
A b s t r a c t i o n i n P rob lem

A m y U n r u h
Computer Science Dept.

Stanford University
701 Welch Rd., Bldg. C

Palo Al to, CA 94304

A b s t r a c t
Abstract ion has proven to be a powerful tool
for control l ing the combinatorics of a problem-
solving search. It is also of crit ical importance
for learning systems. In this article we present,
and evaluate experimentally, a general abstrac
t ion method — impasse-driven abstraction -
which is able to provide necessary assistance to
both problem solving and learning. It reduces
the amount of t ime required to solve problems,
and the t ime required to learn new rules. In
addi t ion, it results in the acquisition of rules
that are more general than would have other
wise been learned.

1 I n t r o d u c t i o n
Abstract ion has proven to be a powerful tool for control
l ing the combinatorics of a problem-solving search [Korf,
1987]. Problem solving using abstract versions of tasks
can provide cost-effective search heuristics and evalua
tions for the or ig inal , or " f u l l " , tasks which significantly
reduce their computat ional complexity, and thus make
large problems tractable [Gaschnig, 1979, Kibler, 1985,
Pearl, 1983, Val tor ta , 1981].

Abstract ion is also of cr i t ical importance for learning
systems. Creat ing abstract rules can reduce the cost of
matching the rules, thus improving their operationali ty
[Keller, 1988, Zweben, 1988]. Abstract rules can transfer
to a wider range of situations, thus potential ly increas
ing their usabi l i ty and ut i l i ty . Abstract rules may also
bo easier and/or cheaper to create, thus simpli fying the
learning process and/or making it more tractable.

In this article we are concerned wi th abstraction tech
niques that assist in both problem solving and learning.

*We would like to thank John Laird and Rich Keller for
providing valuable ideas and discussions about this research,
and Gregg Yost for his help in re-conceptualizing and rewrit
ing Rl-Soar. This research was sponsored by the Hughes
Aircraft Company Artificial Intelligence Center, and by the
Defense Advanced Research Projects Agency (DOD) under
contract number N00039-86C-0033. The views and conclu
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Hughes Aircraft Company,
the Defense Advanced Research Projects Agency, or the US
Government.

Solving and Learning*

Pau l S. Rosenb loom
Information Sciences Institute

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292

The four key requirements such a technique should sat
isfy are:

1. Apply in any domain.

2. Reduce problem solving time.
3. Reduce learning t ime (therefore help in intractable

domains).
4. Increase the transfer of learned rules.

The first requirement implies that the technique must
be a general weak method that is applicable to domains
without additional domain-specific knowledge about how
to perform the abstraction. Most problem solvers that
utilize abstractions do so only when the appropriate ab
stractions have been prespecified for them. The second
requirement implies that, on average, the t ime to solve
problems wi th abstraction should be less than the t ime
without. Impl ic i t in this requirement is also that this
should be true even if only one problem is being solved;
that is, abstraction should help immediately, on the first
problem seen in the domain. The th i rd requirement im
plies that abstraction should be integral to the rule cre
ation process. If the problem-solving t ime necessary to
learn a rule is to be reduced, an approach that simply
abstracts the output of the normal learning algor i thm
wi l l not be sufficient. The fourth requirement implies
that abstraction should result in the creation of general
ized rules. Even if the rule creation process is a just i f ied
method, such as explanation-based learning [Mitchel l et
a/., 1986], this can lead to a form of unjustified induction
(though a useful one).

In this article we describe and evaluate an abstrac
tion method which meets these four requirements. The
following sections provide a description of the basic
method, a discussion of how abstraction propagates
through a problem, experimental results from an imple
mentation of the method in two domains, and a set of
conclusions and future work.

