information and Computation, 96:203–
224, 1992.

[dAGJ04] Luca de Alfaro, Patrice Godefroid, and Radha Jagadeesan. Three-valued abstractions of
games: Uncertainty, but with precision. In Logic in Computer Science, pages 170–179, July
2004.

[dAR07] Luca de Alfaro and Pritam Roy. Solving games via three-valued abstraction refinement. In
Concurrency Theory, volume 4703 of LNCS, pages 74–89, 2007.

[DHR08] Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
Markov chains. Foundations of Computer Science, 19(3):549–563, 2008.

[Dij75] Edsger W. Dijkstra. Guarded commands, non-determinancy and a calculus for the derivation
of programs. In Language Hierarchies and Interfaces, pages 111–124, 1975.

[DJL01] Pedro R. D’Argenio, Henrik E. Jensen, and Kim G. Larsen. Reachability analysis of prob-
abilistic systems by successive refinements. In Process Algebra and Probabilistic Methods,
Performance Modeling and Verification, volume 2165 of LNCS, pages 39–56, 2001.

[DKL+11] Benoı̂t Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen,
Falak Sher, and Andrzej Wasowski. Abstract probabilistic automata. In Verification, Model
Checking, and Abstract Interpretation, volume 6538 of LNCS, pages 324–339, 2011.

[DKL+13] Benoı̂t Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen,
Falak Sher, and Andrzej Wasowski. Abstract probabilistic automata. Information and Com-
putation, 232:66–116, 2013.

[EHZ10] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On probabilistic automata in
continuous time. In Logic in Computer Science, pages 342–351, 2010.

[FZ14] Yuan Feng and Lijun Zhang. When equivalence and bisimulation join forces in probabilistic
automata. In Formal Methods, volume 8442 of LNCS, pages 247–262, 2014.

102

[GB06] Marcus Größer and Christel Baier. Partial order reduction for Markov decision processes:
A survey. In Formal Methods for Components and Objects, volume 4111 of LNCS, pages
408–427, 2006.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8(3):231–274, 1987.

[Her90] Ted Herman. Probabilistic self-stabilization. Information Processing Letters, 35(2):63–67,
1990.

[HHK02] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for performance
evaluation. Theoretical Computer Science, 274(1-2):43–87, 2002.

[HJM03] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Counterexample-guided control.
In Automata, Languages and Programming, volume 2719 of LNCS, pages 886–902, 2003.

[HJS01] Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems: A foun-
dation for three-valued program analysis. In Programming Languages and Systems, volume
2028 of LNCS, pages 155–169, 2001.

[HKK14] Holger Hermanns, Jan Krcál, and Jan Kretı́nský. Probabilistic bisimulation: Naturally on
distributions. In Concurrency Theory, volume 8704 of LNCS, pages 249–265, 2014.

[HSM97] Jifeng He, Karen Seidel, and Annabelle McIver. Probabilistic models for the guarded com-
mand language. Science of Computer Programming, 28(2-3):171–192, 1997.

[HWZ08] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR. In Computer-
Aided Verification, volume 5123 of LNCS, pages 162–175, 2008.

[JHK02] David N. Jansen, Holger Hermanns, and Joost-Pieter Katoen. A probabilistic extension of
UML statecharts: Specification and verification. In Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 2469 of LNCS, pages 355–374, 2002.

[JL91] Bengt Jonsson and Kim G. Larsen. Specification and refinement of probabilistic processes.
In Logic in Computer Science, pages 266–277, 1991.

[Kat10] Mark Kattenbelt. Automated Quantitative Software Verification. PhD thesis, University of
Oxford, 2010.

[KKLW08] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Abstraction for
stochastic systems by Erlang’s method of stages. In Concurrency Theory, volume 5201
of LNCS, pages 279–294, 2008.

[KKLW12] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-valued abstrac-
tion for probabilistic systems. Logic and Algebraic Programming, 81(4):356–389, 2012.

[KKN09] Joost-Pieter Katoen, Daniel Klink, and Martin R. Neuhäußer. Compositional abstraction for
stochastic systems. In Formal Modeling and Analysis of Timed Systems, volume 5813 of
LNCS, pages 195–211, 2009.

[KKNP08] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Game-based
probabilistic predicate abstraction in PRISM. volume 220, 2008.

103

[KKNP10] Mark Kattenbelt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. A game-
based abstraction-refinement framework for Markov decision processes. Formal Methods
in System Design, 36(3):246–280, 2010.

