
Proceedings of the 1996 Winter Si'm,u.lation Conference .

ed. J. M. Charnes, D. J. Alorrice, D. T. Brunner, and J. J. STvaln

ABSTRACTION MECHANISMS IN DISCRETE-EVENT INDUCTIVE MODELING

Hessam S. Sarjoughian

AI & Simulation Research Group

Electrical and Computer Engineering

University of Arizona

Tucson, AZ 85721-0104, U.S.A.

hessam@ece.arizona.edu

http://www-ais.ece.arizona.edu/ ,...., hessam

ABSTRACT

The power of abstraction lies in its ability to deal

with "lack" of knowledge. In this regard, success in

modeling and simulation rests on discovering useful

abstractions that can support objectives of model­

ing. In our treatment, we refer to "data abstrac­

tion" as opposed to "structure simplification" since

we consider a system's behavior rather than its struc­

ture. A system's behavior can be represented as time­

varying input/output segments. Given the behavior

of a causal, time-invariant system, we define some ba­

sic abstraction mechanisms to support inductive mod­

eling. The basis for these abstraction mechanisms are

a set of general assumptions which allow consistent

abstraction of 10 segments. Then, given these as­

sumptions and non-monotonic reasoning paradigm,

capable of handling them, we try to tackle the funda­

mental problem of insufficient knowledge in the realm

of inductive modeling. In this way, by making useful

abstractions, we can predict a system's unobserved

behavior according to a well-defined framework of

discrete-event inductive modeling.

1 INTRODUCTION

Vast amounts of observed data from various systems

are continually collected with the expectation that

they will assist us in understanding their underly­

ing structure and behavior. An extensive body of

research has been devoted to finding ways to pre­

dict a system's future behavior based on its previ­

ously observed behavior - Biermann and Feldman

(1972), Zeigler (1976), Klir (1985), Michalski, Car­

bonell, and Mitchell (1986), Grossberg (1988), Cel­

lier (1991), Omlin, Thornber, and Giles (1996) are

some efforts. Here we do not discuss abstraction in

deductive or abductive modeling paradigms. Hobbs

and Moore (1985), Weld (1992), Kuipers (1994), and

Fishwick (1995), among others, discuss abstraction in

these settings.

748

Bernard P. Zeigler

AI & Simulation Research Group

Electrical and Computer Engineering

University of Arizona

Tucson, AZ 85721-0104, U.S.A.

zeigler@ece.arizona.edu

http://www-ais.ece.arizona.edu/ '" zeigler

In Sarjoughian (1995a) a Discrete-event Induc­

tive Reasoner (DIR) has been developed based on the

concepts from systems theory, Wymore (1993), and

non-monotonic reasoning, McCarthy (1990), Davis

(1990), Ginsberg (1993). While the former provides

us simple means to formulate a well-defined structure

representing a system's observed behavior, the latter

supports the more powerful means necessary to rea­

son with aforementioned structures in the absence of

complete knowledge. Supposing that a causal, dy­

namic, time-invariant system's finite observed behav­

ior can be partitioned into 10 segments, we identify

a well-defined set of assumptions which support pre­

diction of the unobserved behavior of a system. An

example would be when we have an unobserved input

segment for which we would like to find its output seg­

ment. The problem is trivial if the input segment and

its output segment are in the repository of observed

10 segments. However, if no such input segment is

available, it becomes essential to abstract certain fea­

tures of the candidate input segment so that it is

"equivalent" to one of the observed input segments

for which we know its corresponding output segment.

To employ abstractions, Giunchiglia and Walsh

(1992), and homomorphism, Wymore (1993), it be­

comes necessary to make assumptions (and thus non­

monotonic reasoning) based on which unobserved 10

segments can be predicted.

In our discussion, we do not argue the DIR's foun­

dations nor its methodology. Moreover, we exclude

the presentation of the overall architecture and the

implementation of the DIR. Instead, we show the un­

derlying mechanisms of a part which corresponds to

defining abstraction mechanisms and how they would

facilitate well-defined prediction of 10 segments. Here,

it suffices to say that the discrete-event inductive rea­

soner is comprised of a repository of observed 10 seg­

ments, an inference engine and a logic-based truth

maintenance system. Forbus and de Kleer (1993) de­

scribe and discuss thoroughly logic-based truth main­

tenance systems. For more discussion of the above

Abstraction Mechanisms in Discrete Event Inductil'c]\'fodcling 740

and details of what follows refer to Sarjoughian (1995a),

Sarjoughian and Zeigler (1995b).