2 T h e A b s t r a c t i o n M e t h o d
The abstraction method is based on the integration of
learning and problem solving found in the Soar system
[Laird et a/., 1987]. In Soar, problems are solved by
search in problem spaces. Decisions are made about how
to select problem spaces, states, and operators, plus how
to apply operators to states to yield new states (oper
ator implementation). Decisions are normally based on

Unruh and Rosenbloom 681

knowledge retrieved f rom memory by the f ir ing of pro-
ductions. However, if this knowledge is inadequate, an
impasse occurs, which the system then tries to resolve
by recursive search in subgoals. Th is leads to hierarchi
cal processing in which control decisions can be based on
mul t ip le levels of look-ahead searches, and complex op
erators can be implemented by mul t ip le levels of simpler
operators (an operator aggregation hierarchy). Learn
ing occurs by converting subgoal-based search into rules
that generate comparable results under similar condi
t ions. Th is chunking process is a form of explanat ion-
based learning in which the explanation is derived f rom
a trace of the search that led to the results of the subgoal
[Rosenbloom and La i rd , 1986].

Abstract ion occurs in this framework in the service of
control decisions. If an impasse occurs because of a lack
of knowledge about how to make a selection, the result
ing search is performed abstractly. Consider a simple
example f rom a toy robot domain. Suppose that among
the operators in the domain are ones that allow a robot
to push a box to a box (push-box-to-box(BOX1,130X2))
and go to a box (goto(BOX)). The preconditions of the
push-box-to-boxoperator are that the robot is next to the
first box and that the boxes are in the same room. The
precondit ion of the goto operator is that the robot is in
the same room as the box that it wants to reach. The
goal is to reach a state where the two boxes (b o x l and
b o x 2) are next to each other. In the in i t ia l state, the
robot and the two boxes are in the same room together,
but at different locations.

Given this in i t ia l state, a control decision must be
made that w i l l result in the selection of an operator.
W i t h part ial means-ends control knowledge (encoded as
rules), the system can determine that the push-box-to-
b o x (b o x l , b o x 2) operator is one of the possible alterna
tives, but it may not be able to el iminate all of the other
alternatives, leading to an impasse, and thus a subgoal.
In the subgoal, a search wi l l be performed by t ry ing out
each alternative unt i l one is found that leads to the goal.
When the push-box-to-box operator is t r ied, it w i l l fai l
to apply because one of its preconditions — that the
robot is next to the first box — is not met. However, if
this precondition is abstracted away, then the operator
can apply abstractly, as the robot itself couldn't ac
tual ly do this and the goal of the abstract search w i l l

be achieved. From this abstract search, the informat ion
that the push-box-to-box operator is the r ight one to se
lect is returned, and used to make the original control
decision. Simultaneously, a control rule is learned which
summarizes the lesson of the abstract search. Figure 1
i l lustrates this process.

Though the basic idea of abstracting w i th in control
searches is simple, its consequences are far-reaching. One
consequence is that the abstract search is likely to be
shorter than the ful l search would have been because
less now needs to be done. If the abstract searches are
shorter, yet s t i l l return adequate control knowledge, then
the t ime to solve the problem wi l l be reduced (Require
ment 2) — as in the toy robot example. Addi t ional con
sequences arise because learning occurs via the chunking
of subgoal-based search. If chunking is done over an ab
stract search, then the t ime required to learn about the
task is reduced because of the reduced t ime to generate
the explanation (Req. 3). In addi t ion, because abstract
searches lead to abstract explanations, the rules acquired
by chunking abstract searches wi l l themselves be ab
stract, and thus be able to transfer to more situations
(Req. 4). These generalized control rules effectively form
an abstract plan for the task. Though these rules may
not always be completely correct, l im i t ing abstraction
to control decisions ensures that unjustif ied abstractions
wi l l not lead to incorrect behavior — control knowledge
in the Soar framework affects only the efficiency wi th
which a goal is achieved, not the correctness.

The actual abstraction of the control search occurs
by impasse-driven abstraction. When an impasse occurs
dur ing the control search, it is resolved by making an
assumption, instead further problem solving in an
other level of subgoals. Impasse-driven abstraction be
longs to the general class of abstractions that involve
removing, or abstracting away, some aspects of the prob
lem in question. (In the taxonomy provided by [Doyle,
1986], our techniques fall under the category of approxi
mation.) For example, in the toy robot example above,
when the precondit ion of the push-box-to-box operator
failed dur ing the control search, leading to an impasse,
the system simply assumed that the precondition was
met, and continued the abstract search as best it could.
(Another way of looking at this is that the system d idn ' t
care if the precondit ion was met) . W i t hou t abstraction,

682 Machine Learning

the impasse would lead to a subgoal in which the sys
tem would search for a state to which the operator could
legally apply (by applying the goto operator).

