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Abstraction of DNA Graph Structures for

Efficient Enumeration and Simulation

Ibuki Kawamata ,†1 Fumiaki Tanaka †1

and Masami Hagiya†1

We propose a graph model of DNA molecules and an abstraction of that
model for efficient simulation of molecular systems powered by DNA hybridiza-
tion. In this paper, we first explain our DNA molecule model composed of graph
data structures and highlight the problem of the large number of DNA struc-
tures that results. We then define an abstraction of the model, which focuses
on local structures of DNA strands, and introduce reactions among the local
structures. To verify the effectiveness of the abstraction, we develop simulators
for the original and abstract models, and compare the number of structures
generated by those simulators. Based on this research, computer-aided design
of reaction systems that consist of biological molecules may become easier than
conventional designs that rely on human trial and error.

1. Introduction

Molecular systems using DNA and its simple hybridization mechanism have
been recently developed, including nano-scale DNA structures1),2), DNA logic
gates3),4), and DNA amplification machines5),6). The design of such systems,
however, is extremely difficult for humans because the combination of molecules
in the system increases rapidly as the number of molecular species increases. This
combinatorial explosion prevents humans from predicting system behavior and
limits the total number of molecular species that can be used.

A variety of approaches for overcoming this difficulty in combining molecules
have been proposed, most of which are based on simplified molecules and re-
stricted reactions. Good examples of such approaches include simple hairpin
strands of DNA that allow a cascade of reactions 7), the programming language
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Fig. 1 DNA modeling

for DNA circuits8), and the computer-aided tool to produce three-dimensional
DNA structures9). Even these methods, however, still require human trial and
error to synthesize systems of interest.

We previously proposed a method for the automatic design of DNA logic gates
to synthesize small systems based on a DNA model without human trial and
error10). In that method, we defined a graph data structure to represent DNA
molecules and developed a simulator based on chemical kinetics. Although we
restricted the model of structures and introduced threshold to ignore unimportant
structures, the simulator still led to a combinatorial explosion of structures.

In this study, we abstract the model by focusing on the local structure of DNA
strands to overcome the explosion problem. The approach based on the local
structures is similar to the equilibrium computation for hybridization reaction
systems11) and the rule-based language for cellular signaling pathways12).

2. Graph Structure Modeling

In this section, we briefly explain how to model DNA by simple graph data
structures in our previous work10). Remaining parts after this section are based
on this graph model.

2.1 Structure
We modeled DNA molecule as a graph data structure to provide a compu-

tational model for systems composed of DNA10). For example, Fig. 1 shows
the application of the model to a DNA logic gate3) in a step-by-step manner.
Chemically, DNA is a sequence of nucleotides that can be specified by a string
of the four elemental bases ‘A’, ‘T’, ‘G’, and ‘C’. The duplex structure is formed
by hydrogen bonds between complementary base pairs in antiparallel directions
(leftmost in Fig. 1). Because the target system was a logic gate, we ignored in-
formation about the duplex and saved the directions of phosphate backbones by
representing a single DNA strand as an arrow and hydrogen bonds as connected
lines (second left in Fig. 1).
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Fig. 2 Reaction rules

We treated a reaction unit of bases as a segment, and a single DNA strand
was abstracted into a sequence of segments by allocating a letter to each segment
(second right in Fig. 1). We used lowercase and uppercase letters to represent
information about complementary relationships between segments. For example,
‘a’ is complementary to ‘A’.

Although many kinds of systems are designed using a similar modeling tech-
nique, we further abstracted this model as a graph data structure to simplify the
reaction rules. We regarded segments as nodes, hydrogen bonds as undirected
edges, and phosphate backbones as directed edges (rightmost in Fig. 1). We as-
sumed that one DNA structure corresponds to a connected graph and regarded
a disconnected graph as a set of DNA structures.

2.2 Reaction
After the DNA graph data structure is thus obtained, we defined three reac-

tion rules, namely, hybridization, denaturation, and branch migration (Fig. 2),
because many artificial DNA systems can be developed using only these three
simple mechanisms (such as3)–6)). Hybridization represents a reaction in which
antiparallel complementary base pairs bind together with hydrogen bonds. This
corresponds to adding a new undirected edge between nodes of uppercase and
lowercase letters (transition from the left to center in Fig. 2). Denaturation is
the inverse reaction in which hybridized complementary base pairs separate from
each other. This corresponds to erasing the undirected edge (transition from the
center to left in Fig. 2). Branch migration is a reaction in which an exchange of
hydrogen bonds occurs in a single molecule at the branching position of three hy-
bridized strands. This corresponds to transferring an undirected edge (transition
from the center to right in Fig. 2).

