
Abstraction and Refinement Techniques in
Automated Design Debugging

Sean Safarpour, Andreas Veneris
Department of Electrical and Computer Engineering

University of Toronto, Toronto, Canada
{sean, veneris}@eecg.toronto.edu

Abstract— Verification is a major bottleneck in the VLSI design
flow with the tasks of error detection, error localization, and error
correction consuming up to 70% of the overall design effort.
This work proposes a departure from conventional debugging
techniques by introducing abstraction and refinement during
error localization. Under this new framework, existing debugging
techniques can handle large designs with long counter-examples
yet remain run time and memory efficient. Experiments on
benchmark and industrial designs confirm the effectiveness of
the proposed framework and encourage further development of
abstraction and refinement methodologies for existing debugging
techniques.

I. INTRODUCTION

Functional verification of today’s VLSI designs is a critical and
time consuming task. The processes of verifying the functional
correctness of a design, determining the source of the potential
error(s) and correcting those errors, can take up 70% of the overall
design time [1], [2]. While there exists a plethora of methodologies
for verification (i.e. error detection), there is fewer work dedicated
towards debugging, that is error localization and correction [3].

Today, the verification and design engineers have the daunting
and tedious task of analyzing the design, its specifications and the
incorrect response from the simulation traces (counter-examples)
to determine the source of errors. For real-life industrial designs
such as microprocessors and DSP components, experience shows
that traces can often be over tens of thousands of clock cycles
long, a fact that makes debugging even more challenging [1], [4].
It is reported that finding the source of error(s) can take up to
50% of the overall verification task, a considerable contributor to
the verification bottleneck [1]. Therefore, cost-effective automated
debugging methodologies are of great importance to the academic
and industrial communities.

Currently, automated design debugging approaches are based on
simulation, symbolic, or constraint satisfaction techniques [5], [6],
[7]. Most of these approaches use information from the erroneous
design, the input logic values, and the expected output logic values
to return a set of suspect gates [7]. In sequential design debugging,
the circuit representation is often replicated or unrolled for all clock
cycles to model the error through time [6]. Clearly, this debugging
practice can result in excessive memory and run-time requirements
even for modest size designs with hundreds of clock cycle traces.

Reducing the memory demands for sequential debuggers is crit-
ical in making existing debugging methodologies practically viable.
Current memory reduction techniques partition the problem into
subproblems that are solved sequentially [7], they trade time for
space by formulating the problem as a Quantified Boolean Formula
satisfiability instance [8], and they reduce the length of the traces
using formal techniques [9], [10]. Although these methods can
be effective in decreasing memory requirements, the problem of
debugging large industrial designs remains intractable.

This work introduces a new methodology for design debugging
based on the formal concepts of design abstraction and refine-

ment [11], [12]. It does not propose a new debugging method but
it presents a novel framework that existing debugging techniques
can utilize. Under this new framework, an abstract model of the
design is first created to undergo debugging. Since this representation
contains less logic than the original one, the size of the problem
may be reduced considerably in favor of debugging. The benefits
are reduced memory requirements and potentially shorter run times
when compared to debugging the original design. Since the abstract
model contains fewer state elements than the original one, it may
lead to shorter traces when state matching trace reduction techniques
are used [9]. Debugging an abstract model can sometimes return
abstracted state elements as error sources. In these cases, a refinement
procedure is proposed that replaces some of the abstracted variables
with the original state elements. Furthermore, the proposed debugging
methodology guarantees correctness, where the solutions found under
the framework are also solutions in the concrete design. Finally, the
completeness of the framework is ensured as no error sources remain
undetected for a given set of test vectors.

Given the impact of abstraction and refinement techniques in
model checking, it is natural to expect similar results in design
debugging. Indeed, experiments confirm the practical benefits of the
proposed framework as considerable memory reductions of over 60%
and speed-ups of over 4.5X are observed on a set of benchmark and
industrial designs while preserving the resolution. These results en-
courage further research in abstraction and refinement methodologies
as an aid to existing debugging techniques.

This paper is organized as follows. Section II provides background
information relating to debugging as well as abstraction and refine-
ment. The proposed abstraction and refinement debugging framework
is presented in the Section III. The empirical results are provided in
Section IV while Section V concludes this work.

II. PRELIMINARIES

This section presents terminology used in the paper. It provides a
brief background on design debugging using Boolean satisfiability
(SAT) as well as an introduction to abstraction and refinement
techniques in model checking. Although SAT-based debugging is
used to explain various theoretical concepts in this paper and is used
as the debugging engine in the experiments, the proposed framework
is not confined to any unique aspects of this debugging technique.

