
 Open access Journal Article DOI:10.1145/16856.16862

Abstraction in recovery management — Source link

J. Eliot B. Moss, Nancy Griffeth, Marc H. Graham

Institutions: University of Massachusetts Amherst, Georgia Institute of Technology

Published on: 15 Jun 1986 - International Conference on Management of Data

Topics: Transaction processing, Distributed transaction, Online transaction processing, Optimistic concurrency control
and Transaction processing system

Related papers:

 Concurrency Control and Recovery in Database Systems

 A model for concurrency in nested transactions systems

 Nested Transactions: An Approach to Reliable Distributed Computing

 Principles and realization strategies of multilevel transaction management

 The notions of consistency and predicate locks in a database system

Share this paper:

View more about this paper here: https://typeset.io/papers/abstraction-in-recovery-management-
4fnqj1d3qk

https://typeset.io/
https://www.doi.org/10.1145/16856.16862
https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk
https://typeset.io/authors/j-eliot-b-moss-2k4n492ozn
https://typeset.io/authors/nancy-griffeth-2zstmqq0aw
https://typeset.io/authors/marc-h-graham-2xt01xv7pq
https://typeset.io/institutions/university-of-massachusetts-amherst-2oo68hmp
https://typeset.io/institutions/georgia-institute-of-technology-wm29vwt0
https://typeset.io/conferences/international-conference-on-management-of-data-1x852s0d
https://typeset.io/topics/transaction-processing-2tax8qkm
https://typeset.io/topics/distributed-transaction-jstt331z
https://typeset.io/topics/online-transaction-processing-25dvtei7
https://typeset.io/topics/optimistic-concurrency-control-3acnzhvj
https://typeset.io/topics/transaction-processing-system-266jzxwz
https://typeset.io/papers/concurrency-control-and-recovery-in-database-systems-2ewdx14r3w
https://typeset.io/papers/a-model-for-concurrency-in-nested-transactions-systems-1rd7ni0rmn
https://typeset.io/papers/nested-transactions-an-approach-to-reliable-distributed-1sjaolxfbg
https://typeset.io/papers/principles-and-realization-strategies-of-multilevel-4hxm05hs3z
https://typeset.io/papers/the-notions-of-consistency-and-predicate-locks-in-a-database-3shhl1qbwq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk
https://twitter.com/intent/tweet?text=Abstraction%20in%20recovery%20management&url=https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk
https://typeset.io/papers/abstraction-in-recovery-management-4fnqj1d3qk

Abstraction in Recovery Management

J Elrot B Moss

Department of Computer and Informatron Scrence
Umversrty of Massachusetts

Amherst, Massachusetts 01003

Nancy D Graffeth
Marc H Graham

School of Informatron and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract. There are many examples of actions on
abstract data types which can be correctly implemented
with nonserralizable and nonrecoverable schedules of
reads and writes We examme a model of multiple lay-
ers of abstraction that explains this phenomenon and
suggests an approach to burldmg layered systems with
transaction oriented synchromzatron and roll back Our
model may make rt easier to provide the high data m-

tegrrty of reliable database transaction processmg m a
broader class of mformatron systems We concentrate
on the recovery aspects here, a technical report [Moss

et al 851 has a more complete drscussron of concurrency
control

1 Introduction

The database literature contams many examples of ac-
tions on abstract data types which can be correctly un-
plemented with nonserrahzable schedules of reads and
writes We mention one such example here

Example 1. Consider transactrons 2’1 and T2, each
of which adds a new tuple to a relation in a relational

database Assume the tuples added have different keys
A tuple add 1s processed by first allocatmg and filling
m a slot m the relation’s tuple file, and then adding the
key and slot number to a separate mdex Assume that
TJ’s slot updatmg (S,) and mdex msertron (I$) steps can
each be implemented by a single page read followed by a
single page wrote (written RT,, WT, for the tuple file,
and RI,, WI, for the index)

Here 1s an interleaved execution of Tl and T2

Permlssmn to copy wthout fee all or part of this material 1s granted

prowded that the copies are not made or dlstrlbuted for direct

commercial advantage, the ACM copyrlght notlce and the title of the

pubhcatlon and its date appear, and notwe IS gwen that copymg 1s by

permlwon of the Assoclatlon for Computing Machmery To copy

otherwse, or to repubhsh, reqwes a fee and/or speclfx permlsslon

0 1986 ACM 0-89791-191-1/86/0500/0072 $00 75

RTl, WTl, RT2, WT2, RIP, WI2, RI1, WI1

This 1s a serial executron of Si, Sz, lz,1r Now 11 and

12 clearly commute, smce they are msertrons of drfferent
keys to the mdex Furthermore, 11 cannot possibly con-
llrct with SQ, smce they deal with entirely different data
structures So the intermediate level sequence of steps rs
equivalent to the sequence Si, 11, Sz, 12, which 1s a serial

executron of Tl, T2 We have demonstrated serralrzabrl-
ity of the orrgmal executron m layers, appealmg to the
meaning (semantics) of the intermediate level steps (S,
and 13) But note that the sequence we gave may be
a non-senahzable executron of Tl, T2 m terms of reads
and writes, smce the order of accesses to the tuple file
and the mdex are opposrte If the same pages are used
by both transactrons, rt will be a non-senabzable execu-
tion It 1s mstructrve also to observe that the sequence

RTl,RTz, WTl, WT2, 1s not serralrzable even by lay-
ers It does not correctly implement the intermediate
operations Si and Sz

A similar observatron, which has received less atten-
tion, applies to recovery from action failure The fol-
lowing example 1s an rllustratron of this interesting phe-
nomenon

Example 2. Consider Tl and T2 as defined above,

but suppose that the index msertron steps 11 and 12
each requrre reading and possrbly wrrtmg several pages
(as they might, for example, m a B-tree) We now write

RI, (~4, WI, (P) f or reading and wrrtmg mdex page p
Consider the followmg interleaved executron of Tl and

572

RTl, WTl,RTz, W7’2,

RI2b), Rl2(q), W~4dj WZdr), W~2bh
RI1 b-4, WI1 (P)

The pau of mdex page writes WI,(q), WI2 (r) may be
mterpreted as a page split Thus 1s serrahzable by lay-
ers, smce at the level of the slot and mdex operatrons
we are executing the sequence &, 5’2,1z, Ii, as m Exam-
ple 1 But we encounter the followmg drfficulty If we
subsequently decide to abort T2 The mdex msertron 11

