
781

Abstraction Pathologies in Extensive Games

Kevin Waugh, David Schnizlein, Michael Bowling, Duane Szafron
{waugh, schnizle, bowling, duane}@cs.ualberta.ca

Department of Computing Science
University of Alberta

Edmonton, AB, Canada T6G 2E8

ABSTRACT

Extensive games can be used to model many scenarios in
which multiple agents interact with an environment. There
has been considerable recent research on finding strong strate-
gies in very large, zero-sum extensive games. The standard
approach in such work is to employ abstraction techniques
to derive a more tractably sized game. An extensive game
solver is then employed to compute an equilibrium in that
abstract game, and the resulting strategy is presumed to be
strong in the full game. Progress in this line of research
has focused on solving larger abstract games, which more
closely resemble the full game. However, there is an un-
derlying assumption that by abstracting less, and solving a
larger game, an agent will have a stronger strategy in the
full game. In this work we show that this assumption is not
true in general. Refining an abstraction can actually lead to
a weaker strategy. We show examples of these abstraction
pathologies in a small game of poker that can be analyzed
exactly. These examples show that pathologies arise when
abstracting both chance nodes as well as a player’s actions.
In summary, this paper shows that the standard approach
to finding strong strategies for large extensive games rests
on shaky ground.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence] Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Economics, Reliability

Keywords

Abstraction, Game Theory, Equilibrium, Pathologies

1. INTRODUCTION
Extensive games provide a general model of strategic in-

teraction between multiple agents. They can be used to
describe sequential decision-making scenarios even in set-
tings of imperfect information. They are a generalization of
finite-horizon Markov decision processes to multiple agents,

Cite as: Title, Author(s), Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

normal-form games to sequential actions, and standard search
game trees (e.g., games like go and chess) to imperfect in-
formation. As such they have the capacity to model a broad
range of interesting strategic decision-making scenarios.

Extensive games have received considerable attention re-
cently as the natural model for decision-making in poker.
In fact, this research on artificial intelligence in poker has
driven substantial algorithmic advancements in solving zero-
sum extensive games. The traditional linear programming
technique of Koller and Pfeffer [8] was unrivaled for over a
decade, and could be used to solve games with 108 game
states. In the past three years, a number of competing tech-
niques have been developed by competitors in the AAAI
Computer Poker Competitions [15], with some now able to
solve games with about 1012 game states [14, 3]. Work has
also started on games with more than two players [2].

While algorithmic advances have made it possible to solve
very large extensive games, the smallest variants of poker
still have many more states (two-player, limit Texas Hold’em
has approximately 1018 game states [1]). The standard ap-
proach to this problem is to use abstraction [1]. The idea
is to construct a tractably sized game that abstracts (less
important) details of the players’ information at each deci-
sion. This game is constructed to be small enough that a
near equilibrium solution can be found tractably, and this
solution will hopefully perform well in the full game. The al-
gorithmic advances in solving large extensive games allow for
finer and finer abstractions. These finer abstractions result
in bigger abstract games, and presumably stronger strate-
gies than the strategies found using coarser abstractions.

In this paper, we examine the effect of abstraction on the
strength of the resulting abstract game solution. In par-
ticular, we examine the key presumption of the previous
paragraph that finer abstractions will make the resulting
strategy stronger in the full game. Our conclusion is that
this presumption is not true in general. We, in fact, show a
variety of abstraction pathologies: examples where refining
an abstraction can result in a weaker strategy in the full
game. These counterexamples are all in a small poker vari-
ant with only six cards, which allows us to compute exact
measurements of a strategy’s strength. The pathologies are
also not limited to abstractions involving only chance nodes
(common to all poker abstractions) or only players’ actions
(common to abstractions in no-limit variants).

2. BACKGROUND
We begin by formalizing the concepts of an extensive game,

the Nash equilibrium solution concept, and abstraction.

Cite as: Abstraction Pathologies in Extensive Games, Kevin Waugh,
David Schnizlein, Michael Bowling, Duane Szafron, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 781 – 788
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

782

2.1 Extensive Games
Extensive games are a useful tool for modeling environ-

ments with multiple agents. Players (and chance) alternate
taking actions until a terminal history is reached, and the
resulting utility to each of the players is determined by this
final history. However, players may not be able to com-
pletely observe the actual choices of the other players or
chance. This allows for scenarios where two distinct histo-
ries of actions may not be distinguishable by the next player
to act, creating a game of imperfect information.

Formally, we can define an extensive game as follows.

Definition 1 (Extensive Game). [10, p. 200] A fi-
nite extensive game with imperfect information is denoted Γ
and has the following components:

• A finite set N of players.

• A finite set H of sequences, the possible histories of
actions, such that the empty sequence is in H and ev-
ery prefix of a sequence in H is also in H. Z ⊆ H is the
set of terminal histories. A(h) = {a : (h, a) ∈ H}
are the actions available after a non-terminal history
h ∈ H \ Z.