[KKZJ07] Joost-Pieter Katoen, Tim Kemna, Ivan Zapreev, and David N. Jansen. Bisimulation min-
imisation mostly speeds up probabilistic model checking. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 4424 of LNCS, pages 87–101, 2007.

[Kli10] Daniel Klink. Three-Valued Abstraction for Stochastic Systems. PhD thesis, RWTH Aachen
University, 2010.

[KNP09] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: probabilistic model
checking for performance and reliability analysis. SIGMETRICS Performance Evaluation
Review, 36(4):40–45, 2009.

[Kud05] Manfred Kudlek. Probability in Petri nets. Fundamenta Informaticae, 67(1-3):121–130,
2005.

[KZH+11] Joost-Pieter Katoen, Ivan S. Zapreev, Ernst Moritz Hahn, Holger Hermanns, and David N.
Jansen. The ins and outs of the probabilistic model checker MRMC. Performance Evalua-
tion, 68(2):90–104, 2011.

[Lar90] Kim Guldstrand Larsen. Modal specifications. In Automatic Verification Methods for Finite
State Systems, volume 407 of LNCS, pages 232–246, 1990.

[LMZL11] Yang Liu, Huaikou Miao, Hongwei Zeng, and Zhuang Li. Probabilistic Petri net and its
logical semantics. In Software Engineering Research, Management and Applications, pages
73–78, 2011.

[LSV07] Nancy A. Lynch, Roberto Segala, and Frits W. Vaandrager. Observing branching structure
through probabilistic contexts. SIAM Journal on Computing, 37(4):977–1013, 2007.

[LT88a] Kim G. Larsen and Bent Thomsen. Compositional proofs by partial specification of pro-
cesses. In Mathematical Foundations of Computer Science, volume 324 of LNCS, pages
414–423, 1988.

[LT88b] Kim G. Larsen and Bent Thomsen. A modal process logic. In Logic in Computer Science,
pages 203–210, 1988.

[LV92] Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-based
systems. In Real-Time: Theory in Practice, volume 600 of LNCS, pages 397–446, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., 1989.

[Mio12] Matteo Mio. Probabilistic modal µ-calculus with independent product. Logical Methods in
Computer Science, 8(4), 2012.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Bonn: Institut für Instru-
mentelle Mathematik, Schriften des IIM Nr. 2, 1962. Second Edition:, New York: Griffiss
Air Force Base, Technical Report RADC-TR-65–377, Vol.1, 1966, Pages: Suppl. 1, English
translation.

104

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., 1994.

[Rab82] Michael O. Rabin. N-process mutual exclusion with bounded waiting by 4log2 N-valued
shared variable. Computer and System Sciences, 25(1):66–75, 1982.

[Seg95] Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.
PhD thesis, Massachusetts Institute of Technology, 1995.

[SG06] Sharon Shoham and Orna Grumberg. 3-valued abstraction: More precision at less cost. In
Logic in Computer Science, pages 399–410, 2006.

[SG07] Sharon Shoham and Orna Grumberg. A game-based framework for CTL counterexamples
and 3-valued abstraction-refinement. volume 9, 2007.

[Sha53] L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the
United States of America, 39(10):1095–1100, 1953.

[SK12] Falak Sher and Joost-Pieter Katoen. Compositional abstraction techniques for probabilistic
automata. In Theoretical Computer Science, volume 7604 of LNCS, pages 325–341, 2012.

[SK14] Falak Sher and Joost-Pieter Katoen. Tight game abstractions of probabilistic automata. In
Concurrency Theory, volume 8704 of LNCS, pages 576–591, 2014.

[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

[T+55] Alfred Tarski et al. A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics, 5(2):285–309, 1955.

[WZ10] Björn Wachter and Lijun Zhang. Best probabilistic transformers. In Verification, Model
Checking, and Abstract Interpretation, volume 5944 of LNCS, pages 362–379, 2010.

[ZP10] Chenyi Zhang and Jun Pang. On probabilistic alternating simulations. In Theoretical Com-
puter Science, volume 323, pages 71–85. Springer, 2010.