Impasse-driven abstraction is a general technique that
can be applied to arbi t rary domains wi thout domain-
specific abstraction knowledge; that is, it is a general
weak method (Requirement 1). W i t h i t , the default ab
straction behavior for the problem solver is to abstract
away those parts of an operator which are not already
compiled into rules, and which therefore generate im
passes and require subgoals to achieve. This behavior
results in abstraction of operator preconditions and ab-
straction of operator implementations. The former leads
to a form of abstraction similar to that obtained in Ab-
strips [Sacerdoti, 1974], while the latter leads to behav
ior that is best described as successive refinement [Ste-
f ik, 1981]. As an example of the latter, consider what
happens when there is a complex operator for which a
complete set of rules does not exist a priori about how
to perform i t . When such an operator is selected, some
rules may fire, but an impasse wi l l st i l l occur because
of what is left undone. Wi thout abstraction the system
would enter a subgoal where it would complete the imple
mentation by a search w i th a set of sub-operators. W i t h
abstraction, the system assumes that what was done by
the rules was all that needed to be done. It then pro
ceeds from the abstract state produced by this abstract-
operator implementat ion.

Another way to understand what impasse-driven ab
straction is doing is to look at its effect on the explana
t ion structure created as a byproduct of abstract search
(and upon which the learning is based). Figure 2 shows a
simplified version of the explanation structure for the toy
robot example. Wi thou t abstraction, the rule learned
from this explanation is:

o p e r a t o r is push-box-to-box(b1 ,b2) A
in~same- room(b l ,b2) A
i n - s a m e - r o o m (b l , r o b o t) A
¬ n e x t - t o (b l , r o b o t)

=> g o a l success .
W i t h abstraction, informat ion that would normally be
needed for the generation of the result is essentially ig
nored, and some subtrees of the unabstracted explana
t ion tree — the circled substructure in the figure — no
longer need to be expanded for the goal to be "proved".
(Another way of looking at this is that some nodes in the

proof tree are effectively replaced wi th the value TRUE.
Alteration of a proof tree in this manner has been pro
posed by [Keller, 1988] as a method of forming approxi
mate concepts.) The abstracted rule becomes:

opera to r is push-box-to-box(bl ,b2) A
in-same-room(bl ,b2)

=> goa l success.
Alteration of the explanation structure in this way has
made the rule more general, and thus able to apply to a
larger number of situations.

The same abstraction techniques extend, wi th no ad
dit ional mechanism, to multi-level abstraction of both
preconditions and implementations. The levels of refine
ment grow naturally out of the dynamic hierarchy of sub-
goals that are created during problem solving. Consider
multi-level precondition abstraction, for example. In the
toy robot problem above, the abstract search that was
performed was at the most abstract level — the search
was cut off at the highest level of precondition subgoals.
Once this search is done, and the push-box-to-box oper
ator is selected, it is necessary to do another search to
determine what sequence of operators wi l l satisfy its pre
conditions. In this particular example, the goto operator
would be among the candidates. Here no impasse of the
goto operator application would occur, because its pre
conditions are already met. However, if an impasse did
occur during this new search, it would lead to abstrac
tion in the search. This new abstract search is one level
more detailed than was the original one. The same cy
cle continues unti l a complete plan is generated in which
nothing has been abstracted.

Note that there is nothing in the impasse-driven ab
straction techniques which prevents the problem solver
from making use of additional domain-specific knowledge
about what to abstract. The existence of such knowledge
can certainly improve performance. However, domain-
specific, abstraction knowledge is not often available. If
it is not, then the impasse-driven techniques, as a weak
method, are able to provide useful abstract problem-
solving behavior when it would not otherwise have been
possible.