A. Background
Given a set of vectors V for which a circuit (or netlist) C

demonstrates an incorrect behavior, the objective of design debugging
is to find the gates that may be responsible for this incorrect
behavior [5]. In the context of this paper, the set of vectors V include
the initial state value, the sequence of primary input values and the
correct or expected primary output values for every clock cycle or
time frame. In other words, the specifications for the erroneous circuit
act as a “black box” without knowledge about its internal structure.
The set V can be derived from a simulation trace or from a formal

978-3-9810801-2-4/DATE07 © 2007 EDAA

verification engine. The terms vector, trace, and counter-example are
used interchangeably in this paper.

A circuit C is composed of a set of primary inputs x1, x2, ...,
primary outputs y1, y2, ..., primitive gates l1, l2, ..., and state elements
q1, q2, ... such as flip-flops or latches. An interconnect is referred to
by the name of its driving gate. For example, the wire connecting
the output of gate li to an input of gate lj is simply referred to as li.

B. Debugging with Constraint Satisfaction
The constraint satisfaction problem in SAT-based debugging is

generated by adding extra logic to the erroneous circuit C, converting
the new circuit into Conjunctive Normal Form (CNF), replicating and
constraining the CNF for every vector and time frame in V [7]. The
constraint or CNF problem is solved by a SAT solver which returns a
set of gate locations where a correction (function change) can produce
the expected outcome captured in V .

To model the corrections in C, a multiplexer mi is added for every
gate (and primary input) li. The output of this multiplexer, mi, is con-
nected to the fanouts of li while li is disconnected from its fanouts.
This construction has the following effect: when the select line si of
a multiplexer is inactive (si = 0), the original gate li is connected
to mi, otherwise, when si = 1 a new unconstrained primary input
wi is connected. Figure 1 illustrates the above transformation for a
combinational circuit.

x4

x3
x2 l1

l3

l2

2y

y1
x1

0
1

0
1w1

s1
m1

l3

l2
2s

m2 y1

2y

w2l1

0
1

m3
3s

w3

0
1

0
1

0
1

0
1

x4

x2

x3

4s

w4

m4

m5
5s

5
6s

w6
7s

w7
m7

m6
w

1x

(a) (b)
Fig. 1. Extra logic for SAT-based debugging

A potential correction on line li is indicated when the select line si

is assigned to 1 under which condition the correction value is stored
in wi. The SAT solver can assign any value {0,1} to the si and wi

variables such that the CNF satisfies the constraints applied by the
vectors V . To force the SAT solver to find a specific number N of
error locations, further logic is added to activate at most N select
lines. Thus for N = 1, a single si is set to 1 which corresponds
to candidate error location li. In the following, an erroneous gate
location is referred to as an error source and an error stemming from
N distinct locations is called an N -tuple error.

It is known that many equivalent errors may exist for a set of
vectors and for a fixed design error model [6]. Intuitively, this is
true because there may be more than one way to synthesize and
correct a design. In this paper, we say that the debugging procedure
is not complete unless all equivalent error sources are found. This
is performed iteratively by finding a solution to the CNF problem,
adding it subsequently to the CNF as a blocking clause and solving
the problem again until no more solutions are found.

C. Abstraction and Refinement
Abstraction and refinement techniques are used readily in model

checking to mitigate the exponential nature of the underlying state
space [11], [12], [13]. Roughly speaking, an abstract model is derived
by removing some state elements from the original or concrete design
using some abstraction function h̄. The reduced number of state
elements result in fewer states to consider when verifying properties.

An abstract model can be derived by the following simple steps:
1) Use the abstraction function h̄ to remove some state elements

from the concrete design.

2
x 3
x 4

l4

l3

l2

l6
1x l1

2
q

q

x

1

l5

2

1

y

y

Q

DQ

D

l2

l5

x

l4

l2

1

x 4

x 5

x

2
q

2
y

2

3l

1l

1
y

Q D

(a) (b)
Fig. 2. Abstracting q1 from a circuit

2) Remove all the combinational logic that are only in the
transitive fanin of the abstracted state elements.

3) For each removed state element, introduce a primary input and
connect it to the fanout of a removed state element.

For example, Figure 2 (a) and (b) illustrate a circuit before and after
abstracting the state element q1, respectively.