• A player function P that assigns to each non-terminal
history a member of N∪{c}, where c represents chance.
P (h) is the player who takes an action after the his-
tory h. If P (h) = c, then chance determines the action
taken after history h. Let Hi be the set of histories
where player i chooses the next action.

• A function fc that associates with every history h for
which P (h) = c a probability measure fc(·|h) on A(h).
fc(a|h) is the probability that a occurs given h, where
each such probability measure is independent of every
other such measure.

• For each player i ∈ N , a partition Ii of Hi called the
information partition of player i; a set Ii ∈ Ii is an
information set of player i. For every h, h′ ∈ Ii, we
require that A(h) = A(h′).

• For each player i ∈ N , a utility function ui that
assigns each terminal history a real value. ui(z) is
rewarded to player i for reaching terminal history z. If
N = {1, 2} and for all z, u1(z) = −u2(z), an extensive
form game is said to be zero-sum.

Histories in the same information set are indistinguishable
to the player making the decision. This results in some infor-
mation partitions that force odd and unrealistic situations
on a player where they are forced to forget their own past
histories or decisions. If all players can recall their previous
actions with the corresponding information sets, the game
is said to be one of perfect recall. This work will focus on
finite, zero-sum extensive games with perfect recall.

A strategy for player i, σi, in an extensive game, Γ, is
a function that assigns a probability distribution over A(h)
to each h ∈ Hi, where σi(h) = σi(h

′) for all h and h′ in
the same information set. That is, a strategy must give the
same distribution over actions to all histories in the same
information set. If player i is following σi, then whenever a
history h is reached where P (h) = i, player i samples from
σi(h) to choose its action. We let Σi be the set of possible
strategies for player i. A strategy profile, σ, consists of
a strategy for each player, σ1, . . . , σn, with σ−i referring to
all the strategies in σ except σi. We define ui(σ) to be the

expected reward for player i when all players play according
to σ. Abusing notion, we let ui(σ1, σ2) = ui({σ1, σ2}) and
ui(σ−i, σ

′
i) = ui(σ−i ∪ {σ′i}).

2.2 Best Response and Nash Equilibria
If player i knows the strategies of the other players, then it

can compute a utility maximizing response. Given σ−i, we
say player i’s best response is any strategy that maximizes

bi(σ−i) = max
σ′

i∈Σi

ui(σ−i, σ
′
i), (1)

where bi(σ−i) is called the best response value to σ−i. If the
other player’s strategies are not known, one usually appeals
to the Nash equilibrium solution concept.

Definition 2 (Nash Equilibrium). A Nash equilib-
rium is a strategy profile σ where for all players

ui(σ) = bi(σ−i) (2)

An approximation of a Nash equilibrium or ε-Nash equi-
librium is a strategy profile σ where for all players

ui(σ) + ε ≥ bi(σ−i) (3)

If σ is a Nash equilibrium, then every player is playing a
best response to σ−i and therefore no player can benefit by
deviating its strategy from σ. At an ε-equilibrium, no player
can benefit more than ε by deviating from σ. All finite games
have at least one Nash equilibrium. In the case of zero-
sum extensive games with perfect recall there are efficient
techniques for computing an ε-Nash equilibrium, such as
linear programming [8], the excessive gap technique [3], and
counterfactual regret minimization [14]. To clarify, when
we talk of an equilibrium, we are referring to the strategy
profile. When we talk of an equilibrium strategy, we are
referring to a strategy belonging to an equilibrium.

An equilibrium strategy in a zero-sum game maximizes
the agent’s worst case utility over the possible strategies of
its opponent. This can also be thought of as minimizing the
best case loss of the agent. Mathematically, this equivalence
is stated in the Minimax Theorem [9].

Theorem 1 (Minimax Theorem). For any zero-sum
extensive game Γ, we have

v∗ = max
σ1∈Σ1

min
σ2∈Σ2

u1(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u1(σ1, σ2) (4)

where v∗ is the value of Γ for player 1.

As a corollary we have for all equilibrium σ and all σ′1 ∈ Σ1,
σ′2 ∈ Σ2

v∗ = b1(σ2) ≤ u1(σ1, σ
′
2), and (5)

−v∗ = b2(σ1) ≤ u2(σ2, σ
′
1) (6)

An equilibrium strategy is guaranteed to obtain at least
the zero-sum game’s value for player i. An approximate
equilibrium strategy can be evaluated by how far from this
value an opponent can shift the game. We call this difference
a strategy’s exploitability.

Definition 3. We define the exploitability of player i
for a strategy σi, written εi(σi), as

ε1(σ1) = b2(σ1) + v∗, and (7)

ε2(σ2) = b1(σ2) − v∗ (8)

Kevin Waugh, David Schnizlein, Michael Bowling, Duane Szafron • Abstraction Pathologies in Extensive Games

783

Exploitability measures how much an opponent who knows
σi can benefit by player i’s failure to play an equilibrium
strategy. It is a worst case bound on the quality of a strategy.
This makes exploitability the natural metric for evaluating
any technique whose goal is to compute a strong strategy
with no knowledge of how an opponent might play. Note
that for all σi, εi(σi) ≥ 0 and for all equilibria σ∗, εi(σ

∗
i) = 0.