72

has seen and used page p, whrch was wntten by Tz m
its mdex insertion step If we attempt to reproduce the
page structure which preceded the page operations of
TQ, we wrll lose the index msertlon for Tl Worse yet,

if Tl continues trying to operate on the mdex based on

what It has seen of p, the structural integrity of the m-
dex could be violated Thus It appears that we cannot
reverse the page operatrons of Tz without first aborting
Tl But there 1s still a way to reverse the mdex msertion

of Ta, JU8t by deleting the key mserted by Ta Consider
the following sequence

The illustrated schedule 18 clearly correct, as long as the

key8 inserted by Tl and T2 are distinct, because we do
not care whether the original page structure has been

restored We only need to restore the absence of the key

m the mdex
In this work, we present generalizations of serializabil-

ity and atomrclty which account for many such exam-
ples The generalization arrses from the observation that

a transactron (or atomic action) 18 frequently a trans-
formation on abstract states whrch 1s implemented by a
sequence of actions on concrete states The usual defim-
tion of serializability require8 equality of concrete states
We call this concrete seraalazabrlrty, to distinguish it from
equality of abstract states, which we call abstract seraol-
azabalaty Since many drfferent concrete states m an im-

plementation may represent the same abstract state, ab-
stract serializability 18 a less restrictive correctness con-
dition than concrete serializability An immediate ap-

plication of abstract serializabrbty rs to explain the cor-
rectness of apparently nonserializable schedules such as

those described in [Schwarz and Spector 841 and [Well11
841 If results returned by actlons are considered part of
the state, correctness conditions for read only transac-
tions, such as those described m [Garcia and Wrederhold
821, can also be expressed Abstract serializability also
explains the phantom record problem and generalizes the
idea of predicate lock8 as preaented m (Rswaren et al 761

It seems worthwhile to note here there abstract senal-
izability, when applied to concurrency control via lock-
ing, deals only with the level of ahtractaon of locks, not

with lock granularaty Lockmg pages or tuples rs physical

locking and occurs at a lower level of abstraction than

predicate locking on relations Locking tuples, slots, byte

ranges, pages, or files 18 all physical lockmg, but at drf-
ferent levels of granularity Srmilarly, locking mdrvrd-
Ud keys, ranges of keys, columns, group8 of columns,
or predicates (suitably restricted to avoid NP-complete
computations) 1s all abstract locking, but at different
granularities In short, granularity and level of abstrac-
tion are orthogonal concepts It may still be useful and

desirable to offer several degree8 of granularity of locking

at any given level of abstraction
Level of abstraction has perhaps more to do with du-

ration of locking than granularity Our theory unrfies
“short” locks, acquired to protect a data structure’s in-
tegrity for a single manipulatron and then released, with
transaction locks, held until transaction completion, and
m addition shows how intermediate duration locks can
be used correctly

The generahzatron of atomrcrty 18 analogous to that of

serializability The usual defimtion of an atomic action
requves that It execute to completion or appear not to
have happened at all We mtroduce the idea of abstract
atomacaty, which rs analogous to abstract serrahzabrhty
A schedule of actions 18 abstractly atomic if it results in
the same abstract state as some schedule m which only
the non-aborted actions have run Concrete atomacaty

correspond8 to the more usual definrtion The final state

is the same (concretely) as one that would have resulted
from running only the concrete actions which were called
by non-aborted abstract actions

A widely accepted folk theorem states that rt is nec-

essary to use knowledge of the semantics of actions
to achieve more concurrency than serialization allows
While we could address the semantics of specific atomrc
actions case by case, this is a tedrous process Instead,

we describe a systematrc method of using easily obtained

knowledge about their semantics A basic theorem of
this paper, m a result related to the results of [Beerr
et al 831, says that we can serialize at the indrvvldual
levels of abstraction Between levels, we need only to

insure that the serialization order is preaerved Thus, in
the above example, once the dot mampulation has been
completed, locks on the page and its internal allocation
structure may be released It 18 not necessary to wait

until Tl 18 complete (We do need to retain a (more ab-

stract) lock on the alot and opposed to the page) This
has the effect of shortening transactions and thereby in-
creasing concurrency and throughput The analogous

result holds for atomnuty we show that, for schedules

which are serializable by layers, atomicity need only be
enforced wrthm each level of abstraction

Another contribution 1s a much more reahstrc (but

slightly more complicated) model than the usual straight
line model of transactions (as presented, for example, m

[Papadlmrtnou 791) The model presented here accounts

for the flow of control m programs, such as af-then-

else and whale statements, without introducing nearly
as much complexrty as 1s present m [Beeri et al 831
The most mterestmg result mvolvmg the model 18 that,
while it affects the classes of abstractly serializable and
concretely serializable schedules in potentially profound
ways, the class of conflrct preserving serializable (CPSR)
schedule8 (those that can be serialized by mterchangmg
adJacent non-confhctmg actions) 1s essentially the Same

73

This is because interchanges of non-conflicting actions
preserves the flow of control within an action as well as
the resulting state It does not appear that any authors
have previously addressed thus Issue

The definitions of abstract and concrete seriahzabil-

lty and atomrcrty do not suggest practical rmplementa-
trans. It IS widely accepted, however, that the largest
class of serializable schedules which 1s recogmzable in
any practical sense is the class of CPSR schedules A
similar situation may hold for atomicity We define here
a class of conhct-based atomic schedules which can be
executed efficiently This 1s the class of restorublc sched-
ules, m which no action 1s aborted before any action
which depends on it This class may be vrewed as dual
to the class of recoverable schedules defined in [Hadzila-
cos 831. A schedule is recoverable If no action commits

before any action which rt depends on In a restorable
schedule, aborts can be efficiently implemented by exe-
cuting state-based undo actions for each child action of
an aborted action

Finally, this work addresses a problem mentioned but
not specrfically addressed m [Beeri et al 831, which 1s the
use of knowledge about abstract data types and state
equivalence m seriahzation The “fronts” of (Beeri et al
831, which must be computed from an actual history of
the system, can be determined in thus context from mfor-
matron easily provided by a programmer namely, from
the call structure of the system and a “may conflict pred-
mate” which describes which actions may conflict (1 e ,
not commute) with each other The use of knowledge
about abstractions and state eqmvalence permit descrrp
tron of legal interleavings in a simpler and more drrect
manner than in [Beeri et al. 831 or in the multilevel model
of [Lynch 831, h w ere the set of legal interleavings must

be given drrectly
Similarly, the semantic informatron used for recovery

can be provided easily by the programmer The undos
must themselves be actions (which will have to be coded
if they are not “natural” actions for the abstraction) In
each action, there must be a caac statement which spec-
ifies the undo action for each set of states For example,

if the forward action is “Add key z to index I” then for
the set of index states in which the index does not al-
ready contain z, the undo 10 ‘Delete key z from index
I” For the set of index states m which the mdex already
contams z, the undo action is the identity action

In the presentation below, we have omitted proofs and

some inessential detarls Full proofs and drscussron are
provrded for the recovery results See [Moss et al 85) for
complete coverage of both concurrency and recovery

2 The Model

We first descnbe the model for a single level of abstrac-
tion The essential difference between this model and the
straight lme model used m [Papadrmrtrrou 791 is that the
flow of control 1s reflected in the model The essential
difference between this model and those m [Beeri et al
831 and [Lynch 831 rs that the construction of the set
of legal mterleavmgs 1s simple and visible in the model
Some notation will be needed to describe the levels of
abstraction

Notation: Let Sr be an abstract state space and
let Se be a concrete state space Let Al be a set of
abstract actions and Ao be a set of concrete actions
Let p SO + Si be a partial function from concrete
to abstract states If p(t) = s for concrete state t
and abstract state s, then t represents a

The intuition is that concrete states are used to rep
resent abstract states and concrete actions are used to
implement abstract actions Not every concrete state
represents a valid abstract state Furthermore, the same
abstract state may be represented by several different
concrete states However, we do expect that every ab-
stract state 1s represented by some concrete state, that

1% P(S0) = Sl

Actions map states to states according to a mean-
rng funcion The meanmg function for a concrete

(abstract) action is a function m * A0 + $70 x so

(
m Al --t 91 x sl

> It is interpreted as follows If

(s,t) E m(a) for an action a then when executed on
state s, the action a can terminate in state t Actions
are nondeterministic, that la, there may be more than
one terminal state t for a given initial state 8.