For safety properties, if model checking determines that a property
holds in the abstract model, then it must also hold in the concrete
design [11]. However, if a property does not hold in the abstract
model, then the corresponding counter-example may or may not hold
in the concrete design. If the counter-example is not valid on the
concrete design it is said to be spurious [11]. In this case, the abstract
model is refined by reverting some of the abstracted state elements
and continuing the model checking process.

III. DEBUGGING WITH ABSTRACTION AND REFINEMENT

This section proposes a new framework for debugging using
abstraction and refinement. The initial formulation is presented in
Section III-A. In Section III-B, the occurrence of unjustifiable solu-
tions is elaborated and the methodology is re-formulated to prevent
them. In Section III-C, this framework is extended for completeness.

A. Basic Construction
The abstraction and refinement methodology first creates an ab-

stract model. This model and its corresponding set of vectors V are
used to generate a new debugging problem instance. If debugging
is formulated as a constraint problem described in Section II-B, the
problem is solved by a SAT solver. Next, the solutions returned by
the SAT solver must be verified on the concrete design to determine
whether they are unjustifiable or spurious. Spurious solutions are used
to refine the abstract model and the process is repeated with the new
model. In the following, we describe this process in detail.

An abstract model C′ is constructed by removing (i.e. abstracting)
the state elements and replacing them with primary inputs. Which and
how many state elements are selected for removal is determined by
the abstraction function h̄. Once the state elements are abstracted, all
logic in their transitive fanin is also removed.

q
1001

1-01 1-10

1010 0010

0-10

qk
1100

1-00

4q3q2q
1

0110
0-100-00

0000
0q

Fig. 3. Reduced trace V ′ due to abstraction

Since the abstract model may have fewer state elements than the
concrete model, a set of more compact traces V ′ can be obtained
through state matching [9], [10]. State matching procedures can
remove redundant state transitions between repeated states or they
can employ formal techniques to determine the minimum trace length
achievable.

Algorithm 1 Basic Abstraction and Refinement Debugging
1: Solutions = ∅
2: C

′ = abstract(C)
3: while (1) do

4: V
′ = trace reduction(C ′, V)

5: New sols = debug(C ′,V ′)
6: if (New sols = ∅) then

7: return Solutions

8: end if

9: Solutions = Solutions ∪ New sols

10: for all Sol ∈ New sols do

11: if (unjustified solutions(Sol, C, V
′)) then

12: Solutions = Solutions \ Sol

13: else if (spurious solutions(Sol, C
′)) then

14: C
′ = refine(Sol,C′)

15: Solutions = Solutions \ Sol

16: end if

17: end for

18: end while

As an example consider Figure 3 where a state transition diagram
is used to illustrate an error trace from state q0 to qk. In the original
trace, no trace reductions are possible through state matching. How-
ever, after the second state element is removed (through abstraction)
the states q1 and q4 can no longer be differentiated. The state values
after abstraction are shown under each node in Figure 3. As a result,
a “short-cut” can be taken in the trace from state q0 to state q4

as illustrated by the dashed line. Similar to many trace reduction
techniques, the compacted traces V ′ must be tested to determine
whether the error(s) are still observable [10].

Next, the abstract model and the compacted traces V ′ are used
to formulate the debugging problem. Since the abstracted model
contains less logic and has potentially shorter traces than the concrete
design, the size of the CNF is expected to be smaller in terms of
clauses and variables and thus require less memory. As described in
Section II-B, the SAT solver returns a set of location tuples which
are potential error sources. These potential error sources represent
locations where a correction (i.e., some function change) can be
applied which results in a correct behavior of the abstracted model as
dictated by the reduced set of vectors V ′. The SAT solver also assigns
logic values to all abstracted variables which are now unconstrained
primary inputs in the abstract model.

Although viable for the abstract model, the solutions returned by
the SAT solver may not be viable for the concrete design. More
specifically, the logic value assignments made to the abstract variables
by the solver may not be justifiable in the concrete design where these
variables are constrained by their original fanin logic.

Definition 1 Debugging an abstract model results in an unjustifiable
solution if the logic value assignments cannot be justified for the
corresponding variables in the concrete design.

To verify whether the solutions are justifiable, a constraint problem
is formulated using the concrete design, C, the solutions returned by
the debugger, and the reduced traces V ′. This problem is provided
to a SAT solver where an unsatisfiable result determines that the
abstracted variable logic assignments are unjustifiable according to
Definition 1.

Definition 2 Debugging an abstract model results in a spurious so-
lution if any of the error tuples returned correspond to an abstracted
variable.