3 Abstraction Propagation
Thus far, we have presented the effects of impasse-driven
abstraction on problem solving and learning. However,
this is only part of the picture. An important feature

Unruh and Rosenbloom 683

of impasse-driven abstraction is the way in which the
abstraction occurs dynamically dur ing problem solving.
Each t ime an impasse occurs dur ing a control search,
some aspect of the problem gets abstracted. However,
these bits of abstraction in i t ia l ly happen only locally —
jus t because part of one part icular operator appl icat ion
gets abstracted dur ing one search step does not neces
sarily mean that the rest of the problem space wi l l au
tomatical ly be abstracted in a compatible fashion. Once
some part of a problem has been abstracted away, the
effects must be propagated to later aspects of the prob
lem, including the goal test. Consider, for example, what
would happen if the goal in the toy robot domain was to
have two boxes adjacent and in the same room, but al l
of the " in - room" informat ion in the problem space was
abstracted away. If the " f u l l " , non-abstract goal test
was used dur ing abstract search, it would never succeed,
and the abstract search would never terminate (unless
all options became exhausted, or some moni tor ing pro
cess decided to k i l l i t) . It would be more desirable if
the goal test of the abstract search was to be compat ib ly
abstracted, so that it cared only about whether the two
boxes were adjacent.

The general approach that we have taken is to develop
a set of restrictions on the construction of problem spaces
which, if fol lowed, ensure appropriate propagation of the
abstraction. The two restrictions -— problem-space fac-
torization and assumption-based goal tests — do not l im i t
what can be expressed, only how it is expressed.

A problem space is factored if it is designed so that the
descriptions of problem space components (states, oper
ators, or goals) are separated into any independent sub
parts which compose them; for example, by creating one
product ion per sub-part. When problem-space compo
nents are factored, they may st i l l be part ia l ly applicable
to the task at hand, even if some of the problem-space
knowledge is missing or ignored. For example, if an op
erator is composed of a number of sub-actions, and if
each sub-action is described separately, some of the sub-
actions may be able to apply even though there is not
enough informat ion available to allow the operator to
apply in its entirety. In this way the operator applies
abstractly.

For an example of operator factor izat ion, consider
the fol lowing simplif ied "robot domain" operator, which
moves a robot through a door to a new room, and in the
process keeps track of how many robots are currently in
each room. The operator's preconditions are not shown
here. If i t is true that the operator "may apply" , its pre
conditions are either met or have been ignored through
abstraction. Unfactored, the operator is:

Thus, i f in format ion about the number of robots in
either room is not available, the rest of the operator
can st i l l apply. Addi t ional ly , if because of abstraction
the previous location of the robot was unknown, it can
st i l l be "moved" to its new room. Factorization enables
abstract problem-solving behavior to be propagated dy
namical ly; whatever can be done wi l l be done, while
what can't be done because of previously abstracted in
format ion is simply ignored. Then, when part of a pro
cess is ignored, this in turn may cause new problem-space
in format ion to become abstracted. (There is some indi
cation that factorization is not specifically an abstrac
t ion issue — if a problem space is factored, then more
generalized learning can occur regardless of whether or
not abstraction takes place). Note that a factorization
determines what may be abstracted in a problem space
— the set of possible abstractions. It is the impasses
that arise dur ing problem solving which determine what
actually is abstracted.

Assumption-based goal testing refers to the problem-
solver's abi l i ty to make assumptions about whether or
not goals have been achieved during abstract problem
solving. To do this, it is necessary to be able to de
tect that a goal has not been met, in addi t ion to be
ing able to detect that it has been met. Under normal
circumstances, the problem solver has enough informa
t ion about a state to determine one or the other; that
is, that the state either does or does not achieve the
goal. However, when the problem is abstracted, neither
test may succeed. Under these conditions, the problem
solver needs to make a default assumption as to whether
the goal is met or not. Such default assumptions can
be made about a goal as a whole, or if it is factored,
about ind iv idual conjuncts of the goal. To do this prop
erly, the problem solver needs to be supplied w i th ad
di t ional in format ion about which goals, and goal con
juncts , should be assumed true and which should be as
sumed false. Rare terminat ion conditions, for example,
should be assumed by default to be unmet. This addi
t ional assumption in format ion is not knowledge about
what to abstract, or any part icular abstraction. Rather,
it plays a part in determining the behavior of the system

684 Machine Learning

once abstraction has occurred.
The restrictions which support abstraction propaga

t ion are independent of what is abstracted, or what is
expected to be abstracted. In fact, they are independent
of whether problem information is missing because of
deliberate abstraction, or because of some other reason
(such as bad instrument readings, etc.). Therefore, the
problem spaces in which these restrictions have been fol
lowed could provide a more robust support for problem
solving in noisy domains, and make assumptions based
on the best data at hand, regardless of whether or not
abstraction is deliberately used.