Abstract actions are implemented by programs over
concrete actrons These programs generate sequences of

concrete actions We do not assume that any particular
method of generating the sequences is used. In proofs,
we assume only that each program rs associated with a
set of sequences of concrete actions, which is the set of
sequences the program would generate when run alone,
and that new programs can be constructed from existing
programs by concatenation. Thus operation amounts to
running the first program to completion and then imtiat-
ing the second program Note that when two programs
run concurrently, one or both of them may generate a
sequence of actrons that would not be generated if they

ran alone Such sequences may be unacceptable
A single concrete action 1s a program, as 1s the con-

catenation of two programs If Q and /3 are programs,
then the meaning of then- ~oncotenotron a,8 UJ to exe-
cute first a and then /3

74

m(a$) = { (8, t) I3u * (a, u) E m(a) A

ht) E 4BD.

Since concatenation of actions is clearly associatrve, we
write al;. . ; a, for concatenation of n programs, rgnor-
ing the order of concatenation

Notation: For any subset C of So x So let

P(C) = {(a, t) I 3b, 9) 62 C * ~(4 = 3 A

P(Y) = t)

We say that an abstract action rs Implemented by a
program of concrete actions if p maps the meaning of the
concrete program to the meaning of the abstract actron.
We will also require that if the program is mltiated in a
valid state then it must terminate in a vahd state.

Dehition: A concrete program a rmplcments an

abstract action a if and only if

1. m(u) = p(m(a)) and

2 for every pair (a,b) E m(a), If p(a) is defined
then p(b) is also defined.

We now state a technical lemma about nnplementatlons
whrch will be useful in a subsequent section

Lemma 1: Let a and 6 be abstract actions imple-
mented by concrete programs a and /3, respectively

Then m(a, 6) = ~(m(a, P))

Corollary 1 to Lemma 1: Let u and b be abstract
actrons implemented by concrete programs a and j3
Then the abstract action c having m(c) = m(a, b)
can be implemented by the concrete program 7 =

a;@

Corollary 2 to Lemma 1: Let al, ,a, be
abstract actions implemented by concrete actions

al, .,a, Then the abstract action c defined

by al;. ; u,, can be implemented by the program

al; ;a,

In keepmg with the use of an mltiabsmg actlon m
[Papadimitriou 791, we assume that the database has
been initialised to concrete state I in the domain of p

(i e., p(l) is the mitral abstract state). It will often be

useful to restrict the meaning function to those pans

whose initial state ia I.

Notation: The restricted meanmg function for

program CY is defined

w(a) = WJ) I (Id E 44)

The restricted meanmg function for abstract actlon
a rs defined

mp(d4 = h4I), P(J)) I b(I), P(J)) E 44)

If a implements a then rnp(l)(a) = p(mr(a)) Associ-
ated with each program I a set of possible computations

of the program, one for each sequence of concrete actions

which can be executed to completion.

Definition: A computataon of an abstract action
u having program a 1s a sequence C = cl, ,cn of
concrete actions, m the set of such sequences defined
by the program, such that ml(C) is nonempty

A computation of a set ai, . , a,, of concurrent abstract
actions is an interleaving of the concrete actions in com-
putations for a 1, , a, which can be run to completion

Definition: A concurrent computakon of the set

ah , a,, of abstract actions 1s an interleaving C
of computations of the individual actions such that
ml(C) is nonempty

3 Serializable Computations

3.1 Serialisability of Abstract Actions

The set of concurrent computations for a collection of ac-
tions will m general be hard to characterise. It may be
even harder to characterise the ones which are correct
We discuss a relatively simple subset of these cornput*
tions, those that behave, in some sense, like serial (non-
interleaved) computations To completely describe an
interleaved computation of some abstract actions, we m-
traduce a structure called a log It mcludes the abstract
actions whose execution is interleaved, the actual inter-
leaved sequence of concrete actions, and an indication of
which concrete actions were generated by (programs of)
which abstract actions

Definition: A log L is a set AL of abstract actions,
a sequence CL of concrete actions, and a mapping

AL C -+ A such that XL(C) is the abstract action
a E AL on whose behalf c is run L 1 complete if

CL is a concurrent computation of AL, and partral

If CL rs a prefix of a concurrent computation of AL.
Defimtlons are stated and results proved for complete
logs unless otherwise indicated Usually, the extension
to partial logs is trivial

Notation: m(cr; . ; c,) may be written as m(CL)

when CL = (cl, , c,) (a sequence where c, pre-

cedes ct for a < J)

Notation: We will write c <L d when c precedes
d in the sequence CL

We consider serial computations to be correct

Definition: Consider a log L contammg abstract

actions AL = {al, a,} implemented by pro-

grams {al, ,a,) The log L 1s serral If CL u

a computation of the program (IY,(~), , anbr) for
some permutation 9r of (1, tnl

75

We also consider a computation to be correct if it results
in an abstract state that would result from some serial
log The following defimtron allows the use of knowledge
about abstractions in determmmg the correctness of an
interleaving Depending on the abstraction, thus can be
a very drfferent class of mterleavmgs from those that
would ordinarily be viewed as serlahzable

De5nition: A log L IS abstractly setralszable If and

only If there IS a permutation z of (1, , n} such

that P(w(CL)) c mp(r)b,(l); 9 %+)I

Thus says that the abstract effect of running the concrete
actrons in CL must be consistent with (though perhaps
not include all possrbihtres of) executing the abstract
actions m some order

The next defimtlon defines a class of serrahzable logs
more closely related to the usual class of serializable
schedules

Definition: A log L IS concretely seraalrzable If and

only If there 1s a permutation A of (1, ,n} such

that m(G) c m(a,(l), 9 %d

Definition: For both abstract and concrete seri-
alizability, the sequence z(l), , z(n) 1s called the

senaltaataon order of L

A partial log L 1s serral (concretely senahzable, ab-
stractly serializable) If there rs a complete serial (con-
cretely senahzable, abstractly senahzable) log M such
that CL rs a prefix of CM, that is, If L can be extended
(completed) to have the property m questron

Concrete seriahzabrhty, which requires that concrete
states be the same, IS more restrrctrve than abstract se-
nalizability, which requires only that abstract states be
the same