This data structure and the reaction model are sufficient to represent artificial

Fig. 3 HCR components in the graph model

Fig. 4 List of HCR structures

systems powered by DNA hybridization reactions.

3. Explosion Problem

The combinatorial explosion of molecules is a fundamental problem, especially
in simulations of molecular reaction systems including those inside a cell. For
example, an unbounded number of structures are produced by a hybridization
chain reaction (HCR) that causes a cascade of hybridization reactions triggered
by an initiator6). In an HCR, there are two hairpin DNA strands at the initial
condition of the system and one initiator strand that serves as input (Fig. 3).

By adding the initiator to the system, hybridization and branch migration
reactions occur alternately and the length of the structure grows unboundedly
because of the very large number of copies of hairpin strands (Fig. 4). The figure
lists the possible structures of the early stage of HCR using the DNA graph model
to illustrate the concept of unbounded growth.

Simulating this kind of system is impossible because of the requirement to
allocate an unbounded number of variables to each structure.
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Fig. 5 Local structures example

4. Abstraction by Local Structure

To avoid such unbounded numbers of structures, we introduce an abstraction
of the graph model by focusing on the local structure. Although the information
about the global structure is lost by the abstraction, using the simulator to design
DNA circuits is possible when the outputs are assumed to be single-stranded. The
abstraction is done by enumerating possible connecting states of single strands;
this is possible because the number of strands is limited even if the number of
structures is unbounded. At least 13 local structures of single strands exist for the
HCR reaction, as shown in Fig. 5. Note that each undirected line corresponding
to a hydrogen bond contains information about the segment to which it connects
but the information is omitted in the figure. By a calculation explained later,
the total number of local structures is 126, which means that a finite number is
obtained by enumerating local structures.

The concept of local structure is defined formally as follows. Assume that an
alphabet Σ and a set of single strands S ⊆ Σ∗ are given in advance, and the binary
relation X ⊆ Σ⊗Σ is also defined to represent the complementary relationships
of segments, where ⊗ represents a direct product of sets. By distinguishing all
segments of strands, we define the set of local segments G ⊆ S ⊗ N as

G = {(s, i) | s ∈ S, i ∈ N, i ≤ |s|} ,

where N denotes the set of all positive integers, and |s| denotes the length of s.
We define a function LETTER, which is a map from G to Σ such that for any
g = (s, i) ∈ G and s = a1 a2 a3 · · ·, LETTER(g) = ai holds. This function gives
the corresponding letter of a given local segment. As a consequence, the set of
local structures L ⊆ S ⊗ (G ∪ ϵ)∗ is defined as

L = {(s, g1 g2 · · · gn) | s = a1 a2 · · · an ∈ S,

either (ai, LETTER(gi)) ∈ X or gi = ϵ holds for all 1 ≤ i ≤ n} .

Note that we use ϵ as a symbol to represent unconnected segments, and sequence
of ϵ is allowed in g1 g2 · · ·. Thus, (s, g1 g2 · · · gn) corresponds to single-stranded
DNA if gi = ϵ holds for all 1 ≤ i ≤ n.

For example, modeling an HCR by the graph data structure gives sets
Σ = { ‘a’, ‘A’, ‘b’, ‘B’, ‘c’, ‘C’}
S = {“abcB”, “BAbC”, “BA”}

and the relation
(‘a’, ‘A’) ∈ X, (‘b’, ‘B’) ∈ X, · · · .

Local segments and local structures are defined as
G = {(“abcB”, 1), (“abcB”, 2), (“abcB”, 3), (“abcB”, 4), (“BAbC”, 1), · · ·}
L = {(“abcB”, ϵ ϵ ϵ ϵ), (“abcB”, ϵ(“BA”, 1) ϵ ϵ), (“abcB”, (“BA”, 2) ϵ ϵ ϵ), · · ·}.