2.3 Game Abstraction
The goal of this paper is to evaluate the use of abstrac-

tion to turn intractably large extensive games into smaller,
tractably sized games. In particular, how does abstraction
affect the quality of the resulting strategies in the full game?
There are two obvious methods for creating a smaller game
from a larger one. First, we can merge information sets to-
gether. Second, we can restrict the actions a player can take
from a history. We can also do a combination of these two
methods.

Definition 4 (Abstraction). An abstraction for
player i is a pair αi =

˙
αIi , αA

i

¸
, where,

• αIi is a partitioning of Hi, defining a set of abstract
information sets that must be coarser1 than Ii, and

• αA
i is a function on histories where αA

i (h) ⊆ A(h) and
αA

i (h) = αA
i (h′) for all histories h and h′ in the same

abstract information set. We will call this the abstract
action set.

The null abstraction for player i, is φi = 〈Ii, A〉. An ab-
straction α is a set of abstractions αi, one for each player.
Finally, for any abstraction α, the abstract game, Γα, is
the extensive game obtained from Γ by replacing Ii with αIi
and A(h) with αA

i (h) when P (h) = i, for all i.2

Strategies for abstract games are defined in the same man-
ner as for unabstracted games, but the function must assign
the same distribution to all histories in the abstraction in-
formation set, and assign zero probability to actions not in
the abstract action set. We will use the notation Σα

i to refer
to the set of strategies for player i in the abstract game Γα.

3. MONOTONICITY
As we have discussed, the traditional approach for finding

good strategies in very large zero-sum extensive games is
to use abstraction. Given limited resources, an abstraction
is identified (by hand or automatically) such that solving
the resulting abstract game is tractable. As more resources
become available or solvers become more efficient, the ab-
straction can be further refined, resulting in larger abstract
games. The presumption of this approach is that since the
refined game is more representative of the full game, a Nash
equilibrium in this refined game would be closer to equilib-
rium in the full game. In other words, refining an abstraction
leads to monotonic improvement in strategy quality.

1Recall that partition A is coarser than partition B, if and
only if every set in B is a subset of some set in A, or equiva-
lently x and y are in the same set in A if x and y are in the
same set in B.
2As discussed earlier some partitions of information can re-
sult in situations where a player is forced to forget their own
past decisions. This paper only considers abstractions that
result in an abstract game with perfect recall.

The dramatic advancements that have come out of the
AAAI Poker Competitions, suggests this may be true. In
the first year of the event, teams used linear programming
techniques to solve small games, containing only a subset
of the betting rounds [1, 4]. These small abstract games
were then pieced together to create an overall poker strat-
egy. In the following years, new equilibrium solving tech-
niques were introduced and teams were able to solve a sin-
gle abstract game to find a complete strategy [3, 13, 14].
In the following year, further enhancements were made to
solve even larger abstract games, with as many as 1012 game
states. Each year, (roughly speaking) solving the largest ab-
stract game has won the competition. Hence, a strategy of
merely building and solving the largest possible (carefully
constructed) abstracted games has been employed by the
top teams, with the presumption that this will monotoni-
cally lead to stronger poker strategies. In fact, the success
of this approach in the competition is evidence that the basic
presumption may be true.

In this section, we formalize this monotonicity assumption
of abstraction. We present a definition for refining abstrac-
tions and then state a number of possible strong and weak
monotonicity properties that may hold. Unfortunately, ev-
ery useful form of this property does not hold in general. In
the next section, we give counterexamples, showing even in
a small poker game that a plethora of non-monotonicities in
abstractions can exist.

We begin by defining a notion of abstraction refinement.

Definition 5 (Refinement). Let αi and βi be abstrac-
tions for player i. We say αi refines βi, written αi
 βi if
and only if βIi is coarser than αIi and αA

i (h) ⊇ βA
i (h) for all

h ∈ Hi. If αi
 βi and βi
 αi then we say αi and βi are
equivalent, written αi ≡ βi. In addition, we say α refines
β, or α
 β, if and only if αi
 βi for all i.

A refinement, therefore, allows the player’s decisions to be
contingent on all the same information (and possibly more).
A refinement also allows a player to make all of the same
choices (and possibly more). As a result, a strict refinement
necessarily gives the player more available strategies.

Theorem 2. If α
 β then for all i, Σα
i ⊇ Σβ

i .

Proof. Suppose σi ∈ Σβ
i . For any h and h′ in the same

abstract information set of αi, they must also be in the same
abstract information set of βi since βIi is coarser than αIi .
Therefore σi(h) = σi(h

′). Furthermore, since σi(h) defines
a distribution over βA

i (h) it also defines a distribution over
the superset αA

i (h). Thus σi ∈ Σα
i .