Theorem 1: If the log L rs concretely serrahzable

then it is abstractly serralizable

Thus theorem can easily be extended to partial logs For
a partial log L which is concretely serializable, there is
a concretely serializable complete log M such that CL
is a prefix of CM By the above theorem, M 1s also

abstractly serializable, hence L is abstractly serializable
Concrete senahzabrhty rs not rdentrcal to the class SR

of serializable executrons as defined m [Papadlmrtnou 791
because of the nondetermmrsm and because it IS neces-
sary to check that the reordered collectron of actions 1s a
computatron. If abstract actions are Implemented only

by strarght lme programs, as m (Papadlmitnou 791, then

any serial schedule of the concrete actrons m a concur-
rent computation is still a computatron But thus rs not
the case m our model, because we allow transactions to
make decrsrons as they run (represented by nondeter-
mmrstrc choice of concrete program for abstract action),
and interleaving can affect decnuon making We cannot

interchange actrons of a computation arbrtrarrly and ex-
pect the result to remain a computation A subsequent
lemma gives one mechamsm by whrch we can verrfy that
a transformation of a computation is still a computation
The key is to insure that a transaction’s decisions are not
affected by the concurrent execution of steps from other
transactrons

It should be noted that thus model reduces to the

model m (Papadrmltrrou 791 If the concrete actions are
determmrstrc reads and writes with the obvrous mean-
ings assigned to them and If all programs are constructed
by concatenation only It was shown m (Papadrmltnou
79) for these concrete actions that concrete serralizabrl-
rty rs NP-complete Without more mformation about
the semantics of the actions, however, and about the
abstractron function, we cannot say anything about the
complexity class of either concrete or abstract serializ-
abrhty

For this reason, neither abstract nor concrete senahz-
abrhty has significance as a definition of a class of sched-
ules which we can recognize However, abstract serializ-
ability is a valuable correctness condition for explaming
the correctness of schedules such as the one in the open-
mg example In a subsequent section, we generahze this
use of abstract seriahzability to explain the correctness
of a large class of schedules, many of whrch are not con-
cretely serrahzable But first, we translate another stan-
dard serializabrhty result to the new model of program
executron

Definition: Actions a and b commute If m(a, b) =

m(b,a) Otherwise, a and b conflrct

Definition: Let C and D be sequences of concrete
actrons We say that C # D if they are identical ex-
cept for mterchangmg the order of two nonconflict-

mg concrete actions, that 1, actions c and d such
that m(c; d) = m(d, c) The transitive, retlexive clo-

sure of u 1s denoted by #*

The followmg lemma provides the basic mechamsm for
establishing that a permuted computation is still a
computatron We use It to verify that a serial (non-
interleaved) sequence of concrete actions could actually
have been requested by the given atomic actions, that is,
it 1s a semantrcally as well as syntactically valid sequence

of actions

Lemma 2: If L is a log and if D a* CL and D 1s

constructed from CL by mterchangmg nonconilict-

mg operations c and d such that X(c) # X(d), then
there 1s a log M with AM = AL, CM = D and
XM = XL Furthermore, rn(C~) = I

In this lemma, D w* CL insures that the (concrete)

meanings of D and CL are the same, and the condrtron

on X insures that D IS a concurrent computatron of the

abstract actions AL, and rs different from CL only in
how the concrete actions are interleaved

Definition: Logs L and M are equrvalent If AL =
AM, AL = XM, and CL w* CM If L 1s equrvalent
to M for a serral log M, then L US conjhct preserurng
serralrzable (CPSR)

Theorem 2: If a log L IS con&t preservmg serr-
ahzable, then rt rs concretely serrahzable

Applymg 1, we further conclude that a CPSR log is ab-
stractly serralizable There 1s nothmg partrcularly sur-
prising or new about 2 It IS a restatement of familiar
serrahzabrhty results in our formalrsm

3.2 Layered Serializability

In this section, the definitions of serrahzablhty are ex-
tended to multrple levels of abstractron and the basrc
result on serralizability is stated We make two srmph-
fymg assumptions the levels of abstraction are totally

ordered, and each action calls subactrons belongmg to
the next lower level of abstractron only How to weaken
these assumptrons is drscussed m [Moss et al 851 We
assume a system wrth n levels of abstractron Frost, let

us mtroduce notatron for the states and actrons of an n

level system

Notation: The concrete state at level a 1s S-1

The abstract state 18 S, The abstractron mapping
at level a is p, * S.-l --) S, The set of concrete

actions 18 C, The set of abstract actrons 1s A, =

{a* 11 , a,,&,} The number of abstract actions at

level a is k, Concrete actions at level a are abstract
actions at level a - 1 Thus C, = A,-1

We need also to extend the notron of a log, which repre-
sents a particular concurrent executron of some abstract

actions m the system, to n level systems Given a col-

lectron A,, of top level actrons, concurrent execution of
the actions is described as follows

Definition: A complete system log L w a collec-

tion of complete logs (Ll, , L,J such that L, IS a

complete log for level a and the concrete actrons m

the log L, are the same as the abstract actrons m
the log L,-1

In a complete system log we have m essence a forest
of actions, with one tree rooted m each top level actron
However, the set of actions at each level (except the top)

IS ordered (by the log at that level) Complete system
logs have related partral logs

Definition: A partaal system log L rs a collectron
of partaaf logs (L1 , , L,) such that L, IS a partial
log for level a, and the concrete actrons m the log L,
are a subset of the abstract actrons m the log L.-I

Those concrete actions of L, that are not abstract ac-
trons m L,,l can be vrewed as simply never (or not yet)
undertaken at the next lower level

Definition: The top level log for a system log L
consists of the top level abstract actrons (A,), the
bottom level concrete actions (Cl), and the map
pmg from concrete to abstract actions constructed

by composing the A,, namely Xr o o An

A top level log grves a characterrzatron of a system m
terms of the overall effect of %ser orrented” (that IS, top
level) actrons on the “real state” of the system (contamed
in So), ignoring internal structure Our original exam-
ples showed that we have reason to beheve that a large

class of top level logs are correct even though they are
not concretely serrabzable In fact, our approach gives

a characterrzatron of an mterestmg, reahzable subclass
of executrons whose top level logs are readrly demon-
strated to be abstractly aerrahzable, though perhaps not
concretely serrahzable

Deflnition: The system log L IS abetractfy (con-

cretely) seraalazable by layers If each L, is abstractly
(concretely) serrahzable and there is a serrahzation
order on A,-1 whrch rs the same as the total order

on C, We will denote thus aerrahzatron order z,

The followmg theorem JUStlfiSS the practrce of sserial-

rzmg by layers”, that rs, provrdmg serralizatron for the
mdrvrdual levels of abstraction and forgettmg subactron
confircts (e g , releasing locks) as soon as the actron at
the next higher level rs complete

Theorem S: If a system log L IS abstractly seri-
alizable by layers then Its top level log IS abstractly
serrahzable

If L 18 pa&al, then we can extend the sequence of con-
crete actions to a computatron havmg the above proper-
tres Thus the result also holds for partial logs

Smce concrete serrahzabrhty of a layer unplies abstract
serrahzabrlity of that layers, we readily derive a very use-
ful result*

Corollary 1 to Theorem 8: If a system log L
1s concretely seriahzable by layers, then Its top level
log is abstractly serializable