2 ITERATIVE 10 FUNCTION OBSERVA­

TION STRUCTURE

Abstractions:

• segment's event

• segment's length

• segment's state

IOFO(G
F

)

Given input generator segments (na) and output gen­

erator segments (wa), the associated input/output

generator segment set IOspace
G

is defined as:

Figure 1: Role of Assumptions in Deriving
IOFO(G

F
) From G

F
•

IOspacea = {(wG,1/1a) I (wG,1/1G) E IOspace,

wa E na , 1/1a E \lIa'
IOspacea ~ IOspace,

dom(wG) == dom(1/1a)}

where IOspace is a collection of 10 trajectories (w is

an input trajectory and 1/; is an output trajectory):

'fIa : (sj) wG, f) = 1/JG· For example, using the output

segment matching function 'flo and the special form of

the final state hypothesizer function 'Yo : Wo --+ Sf' the
final state can be determined by consecutive applica-

tion of 'Yo followed by 'fiG· That is, 'Yo ('flo (Si' w, f)) ==
'YG (1/J) = S I or using the general form of the final state

hypothesizer, 'YG : ~ x IOspace; --+ ~, we have the

general form for combining 'flo and 'Yo:

IOspace == {(w,1/;) I (w,1/;) E (X,T) x (Y,T),
dom(w) = dmn(1/;).}

Then, given an IOFO specification, Zeigler (1976),

an iterative IOFO specification for a causal, time­

invariant 10 function observation structure can be

defined as:

'YO(Sp(W,'fJO(Si'W,!))) = 'YO(Si'(W,'l/J)) == s:.
This iterative IOFO specification can be special­

ized into Discrete-event IOFO specification (DEVF).

3 ASSUMPTION-BASED ITERATIVE IOFO

SPECIFICATION

GF = (T, X, ~ , Y, IOspacea , Fa' 'Yo)

where

with the following constraints:

Fa : ~ ---t partial IOspacee ,

'Yo : ~ x IOspacea ---t ~ .

17a : ~ x na x Fa ---t \lIo .

where the elements of Fa are pairs of 10 generator

segments.
The interpretation of the above function is that if

there exists S j E ~ and f : S i .-t (wo ' 1/;0) E Fa then

The interpretation of the function 'Ya is that it

maps a given initial state and an input/output seg­

ment pair into another initial state.

To obtain an output segment '¢O for an input seg­

ment we E na , an initial state Sj E ~, and a given

data set Fa' the output segment matching function is

defined as:

• + + +
1Ja : ~ x na x ~ ---+ wa '

defined by:

Once we have iterative IOFO, its free iterative speci­

fication is IOFO(G
F

) = (T,X,~, y,IOspace;,~+),

where ~+ is the set of all nonempty finite concatena­

tions of elements of Fa. Likewise, IOspace; is con­

structed from IOspaceo .

However, if Fo does not represent a system's com­

plete 10 behavior, then it may be necessary to com­

pose trajectories from segments, some of which have

to be predicted based on some belief set which we de­

note as an assumption set (see Figure 1). To compose

two segments WI and W2 , they may be concatenated

as W
2

OWl. However, unless the final state of W
2

is the

same as the initial state of the WI' we are forced to

make w
2

0 WI a hypothesis. That is, ignoring a mis­

match between the final state of w
2

and the initial

state of the WI results in a hypothesized trajectory.

Given an input segment, we define the assumption set

to allow abstractions on length, event and state. In

this setting, the specification based on the assump­

tion set is called assumption-based iterative [OFO.

For example, suppose we have two input segments

Wi,i,Wk,l E no (where they are contiguous w.r.t. to

time) and the initial state s. is associated with w. ..
1 I,)

Given the extended output segment matching func-

tion,

time base

input value set

output value set

set of initial states

causal, time-invariant input/output

segment generator set

10 function generator set

final state hypothesizer

T
X

Y

~
IOspacea

750 Sarjougbian and Zeigler

Likewise, output segments are of the same 4 types.