4 Exper imental Results
E x p e r i m e n t s have been r u n w i t h impasse-dr iven abstrac
t i o n in t w o d i s t i n c t task d o m a i n s : a S t r i ps - l i ke r o b o t do
m a i n and a c o m p u t e r - c o n f i g u r a t i o n d o m a i n (R I - S o a r)
[Rosenb loom et a/., 1985]. T h e r o b o t d o m a i n is s im i l a r
to the one in the e x a m p l e presented ear l ier , b u t s l i g h t l y
m o r e c o m p l i c a t e d : there are t w o robo ts and t w o r o o m s ,
w i t h t w o doors between t h e m , as we l l as t w o boxes. T h e
R l - S o a r c o m p u t e r - c o n f i g u r a t i o n d o m a i n was based on a
r e - i m p l e m e n t a t i o n o f a p o r t i o n o f the classic R I exper t -
sys tem [M c D e r m o t t , 1982]. T h e t w o doma ins were cho
sen because they cover b o t h a classical s e a r c h / p l a n n i n g
d o m a i n (t he r o b o t d o m a i n) and a classical exper t sys-
t e m d o m a i n (c o m p u t e r con f i gu ra t i on) . Moreove r , the
doma ins also di f fer in t h a t the robo t d o m a i n stresses
abs t rac t ions based on opera to r p recond i t i ons , wh i l e the
R l - S o a r d o m a i n stresses abs t rac t ions based on opera to r
implementations.

T o achieve fu r t he r v a r i a t i o n , t w o d i f ferent p rob lems
were r u n i n the r o b o t d o m a i n , w i t h the same goa l , b u t
w i t h d i f ferent i n i t i a l s tates. I n b o t h p rob lems the con
j u n c t i v e goal was to have the t w o boxes pushed nex t to
each o ther , and to have the t w o robo ts "shake hands" (t o
do th i s the robo ts had to be nex t to each o the r) . T h e
key dif ference in the i n i t i a l states was t h a t in the sec-
ond p r o b l e m one o f the doors was locked , and there was
no key. (T h i s second p r o b l e m shou ld cause some a d d i
t i o n a l c o m p l e x i t y i f t he sys tem abst rac ts away whether
the doors are un locked .) For each p r o b l e m , the a m o u n t
o f search-con t ro l know ledge t h a t was d i r ec t l y ava i lab le
to the p r o b l e m solver was also va r i ed . In one vers ion ,
the p r o b l e m solver s ta r t ed w i t h means-ends know ledge
t h a t a l lowed i t t o d i r ec t l y recognize w h i c h opera to rs
he lped solve w h i c h subgoals . In the o ther vers ion, the
p r o b l e m solver cou ld detect when a subgoal had been
so lved , b u t knew n o t h i n g d i rec t l y a b o u t wh i ch opera to rs
he lped solve w h i c h subgoals . I n the R l - S o a r d o m a i n , t w o
c o m p u t e r - c o n f i g u r a t i o n p r o b l e m s were also r u n . Once
aga in , the goal was the same — to have a conf igured
c o m p u t e r — b u t t he i n i t i a l s tates were va r i ed .

T h e p r o b l e m spaces for these doma ins were designed
accord ing to the res t r i c t ions discussed in Sect ion 3 . T h e
key issues to be addressed by these expe r imen ts are the
degree to w h i c h i rnpasse-dr iven abs t rac t i on meets the
fou r a b s t r a c t i o n requ i remen ts presented in the i n t r o d u c
t i o n .