In practrce, transaction concurrency control mechanisms
enforce concrete seriahzabrlrty of a layer (the abstract
actions are called transactaons and the concrete actions

are called slmply actaons or transuctaon steps) Hence,
the tradrtronal methods can be applied layer by layer to
guarantee abstractly serrahzable top level logs

Definition: If a system log 1s senahrable by layers
and If each log L, 1s conflrct preservmg serrabzable,
then the set of logs IS called conflact preseruang scra-
alazable by layers (LCPSR)

Smce all practical serlahsatron methods recogmse only
subsets of the set of CPSR logs, the followmg result rs
the interestmg one, from the practical pomt of vrew

Corollary 2 to Theorem S: If a system log L IS
conflrct preserving senahaable by layers then its top
level log 1s abstractly serlahrable

Two phase lockmg 1s one way of achrevmg CPSR ached-
ules, which 1s one of the thmgs shown m [Eswaren et
al 761 The corollary Just stated demonstrates the cor-
rectness of performing two phase locking at each level
of abstraction Ignoring the possrblhty of deadlock, the
locking protocol that results II as follows

1

* 2

3

Prior to performmg a (non-top level) action a, ,,
acqmre a lock appropriate to the operation and its

arguments, which will prevent confllctmg level t op
eratlons from being mrtlated until the lock 1s re-
leased

As a level t operation’s program 1s executed, a num-
ber of level I - 1 locks will be acqurred, as a result

of the preceding rule

When a level t operation completes (“commits”),
release all level 2 - 1 locks associated with its ex-
ecution, but keep the level a lock to protect level

2+1

In this protocol the duration of a level E lock is from

the time rt rs acquired until the completion of the level
z + 1 operation that caused rt to be acquved If we have

only two levels (transaction and action), this reduces to
the usual locking for transactions, with appropriately
abstract locks (e g , as m [Schwarz and Spector 84) or

[Weihl841)

4 Recovery from Action Failure

One method of enforcing seriahrabrhty rs to abort ac-
tions which violate serialisability constraints, and every
practical serialmatron techmque sometimes uses aborts
for this purpose Thus senalisation implies the possl-
bllity of action failure and it I necessary to guarantee
correct recovery from failure to guarantee seriaheabllity
The converse M not true, and so we mrtlally consrder

farlure atomicity without assuming serrahaabrhty
The rest of this paper dlscussea recovery from the fall-

ure of a single action by elimmatmg Its partial effects
Two methods of ehmmatmg partial effects are m com-
mon use One IS to roll the actlon back by undoang each
change rt has made The other IS to restore the system
from a checkpoint taken prior to mrtialraatlon of the ac-
tion, redorng each subsequent concrete actron other than
those called by the aborted actlon We develop the con-
ditions which permit use of redos m section 4 1 Thus

more general, though probably not practically appealing
approach, 1s speclallaed m section 4 2, where we exam-
me the use of undos as used for transaction rollback m
database systems In both sections, we assume a single
level of abstraction Note that we are not addressing

crash recovery, only transaction abort
In section 4 3, the results are extended to a multrlevel

system and a result analogous to the result for layered
serlahsablhty 1s stated Unlike a single layer system,

with multiple layers serraheabrllty rs requrred to establish
that the requved sequence of concrete actions m a level
of abstraction was implemented by the next lower level

4.1 Aborting Actions

An abstract action is not inherently atomic, since rt is
implemented by a sequence of concrete actions If it fails

after execution of some of the concrete actions, then the
effects of those actions which have been completed must
be ehmmated The process of ehmmatmg any partial
effects of a failed abstract action will be referred to below

as an abort of the action
We first formallee the meanmg of aborting an actron,

without bras towards any particular notion of how to
implement aborts We then introduce the notion of uam-
pfc aborts those aborts that are equivalent to omlttmg
the concrete effects of the aborted actron Next we de-
velop some termmology and notation regarding trans-
action depcndcncrcs, eapecmlly as they relate to aborts

An mrportant product of that drscusslon 1s a property
called restorubrlrty, which I related to recouerabaltty as
discussed m [Hadzilacos 83) Finally, we prove a result
relating restorabrhty, simple aborts, and correctness

To abort an action properly, rt rs necessary to change
the current state to a state equivalent to one m which
the action was not executed at all Let LOGS be the set
of all logs (Remember that a log L consists of a set AL
of abstract actions, a sequence CL of concrete actions,
and a mappmg)rr, C -+ A) We define an operator

which chooses a concrete abort action when it 1s given a
log and abstract action to be aborted

ABORT LOGS x A + (So + So)

The abort must restore some state consistent with exe-
cuting the abstract actions m AL - {a}

Definition: An action generated by the ABORT

operator 1s called an abort An action rs said to be
aborted If its last action 1s an abort (of itself)

A log which contams aborts should appear to be a log
which contams all of the non-aborted actions and none
of the aborted actions We call such a log abstractly

atomic Abstract atomlcrty 1s the fundamental correct-
ness condltron for aborts

Definition: A complete log L M abstractly atomrc

78

if there is a complete log M havmg the followmg
properties

1 AM=AL- {o 1 o IS aborted m L} and

2 PMCL)) = Phi

Note that we have not required that the logs L and M
be serlalisable Any computation rs all rrght according
to the above definltlon Later, to achieve ‘layered atom-
rcrty”, we will assume seriahrabrhty

Note also that abstract atomnuty requires only that
the resulting concrete stated be eqmvalent (under p) to

one m which the aborted actions were not run That IEI,
the second part of the defimtion does not imply anything
about the relationship of rnr (CL) to rnI (CM) In some

cases it may be useful to impose the stronger condition
of concrete atomtcrty

Definition: A complete log L contammg aborted

actions IS concretely atomrc If it there is a complete
log M havmg the followmg properties

1 AM = Al; - {u (a is aborted in L},

2 w(G) c mr(G4).

We extend the definition of atomlcity to partial logs in
the obvious way

Definition: A partial log L is abstractly (con-
cretely) atomic if there is a complete abstractly (con-
cretely) atomic log M such that AM = AL, CL is a

prefix of CM, and XL 1s AM restricted to CL

It follows immediately from the definitions that concrete
atomlcity imphes abstract atomuuty

With defimtions of atomlclty accomplished, let us now
consider how to achieve It One way to implement ab-
stract atomiclty rs to restore state I and rerun the ac-
tions in AM The state I then serves as a checkpoint
This redo approach rs what we assume for now, rollback
rs discussed later. Note that an arbitrary choice of M
in the above defimtlon may require re-running the ab-
stract actions, not Just the concrete actions In an online,

high volume transaction system, thla rs not a practical
method The programs for the abstract actions may not
even be available after they termmate In such a system,

we want aborts to be simpler For this reason we will
require that the log M have a very simple relationship to
the log L that CM be CL minus the children of aborted

actions In this case, to abort a, we remove the effects
of its concrete steps X,‘(u) by restoring a final state for

mf (CL - x;‘(a))

Notation: As long as It is clear what log IS m-
volved, we will write ABORT(u) for ABORT(L, u)