Then, considering input and output segments together,

we require that each conform to one of the following

4 types out of all 16 possible combinations of 10 seg­

ment pairs.

t = t i

ti<t<tf

t = t
f

for

for

for

for

for

for

for

for

• Input segment type 2:

w(t) = { input_event
null.event

• Input segment type 3:

w(t) = { ~ull..event
'tnput..event

• Input segment type 4:

{

input_event

w(t) = null.£vent

input..event

t
i

with the initial time-point of the input/output seg­

ment pair and t I with its final time-point. All seg­

ments are assumed to be of the discrete-event type

since we confine our discussion to discrete-event sys­

tems. Thus,

• Input segment type 1:

w(t) = null..event

we have:

3.1 10 Segment Pair Types

The 10 function generator set Fa is simply a database

containing pairs, each comprised of an initial state as­

sociated with an 10 segment pair. That is,

In the above composition (i.e., 1Pi ,j 01Pk ,I)' the final

state of (wi,j' 1Pi,j) is the same as the initial state of

(WIc,l' 1Pk,I). If a composite output segment 1P i ,j 01Pk,1

can be generated by applying 'f}a and Ta on individual

segments, then we have:

1J• (8., W. . 0 WL I 0 ... 0 Wn q' Ii ,Ik, ... , In) =
G • ',1 ~ , ·

'f}a ((. . . Ta ('f}a (Ta (1Ja (8 i , Wi •i ' f i)),Wk ,I , I k)) ,

•.•), Wn,q ' fn)

'f}a(TG('f}a(8"W',i,!,)),WJc'l '!k) = 1/;i,j o1/;k,l·

What this says is that if Ta('f}a(8.,wi,i'!i))

Ta (1/;',i) = s~ and the initial state associated with

Wk,l is Sk' then s ~ = Sk must be satisfied in order

for 1J: to hold. In the next section, we discuss how

to overcome the restrictiveness of equality that is re­

quired in composing two 10 segments can be used to

so that s ~ == Sic'

Fa : Sa --+ partial I08pacea ,

! == (8,9) E Fa where 9 == (w,1jJ).

• 10 segment type 1:

w(t) = null..event for

In this form, no final state is assigned to any 10

segment pair. Instead, the quasi-state identification

function Ta is specified in Gp to hypothesize about

them. For any particular set of final states, we can

suppose that every 10 segment has both an initial

state 8 i and a final state sJ (Le., (8
1
,SJ' (w,'ljJ))). We

now begin with a classification of all possible ways in

which an input segment might be represented.

Let us denote an input segment as (Si ,w), an out­

put segment as (Sf' 'ljJ), and an 10 segment pair as

((8" W), (8 f ' 1P)). An input segment's representation,

without considering its initial and final states for now,

can be categorized into several types depending on

whether events occur at one or both of its initial and

final time-points; likewise, for output segments. For

example, suppose we have an input segment wand

an output segment 1/) with duration dt. We associate

1jJ(t) =null..event

• 10 segment type 2:

w(t) = { input..event
null..event

'ljJ(t) = null..event

• 10 segment type 3:

w(t) = null..event

1P(t) = { null..event
output..event

for

for

for

for

for

for

for

Abstraction IvIecbanisms in Discrete Event Inductive l\Iodeling ,51

• 10 segment type 4:

w(t) = {
input.event

null..event

for

for

FG = {((Si' (Xval' dt)), (s I' (Yval, dt)))

Si' SI E S,
(xval,dt) E PJN(IOspaceG' 1),

(Yval ,dt) E PJN(/OspaceG,2)}.

((Sp (xval,dt)), (SI' (Yval,dt)))

where dt is the duration of 10 segments and Xval E

{nil, input.event} and Yval E {nil, output.event}.

Hence we can reformulate the earlier specification

of GF in terms of ((Si' (Xval, dt)), (sI' (Yval' dt))) as:

The rationale for this restriction is the following:

The trajectories for single-input, single-output sys­

tems as well as a class of multi-input multi-output

systems, can be partitioned in several ways. Clearly,

10 trajectories for a system ought to be partitioned

with respect to one another. If there are no time­

points at which both an input event and output event

occur, then the partitioning of 10 trajectories re­

sults in 10 segments having the above proper types.

This is not a restriction per se since inductive reason­

ing should operate on models having coarse granular­

ity. A trajectory may be partitioned at time-points

where either an input event or an output event oc­

curs. Thus, partition points (time instants along a

trajectory where an event occurs) should occur only

at time-points where either an input event or an out­

put event occurs, exclusively.