One might presume that more available strategies would
mean better strategies would be found. However, solving
games does not mean finding the best strategy from the
available set, but rather finding a pair of strategies, one for
each player, that are in equilibrium. The abstraction for
each player matters. Again, one might presume that giv-
ing more available strategies to all players would result in a
strategy that is closer to equilibrium in the full game. We
can state these presumptions formally, using our notion of
exploitability, εi(σi), as the quantitative value for how far
σi is from an equilibrium strategy.

Property 1 (Monotonicity). Let α and β be abstrac-
tions, where α
 β.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

784

(a) Strong Monotonicity for player i: If σα and σβ are
Nash equilibria for Γα and Γβ (respectively), εi(σ

α
i) ≤

εi(σ
β
i).

(b) Weak Monotonicity for player i: Let Σα,∗ and
Σβ,∗ be the set of all Nash equilibria for Γα and Γβ

(respectively), minσ∈Σα,∗ εi(σi) ≤ minσ∈Σβ,∗ εi(σi).

If the (strong or weak) monotonicity property for player i
holds only if α−i ≡ β−i (i.e., we only refine the player’s
abstraction), then we call it player monotonic. If it only
holds if αi ≡ βi (i.e., we only refine the opponent’s abstrac-
tion) then we call it opponent monotonic.

Strong monotonicity requires that every equilibrium strat-
egy in the finer abstract game be less exploitable than every
equilibrium strategy in the coarser abstract game. This is
the most hopeful property, and the one that is presumed
by work that seeks to use larger and larger abstractions
(since most game solvers make no claims about the equi-
libria they find or approximate). Extensive games, though,
may have many equilibria, and some of these may be closer
to optimal in the full game than others. Weak monotonicity
states that the best equilibrium strategy in the finer abstract
game is less exploitable than the best equilibrium strategy
in the coarser abstract game. Player and opponent (weak
and strong) monotonicity are weaker monotonicity proper-
ties that refer to when a refinement only affects the player’s
or opponent’s abstraction, respectively.

Unfortunately, none of these monotonicity properties hold
in general. We show specific counterexamples of all of them
in the next two sections. However, before moving on to
these counterexamples, there is one condition under which
we can prove monotonicity does hold. If we use an abstrac-
tion where the opponent plays in the null abstraction (i.e.,
the full game), then we see monotonicity in the player’s ab-
straction.

Theorem 3. Let α and β be abstractions where α
 β
and α2 ≡ β2 ≡ φ2. If σα and σβ are Nash equilibria for Γα

and Γβ, respectively, then ε1(σ
α
1) ≤ ε1(σ

β
1).

Proof. We use the definition of ε1 (steps 9 and 12) and the
Minimax Theorem (steps 10 and 12), plus the fact that a
maximum over a set is no larger than the maximum over a
superset (step 11) to prove this theorem.

v∗ − ε1(σ
α
1) = min

σ2∈Σ2
u1(σ

α
1 , σ2) (9)

= max
σ1∈Σα

1

min
σ2∈Σ2

u1(σ1, σ2) (10)

≥ max
σ1∈Σ

β
1

min
σ2∈Σ2

u1(σ1, σ2) (11)

= min
σ2∈Σ2

u1(σ
β
1 , σ2) = v∗ − ε1(σ

β
1). (12)

Removing v∗ followed by negating the sides of the inequality
and flipping the ≥ to ≤ gives us our result.

Unfortunately, unless there is considerable asymmetry in
the number of choices available to the two players, solving
a game where even one player operates in the null abstrac-
tion is typically infeasible. This is certainly true in the large
poker games that have been examined recently in the liter-
ature. Although the result gives some insight as to when
abstraction is safe, it does not give a foundation for the
practical use of abstraction.

4. COUNTEREXAMPLES
In this section we present counterexamples to the mono-

tonicity property. We performed several tests on different
types of abstractions in a small poker variant. In these
tests, we focus on the first player and look at abstracting
both its view and its opponent’s view. After abstraction,
we solve the resulting abstract game and then calculate the
best response value to the player’s strategy in the full game.
Finally, the value of the full game (which is non-zero due to
a positional advantage for player two) is removed from this
value to obtain the exploitability of the player’s strategy.
To reiterate, these experiments can only be performed in a
game small enough that we can solve it exactly.

4.1 Leduc Hold’em
Texas Hold’em games, which are the focus of much of

the recent research, are too large to feasibly compute the
exploitability of a strategy. As a consequence, we chose to
use a smaller poker game called Leduc Hold’em [11] for our
experiments. In this game the deck contains two Kings, two
Queens and two Jacks. Each player initially pays one chip
to the pot, called an ante, and is dealt a single private card.
After a round of betting, a community card is dealt face
up. After a subsequent round of betting, if neither player
has folded, both players reveal their private cards. If either
player pairs their card with the community card they win
the chips in the pot. Otherwise, the player with the highest
private card is the winner. In the event both players have
the same private card, they draw and split the chips in the
pot.