Definition: Let L be a log m which action

a has not been aborted ABORT(a) 1s a srmple
ubort of u for L If mr(CL, ABORT(u)) # 0 and
mr(CL, ABORT(u)) c mr(Ct - Ail(a))

Clearly, a simple abort of action u in log L exists if and
only if rnr (CL - Ail(o)) is a prefix of some computation
of AL The following definitrons lead to a charactensa-
tion of logs and actions for which simple aborts exist.
The idea rs that If we take transaction dependencies mto
account m aborting, then we can find a consistent set
of actions to abort “via omission”, and thus achieve a
simple abort We first estabhsh a notion of time relative
to a given action’s execution with two functions Pre and
Post Then we formally define transaction dependency
m terms of time ordermg and conflict between actions

Notation: Given a log L and action c E CL,

let Pre(c) be the partial log having concrete actions
Cp,,(,, = {b 1 b E CL A b <L c}, abstract actions
AL, and mappmg Aprefc) which 1s the restriction
of AL to the set C,,,,,, Let CP~+) = 0 I b E

CL A c <L b} (Note that m general we cannot de-
fine a log Post(c), because logs are defined in terms
of prefixes)

The followmg definition says that an abstract action b
depends on a (non-aborted) abstract action a if it has
a concrete subaction which follows and conflicts with a
concrete subaction of u If b depends on Q, and If we
restrict ourselves to simple aborts, then it may be neces-
sary to abort b when a is aborted For example, suppose

b reads a record inserted by a Merely not adding the
record when redomg does not suffice to reproduce the
effects of b alone, smce b saw and could act upon the
record originally provided

Definition: An action b depends on an action a

m a log L If there is some d E AL’(b) and some
c E Xi’(o) such that d follows c in the order of
CL, a rs not aborted in the log Pre(d), and d and c
conflict

Now that we have a handle on dependencies, we intro-
duce remouubthty, a property of actions, and restorabal-
aty, a property of logs

Definition: An action a of a log L IS removable
If no action depends on it A log L UJ restorable if

every aborted action is removable

Removabihty and restorability are intended to be de-
scriptive (a removable action can be removed by a simple
abort, re-running a restorable log without the aborted

actions restores the effect of the non-aborted actions)
Their suggestiveness will be justified below

Restorability may be viewed as a dual condition to
recouerubalaty, which requires that no action be commit-
ted before any action which it depends on Restora-
bility says that no action is aborted before any action
which depends on It If we do not msist on restorability,

aborts may be lmposslble On the other, restorability
implies that simple aborts always work, which we will

79

show shortly.
The idea behind restorability is that we abort only ac-

trons that are at the “end” of the log (in terms of the
dependency ordering, which is a partial order) at the
trme of the abort Thus notion is made more precise

wrth the mtroduction of fin&y, whrch IS related to re-
movability Then we show that removabrhty of an action
imphes that a sample abort of the actron exrsts. Fmally,
we show the Important result* if every aborted action is

removable (1 e , the log rs restorable) and the aborts are
simple (accomplished by omrssion durmg redo), then the
log is concretely atomic (i e , the execution is correct)

Definition: Let C be a sequence of actions wrth
order < and let F c C F IS jinal an C If for every
f E F and c E C - F, c < f or c and f commute

Note that the set Xi1 (u) 1s final in CL for any removable
action a It follows from this that rt is the termmal

subsequence of some sequence D IV* CL

Lemma 3: lf action a of log L is removable, then

Cr. - xt ’ (a) is a prefix of a computation of AL
Proof: We wrll show by Induction on the number of
actions in any final set F of operations of CL, that
CL - F 1s a prefix of a computatron The lemma
then follows from the fact that AL’(a) 1s final m CL

since a rs removable
Inductson Base (F contains only 1 action) Let
F = {c) Then CL = 7; c, 6 for some sequences 7

and 6, such that for every d E 6, m(c,d) = m(d;c)
Hence CL, #* 7,6, c and therefore CL - {c} = 7,6 is
a prefix of a computation

Induckon Hypothesrs For every final set F m CL,

if IFI < n, then CL - F rs a prefix of a computation

of AL
Inductson Step Suppose IFI = R Let F’ = F - {c},
where c is the first (1 e , mimmal) element of F wrth

respect to <L Then F’ is final in CL, so, by the
mduction hypothesis, CL - F’ IS a prefix of a com-
putation Since c commutes wrth all later actions in
CL - F’, we can use reasonmg similar to the case
n = 1 to show that CL - F’ M* CL - F, c and there-

fore CL - F is a prefix of a computatron

Since CL - AL,‘(a) rs a prefix of a computation of
AL - {a}, we can restore checkpomt I and rerun all

actrons in CL - X,‘(a) m the order grven by CL ln
fact, the checkpomt can be taken at any point before

the mrtralrzatron of a Let c be the first actron of a

Let d E {c} u ~~~~~~~ Then CL - X,‘(a) 1s the con-

catenatron of Cpre,d) and Cport(d) - X,‘(a) Hence
there 1s a state t such that (1,t) E mr(Cpte(d)) and

m(Cp,,t(~) - xi’(a)) # 0 Any such state t can be
used as a checkpomt state from whrch to roll forward

We now apply Lemma 3 inductively to show that If

no dependencies were formed on abstract actions before
they were aborted by a simple abort, then atomrcity is
guaranteed

Theorem 4: lf L 1s restorable and If every abort
m L is simple, then L is atomic
Proof: Let {al, , a,} be the set of aborted ac-

trons Construct the log A4 such that AM = AL -

{m, ,ad, CM = CL - ALl({Q, ,G)), and

x&f = XL restrrcted to CM Smce L 1s restorable, ev-
ery aborted action m L 1s removable Using Lemma
3 inductively, we see that CL - xtr({ar, . . , a,,}) is

a prefix of a computatron of AM This verifies that

M is a log
Now we must verrfy that mr(C~) = mr(CM) To

do this, we observe that there exist 71, , m+1 such
that

CL = 71, ABORT(al); 72; ABORT(a2); ,

m, ABORT(a,); m+1

The meaning of CL 1s given by

w(G) = {V,t) I 3.4 * (I,4 E m(A) A
(u,t) E mr(P2 4)

where

PI = 71, ABORT(m)

/32,n = 72, ABORT(w), , ABORT(a,); ~Y~+I

But by the hypotheses of the theorem, every abort

IS sample, so that

mr (71, ABORT(01, L)) c m(71 - xil(al))

and therefore

mr(CL) c w(CL - XL’h))

Proceeding inductrvely, we see that

mr(CL) C mr(CL - At’({al, 1 ad)
= mI(CM)+

Theorem 4 suggests a general procedure for aborting ac-
trons When an action a is to be aborted, abort it and
its dependent actions, namely the set of actions

Dep(a) = {b 1 b depends on a} U {a)

The abort 1s done by restoring any concrete state which
existed prior to the first concrete action in Xi ‘(Dep (a))
and then re-runnmg the actions in CL - At ‘(Dep(a))
from that pomt on