According to Definition 2, spurious solutions do not provide
enough information about the error sources since the abstracted
variables have their fanin logic removed from the original design.
In this case, the model is refined using these abstracted variables so
that the non-abstracted error sources can be found. The debugging
continues with this newly refined model until all equivalent error
sources are found.

3l

2l

4l

4x
3x
2x

1
y

y
2

5l

1x
1 l6

l

2
q

q
1

D

Q D

Q

0/0

DQ

1

DQ

1

0
0/0

1

1/0
1/0

1/0
1/0

5l

2l

3l

1l

1
y

y

q
2

1

4l

x

2x 4

x 5

x 2

1/1
1

0
0/0

0/0

1
1/0

1

DQ DQ

(a) (b)
Fig. 4. Effect of unconstrained variables

Algorithm 1 illustrates the basic abstraction and refinement proce-
dures described thus far. On lines 2 and 4, the initial abstract model
C′ and the reduced set of vectors V ′ are generated. Line 5 calls the
debugger to search for solution tuples while the unjustifiable solutions
are removed on line 12. For the remaining solutions, spurious ones
are filtered out and the abstract model is refined as shown on lines
14-15. This process is repeated until no new solutions are found.

As mentioned earlier, algorithm 1 is not restricted only to SAT-
based debugging. For instance, Binary Decision Diagram (BDD)
based debugging methods [6] can be employed by building a BDD
representation of the abstract circuit. Similarly, simulation-based tech-
niques [6], can perform simulation and path-tracing on the abstract
model as they search for solutions.

B. Guaranteeing Correctness
In the formulation of Section III-A, by leaving the abstract

variables unconstrained in the problem CNF, the SAT solver may
trivially assign them logic values so that the erroneous abstract model
produces the correct response. In fact, the SAT-based debugging
formulation of Section II-B may be satisfied without activating any
of the multiplexer select lines (i.e. ∀i, si = 0) or when N = 0. The
following example illustrates this situation.

Example 1 Figure 4 (a) shows a concrete design with an error on
gate l1 which forces the output to 0. The correct/erroneous value of
1/0, shown in bold, propagates from gate l1 through the flip-flop q1

and to the primary output y1. Notice that the primary input values
remain constant for both time frames. When the state element q1 is
abstracted and left unconstrained, the SAT solver can assign this new
input x5 to 1 which will produce the correct/erroneous outcome 1/1
as shown in Figure 4 (b).

The above example shows that the SAT solver can satisfy the
problem without activating any multiplexer select lines. As a result,
when N ≥ 1, some solutions returned by the SAT solver are
unjustifiable as stated by Theorem 1 below.

Theorem 1 There exist automated debugging problem instances with
unconstrained abstracted variables such that the solutions to the
problems are unjustifiable.

Proof: As shown by Example 1, leaving abstracted values
unconstrained can result in satisfying the constraint problem with
N = 0. Since the debugger finds locations that can correct the
abstract design with N ≥ 1, all N -tuple locations in the design
qualify by setting any si variable to 1 and assigning the value of the
li variables to the wi variables. In effect the solutions simulate the
behavior of the abstract circuit which is error-free under the current
variable assignment. Since there is an error in the erroneous circuit by
definition, the solutions for the abstract model must be unjustifiable
in the concrete design.

2l

5

5x

4l

2l

l

1/01/0
1

3l

1
2x

5

1 6

x

4x

x1
l

l

1/0

1/0

5l

3l

1

1
y

l

1/0

1

l4

1

2
y

1

Fig. 5. Abstract model for two time frames

The consequence of Theorem 1 is that the process of determining
whether solutions are unjustifiable, presented in Algorithm 1, may
not be practical since all N-tuple solutions must be verified to work
on the concrete design. Theorem 2 states that unjustifiable solutions
can be prevented altogether.
Theorem 2 Constraining abstracted variables to the values of the
corresponding concrete state elements from sequential simulation
using the initial state and input values in V ′ prevents unjustifiable
solutions from occurring.

Proof: The objective of this proof is to show that the abstract
model can be restricted sequentially to behave like the concrete model
and thus prevent unjustifiable solutions from occurring. There exist a
well defined sequence of state transitions from the initial state to the
state where the erroneous behavior is witnessed that can be observed
through the simulation of C with the input and initial state vectors
V ′. By applying the logic values of the concrete state elements onto
the corresponding abstracted variables, the latter will be constrained
to the values in V ′. As a result, both the concrete design and the
abstract model will contain the same constraints except that one is
enforced by logic circuitry while the other is enforced by logic values.
Since unjustifiable solutions do not occur in the concrete design by
definition, they will not occur in the abstract model either.