Having decided on the proper representations for

input and output segments, we can determine the rep­

resentation of Complete /0 segments. That is, any 10

trajectory pair (partitioned according to assumption

set-I) would result in 10 segment pairs represented

as:

G;. = (T,X,S, Y,IOspaceG, F;)

3.2 Input Segments Equivalence

The purpose behind the iterative 10FO specification

is to support predictability. Given candidate input

segment, the above assumption set is t~be used to

reason about 10 segments contained in F
G

such that

its output segment can be predicted. An unobserved

input segment is called a candidate input segment.

A concrete input segment (or 10 segment), however,

refers to one that is observed. We need to be specific

about what the assumption set is, and what it entails

given G;..
Suppose we are given an input trajectory parti­

tioned into a finite number of sequential segments and

for which we would like to find its corresponding out­

put trajectory. For example, suppose one of its input

segments is (s:,(x~al,dt')), and there exists an in­

put/output segment ((Si' (xvai,dt)), (Sl' (Yval,dt))) E

FG. If the input segment (s:, (X~al' dt') is equal to

the input segment (Si' (xval,dt)) (i.e., Xval = X~al'
dt = dt', and Si = s:), then it is trivial to determine

its corresponding output segment.

However, the hope of composing the output tra­

jectory is dashed if no equal input segment can be

found in the database. For instance, given the three

sequential input segments (s: ' (x: ,dt:)), (s ~ , (x ~ , d t ~)) ,

and (s:, (x: ' dt:)), no output segments will be found

for the second or third input segments if no output

segment can be found for the first. That is, given the

candidate input segment (s:, (x: ,dt:)) rJ PIN(F;, 1),
(i.e., there exists no 10 segment pair ((Si' (Xval' dt)),

(SI' (Yval' dt))) E FG in the database, such that Xval =

x: ' dt = dt: ' and Si = s:), then no output trajectory

can be obtained.where

for

for
1jJ(t) = { null..event

output.event

-Fa : ~ X PJN(IOspacec,l)-+

SI X PJN(IOspaceG,2)

such that ~ ~ S, and SI ~ S or

and

T

X

Y

S

IOspaceG

time base

input value set

output value set

set of states

time-invariant 10 segment

generator set

partial 10 function generator set

The notion of equality, of course, is too strong for

inductive modeling. It becomes imperative to speak

of equivalence instead. (Our usage of the term equiv­

alence is different from the one used in Gill (1962)

where various notions of (deductive) equivalence are

defined for finite-state memory machines.) Other­

wise, we have to limit our claims of prediction to

trajectories that can be composed from the 10 seg­

ments found in F; only. It is impossible to find in the

database equal input segments for all imaginable new

input segments. This underlies the need for defining

equivalence between two input segments. We use the

752
Sal:jOllghian and Zeigler

S.
1

<[[in ~ ~ " - - - - - - - - (< r £ in 3>
III

S.= S:
-1 -1.

,
S.tS.

1. 1.

state

equivalence

in = in'

dt = dt'

III
in' y~;..-------t~ in' ~

Figure 3: Abstraction of Two Input Segments Into

Their Respective Abstracted Input Segments

2. input-equivalent iff

where dt, dt' ';al' ial' ~, i are abstractions of

dt, dt', Xval, X~al' Si' s:' respectively.

,
s. == s.-. -.Xval == X~al' dt == dt' ,

3. state-equivalent iff

X I == x' I' dt == dt' ,
-Va -va

That is, despite the presence of an inequality in

each of the above equivalences, the two input seg­

ments are believed to be equal. Hence, given two in­

put segments, either the length, the input, or the state

can be ignored in terms of their corresponding equiv­

alences. Various combinations of the above equiva­

lences comprise one form of the assumption set.

D ~ f i n ! t i o n , 1 Two input segments (Si' (X val ,dt)) and

(s i ' (xval' dt)) are called:

1. length-equivalent iff

(s i' (Xval, dt)) i= (s:, (X~al' dt')), then the abstract can­

didate input segment (i ' (X~al' dt')) and the abstract

observed input segment (~ , (xval,dt)) are equal (see

Figure 3). That is

(~ ' (Xval, dt)) == (i, (X~al' dt')).

Now, with well-defined semantics, we can simply

use the state-equivalence knowing that in fact we are

using inequality of Si and s: together with the state­

equivalence assumption. Thus, we may say that the

two concrete input segments are equivalent.