Each betting round starts with player 1’s action. Player
1 may check or bet. Actions then alternate between the two
players. When facing a bet, a player can fold, call or raise.
Folding forfeits the chips in the pot to the opponent and
the hand ends. Calling requires the player to match the bet
faced and the betting round ends. Raising requires a player
to put more chips into the pot than the current bet faced.
The opponent must then respond with an action of its own.
If player 1’s first action is a check, then player 2 has the
option of checking to end the betting round.

In limit Leduc Hold’em the total number of bets and raises
in a round is not allowed to exceed two. Furthermore, each
bet in the first round is fixed to be two chips. The subse-
quent betting round has a fixed size of four chips. In no-limit
Leduc Hold’em a player may bet or raise any amount of his
remaining chips. A raise is only valid if it is at least the size
of the preceding bet or raise on the same round. There is
no limit on the number of times a player may bet or raise
other than the number of chips remaining in their stack.

For our experiments, we report the exploitability of a
strategy in millibets per hand (mb/h). This reflects how
much a player is expected to lose per hand in the worst case.
A millibet is one thousandth of a small bet, which in limit is
two chips and in no-limit is one chip. Equilibrium strategies
were computed with CPLEX using a sequence form repre-
sentation [8]. Though there exists many equilibrium strate-
gies, we only computed a single strategy for each abstract
game. Since Leduc Hold’em is such a small game, we can
compute exploitability exactly. That is, the exploitability
numbers for the computed strategies have no variance as
sampling was not required. Some error is derived from the
actual equilibrium calculations, which is on the order of 10−5

mb/h or smaller.

Kevin Waugh, David Schnizlein, Michael Bowling, Duane Szafron • Abstraction Pathologies in Extensive Games

785

Abstraction Exploitability
FULL-FULL 0.0
J.Q.K-FULL 55.2
JQ.K-FULL 69.0
J.QK-FULL 126.3
JQK-FULL 219.3
JQ.K-JQ.K 272.2
JQ.K-J.Q.K 274.1
FULL-J.QK 345.7
FULL-JQ.K 348.9
J.Q.K-J.Q.K 359.9
J.Q.K-JQ.K 401.3
J.QK-J.QK 440.6
FULL-JQK 459.5
FULL-J.Q.K 491.0
JQK-JQK 755.8

Table 1: Exploitability of various limit Leduc
Hold’em strategies in millibets/hand (mb/h)

4.2 Card Abstraction
The first example we examine involves abstracting the

cards in limit Leduc Hold’em. Card abstraction is typically
done by grouping together hands of similar strength or distri-
bution over future strengths. In the abstract game an agent
cannot distinguish between the hands in a group. The intu-
ition is that hands of similar current or future strength can
be played with a similar strategy. Grouping hands in this
fashion requires a strength metric, typically placing some
weight on the expected probability of winning at a show-
down as well as on the variance of this probability. When
using this method to abstract cards, the size of the abstract
game is determined by the size of each hand group.

Johanson [7] describes a method for creating abstractions
using a metric called hand strength squared, which creates
roughly equal sized groups based on a metric that incorpo-
rates both the expectation and variance of future strength.
A method by Gilpin et al. [5] uses a bottom-up approach to
create a potential-aware abstraction. This method works by
clustering the terminal nodes and then repeatedly clustering
earlier rounds based upon distances between distributions
over future clusters. Both of these methods have proven to
be effective in poker competitions.

Limit Leduc Hold’em.
For our experiments in Leduc Hold’em, we start by ab-

stracting the initial deal of the private card. For example,
normally the player can separate their private card into King
(K), Queen (Q), or Jack (J). One abstracted view is that the
private card is either a King (K) or not a King (JQ). Simi-
larly, an abstracted view of the community card is either the
private card was paired (pair), or it was not (nopair). The
abstractions we used in our experiment are FULL, J.Q.K/-
pair.nopair, JQ.K/pair.nopair, J.QK/pair.nopair, and JQK/-
pair.nopair. Here, FULL denotes the null abstraction, while
periods between the cards separate information sets. For
simplicity’s sake, we drop pair.nopair from the description
of the abstractions as it does not add ambiguity. Note that
J.Q.K refines both JQ.K and J.QK, both of which refine
JQK. A subset of the results of this experiment are displayed
in Table 1. The abstraction name in this table describes the
abstraction used by the player followed by a “-” and the
abstraction used by the opponent.

As is required by Theorem 3, monotonicity holds when our

opponent uses the FULL abstraction. However, there are
several examples where monotonicity fails to hold when our
opponent is abstracted. For instance, JQ.K-JQ.K is only ex-
ploitable by 272.2 mb/h whereas JQ.K-J.Q.K is exploitable
by 274.1 mb/h. In turn, this strategy is even less exploitable
than the one for J.Q.K-J.Q.K, which is exploitable by 359.9
mb/h. These are explicit counterexamples to both strong
player monotonicity and strong opponent monotonicity. In
other words, refining the card abstractions for both players,
as is classically done for competitions, can produce a more
exploitable strategy.