T h e f i r s t r equ i r emen t was t h a t t he m e t h o d shou ld be
app l i cab le in any d o m a i n . T h e evidence to date i s t h a t

the abs t rac t ion m e t h o d has been app l ied to these t w o
qu i te d i f ferent doma ins . In b o t h doma ins i t was possi
ble to app l y the impasse-dr iven abs t rac t ion techniques.
In the r o b o t d o m a i n i t was no t necessary to add any
abst ract ion-speci f ic knowledge. W i t h R l - S o a r , i t t u r n e d
ou t t h a t a l t hough the m e t h o d was app l i cab le , i t was
necessary to add a sma l l a m o u n t o f a d d i t i o n a l k n o w l
edge abou t the abs t rac t i on , to p revent r a n d o m behav
ior . R l - S o a r is designed so t h a t comp lex opera tors are
i m p l e m e n t e d by m u l t i p l e levels o f s imp le r opera to rs , to
f o rm an opera tor aggregat ion h ierarchy. I f abs t rac t i on
occurred at the level o f the top opera to r , then there was
no t enough i n f o r m a t i o n r e m a i n i n g in the p r o b l e m space
(a l l con f igu ra t i on work occurred in lower subgoals) to
make an i n fo rmed con t ro l decis ion. T h a t is, the de
cisions became r a n d o m . There fore , we i ns t ruc ted the
p rob lem-so lver not to abst ract a t the top level i n R l -
Soar. De fau l t abs t rac t ion behav ior a t o ther levels of the
opera to r h ie rarchy was not affected. I t w o u l d be prefer
able for the prob lem-so lver to be able to de te rm ine m o r e
i n te l l i gen t l y (t h r o u g h e x p e r i m e n t a t i o n , and the cu r ren t
a m o u n t o f chunked vs. unchunked knowledge in the sys
t e m) , a useful level a t w h i c h to beg in abs t r ac t i on . We
are cu r ren t l y w o r k i n g on an abs t rac t i on m e t h o d wh i ch
bu i lds on the impasse-dr iven abs t rac t ion techniques, and
a l lows the p rob lem solver to make such a d e t e r m i n a t i o n .

T h e second requ i rement on the abs t rac t i on m e t h o d
was t h a t abs t rac t ion shou ld reduce the p r o b l e m so l v ing
t i m e requ i red . Tab le I shows the n u m b e r of decisions
t h a t the p r o b l e m solver requ i red to solve each o f t he
p rob lems , and the ra t i o o f the pe r fo rmance w i t h abstrac
t i o n to t h a t w i t h o u t 1 . Because several o f the p rob lems
were comp le te l y i n t r ac tab le , an a r b i t r a r y cu to f f was set
at 3000 decisions.

T h e overa l l t rend revealed by these results is t h a t ab
s t rac t ion does reduce the p r o b l e m so lv ing t i m e , when
measured in t e rms o f n u m b e r o f decisions. Moreover , the
harder the p r o b l e m , in te rms o f the a m o u n t o f search re
qu i red w i t h o u t abs t rac t i on , the more abs t rac t i on helps.
Even in the second r o b o t p r o b l e m , where the p r o b l e m
solver does indeed abs t rac t away the test o f whe the r i t
can get t h r o u g h the locked door , abs t rac t i on helps. I t

2 I n the Rl-Soar runs, a few chunks learned were altered
to avoid problems generated by the way the current version
of Soar copies informat ion to new states. Th is dif f iculty is
unrelated to the abstraction issues, and wil l be fixed in the
next version of Soar.

Unruh and Rosenbloom 685

turns out that this abstraction does not make the prob
lem solver noticeably less efficient when doors are locked,
since when it does not use abstraction it is st i l l forced,
dur ing its search, to go to the door and t ry to open it
before it realizes this is not possible. Wha t abstraction
was not able to do was to make all of the intractable
tasks tractable.

Hidden in the Rl-Soar numbers is another interest
ing phenomenon. In problem 4, abstraction reduced
the amount of t ime required to generate a configuration,
but the configuration was not as good as the one gener
ated without, abstraction. The goal test for Rl-Soar is
that there be a complete and correct configuration. Not
tested is the cost of the configuration. Instead, Rl-Soar
uses control knowledge to guide it through the space of
part ia l configurations so that the first complete configu
rat ion it reaches is l ikely to be a cheap one. This use of
control knowledge to determine opt imal i ty is a soft v io-
lat ion of the constraint that control knowledge not de
termine correctness, and thus abstraction can (and does)
have a negative impact on i t . A recoding of Rl-Soar to
incorporate opt imal i ty testing into the goal test could
avoid this, or it could simply be lived w i th as an ef
fo r t /qua l i t y trade-off.