4.2 Rolling Back Actions

A potentially much faster implementation than check-

pomt/restore would simply roll back the concrete actrons
m the computatron of an aborted action u. For this pur-
pose, we define an UNDO operator on concrete actions
which chooses an inverse concrete action to perform the
roll back The plan rs to Implement the ABORT opera-
tor on abstract actions as a sequence of UNDO actions,

80

one for each concrete actron called by the abstract ac-
tion, applied in reverse order of executron of the concrete
actions

UNDO C x So --) (So + S,,)

Thrs UNDO operator chooses a state dependent mverse
action which will transform the current state to the
state m whrch the forward actron was mltrated Thus
we must define the UNDO so that m(c, UNDO(c, t)) =

{(t, t)} It f 11 o ows from this defimtron that If c is the
last concrete actron m CL and (I, t) E rn(C~ - {c})
then rn(C~, UNDO(c, t)) = ((1,t)) Furthermore, If

(I, t) @ rn(C~ - {c}) then ~(CL; UNDO(c, t)) = 0 In
other words, If the final actron c was mrtrated m state t,

then UNDO(c, t) restores the state to t and to nothing
else

Actually, to undo an action c, it 1s not necessary that
c be the last action of CL, only that c IS not followed by
any action which conflicts wrth UNDO(c, t) for the state
t m which c was mrtlated This IS stated m the followmg

lemma

Lemma 4: If the following condrtions all hold

1 CCCL

2 (1, t) E Ghe(c))

3 no action of Cpost(cl conflicts with UNDO(c, t)

4 UNWc, t) $ Goat(c)

then

mf(CL, UNDO(c, t)) =

iv, 4 I (4 4 E dCPd(c)))

Proof: By the definitions of Cp,p(cl and CPoet(~l,

CL = c,r+,, C,CPd(c) By the hypotheses of the
lemma, for every d E Cpost(c),

m(d, UNDO(c, t)) = m(UNDO(c, t), d)

and so

CL, UNDO(c, t) w*

CP,,,,);C; UND0(c,W~o,t(cj

It follows that

~(CL, UNDO(c,t))

= m(C~re(c);c, UNDO@, t),C~mt(c,)

= {(a, 4 I 3% u

(%4 E WPre(c)) A

(u,u) E m(c; UNDO(c, t)) A

(?A4 E dCPont(cJI

= {(v) I (4t) E 7wPre(c)) A

(4 4 E 4CPost(c))I

Therefore,

~(CL, UNDO(o))

= w4 I w E WPost(c)))

The sequence of concrete actrons called by an aborted
abstract action a m a complete log L should be a prefix

Cl, , ck of a computatron cl, , c, of a, followed by

UNDO(ck,tk), UNDO(cl, tl) We extend the defini-
tron of concurrent’:omputatrons to allow such sequences

Definition: A rolled back computataon of an ab-
stract action a is a sequence

Cl, , CJ, uNDO(c,, $1, , uNDO(cl, tl)

such that cl, , c, 1s a computatron of a and 0 5

I<n

Definition: A concurrent computatron of a set

A = {al, , a,} of abstract actrons is an mterleav-
mg of a set C of sequences Cl, , C, such that

1 C, 1s a computation or a rolled back computa-

tion of a,,

2 44 # 0,

3 If there is an action UNDO(c, t) for c E C then

U,t) E dCPre(c))

Definition: If an actron a has called an UNDO
then we say that a 1s aborted and 1s rolfang back If
rt has called an UNDO for every forward action rt

called, then we say that a 1s rolled back

The defimtlon of a log is unchanged except for the ex-
panded set of computatrons

Definition: The rollback of actron a depends on

actron b m a log L d there ls a child c of a and a

chrld d of b such that c <L d, UNDO(c, t) e Cpre(d)
and UNDO(d, w) $ Cp,,(u~oo(~,~ll; and d conflicts

w&h UNDO(c, t)

That is, b interferes with the rollback of a if b has a non-
undone chrld action d that comes between and conflicts
with a child c of a and the undo of c We now charac-

terize logs m which such mterference does not occur

Definition: A log L 18 revokable rf for each action

a E AL, the rollback of a does not depend on any

bEAL

Theorem 6: If a complete log L rs revokable then

it 18 atomic
Proof: What we will show 1s that If L is revokable

then mr(C~) c mr(C~) for the log M wrth

Au = AL - {a I a IS rolled back m L} and

CM = CL - {c I UNDO(c,t) E CL}
- { UNDO(c, t) 1 t E So}

(CM IS CL wrth the undone actrons and all the undos
themselves deleted) Smce for a complete log L the
rolled back actions are exactly the aborted ones,

AM = AL - {a (a is aborted m L},

and rt follows that L IS atomic
The proof IS by mduction on the number k of UN-

DOS m CL

81

Inductron Base (k = 1) Let c be the action with
UNDOO(c,t) E CL and let X,(c) = a Because L is
revokable, there IS no actron b such that the rollback
of a depends on b. In other words, for every con-
crete action d m CL, If c <L d <L UNDO(c, t) then
d commutes with UNDO(c, t) This implies that

CL -* C~re(c),c, UNDO(c,t),C~oat(c)

and therefore

W(CL)

= mr(Cpre(c),c, UNDW,~),CP,,~(,))

c W(CPre(c),CPmt(c)) = m&4)

Inductron Hypothesw If there are fewer than k UN-

DOa m CL, then mr(C~) c mI(CM) for some log
M wrth

AM = AL - {a 1 u IS aborted m L}
CM = CL - {c 1 UNDO(c,t) E CL}

- { UNDO(c, t) 1 t E So}

Inductton Step Suppose there are k UNDOa m CL
Consider the first undo, UNDO(c, t), m the order
<L Since it uz the first, there IS no UNDO(d, w)

such that c <L UNDO(d, w) <L UNDO(c, t) Smce
L IS revokable, UNDO(c, t) commutes with every ac-
tion d such that c <L d ~1; UNDO(c, t) Therefore,
usmg the same reasoning as for the mductlon base,

and applymg the mduction hypothesis,

w(CL) c mr(Ch(.), CPost(e)) c m(G)

If the log L nr partial, we can extend L to a complete
log by adding UNDO8 for every mcomplete action to the
end of the log The order of the UNDO8 should be the
reverse of the order of the forward actrons The new log

is complete and revokable, therefore by Theorem 5 It is
atomic

Theorem 5 suggests the following algonthm for abort-
mg actions If the rollback of an action will not depend
on any action in AI;, then execute a sequence of UNDO8
m reverse order of the forward actrons If the rollback

will depend on some action, recursively abort the actron
on which the rollback wrll depend Of course, the cas-
caded aborts can be avoided To avord them, it rs necec
sary to block an abstract action if a rollback dependency
would develop

4.3 Layered Atomicity

In this section, we descnbe the correct abortmg of ac-
tions m a multrlevel system As m sectron 3.2, suppose

that we have a system log L = {LI, , Ln} To guar-
antee that the sequence of concrete actions at level z + 1

IS implemented by the abstract actions at level 1, we
must be able to say that there is an ordering on the non-
aborted abstract actions m AL, which 1s the same as the
ordermg on these actions when they are viewed as con-