4.3 Betting Abstraction
The second example we examine involves abstracting bet-

ting options in no-limit Leduc Hold’em. Betting abstraction
is typically done by restricting the number of betting options
from each history. Each additional option has an exponen-
tial effect on the size of the game, so often only two or three
options are available. A pot sized bet and an all-in bet are
frequently among the ones chosen. When using the abstract
strategy to play in the full game, an agent must translate
the size of the bets in the game to and from actions in the
abstract game. For example, if an opponent bets five chips
when four chips were in the pot, the agent would likely trans-
late this bet to a pot bet, or four chips. This translation can
be particularly troublesome as an opponent can make awk-
ward sized bets that do not map well to the abstract game.
These bets distort the agent’s belief of the number of chips
in the pot and can lead to poor decision making.

Gilpin and colleagues [6] describe the action abstraction
and translation for their no-limit agent used in the 2007
AAAI Computer Poker Competition. The main concept is
that if our opponent makes a bet of size b that we do not
understand, we compare that size to the surrounding bet
sizes we do understand, for instance a and c, and translate
it to the closest one. If a < b < c then we define the closer
size to be whichever ratio of b

a
, c

b
is smallest. This allows us

to play an abstract strategy in the full game.
Unlike a true no-limit game where each betting option is

some number of chips, the betting options in our game are
measured in terms of pot-fractions. Thus, a 50% pot bet
would allow us to bet 50% of the current pot size. The
exception to this is the all-in option, which allows a player
to bet all of their remaining chips.

No-Limit Leduc Hold’em.
In the game we created, each player starts with 12 chips

and is allowed 12 different pot-fraction bets which range
from 25% pot to all-in. In the abstract games, each player
has up to four betting options. These options are 50% pot
(h), 100% pot (p), 200% pot (d) and all-in (a). Different
abstractions are created by disallowing one or more of h, p,
and d. When h or d are disallowed, any bets that would
have been translated to them are instead translated to a
p bet. Similarly, if p is also disallowed then all bets are
translated to a. This ensures that an abstraction with more
bets, like hpda, is a proper refinement of an abstraction with
fewer bets, like pda. Note that this is not the translation
described by Gilpin et al. as their technique may not refine
an abstraction with the addition of new betting choices. The
betting abstractions we use are FULL, hpda, hpa, pda, pa,
and a. A subset of the results are displayed in Table 2.

Again, we see that when our opponent uses the FULL

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

786

Abstraction Exploitability
FULL-FULL 0.0
hpda-FULL 0.4
pda-FULL 0.4
hpa-FULL 2.8
pa-FULL 2.8
a-FULL 5.7
hpda-hpda 94.0
FULL-hpda 103.2
a-hpda 116.8
pda-hpda 118.5
hpa-hpda 135.2
pa-hpda 138.3
hpa-hpa 185.4
pa-hpa 185.8
pda-hpa 190.4
FULL-hpa 193.7
a-a 238.0
pa-a 246.2
FULL-a 247.7
pda-pda 255.4
FULL-pda 276.1
pa-pa 373.3
FULL-pa 390.4

Table 2: Exploitability of various no-limit Leduc
Hold’em strategies in millibets/hand (mb/h)

abstraction that the exploitability of our various abstrac-
tions are ordered correctly. We also see that this ordering
breaks as soon as our opponent is abstracted. One example
is that a-a is only 238.0 mb/h exploitable while pa-a is 246.2
mb/h exploitable. Similarly, pa-pa is even more exploitable
at 373.3 mb/h. Again, these are counterexamples to strong
player and strong opponent monotonicity. In other words,
giving the player or the opponent more actions can result in
a more exploitable strategy.

5. QUALITY OF ABSTRACT EQUILIBRIA
As alluded to earlier, not all abstract equilibrium strate-

gies are equivalent in terms of exploitability in the full game.
Strong monotonicity requires all equilibria in a finer abstrac-
tion to be stronger than all equilibria in a coarser abstrac-
tion. However, maybe some equilibria are weaker, while
some equilibria are stronger. This is the premise of our weak
monotonicity property. In this section we look into the best
equilibrium for a particular abstraction, which first requires
some new algorithmic development.

We begin by introducing sequence form, which is a com-
pact representation of a zero-sum extensive game. A game
in sequence form is described by the following components:

• An m by n payoff matrix A. We call the row player
x and the column player y. Entry (i, j) of A is the
reward for player x if x plays sequence form action i
and y plays sequence form action j.

• A constraint matrix E and vector e. We say x is a
valid sequence form strategy if Ex = e and x ≥ 0.

• A constraint matrix F and vector f . This pair is the
analog of E and e for player y.