By Theorem 2, unjustifiable solutions are prevented by con-
straining the abstracted variables to the values of their concrete
counterparts. Thus correctness is guaranteed since all solutions for
the abstract model are also solutions for the concrete design. Next,
the proposed methodology is extended to guarantee that all equivalent
error sources are found.
C. Guaranteeing Completeness

SAT-based debuggers such as those described in Section II-B can
find all actual and equivalent errors for a given value of N . In the
methodology described in Section III-B, it is not the case that a single
gate-level error is found at N = 1. In other words, a set of m errors
in the concrete design may be mapped onto a set of n errors in the
abstract model, where n > m, as the following example illustrates.
Example 2 Consider the abstract circuit in Figure 2 (b) unfolded
over two time frames as illustrated in Figure 5. For clarity, the
abstracted logic l6 is shown in dashed lines. Notice that the error
from gate l1 does not directly propagate to output y1 but its effect
is captured in the abstract variable x5. For N = 1 the SAT solver
returns the single equivalent error location l2. Assuming that the
design is analyzed and it is concluded that l2 is not the error
source, the real source of error goes undetected. However, if N is
incremented to 2, then the pair l1 and x5 is found as a solution.
By refining the abstract variable x5 to q1 and solving the debugging
problem again with N = 1, the single error location l1 is found.

Theorem 3 states that the process outlined in Example 2 finds all
equivalent error locations and is thus complete.
Theorem 3 The debugging procedure that performs the following
steps is complete for some value of maxN .

1) Perform debugging for N -tuple errors using the abstract model
2) If an abstracted variable is returned as an error location, refine

the model and set N = 0

3) Increment N by 1
4) Go to (1) unless N > maxN

Algorithm 2 Complete Abstraction and Refinement Debugging

1: Solutions = ∅, N = 1
2: C

′ =abstract(C)
3: while (1) do

4: V
′ =trace reduction(C ′, V)

5: Const = extract constraint(C ′, V
′)

6: New sols = constrain and debug(C ′,V ′,N ,Const)
7: Solutions = Solutions ∪ New sol

8: for all Sol ∈ New sols do

9: if (spurious solutions(Sol, C
′)) then

10: C
′ =refine(Sol, C

′)
11: Solutions = Solutions \ Sol

12: N = 0
13: end if

14: end for

15: N = N + 1;
16: if (N > maxN) then

17: return Solutions

18: end if

19: end while

Proof: Since at some point N will equal the number of errors
mapped in the abstract design n, all the equivalent errors that map into
n-tuples or fewer error sources will be found. If any of these locations
correspond to abstract variables, then the abstract model is refined and
those variables are replaced with their corresponding concrete state
elements. The new abstract model is then provided to the debugger
which starts the search with N = 1. Since some previously abstracted
variables no longer exist in the new abstract model, previous solutions
at N = n will be found at N ≤ n. This process continues until no
new solutions are found which guarantees that all error sources are
found for maxN = n, an event that guarantees completeness.

Empirical results from Section IV show that for single errors,
maxN = 3 is large enough to find all equivalent error locations.
Furthermore, not much time is spent on debugging problems for
which there exists no solutions for a particular N . Algorithm 2
illustrates the overall abstraction and refinement based debugging
methodology that guarantees correctness and completeness. It is
similar to Algorithm 1 with the following differences. On lines 5 and
6 simulation values are extracted and used to constrain the abstract
variables. Spurious solutions are refined and N is reset on lines 10-
12 while N is incremented and checked to be less than maxN on
lines 15-17. IV. EXPERIMENTS

This section presents the experiments conducted to evaluate the
effectiveness of the proposed framework. The debugging problems
are generated using a sample of four ISCAS’89 circuits, four ITC’99
circuits and four industrial circuits from OpenCores.org [14]. The
erroneous circuits are created by changing the type of a single gate
at random. An average of 10 traces are obtained per problem through
pseudo-random simulation of the correct and buggy circuits until a
different outcome is observed. The automated debugger used is a
sequential SAT-based debugger similar to [7]. The experiments are
conducted on a 2.66GHz Intel Xeon processor with 2 GB of memory
with a timeout of 7200 seconds for each SAT problem.

Before starting the debugging process, a simple trace compaction
procedure is always performed. This procedure first builds a graph
of the visited states, it then connects edges between repeated states
and applies Dijkstra’s shortest path algorithm from the initial state to
the final state [15]. More effective trace compaction algorithms can
be applied for better results [9], [10]. After the trace compaction, all
traces are used as simulation stimulus to ensure that they still exhibit
a different result for the correct and buggy designs.