Figure 2: Abstraction of Two Concrete States Into

Their Respective Abstracted States

term equivalence to indicate that, even though two

input segments are not equal, we can think of them

as being equal.

Given input segments (s:,w') ~ PJN(fi;,l) and

(Si'W) E PJN(fi;, 1), when they can be considered to

be equal? That is., when they can be called equiva­

lent. Given the two input segments (s. , (Xval' dt)) and

(s:, (X~al' dt')), three primitive types' of equivalences
are possible. They are based on length-equivalence,
input-equivalence, and state-equivalence. Each equiv­

alence type ignores the inequality in one of three as­

pects: length (or duration), initial state, or input.

In our earlier example, we had (s., (xval,dt)) and

(8:, (x~al,dt')), where s: =1= sp X ~ a l =:' Xval, and dt' ==
dt. Consequently, we could assume state-equivalence

in order to consider these two segments as being equiv­

alent. How can this formally be accomplished? One

approach is to turn the inequality s: =1= Si to an equal­

ity between their respective abstracted states s. and

i· Now, we treat the state-equivalence b e t w ~ n Si

and s: as an assumption. Then, we can use s: i:- Si

(fact) along with the state-equivalence assumption

(belief) to construct two abstract states s. and s ~

from the concrete states s. and s ~ where s~ ~ s. (ref;

to Figure 2). The term f ~ c t is r~strictedin the sense

that its truth value is fixed and cannot be subjected

to revision. The term belief, however, may change

its truth value. Another difference between these is

that, whereas a belief can be converted to a fact, the

converse is not true. Every piece of data is either a

fact or a belief, exclusively.

Hence the use of the state-equivalence is substan­

tiated by treating the inequality of two states as a

fact while using the state-equivalence assumption be­

tween them as a belief. Having two abstracted states

i == ~, as well as two concrete input segments where

Abstraction Mechanisms in Discrete Event Inductive AJodeling 753

Figure 4: Constructing an Unobserved 10 Segment

3.3 Predicting 10 segments

In the above example, state-equivalence is supported

by abstraction of states. In general, we have:

4 AN EXAMPLE

5 RELATED WORK/CONCLUSIONS

Suppose we have observed two 10 trajectories from a

FIFO (first-in-first-out) discipline queue (refer to Fig­

ure 5). Then the discrete-event inductive reasoner is

able to predict an output trajectory, given the candi­

date input trajectory. To generate the predicted out­
put trajectory, an assumption set which is comprised

of two assumptions is chosen. The first prescribes how

the input trajectory is to be partitioned with respect

to the 10 segments in the repository. The second al­

lows the inequality of the input events between a can­

didate input segment and an input segment from the

repository of available 10 segments. The predicted

output trajectory is not completely correct. (Other

possibilities exist based on alternative assumptions.)

Instead of predicting output event c to occur at time

3, it is predicted to occur at time 2. This is due
to length abstraction. Also, the output event is pre­

dicted as b instead of a, due to input event abstrac­

tion. When there was no matching input segment in

the repository, (i.e., input event c and duration 1, and

input event a and duration 7), it was inevitable that

assumptions would be made when predicting output

segments. Without making assumptions, it would

have been impossible to predict anything given the

observed 10 segments one and two.

The importance of abstraction is undisputed in mod­

eling and simulation. The inductive modeling re­

search programs that we are aware of are based on

techniques from artificial intelligence, probability the­

ory in many different forms, neural networks, and ge­

netic algorithms. Of these, our approach falls into

the artificial intelligence arena in that it allows the

introduction and manipulation of abstractions. We

showed that once a well-defined structure is avail­

able, with the aid of powerful non-monotonic rea­
soning paradigm, abstractions can be formalized and

manipulated to deal effectively with one of the funda­

mental issues in inductive modeling - qualification

problem.

None of the other inductive modeling methodol<r

gies can support making explicit assumptions about

a system's critical features such as state, inputs, and

outputs. In an earlier effort, Dietterich (1984), given

some observed behavior of a system, discussed how

partial theories can be constructed and revised. How­

ever, this work lacks a framework. Hence, it provided

no canonical representation for capturing a system's

observed behavior. Also it did not establish the im­

portant role of non-monotonic reasoning in inductive

(Sf Y dt)
valfact

III

where one or more of the inequalities may be used

in generating equivalence between two unequal input

segments.