Enumeration of local structures is performed by finding all possible l ∈ L. To
enumerate the total number of local structures from a given alphabet and strands,
we define functions SEGMENTS , COMPLEMENTS , and CONNECTIONS .
First, SEGMENTS is a map from S to 2G defined as

SEGMENTS (s) = {(s, 1), (s, 2), · · · , (s, |s|)},
which expresses all local segments in a given strand. Next, COMPLEMENTS is
a map from G to 2G defined as

COMPLEMENTS (g) = {g′ | (LETTER(g),LETTER(g′)) ∈ X}.
This finds all segments that are complementary to the given segment. Then,
CONNECTIONS is a map from S to N defined as

CONNECTIONS (s) =
∏

g∈SEGMENTS(s)

(|COMPLEMENTS (g)| + 1),

where |COMPLEMENTS (g)| denotes the cardinality of set COMPLEMENTS (g).
This calculates the number of all combinations of connections from a given strand.
Finally, the total number of local structures is calculated by the following expres-
sion ∑

s∈S

CONNECTIONS (s).
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5. Simulation

This modeling process makes simulation of the concentration changes possible
by solving the differential equation using numerical analysis. We defined two
kinds of deterministic simulations using either the original or abstracted models
of DNA structures. We refer to the simulator based on the original graph and
abstracted local model as the original simulator and local simulator, respectively.
If a user defines the initial configuration as a set of structures and their con-
centrations, the simulators return the calculation results and the user can trace
the concentration changes. These simulators perform the calculations in two
stages: enumerating structures that can be constructed from initial structures,
and analyzing the concentration changes numerically.

At the beginning of a simulation, the simulators enumerate whole structures
in a system to determine the number of variables and their relationships, where
each variable represents the concentration of the corresponding structure. The
total number of structures is determined by applying the three reaction rules to
the initial set of structures as shown in the HCR reaction example in the previous
section.

The original simulator enumerates possible graph structures with two restric-
tions. First, a structure cannot contain two or more identical single strands;
this prevents the combinatorial explosion of structures that contain a repeated
sub-structure. Second, structures that have a concentration less than 10−5 are
disregarded to ignore unimportant structures that may not be the main prod-
ucts of a simulation. To implement this feature, the original simulator generates
structures dynamically and checks whether the concentration of each structure
exceeds the threshold given in advance. More concretely, the period of a sim-
ulation is divided into intervals, and the simulator checks the concentration at
the beginning of each interval. The simulator then continues the rest of the sim-
ulation with the remaining structures whose concentration does not exceed the
threshold.

On the other hand, the local simulator enumerates all of the possible local
structures without restriction as explained in section 4.

After enumerating structures and reactions among them, the simulators as-

Fig. 6 Formalization for denaturation in
original simulation Fig. 7 Formalization for denaturation in

local simulation

sign variables to each structure and define differential equations using chemical
kinetics. The simulators formalize all three reactions. Fig. 6 and Fig. 7 show
schematic examples of the original and local simulators, respectively.

According to the reactions shown in the figures, differential equations for the
original simulation are

d

dt
C1 = −kdC1,

d

dt
C2 = kdC1,

d

dt
C3 = kdC1,

and differential equations for the local simulation are
d

dt
C4 = −kdR(C4C5),

d

dt
C5 = −kdR(C4C5),

d

dt
C6 = kdR(C4C5),

d

dt
C7 = kdR(C4C5),

where kd is the reaction rates for denaturation and C1, · · · , C7 are the variables
assigned to each structure as a concentration. Because many reactions occur
in a single simulation, each of d

dtC1, · · · is defined by summing up all of the re-
actions on which the corresponding structure depends. In the local simulation,
we introduce an arrangement (represented by the symbol R) in the differential
equations compared with ordinary chemical kinetics. This R is introduced to
emulate multi-molecular reactions as unimolecular reactions because denatura-
tion (especially denaturation reactions that separate multiple segments in a row)
and branch migration must be unimolecular reactions. This calculates the ratio
of concentration among all possible connections from reacting segments. Sup-
pose that Cl denotes the concentration of the local structure l, and function
CONNECTED is a map from G to 2L as
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CONNECTED(g) = {l | s ∈ S, g⃗ ∈ (G ∪ ϵ)∗, l = (s, g⃗) ∈ L, g appears in g⃗},
where “g appears in g⃗ ” means that g⃗ = g1 g2 · · · gn and g = gi holds for some
i. CONNECTED finds all local structures that are connected to the given local
segment. R(Cl1Cl2) for denaturation between the segments g1 of local structure
l1 and g2 of l2 is defined as

Cl1Cl2∑
l∈CONNECTED(g1)

Cl
or

Cl1Cl2∑
l∈CONNECTED(g2)

Cl
,

where the expressions are equivalent to each other.
The rate of each reaction is defined by rule of thumb, and the kinetics of hy-

bridization and branch migration are fixed. Only the kinetic velocity of denatu-
ration is calculated according to the information of segments that are separating.