In summary, Figure 6 shows the effects of abstraction on the
logic size and trace lengths. Part (a) demonstrates that the logic size
reductions appear to be linear with respect to the number of abstracted
state elements. However, in part (b), experiments show that significant
trace length reductions are not observed until a certain threshold is

TABLE I
PROBLEM INFORMATION AND STATISTICS FOR STAND-ALONE SAT-BASED DEBUGGING APPROACH

circuits # gates # FF # clk # red. clk # cls (K) mem (MB) time/err (s) # err total (s)
b04 711 66 516 335 2422 1132 740.0 9 6660.0
b08 200 21 21 20 274 82 3.8 4 15.2
b12 1140 121 40 19 1492 449 165.9 5 829.5
b14 6028 245 54 54 memout > 2000 - - -
s1488 693 6 104 5 214 42 1.6 9 14.4
s5378 3222 179 3 3 554 105 13.1 3 39.3
s13207 9442 669 2 2 1415 227 70.1 9 630.9
s35932 21147 1728 75 8 3563 696 431.1 16 6897.6
div su 1528 126 9 6 607 109 12.4 64 793.6
rsdecoder 10629 521 2 2 2043 301 120.1 9 1080.9
spi 2027 90 20 18 2763 582 391.3 3 1173.9
ac97 15166 1452 30 30 memout > 2000 - - -

b04
b14

20

40

60

80

100

30 50 70 90
% state elements abstracted

%
 lo

gi
c

si
ze

 re
du

ct
io

n

b04
b14

20

40

60

80

30 50 70 90

100

%
 tr

ac
e

le
ng

th
 re

du
ct

io
n

% state elements abstracted

(2) (b)
Fig. 6. Logic and trace reduction vs. flip-flops abstracted

reached. This threshold appears to be over 50% for b04 and over 70%
for b14. Thus for large problems where memory is a major concern,
a more aggressive approach, where over 70% of state elements are
abstracted, may be desirable.

Table I presents a summary of the debugging problems as well
as some insightful performance statistics for debugging the concrete
circuits using the conventional SAT-based debugger. Later, these re-
sults are contrasted with those of the proposed debugging framework.
Columns 1, 2 and 3 present the circuit name, number of gates, and
number of flip-flops (state elements) in each circuit. Columns clk and
red. clk show the average length of the traces before and after the
trace compaction, respectively.

The next five columns summarize the results of the debugger for
each problem. In Columns # cls and mem, the number of clauses in
thousands generated for each problem and the debugger’s memory
usage is presented. The number of equivalent errors found by the
debugger for the given vectors as well as the average time required
to find them are presented in columns # err and time/err, respectively.
Finally, the total time required to find all the errors is presented in
column total.

To cope with the size of the larger problems the CNFs are
partitioned into bands and solved sequentially as described in [7]. For
b14 and ac97 where the average reduced traces are 54 time frames
and 30 time frames long, the problems still run out of memory. The
proposed framework that uses abstraction is most beneficial for such
memory intensive problems.

Table II presents the results of the proposed abstraction and
refinement SAT-based debugging framework. For each problem, a
random abstraction function is used such that between 40-50% of
the state elements are abstracted, a conservative amount according to
Figure 6. To allow easy comparison with Table I, the percentage of
reduced logic, reduced of flip-flops, additional compacted traces, and
overall reduced memory requirements are presented in columns 2-5,
respectively. Looking across one row for problem b08, by abstracting
47.6% of the flip-flops, the logic is reduced by 26% and the trace
length is reduced by an additional 65% which leads to an overall
memory reduction of 60% versus the stand-alone debugger.

The largest problems in Table I, b14 and ac97, which ran out of
memory previously are both solved under the proposed framework.
On the average, the proposed methodology results in up to 60%
memory reduction with average savings of 30% under a conservative
abstraction approach.

The majority of problems in Table II do not benefit from additional
trace compaction. This can be attributed to the fact that trace
reduction is most effective for long traces since the probability
of matching states is higher. In the experiments, the initial trace
compaction process is able to reduce the traces considerably. For
instance, the initial trace of circuit s1488 which is 104 clock cycles
is reduced to only 5 clock cycles after compaction, thus further
reductions are highly unlikely. For industrial traces of thousands of
clock cycles derived from functional testbenches and not randomly, it
is highly unlikely to reduce traces drastically by simple state matching
techniques [9]. Therefore, trace reduction via abstraction may be
more effective.