To return to requirement 2, the normal assumption
in Soar is that the t ime per decision is fa i r ly constant,
so the decision numbers should be directly convertible
into times. However, it turns out that decisions for deep
searches are considerable more expensive than ones for
shallow searches because of the amount of addit ional
informat ion in the system's working memory. Table 2
shows the actual problem solving times for the two R l -
Soar problems, w i th and w i thout abstraction. These
numbers show that when actual run times are compared,
the advantage of abstraction is even greater.

The th i rd requirement was that abstraction should re
duce the t ime required to learn. To evaluate this, we
need to look at how long it takes to acquire control
chunks, w i th and w i thout abstraction. Table 3 presents
the relevant data. It shows the number of decisions that
occurred before the control chunk for the first operator
t ie was learned, for one robot problem and one Rl-Soar
problem. In both cases, abstraction greatly reduced the
amount of effort required before the control rule could
be learned.

The four th requirement was that abstraction should
increase the transfer of learned rules. Rather than eval
uate transfer directly, what we shall do is i l lustrate this
effect by comparing a corresponding pair of abstract and
non-abstract chunks f rom the robot domain (Figure 3).
The two have identical tests up to a point ; however, the
non-abstract chunk cares whether the robot is next to the
box to be pushed, and whether the robots, rooms, and

doors are arranged so that the robots wi l l later be able
to get together to shake hands. These extra conditions
l im i t the domain of appl icabi l i ty of the non abstract rule
w i th respect to the abstract rule.

Together these experimental results provide support,
though not yet conclusive support, for the abi l i ty of
impasse-driven abstraction to meet the four key require
ments on an abstraction method.

5 Conclusions and Future Work
In earlier work we showed how an abstraction, once cho
sen, could be made to dynamical ly propagate through
a problem space [Unruh et a/., 1987]. In this article we
have bu i l t on that work, by turn ing it in to a general
weak method that does not require manual specification
of how the problem spaces and goal tests are to be ab
stracted; the key ideas being impasse-driven abstraction
and restrictions on problem space construction. We have
also shown how this technique can yield mult i - level ab
straction and successive refinement.

Another impor tan t way that the earlier results have
been extended is by the performance of a set of experi
ments in two task domains. These experiments provided
evidence for the satisfaction of four key requirements on
an abstraction mechanism: that it should be applicable
in any domain, that it should reduce problem solving
t ime, that i t should reduce learning t ime, and that i t
should increase the transfer of learned rules. However,
in the Rl-Soar domain, the problem solver was provided
w i th addi t ional abstraction knowledge beyond the de
faul t which prevented it f rom abstracting at the highest

686 Machine Learning

level of the domain's operator hierarchy. This knowl
edge was necessary to make the abstraction useful; it
prevented random control decisions stemming from too
l i t t le in format ion.

Despite progress w i th the general weak method pre
sented here, a number of issues remain to be addressed.
The most impor tant issue is how the weak method can
be strengthened by using addit ional knowledge about
domains and their abstractions. Impasse-driven abstrac
t ion does appear to be a plausible technique to use
in many situations. Due to the experiential nature of
chunking, those parts of the problem space that are fa
mil iar w i l l be encoded as compiled knowledge, and thus
won' t generate the impasses which ini t iate abstractions.
If the heuristic holds that " famil iar" is " impor tan t " , the
default abstraction behavior may be quite useful.

But because the current method is weak, there must,
be many circumstances in which it wi l l not cause the
most appropriate behavior to occur. We plan to try to
use the combinat ion of the weak method and experiential
learning (chunking) to bootstrap the system to a richer
theory of abstractions by learning about the ut i l i ty of
the abstractions that the system tries. One promising
avenue of current research is the technique referred to
in Section 4, by which the system tries to determine
through experimentation a helpful level of abstraction
for a given problem context. There are many other ways
to learn about an abstraction's u t i l i t y as well. One possi
b i l i ty is empirical observation over a sequence of related
tasks. Al ternat ively, the problem solver might notice
that an abstraction has caused a problem in a particu
lar context, and "explain" to itself why this is the case,
using its domain knowledge (failure-driven refinement
of the abstraction " theory".) A final option would be
for the problem solver to analyze its domain, if it has
t ime to do so, and at tempt to come up with a part ial ly
pre-processed abstraction theory, as in [Benjamin, 1989,
E l lman, 1988, Knoblock, 1989, Tenenberg, 1988].