Crete actions at level a + 1 But this requires that each
level be both serializable and atomic

Definition: Let L be a complete log contammg
aborted actions Let AL - {a 1 a IS aborted m L} =

{al, a,,} L 1s abstractly seraalaaable and atomac
If there ‘Is a permutation z of { 1, , n} such that

fdmr(G)) c mp(d=dlb) =ed

L 1s concretely seraalarable and atomac If there is a
permutation z of (1, , n} such that

m(G) c mrh(lj, 9 %(nd

This IS similar, m combmmg the aspects of computa-
tional atomlcity with failure atomicity, to Weihl’s defim-

tlon of atomiclty [Weihl84] As usual, concrete seriabz-
ability and atomlcity lmphes abstract serializability and
atomicity

Definition: A system log L 1s abstractly seraal-
azable and atomac by layers If each log L, 1s ab-
stractly seriahzable and atomic; CL,+~ = AL, -

{u 1 a is aborted m L,} = {a,,l, ;=, k,h and

there IS a serlahzatlon order z, on level L, such that

CL,+1 = %,,,(l)i 8 %rr,(k,,

We now arrive at the interesting result for layered atom-
icity Recall that a top level log is a log relatmg the top

level actions (m An) to the lowest level actions (m Cl)

Theorem 6: If a system log L IS abstractly senal-
izable and atomic by layers then its top level log is
abstractly serializable and atomic
Proof: The proof 1~) by induction on the number n
of levels
Inductron Boae If there is only one level, then the
top level log rs rdentrcal to the log for that level and

rs therefore abstractly serralizable and atomrc by the
defimtlon of layered senalizabrbty and atomiclty
Inductron Hypotheeas The top level log is abstractly
serrahzable and atomic If the system log 1s abstractly

sermhzable and atomic by layers and there are fewer
than n levels
Znductaon Step Suppose that the system log has
n levels By the defimtlon of layered seriahzabrlity
and atomrcity the level 1 log M abstractly serializable
and atomic Therefore there 1s a log M such that

AM = AL, - {a 1 a IS aborted m Ll} and

plh(CL.,)) C Pl(mr(G4))

= mp1w hqllb 8 =l qlkl) 1

By the definition of layered serializability and atom-

1cltY CL2 = alnl(l), , al rrl(kl) Therefore

mpl(d=l rr,(l)* 1% qlkl)) = mp,(U(CL~)

Applying the mductron hypotheses to the system log
M consrstmg of the logs La, , L,, the top level log
for M is abstractly serializable and atomic, that IS,

82

Pa O oP~(mp,frdcLJ =

mPIV%J q',,dCN)

for some log N with

AN =AL,, - {a] a is aborted m L,,}

It follows that

P2 O O Pbp.JldCL,)) =

mP10P20 oP,J~~N)

for this same log N

Since revokability and restorabihty each imply atomicity,

we rmmedrately derive these additional results

Corollary 1 to Theorem 6: If each level of a
system log L is serrahzable and restorable, then its
top level log IS abstractly atomic

Corollary 2 to Theorem 6: If each level of a

system log L is serializable and revokable, then Its
top level log IS abstractly atomrc

5 Conclusions and Further Work

In summary, we have shown that, with respect to both
seriahzabrhty and failure atomicity, the correctness of
atomic actions can be assured by guaranteemg then cor-
rectness at each level of abstraction The result for se-
rialrzability alone follows from the results presented in
[Been et al 831, but the relative simphcity of the proofs
presented here is rmpressrve

Addltronally, the mclusron of decision making m the
model reveals the importance of conflict based ap
proaches to correctness of atomic actions As a con-

sequence of Lemma 2, conflict based approaches are not

only efficient, they also prevent accepting as correct cer-
tain computations whrch could never have occurred in a
serial executron of the actions The importance of con-
flict in the correctness of ABORT actions and UNDO

actions also seems srgnificant
It should prove interesting to address the possrbility

of using different protocols for serialrzabrbty and dlffer-
ent techniques for enforcmg failure atomicity at different
levels of abstraction The lmplementatron of such tech-

niques for abstract actions presents a variety of prob-
lems Among the problems to be addressed rs the ex-
tension of the model so that actions operate on obJecta
rather than on the global state Also to be considered is
rmplementatron of serialization prrmrtrves such as locks

and tlmestamps for abstract obJects and implementation
of recovery objects such as log entries, shadows, and m-
tentron bats at higher levels of abstraction

The relatronshrp between forward conflict (between
two actions) and backward conflict (between an action
and an UNDO of another action) should also be ad-
dressed Can we Implement UNDOs m such a way that

backward conflict occurs If and only If there is forward
conflict? Also, to what extend can UNDO5 be treated
like ordinary actions? Can an ABORT or an UNDO be
aborted or undone7 What additional problems would
this present7

References

[Been et al 831 C Been, P A Bernstem, N

Goodman, M Y Lai, and D E Shasha, “A
Concurrency Control Theory for Nested
Transactions”, Proc dnd Symp on Prrn of
Dastrabutcd Computang, Aug 1983, pp 45-62

[Eswaren et al 761 K P Eswaren, J N Gray, R A
Lone, I L Trarger, “The Notion of Consistency
and Predicate Locks m a Database System”,

Comm of the ACM, Vol 19, No 11, Nov 1976,
pp 624-633

[Garcia and Wiederhold 821 Hector Garcia-Molma and
Gio Wiederhold, “Read-Only Transactions m a
Distributed Database”, Trans on Databaae

Systems, Vol 7, No 2, June 1982, pp 209-234

[Hadzlacos 831 Vassos Hadzrlacos, “An Operational
Model for Database System Reliability”, Proc 8nd

Symp on Ptan of Database Systems, Mar 1983,
pp 244-257

[Haerder and Reuter 831 Theo Haerder and Andreas

Reuter, ‘Prmciples of Transactron-Oriented
Database Recovery”, Computcng Surveys, Vol 15,
No 4, Dee 1983, pp 287-318

[Lynch 831 Nancy A Lynch, “Multilevel Atomicity - A
New Correctness Criterion for Database
Concurrency Control”, Trans on Database

Systems, Vol 8, No 4, Dee 1983, pp 484-502

[Moss et al 851 J Eliot B Moss, Nancy D Gnffeth,
Marc H Graham, ‘Abstractron m Concurrency
Control and Recovery Management”, Dept of
Comp and Info SCI , Umv of Mass (Amherst),
Tech Report 85-51, Dee 1985

[Papadlmitrlou 791 C H Papadlmrtrrou,
“Seriallzabihty of Concurrent Updates”, Journal of
the ACM, Vol 26, No 4, Ott 1979, pp 631-653

[Schwarz and Spector 841 Peter M Schwarz and Alfred
Z Spector, “Synchromzmg Shared Abstract

Types”, Trans on Computer Systems, Vol 2, No
3, Aug 1984, pp 223-250

(We&l 841 Willlam E Well, Specaficataon and

Implementataon of Atomac Data Types, PhD thesis,
Mass Inst of Tech , Lab for Comp Se1 Tech
Report 314, Mar 1984

83