Given a sequence form game and a strategy x, one can
compute by(x), y’s best response value to x, with the fol-
lowing linear program:

by(x) = min
u

uT f subject to uT F ≥ −xT A (13)

Following the best response linear program, we can derive a
linear program for computing a Nash equilibrium strategy
for x as:

by(x∗) = min
u,x

uT f subject to uT F ≥ −xT A

Ex = e x ≥ 0 (14)

For more information about sequence form refer to Efficient
Computation of Behavior Strategies [12].

We can efficiently find the best abstract equilibrium strat-
egy using the following linear program:

min
u,v,x

vT g subject to vT G ≥ −xT B uT F ≥ −xT A

uT f = t∗ Ex = e x ≥ 0 (15)

Here (A, E, e, F, f) is the sequence form description of Γα

and (B, E, e, G, g) is the sequence form description of a new
game Γβ . In Γβ , β1 ≡ α1 and β2 ≡ φ. t∗ is the value of Γα.

Theorem 4. Any x∗ that is part of an optimal solution
to (15) is an equilibrium strategy in Γα and no other equi-
librium strategy of Γα is less exploitable in Γ.

Proof. Let (u∗, v∗, x∗) be an optimal solution to (15). Clearly,
(u∗, x∗) is a feasible point of (14) as the constraints of (14)
are a subset of the constraints of (15). Furthermore, this
point is optimal as (14) has optimal value t∗ and the ob-
jective function, uT g, is constrained in (15) to meet this
condition. This implies x∗ is an equilibrium strategy of Γα.
Let x0 be any equilibrium strategy of Γα. We can find u0

and v0 using (13) in Γα and Γ respectively. This implies
(u0, v0, x0) is a feasible point of (15). We note that if we
only let v vary in (15) it is equivalent to (13) and therefore
the value at (u0, v0, x0) is by(x0). Finally, the value of (15)
at a feasible point must be no less than the value at an op-
timal point. Therefore, by(x∗) ≤ by(x0), which implies x0

can be no less exploitable than x∗. We note that the best
response values in this proof are in Γβ , but since our oppo-
nent’s abstraction is φ, these best response values are the
same as in Γ.

Unfortunately solving (15) requires as much work as solv-
ing Γβ , which involves a full representation of one player’s
strategy space. However, we can still use this approach to
examine abstractions in small games, allowing us to explore
the weak monotonicity property. Solving for the worst case
equilibrium strategy, although interesting, does not appear
to be tractable for even small games. Therefore, we do not
examine it in this work.

5.1 Best Equilibria using Card Abstraction
Though we cannot tractably compute the best equilibrium

strategies in many games we are interested in, we can ex-
amine them in Leduc Hold’em. In Table 3 we show a subset
of the results of an experiment, which uses the same card
abstractions from our first limit experiment. A new column
is added to Table 1, which refers to the exploitability of the
best equilibrium strategy.

We find that even when we use the best equilibrium that
we still see counterexamples to monotonicity. The exploitabil-
ity of the best equilibrium strategy in the J.Q.K-J.Q.K ab-
stract game is 358.6 mb/h, whereas the best equilibrium
for JQ.K-J.Q.K is only exploitable by 78.8 mb/h, violating

Kevin Waugh, David Schnizlein, Michael Bowling, Duane Szafron • Abstraction Pathologies in Extensive Games

787

Abstraction Exploitability Exploitability
(Best)

FULL-FULL 0.0 0.0
FULL-J.Q.K 491.0 1.7
FULL-JQK 459.5 10.1
FULL-J.QK 345.7 45.3
J.Q.K-FULL 55.2 55.2
FULL-JQ.K 348.9 57.7
JQ.K-FULL 69.0 69.0
JQ.K-J.Q.K 274.1 78.8
J.Q.K-JQ.K 401.3 88.8
J.QK-FULL 126.3 126.3
JQK-FULL 219.3 219.3
JQ.K-JQ.K 272.2 272.2
J.Q.K-J.Q.K 359.9 358.6
J.QK-J.QK 440.6 440.6
JQK-JQK 755.8 710.2

Table 3: Exploitability of various limit Leduc
Hold’em strategies in millibets/hand (mb/h)

weak player monotonicity. Perhaps even more disturbing is
the fact that JQ.K-JQ.K, which is obtained from the pre-
viously mentioned game by merging the Jack and Queen
for both players, is only exploitable by 272.2 mb/h. In this
case, even if we managed to converge to the best strategy
in the larger game it is still worse than one we happened to
converge to in the smaller game.