Although the concrete candidate input segment

(s: ' (X~al ' dt')) f/. F;, we have seen its abstraction can

be equal to the abstraction of an observed input seg­

ment. The equality between these two abstractions

can be used to construct a new unobserved 10 seg­

ment (cf. Figure 4) with the concrete candidate input

segment and the output segment of the observed 10

segment. That is, we can construct (predict)

(Sp (xval,dt)) == (s:, (X~al' dt'»), ,
Si # Si' ~ = ~ ;

dt -# dt'" dt = dt' ; ,

Xval =1= X va1 ' ;al == ~al

((S:, (X~al' dt' », (8J' (Yvai, dt»)).

To predict an output trajectory for an input tra­

jectory, it is essential to partition the input trajectory

into candidate input segments. The assumption on a

segment's length is devised to partition an input tra­

jectory using one of three possibilities. We have spe­

cialized length-equivalence to be one of longest,exact,

and all. The first choice, exact, is used when any can­

didate input segment's length must be equal to one of

the input segments from the repository. The second

choice, longest, prefers the candidate input segments

with the longest length which match input segments

from the repository. The third choice, all, is defined

to allow candidate input segments of any length.

To deal with incorrect hypothesized 10 segments,

the machinery of the non-monotonic reasoning pro­

vides well-defined means to retract such hypotheses

once there exists support to do so.

754 Sarjoughian and Zeigler

modeling. Consequently, no abstraction mechanisms

were introduced and integrated to support explicit

reasoning with the observed data based on abstrac­

tion (assumptions).

Our concern is with causal/time-invariant dynamic

systems. Other research efforts in inductive model­

ing that have focused on such systems are the works

of Biermann and Feldman (1972), Dietterich (1984),

Klir (1985), and Cellier (1991) although none of these

takes into account the role of abstraction as we have.

In this light, our approach to inductive modeling

differs fundamentally from those that are based on

probability theory, neural networks, as well as other

artificial approaches. We cannot engage in a dis­

cussion of AI-based inductive modeling approaches.

However, it suffices to indicate that artificial intel­

ligence approaches either represent states implicitly

or contain no state variables; or just deal with static

systems.

In conclusions, DEVS inductive modeling frame­

work has been developed as part of the DEVS frame­

work, Zeigler (1976, 1984, 1990), with the objective of

laying a foundation based on concepts from systems

theory and artificial intelligence. It supports abstrac­

tions representation and reasoning with them such

that lack of data can be explicitly dealt with. The

predictably of a system's behavior can benefit greatly

by employing useful and effective abstractions. Our

work discussed here suggests research in several di­

rections: applying DIR to other types of systems and

domains, studying issues related to handling large

amounts of data, supporting the use of domain-specific

knowledge, and formally characterizing abstraction

(i.e., introduction of assumptions and their manip­

ulation) in more depth.

1311

10

b

9

8

c

7

6

6

a

4

Observed Input Trajectory 1

Observed Input Trajectory 2

2 3

Observed Output Trajectory 1

2

Observed Output Trajectory 2

1

o 1

o

b a

Figure 5: FIFO Discipline Example

Predicted Output Trajectory

REFERENCES

Biermann A. W. and J. A. Feldman, 1972. On the

Synthesis of Finite-State Machines from Samples

of Their Behavior, IEEE Transactions on Com­
puters, Vol. 21, pp. 592-597.

Cellier F. E., 1991. Continuous System Modeling,

Springer-Verlag, New York.

Davis E., 1990. Representation 01 Commonsense Kno­

wledge, Morgan Kaufmann.

Dietterich T. G., 1984. Learning about Systems that

Contain State Variables, AAAI, pp. 96-100.

Fishwick P. A., 1995. Simulation Model Design and

Execution: Building Digital Worlds, Prentice Hall.

Forbus K. D. and J. de Kleer, 1993. Building Problem
Solvers, MIT Press.

Genesereth M. and N. J. Nilsson, 1987. Logical Foun­

dations of Artificial Intelligence, Morgan Kauf­

mann.

104

8

Candidate Input Trajectory

2

o 1

Abstraction Mechanisms in Discrete Event Inductire l\Iodeling 75.5

Gill A., 1962. Introduction to the Theory of Finite­

State Machines, McGraw-Hill, New York.

Ginsberg M. L., 1993. Essentials of Artificial Intelli­

gence, Morgan Kaufmann.

