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1 Introduction

Probabilistic model checking enjoys a rapid increase of interest from different
communities. Software tools such as PRISM [13] (with about 4,000 downloads),
MRMC [12], and LiQuor [2] support the verification of Markov chains or variants
thereof that exhibit nondeterminism. They have been applied to case studies
from areas such as randomised distributed algorithms, planning and AI, security,
communication protocols, biological process modeling, and quantum computing.
Probabilistic model checking engines have been integrated in existing tool chains
for widely used formalisms such as stochastic Petri nets [6], Statemate [5], and the
stochastic process algebra PEPA [11], and are used for a probabilistic extension
of Promela [2].

The typical kind of properties that can be checked is time-bounded reach-
ability properties—“Does the probability to reach a certain set of goal states
(by avoiding bad states) within a maximal time span exceed 1

2?”—and long-run
averages—“In equilibrium, does the likelihood to leak confidential information
remain below 10−4?” Extensions for cost-based models allow for checking more
involved properties that refer to e. g., the expected cumulated cost or the in-
stantaneous cost rate of computations. Intricate combinations of numerical or
simulation techniques for Markov chains, optimisation algorithms, and tradi-
tional LTL or CTL model-checking algorithms result in simple, yet very efficient
verification procedures. Verifying time-bounded reachability properties on mod-
els of tens of millions of states usually is a matter of seconds.

Like in the traditional setting, probabilistic model checking suffers from the
state space explosion problem: the number of states grows exponentially in the
number of system components and cardinality of data domains. To combat this
problem, various techniques from traditional model checking have been adopted
such as binary decision diagrams (multi-terminal BDDs) [10], partial-order re-
duction [8] and abstract interpretation [14]. We will focus on bisimulation min-
imisation for fully probabilistic models such as discrete-time and continuous-time
Markov chains (DTMCs and CTMCs, for short), and variants thereof with costs.
They are an important class of stochastic processes that are widely used in prac-
tice to determine system performance and dependability characteristics.

We first study the comparative semantics of branching-time relations for fully
probabilistic systems. Strong and weak (bi)simulation relations are covered to-
gether with their characterisation in terms of probabilistic and continuous-time
variants of CTL, viz. the temporal logics PCTL [9] and CSL[1,3]. PCTL is a
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discrete-probabilistic variant of CTL in which existential and universal path
quantification have been replaced by a probabilistic path operator. CSL in-
cludes in addition means to impose time-bounds on (constrained) reachabil-
ity problems. For instance, it allows one to stipulate that the probability of
reaching a certain set of goal-states within a specified real-valued time bound,
provided that all paths to these states obey certain properties, is at least/at
most some probability value. The result of this study [4] is an overview of weak
and strong (bi)simulations relations, including connections between discrete- and
continuous-time relations.

In particular, strong probabilistic bisimulation preserves the validity of PCTL
and CSL formulas. It implies ordinary lumpability, an aggregation technique for
Markov chains that is omnipresent in performance and dependability evalua-
tion since the 1960s. Quotient Markov chains can be obtained in a fully auto-
mated way. The time complexity of quotienting is logarithmic in the number
of states, and linear in the number of transitions—as for traditional bisimu-
lation minimisation—when using splay trees (a specific kind of balanced tree)
for storing blocks [7]. Experimental results show that—as for traditional model
checking—enormous state space reductions (up to logarithmic savings) may be
obtained. In contrast to traditional model checking, in many cases, the verifi-
cation time of the original Markov chain exceeds the quotienting time plus the
verification time of the bisimulation quotient. This effect is stronger for bisimu-
lations that are tailored to the property to be checked and applies to PCTL as
well as CSL model checking.

Finally, we present a more aggressive abstraction technique for DTMCs and
CTMCs that uses a three-valued interpretation, i.e., a formula evaluates to ei-
ther true, false or indefinite. Abstract DTMCs, in fact Markov decision processes
(MDPs), are obtained by replacing transition probabilities by intervals where
lower and upper bounds act as under- and over-approximation, respectively. For
CTMCs, we resort to uniform CTMCs, i.e., CTMCs in which all states have equal
residence times and use transition probability intervals. Any CTMC can be effi-
ciently turned into a weak-bisimilar uniform CTMC. Abstraction then amounts
to just replace probabilistic transitions by intervals, and model checking can be
reduced to determining (constrained) time-bounded reachability probabilities
in continuous-time MDPs. This abstraction is conservative for affirmative and
negative verification results and allows to perform abstraction on models where
bisimulation fails.
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