A summary of the run time results of the proposed framework
is presented in columns 6-12 of Table II. In columns time/err and
err the average time required to find an error and the number of
errors found are presented, respectively. It should be noted that when
the number of errors are greater than those in Table I, it means that
abstracted state variables are found as errors. In these experiments,
if all equivalent error tuples are found (including the actual inserted
error), then no refinement is performed. Note that in practice, not
all equivalence errors are necessary since only the actual error is of
interest to the designer. If the errors found by the proposed framework
do not include all equivalent error locations (i.e. # err is smaller in
Table II than Table I), then all spurious solutions must be refined.

In Table II, column maxN shows the maximum number of tuples
searched until all equivalent errors are found. The debugging time
for all searches prior to maxN is shown in the column prev. When
refinements are necessary, the column refine presents the solve time
for all subsequent refinement searches.

For many problems in Table II, the maximum error tuple found
(maxN) is often greater than 1 but always less than or equal to 3.
This signifies that a single error in the concrete design maps to 3 or
fewer locations in the abstract model. The time required to determine
that no solutions exist prior to maxN (prev) is always quite smaller
than the average time required to find an error (time/err). Take b12
for instance, it takes on average 4.2 seconds to determine that no
errors occur when N < 3 and 85 seconds to find each solution
at N = 3. Relating these times to Algorithm 2, it means that the
approach is quite effective since the majority of the time is spent
in constrain and debug occurs when N=maxN and not when
N < maxN.

The total debugging time for the proposed approach is found by
summing the product of time/err and # error with prev and refine. The
resulting total run time is shown in column total and its improvement
over Table I is shown in column X impr. When abstracting 40-50% of
the state elements, not many refinement steps are necessary as most

TABLE II
PERFORMANCE STATISTICS FOR ABSTRACTION AND REFINEMENT DEBUGGING FRAMEWORK

circuits red. logic(%) red. FF(%) red. trace(%) red. mem(%) time/err (s) # err maxN prev (s) refine (s) total (s) X impr.
b04 20.5 45.4 0 9.8 530.0 12 3 11.0 0 6371 1.04
b08 26.0 47.6 65.0 60.0 0.2 12 3 0.1 0 3.35 4.53
b12 26.4 41.3 15.7 24.9 85.0 20 3 4.2 0 1704.2 0.48
b14 15.3 40.8 0 > 46.0 3740.2 2 2 42.0 0 7522.4 -
s1488 20.4 50.0 0 11.9 1.1 9 1 0 0 9.9 1.45
s5378 9.7 44.6 0 37.1 11.8 1 1 0 3.4 15.2 2.58
s13207 29.6 44.8 0 31.7 40.3 9 1 0 0 362.7 1.73
s35932 31.9 46.2 0 34.9 251.3 16 2 7.3 0 4028.1 1.71
div su 34.0 39.6 0 9.5 5.9 32 3 2.2 396.8 587.8 1.35
rsdecoder 34.7 43.1 0 22.9 54.8 7 1 0 0 383.6 2.81
spi 37.6 44.4 22.2 46.0 101.2 1 1 0 303.6 404.9 2.89
ac97 41.2 48.2 0 > 37.0 365.6 2 1 0 0 731.2 -

TABLE III
SUMMARY OF B14 WHEN ABSTRACTING OVER 80% OF FLIP-FLOPS

step red. logic(%) red. FF(%) red. trace(%) mem(MB) time/err(s) err
Tbl II 15.4 40.8 0 1080 3740.0 2
abs 52.7 81.6 20.3 344 172.0 4
ref 1 50.2 80.8 20.3 378 225.1 3
ref 2 50.1 80.4 20.3 404 242.3 10

TABLE IV
SUMMARY OF AC97 WHEN ABSTRACTING OVER 96% OF FLIP-FLOPS

step red. logic(%) red. FF(%) red. trace(%) mem(MB) time/err(s) err
Tbl II 41.2 48.2 0 1260 1567.8 2
abs 89.7 96.4 33.3 555 365.6 2
ref 1 89.5 96.3 33.3 765 665.8 10
ref 2 89.4 96.2 33.3 773 664.0 6
ref 3 89.1 96.1 33.3 776 721.8 9

equivalent error locations are found in the abstract model. However,
even for the cases where refinement is necessary, substantial run
time improvement is observed. The only problem that demonstrates
a performance decrease is b12 where four times more solutions are
found in the abstract model versus the concrete design. Overall,
performance improvements of up to 4.5X are observed with an
average value of 2X across all problems. This increased efficiency
can be attributed to the smaller size of the constraint problems which
lead to easier CNFs for the SAT solver.