A second i tem of future work is the extension of the
experiments, both in breadth and depth. We wil l be
looking at abstraction in a number of domains, and try
ing to empirical ly evaluate how domain characteristics
impact the u t i l i t y of abstraction.

A final i tem wi l l be to evaluate the extent to which the
restrictions on problem space construction presented in
Section 3 can improve the robustness of problem solving
in noisy domains.

References

[Benjamin, 1989] D. P. Benjamin. Learning problem-
solving abstractions via enablement. In AAA I Spring
Symposium Scries: Planning and Search, 1989.

[Doyle, 1986] R. Doyle. Constructing and refining causal
explanations f rom an inconsistent domain theory. In
Proceedings of AAAI-86, pages 538 544, 1986.

[El lman, 1988] T. E l lman. Approximate theory forma
t ion: An explanation-based approach. In Proceedings
of the Seventh National Conference on A rtifical Intel
ligence, 1988.

[Gaschnig, 1979] J. Gaschnig. A problem simihlar i ty ap
proach to devising heuristics. In Proceedings of IICAh
79, pages 301-307, 1979.

[Keller, 1988] R. Keller. Learning approximate concept
descriptions. Technical Report KSL-88-57, Stanford
University, Knowledge Systems Lab, 1988.

[Kibler, 1985] D. Kibler. Generation of heuristics by
transforming the problem representation. Technical
Report TR-85-20, ICS, 1985.

[Knoblock, 1989] Craig A. Knoblock. Learning hierar
chies of abstraction spaces. In Proceedings of the Sixth
International Workshop on Machine Learning. Mor
gan Kaufmann, 1989.

[Korf, 1987] R. E. Korf. Planning as search: A quant i ta
tive approach. Artificial Intelligence, 33:65-88, 1987.

[Laird et al, 1987] J. E. Lai rd, A. Newell, , and P. S.
Rosenbloom. Soar: An architecture for general intel
ligence. Artificial Intelligence, 33:1 -64, 1987.

[McDermott , 1982] J. McDermott . R l : A rule-based
configurer of computer systems. Artificial Intelligence,
19:39-88, 1982.

[Mitchell ct al, 1986] T. Mitchel l , R. Keller, and
S. Kedar-Cabelli. Explanation-based generalization:
A unifying view Machine Learning, 1, 1986.

[Pearl, 1983] J. Pearl. On the discovery and generation
of certain heuristics. Al Magazine, pages 23-33, 1983.

[Rosenbloom and Laird, 1986] P. S. Rosenbloom and
J. E. Laird. Mapping explanation-based generalization
onto Soar. In Proceedings of AAAI-86, Philadelphia,
1986.

[Rosenbloom et al, 1985] P. S. Rosenbloom, J. E. La i rd ,
.1. McDermott , A. Newell, and E. Orciuch. Rl-Soar:
An experiment in knowledge-intensive programming
in a problem-solving architecture. IEEE Transac
tions on Pattern Analysis and Machine Intelligence,
7(5):561-569, 1985.

[Sacerdoti, 1974] E. D. Sacerdoti. Planning in a hier
archy of abstraction spaces. Artificial Intelligence,
5:115-135,1974.

[Stefik, 1981] M. Stefik. Planning and meta-planning
(molgen: Part 2). Artificial Intelligence, 16:141-169,
1981.

[Tenenberg, 1988] J. Tenenberg. Abstraction in Plan
ning. PhD thesis, University of Rochester, 1988.

[Unruh ct al., 1987] A. Unruh, P. S. Rosenbloom, and
J. E. Laird. Dynamic abstraction problem solving in
Soar. In Proceedings of the AOG/AAAIC Joint Con
ference, Dayton, O i l , 1987.

[Valtorta, 1981] M. Valtorta. A result on the compu
tational complexity of heuristic estimates for the A*
algori thm. Technical report, University of Nor th Car
olina, 1981.

[Zweben, 1988] M. Zweben. Improving operational i ty
wi th approximate heuristics. In AAAI Spring Sym
posium Series: Explanation-Based Learning, 1988.

Unruh and Rosenbloom 687