Giunchiglia F. and T. Walsh, 1992. A Theory of Ab­

straction, Artificial Intelligence, Vol. 57, pp. 323­

389.

Grossberg S., 1988. Neural Networks and Natural In­

telligence, MIT Press, Cambridge.

Hobbs J. R. and R. C. Moore (editors), 1985. For­

mal Theories of the Commonsense World, Ablex

Publishing Corporation.

Klir G. J., 1985. Architecture of Systems Problem

Solver, Plenum Press.

Kuipers B. J., 1994. Qualitative Reasoning: Modeling

and Simulation with Incomplete Knowledge, MIT

Press.

McCarthy J., 1990. Formalizing Common Sense: Col­

lected Papers of John McCarthy on Commonsense

Reasoning, edited by V. Lifschitz, Ablex Publish­

ing Corporation.

Michalski R. S., J. G. Carbonell and T. M. Mitchell

(editors), 1986. Machine Learning: An Artificial

Approach, Vol. 2, Morgan Kaufmann.

Omlin C. W., K. K. Thornber, and C. L. Giles, 1996.

Fuzzy Finite-state Automata can be Determinis­

tically Encoded into Recurrent Neural Networks,

Tech. Report UMIACS-96-12, University of Mary­

land.

Sarjoughian H. S., 1995a. Inductive Modeling of

Discrete-event Systems: A TM8-based Non-mono­

tonic Reasoning Approach, Ph.D. Thesis, Univer­

sity of Arizona, Department of Electrical and Com­

puter Engineering.

Sarjoughian H. S. and B. P. Zeigler, 1995b. Inductive

Modeling: A Framework Marrying Systems The­

ory and Non-monotonic R ~ o n i n g , P. Antsaklis,

eta al. (Editors), Hybrid Systems II, LNCS 999,

pp. 417-435, Springer Verlag.

Weld D., 1992. Reasoning About Model Accuracy,

Artificial Intelligence, Vol. 56, pp. 255-300.

Wymore W. A., 1993. Model-based Systems Engi­

neering: An Introduction to the Mathematical The­

ory of Discrete Systems and to the Tricotyledon

Theory of System Design, CRC, Boca Raton.

Zeigler B. P., 1976. Theory of Modeling and Simula­

tion, John Wiley and Sons.

Zeigler B. P., 1984. Multi-Facetted Modelling and

Simulation, Academic Press.

Zeigler B. P., 1990. Object-Oriented Simulation with

Hierarchical, Modular Models: Intelligent Agents

and Endomorphic Systems, Academic Press.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN earned his M.S.

and Ph.D. degrees in Electrical and Computer Engi­

neering from the University of Arizona in 1989 and

1995. His interests are Modeling and Simulation Met­

hodologies, Artificial Intelligence, Software Engineer­

ing, and Intelligent Control with applications in en­

gineered/natural systems. Presently, he is working

on a Computer-Aided Business Engineering project

funded by the Armstrong Research Laboratory, US

Air Force. He has worked at Allied-Signal Aerospace

company and International Business Machine.

BERNARD P. ZEIGLER is a professor of Elec­

trical and Computer Engineering at the University of

Arizona, Thcson. He has published over two hundred

journal and conference articles on modeling and sinlU­

lation, knowledge-based systems, and high-autonomy

systems. His books include Theory of Modelling and

Simulation (Wiley, 1976), Multifaceted Modelling of

Discrete Event Simulation (Academic Press, 1984),

and Object-Oriented Simulation with Hierarchical,

Modular Models: Intelligent Agents and Endomor­

phic Systems (Academic Press, 1990). He has a new

book which will appear in 1996 to be published by

Springer-Verlag, NY: "Objects and Systems". Zei­

gler's research has been supported by federal agen­

cies including NSF, NASA, USAF, and the US Army,

as well as industrial sponsors including Siemens, Mc­

Donnell Douglas, and Motorola. He was elected as

Fellow of the IEEE for his innovative work in dis­

crete event modelling theory. In 1995, Zeigler served

on a National Research Council committee to sug­

gest directions for information technology in the 21st

Century US Army and is currently a member of an

NRC committee given a similar task by the US Navy,

focusing on modelling and simulation. Zeigler is cur­

rently editor-in-chief of the Transactions of The So­

ciety for Computer Simulation. He received his B.

Eng. Physics from McGill University, 1962, M.S.E.E.

from MIT, 1964, and Ph.D. from the University of

Michigan in 1968.