As observed in Figure 6 smaller problem sizes and shorter traces
can be achieved with more aggressive abstraction than those of
Table II. To demonstrate the effectiveness of the framework under
a more aggressive abstraction strategy, the two largest problems b14
and ac97 are shown in Tables III and Tables IV with 80% and 96%
of the state elements abstracted. For easy comparison, the first row
of each table re-presents the problem properties of Table II. The
following rows show the results after each abstraction and refinement
steps until the specific injected error is found (not all equivalent errors
as in Table I). For each table, column 1 describes whether the data
is derived from Table II (Tbl II), from the initial abstraction (abs),
or from a refinement step (ref). The remaining columns are labeled
similarly to Table II.

As expected, when more state variables are abstracted, greater
memory saving are attained and more refinement steps are necessary.
However, along with the memory savings, more abstracted variables
lead to much faster solve times per error. For instance, b14 requires
3740 second per error with 40% state abstraction while it requires
only 172 seconds per error with 82% state abstraction.

It is interesting to notice the relatively small number of iterations
necessary to find the injected error. More precisely, b14 and ac97
require only two and three refinement steps, respectively, before
finding the errors. This small number of steps indicates that the
appropriate variables are selected for refinement and that the debugger

is guided efficiently towards the errors after each step.
Overall, the proposed abstraction and refinement debugging frame-

work demonstrates its effectiveness for large problems where conven-
tional approaches may fail due to excessive memory and/or run-time
requirements.

V. CONCLUSION

In this work, a novel debugging framework is proposed based on
abstraction and refinement. The framework creates an abstract model
which undergoes debug and demonstrates substantially reduced mem-
ory requirements. By formulating the problem carefully, the overall
approach guarantees completeness and correctness. The experiments
demonstrate that problems too large for a conventional approach are
solved by the proposed framework. Furthermore, memory reductions
of over 60% and run time improvements of over 4.5X are observed.
Overall, the results encourage further work in the area of abstraction
and refinement as an efficient platform for design debugging.

REFERENCES

[1] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Verification:
Methodology and Techniques. Kluwer Academic Publisher, 1996.

[2] R. Drechsler, Formal Verification of Circuits. Kluwer Academic
Publishers, 2000.

[3] Y. Yang, S. Sinha, A. Veneris, and R. Brayton, “Automating Logic
Rectification by Approximate SPFDs,” in ASP Design Automation Conf.,
2007.

[4] D. Appenzeller and A. Kuehlmann, “Formal verification of a PowerPC
microprocessor,” in Int’l Conf. on Comp. Design, 1995, pp. 79–84.

[5] M. Abramovici, M. Breuer, and A. Friedman, Digital Systems Testing
and Testable Design. Computer Science Press, 1990.

[6] S. Huang and K. Cheng, Formal Equivalence Checking and Design
Debugging. Kluwer Academic Publisher, 1998.

[7] A. Smith, A. Veneris, M. F. Ali, and A. Viglas, “Fault diagnosis and logic
debugging using Boolean satisfiability,” IEEE Trans. on CAD, vol. 24,
no. 10, pp. 1606–1621, 2005.

[8] M. F. Ali, S. Safarpour, A. Veneris, M. Abadir, and R. Drechsler, “Post-
verification debugging of hierarchical designs,” in Int’l Conf. on CAD,
2005, pp. 871–876.

[9] Y. Chen and F. Chen, “Algorithms for compacting error traces,” in ASP
Design Automation Conf., 2003, pp. 99–103.

[10] K. Chang, V. Bertacco, and I. Markov, “Simulation-based bug trace
minimization with BMC-based refinement,” in Int’l Conf. on CAD, 2005,
pp. 1045–1051.

[11] E. Clarke, O. Grumberg, and D. Long, “Model checking and abstrac-
tion,” in Symposium on Principles of Programming Languages, 1992,
pp. 342–354.

[12] E. Clarke, A. Gupta, and O. Strichman, “SAT-based counterexample-
guided abstraction refinement,” IEEE Trans. on CAD, vol. 22, no. 7, pp.
1113–1123, 2004.

[13] P. Bjesse and J. Kukula, “Using counter example guided abstraction
refinement to find complex bugs,” in Design, Automation and Test in
Europe, 2004, pp. 156–161.

[14] OpenCores.org, “http://www.opencores.org,” 2006.
[15] T. Cormen, C. Leierson, and R. Rivest, Introduction to Algorithms. MIT

Press, McGraw-Hill Book Company, 1990.