6. Enumeration Efficiency

We have described two types of simulations for DNA reaction systems. The
efficiency of the two types of simulations was tested in terms of the number of
structures. As a benchmark, we generated a random system as a random sequence
of letters, which determines the set S. Note that the size of set Σ was fixed to 14
for all simulations. We first fixed a maximum size of S, and then we generated
and simulated 200 random systems to obtain the average and maximum numbers
of structures. After that, we took another maximum size in turn and repeated
the calculation for each maximum size. We tried 21 different sizes (whose values
were suitable for simulations), which range over the x-axis of Fig. 8 and Fig. 9.

The figures show the average and maximum number of structures produced by
four types of simulation: original simulation without threshold, local simulation,
original simulation with threshold, and stochastic simulation. Note that original
simulations with or without threshold impose the restriction on DNA structures
mentioned above. The x-axis of the figure corresponds to the maximum number
of local segments, which is the number of letters in S to generate a random
system. The y-axis of the figure corresponds to the number of structures for each
simulation.

The stochastic simulation was not explained above because it is not an integral
part of this research. Stochastic simulation is an algorithm for simulating discrete
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Fig. 8 Average number of structures
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Fig. 9 Maximum number of structures

chemical reaction systems using a statistical simulation method. This statistical
method simulates chemical reactions stochastically one by one according to the
distribution of possibility of each reaction. We actually implemented Gillespie’s
algorithm13) for this method.

Note that the results of original simulation with threshold and stochastic sim-
ulation are only shown as references in the figures. Direct comparison of the
results is not fair because the values for the original simulation with threshold
and the stochastic simulation depend on parameters such as threshold and copy
number.

As expected, the original simulation without threshold exhibited faster com-
binatorial explosion than the others because entire combinations of structures
were tested by the execution. Completion of the original simulation with a size
greater than 40 was impossible due to an out-of-memory error. The increase in
the number of structures in the local simulation seemed to be slower than that
of the original simulation without threshold because of the limit on the number
of local structures.

These results indicate that an appropriate model and simulation are necessary
for the efficient enumeration and simulation of DNA hybridization systems.

7. Discussion

A limit to designing very complex DNA systems lies in the combinatorial ex-
plosion problem of the DNA structures. This is critical because preventing the
combinatorial explosion by enumerating all of the possible structures is difficult
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where an unbounded number of structures can occur. Imposing a threshold or
artificial limitations on the model of structures did not eliminate the problem
and introduced the possibility of incorrect simulation.

A new approach to avoiding the combinatorial explosion was proposed that
focused on the local structure, and the efficiency of this approach was better
than the original model. The rapid increase in the number of structures was
reduced in the local simulation. Considering all of the possible local structures
in a simulation was possible because none of the structures were ignored as the
result of imposing an artificial threshold. The strongest aspect of the model was
the ability to express any kind of structure at the expense of losing some part of
the information, even in the case where unbounded structures were involved.

While the purpose of the related work11) was to theoretically compute equilib-
rium state of hybridization reaction system based on locality, we gave a concrete
simulator in this work that can trace the time change of concentration. Though
this work shares the basic idea with the related work12), we defined the local struc-
ture for our original purpose, which is to simulate DNA hybridization systems.
We actually showed that the local simulation was effective in enumeration of
structures and more precise than the original simulation with threshold. Because
the targets of our automatic design were gates that output single-stranded DNA,
the modeling using the local structure can be regarded as a novel abstraction
that serves our purpose.

8. Conclusion

DNA hybridization systems have been applied to a wide range of applications
including molecular robotics, nano-scale structures, and medication control. Be-
cause selecting combinations of molecules to achieve some desired functionality is
difficult for humans, we previously proposed an automatic design method using
an evolutionary computation. Modeling for molecules and reactions was de-
fined by regarding molecules as a graph data structure. Because the automatic
design method required efficient enumeration and simulation to avoid combina-
torial explosion, we abstracted the model to limit the number of structures by
enumeration, even if an unbounded number of structures can be constructed. On
the basis of this modeling technique, we developed a simulator and investigated

the efficiency in the enumeration of structures. Synthesis of large systems that
are more complex than human beings can design will be possible using this new
abstracted model.
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