105

Aachener Informatik-Berichte

This list contains all technical reports published during the past three years. A complete list of reports

dating back to 1987 is available from:

http://aib.informatik.rwth-aachen.de/

To obtain copies please consult the above URL or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

2012-01 Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

2012-03 Arne Haber, Jan Oliver Ringert, Bernhard Rumpe: MontiArc - Architec-

tural Modeling of Interactive Distributed and Cyber-Physical Systems

2012-04 Marcus Gelderie: Strategy Machines and their Complexity

2012-05 Thomas Ströder, Fabian Emmes, Jürgen Giesl, Peter Schneider-Kamp,

and Carsten Fuhs: Automated Complexity Analysis for Prolog by Term

Rewriting

2012-06 Marc Brockschmidt, Richard Musiol, Carsten Otto, Jürgen Giesl: Au-

tomated Termination Proofs for Java Programs with Cyclic Data

2012-07 André Egners, Björn Marschollek, and Ulrike Meyer: Hackers in Your

Pocket: A Survey of Smartphone Security Across Platforms

2012-08 Hongfei Fu: Computing Game Metrics on Markov Decision Processes

2012-09 Dennis Guck, Tingting Han, Joost-Pieter Katoen, and Martin R.

Neuhäußer: Quantitative Timed Analysis of Interactive Markov Chains

2012-10 Uwe Naumann and Johannes Lotz: Algorithmic Differentiation of Nu-

merical Methods: Tangent-Linear and Adjoint Direct Solvers for Systems

of Linear Equations

2012-12 Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes,

and Carsten Fuhs: Symbolic Evaluation Graphs and Term Rewriting —

A General Methodology for Analyzing Logic Programs

2012-15 Uwe Naumann, Johannes Lotz, Klaus Leppkes, and Markus Towara:

Algorithmic Differentiation of Numerical Methods: Tangent-Linear and

Adjoint Solvers for Systems of Nonlinear Equations

http://aib.informatik.rwth-aachen.de/
mailto:biblio@informatik.rwth-aachen.de

2012-16 Georg Neugebauer and Ulrike Meyer: SMC-MuSe: A Framework for

Secure Multi-Party Computation on MultiSets

2012-17 Viet Yen Nguyen: Trustworthy Spacecraft Design Using Formal Methods

2013-01 ∗ Fachgruppe Informatik: Annual Report 2013

2013-02 Michael Reke: Modellbasierte Entwicklung automobiler Steuerungssys-

teme in Klein- und mittelständischen Unternehmen

2013-03 Markus Towara and Uwe Naumann: A Discrete Adjoint Model for Open-

FOAM

2013-04 Max Sagebaum, Nicolas R. Gauger, Uwe Naumann, Johannes Lotz, and

Klaus Leppkes: Algorithmic Differentiation of a Complex C++ Code

with Underlying Libraries

2013-05 Andreas Rausch and Marc Sihling: Software & Systems Engineering

Essentials 2013

2013-06 Marc Brockschmidt, Byron Cook, and Carsten Fuhs: Better termination

proving through cooperation

2013-07 André Stollenwerk: Ein modellbasiertes Sicherheitskonzept für die ex-

trakorporale Lungenunterstützung

2013-08 Sebastian Junges, Ulrich Loup, Florian Corzilius and Erika Ábrahám:

On Gröbner Bases in the Context of Satisfiability-Modulo-Theories Solv-

ing over the Real Numbers

2013-10 Joost-Pieter Katoen, Thomas Noll, Thomas Santen, Dirk Seifert, and

Hao Wu: Performance Analysis of Computing Servers using Stochastic

Petri Nets and Markov Automata

2013-12 Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and

Jürgen Giesl: Alternating Runtime and Size Complexity Analysis of

Integer Programs

2013-13 Michael Eggert, Roger Häußling, Martin Henze, Lars Hermerschmidt,

René Hummen, Daniel Kerpen, Antonio Navarro Pérez, Bernhard

Rumpe, Dirk Thißen, and Klaus Wehrle: SensorCloud: Towards the

Interdisciplinary Development of a Trustworthy Platform for Globally

Interconnected Sensors and Actuators

2013-14 Jörg Brauer: Automatic Abstraction for Bit-Vectors using Decision Pro-

cedures

2013-16 Carsten Otto: Java Program Analysis by Symbolic Execution

2013-19 Florian Schmidt, David Orlea, and Klaus Wehrle: Support for error

tolerance in the Real-Time Transport Protocol

2013-20 Jacob Palczynski: Time-Continuous Behaviour Comparison Based on

Abstract Models

2014-01 ∗ Fachgruppe Informatik: Annual Report 2014

2014-02 Daniel Merschen: Integration und Analyse von Artefakten in der mod-

ellbasierten Entwicklung eingebetteter Software

2014-03 Uwe Naumann, Klaus Leppkes, and Johannes Lotz: dco/c++ User

Guide

2014-04 Namit Chaturvedi: Languages of Infinite Traces and Deterministic Asyn-

chronous Automata

2014-05 Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,

Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp: Automated Ter-

mination Analysis for Programs with Pointer Arithmetic

2014-06 Esther Horbert, Germán Mart́ın Garćıa, Simone Frintrop, and Bastian

Leibe: Sequence Level Salient Object Proposals for Generic Object De-

tection in Video

2014-07 Niloofar Safiran, Johannes Lotz, and Uwe Naumann: Algorithmic Dif-

ferentiation of Numerical Methods: Second-Order Tangent and Adjoint

Solvers for Systems of Parametrized Nonlinear Equations

2014-08 Christina Jansen, Florian Göbe, and Thomas Noll: Generating Inductive

Predicates for Symbolic Execution of Pointer-Manipulating Programs

2014-09 Thomas Ströder and Terrance Swift (Editors): Proceedings of the In-

ternational Joint Workshop on Implementation of Constraint and Logic

Programming Systems and Logic-based Methods in Programming Envi-

ronments 2014

2014-14 Florian Schmidt, Matteo Ceriotti, Niklas Hauser, and Klaus Wehrle:

HotBox: Testing Temperature Effects in Sensor Networks

2014-15 Dominique Gückel: Synthesis of State Space Generators for Model

Checking Microcontroller Code

2014-16 Hongfei Fu: Verifying Probabilistic Systems: New Algorithms and Com-

plexity Results

2015-01 ∗ Fachgruppe Informatik: Annual Report 2015

2015-05 Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and

Thomas Ströder: Inferring Lower Bounds for Runtime Complexity

2015-06 Thomas Ströder and Wolfgang Thomas (Editors): Proceedings of the

Young Researchers’ Conference “Frontiers of Formal Methods”

2015-07 Hilal Diab: Experimental Validation and Mathematical Analysis of Co-

operative Vehicles in a Platoon

2015-09 Xin Chen: Reachability Analysis of Non-Linear Hybrid Systems Using

Taylor Models

∗ These reports are only available as a printed version.
Please contact biblio@informatik.rwth-aachen.de to obtain copies.

mailto:biblio@informatik.rwth-aachen.de

	Introduction
	Model Checking
	Abstraction
	Contributions
	Outline of the thesis

	Preliminaries
	Notations
	Stochastic Processes
	Discrete-time Stochastic Models
	Discrete-time Markov chains (DTMC)
	Probabilistic Automata (PA)
	Alternating Two-Player Stochastic Games (SGs)
	(Simple) Probabilistic Game Automata (PGA)

	Simulation Relations on PA
	Segala's Probabilistic (Bi)Simulation Relations

	Bisimulation Minimization

	Relations on Stochastic Games
	Simulation Relations
	State-based Simulation Relation
	Distribution-based Simulation Relation
	State-based vs. Distribution-based Simulation Relations

	Alternating Simulation Relations
	State-based Alternating Simulation Relation
	Distribution-based Alternating Simulation Relation
	State-based vs. Distribution-based Alternating Relations

	Reachability Probabilities and (Alternating) Simulation Relations
	Summary and Discussion

	Stochastic Games with Modalites
	Modal Transition Systems (MTS)
	Abstract Probabilistic Game Automata (APGA)
	Refinement Relations for APGA
	State-based Refinement Relation
	Distribution-based Refinement Relation

	Approximation of APGA
	Extreme Games and Reachability Analysis
	Composition of Stochastic Games
	Summary and Discussion

	Modal Abstraction of Stochastic Games
	Abstraction of APGA
	State-based Abstraction of APGA
	Distribution-based Abstraction of APGA
	State- vs. Distribution-based Abstractions of APGA

	Compositional Abstraction
	Preservation of Reachability Probabilities
	Distribution-based Game Abstraction of MDPs
	Summary and Discussion

	A Modal Abstraction-Refinement Framework
	State-based Abstraction-Refinement Framework
	Stable Abstractions
	Refinement of Player-one States
	Refinement of Player-two States

	Distribution-based Abstraction-Refinement Framework
	Refinement of Player-one States
	Refinement of Player-two States

	Summary and Discussion

	Conclusion
	100pt Bibliography