When ordered by the least exploitable equilibrium strat-
egy we see many opposite trends as when ordered by the
exploitability of the strategy that the LP solver happened
upon. First, if we could indeed find the best strategy, we
would like to give our player as much information about
the game as possible. There exists an equilibrium strategy
in the abstract game FULL-J.Q.K that is only exploitable
by 1.7mb/h, however our equilibrium solver happened upon
one exploitable by 491mb/h. This difference is incredible
when you consider we can guarantee ourselves a strategy
that is exploitable by 219.3mb/h when using JQK-FULL,
in which our player does not have any knowledge of its own
private card prior to the community card’s arrival! Second,
even when giving our player as many options as possible,
there is a counterexample to weak opponent monotonicity
as we would rather give our opponent JQK than the re-
fined J.QK. Finally, there is an example of both giving our-
selves or our opponent more options leading to higher best
case exploitability. Specifically, JQ.K-J.Q.K is better than
J.Q.K-J.Q.K and J.Q.K-JQ.K is better than J.Q.K-J.Q.K.

6. DISCUSSION
We used a smaller game, Leduc Hold’em, in this paper

so that we could analyze abstract game strategies in terms
of their exploitability in the full game. However, we did
not carefully construct this game or the abstractions to cre-
ate the counterexamples we have presented. Leduc Hold’em
is scaled version of Texas Hold’em in which the number of
cards was reduced and the betting is simplified. The coun-
terexamples arose naturally from the same kind of abstrac-
tions used in Texas Hold’em – card abstractions that group
hands with similar strength and potential and restricting the
betting actions. Since these pathologies are common in this
small poker game, we expect them to also be common in
larger poker games.

We now introduce an even simpler game to further illus-
trate how these pathologies arise. Consider the two-player,

a b c d
A 7 2 8 0
B 7 10 5 6

Figure 1: An example two-player, zero-sum matrix
game. The entries are the row player’s utilities.

Figure 2: Visual representation of the matrix game
in Figure 1.

zero-sum matrix game shown in Figure 1. Matrix games
are a special case of extensive games where players simulta-
neously choose an action. Their joint decision identifies an
entry in the matrix specifying the utility for the row player,
where the utility for column player is simply the negation.
In this game, the row player has two actions, A and B, and
the column player has four actions, a, b, c, and d. An ab-
straction of this game is obtained by eliminating one or more
actions for either player.

Figure 2 gives a visual representation of this game. The
x-axis shows the row player’s strategy space. For example,
a point 30% along the x-axis represents a strategy where
the row player selects action B with probability 0.3 and ac-
tion A the remainder of the time. Each line corresponds
to a different action for the column player (a, b, c or d).
The height of the line above any point on the x-axis repre-
sents the row player’s utility when the row player plays that
particular strategy and the column player plays the action
represented by the line. For example, if the row player plays
the strategy P (B) = 0.3 and the column player selects ac-
tion b, then the utility for the row player is approximately
4.4, whereas if the column-player selects action d the utility
for the row player is approximately 1.8. These points are
circled in Figure 2. An equilibrium strategy guarantees the
best worst-case value, which in the full game occurs at the
intersection of lines c and d, giving at least a value of slightly
more than 5 to the row player.

Consider an abstract game where the column player only
has actions a and b. This abstract game has a range of
equilibrium strategies for the row player corresponding to
the dash-emphasized segment of line a. Not only are there
many equilibrium strategies in this abstract game, but some
of them are better than others in terms of their worst-case
utility in the full game. Since the true equilibrium strategy
for the row player lies within this space, this abstract game
has a solution that is not exploitable. Now consider a refine-
ment of this abstraction where the column player has action
c in addition to a and b. Here, the equilibrium strategy for

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

788

the row player shifts to the left to the intersection of lines b
and c. The addition of this action removes the true equilib-
rium strategy from the set of equilibrium strategies in the
abstract game. More importantly, this unique equilibrium
strategy has a lower worst-case utility in the full game than
any equilibrium strategy in the coarser abstract game. Why
does this occur? In essence, providing an additional action
to an opponent has made the stronger strategies (including
the true equilibrium) appear less attractive as the opponent
lacks the ability play strategies that would show that the
alternatives are indeed worse.

Now, we show a pathology that arises from abstracting the
row player’s actions. Suppose that the row player is only al-
lowed to take action B and the column player can only take
action c. The equilibrium strategy is the only strategy for
the row player, P (B) = 1, and the row player has a worst-
case utility of 5. If we refine the game to allow the row
player to also take action A, the equilibrium strategy moves
to P (A) = 1, so the row player increases its utility to 8.
However, in the full game this strategy has utility 0 for the
row player in the worst-case. Why does this occur? Provid-
ing additional strategies to a player can encourage the player
to exploit the limitations of the opponent’s abstraction, re-
sulting in a strategy that is more exploitable by actions that
become available to the opponent in the full game.

7. CONCLUSION
We have shown that the quality of strategies found in

the refining of abstract games is dubious at best. Though
the trends in the AAAI Computer Poker Competition seem
to suggest that monotonic properties hold when using ab-
straction techniques, we have demonstrated that they do
not hold in general and appear very unlikely to hold in the
Texas Hold’em games used in the competition. The effects
of the typical abstraction techniques on the strategies pro-
duced is not predictable. Furthermore, creating larger ab-
stract games is not guaranteed to improve the quality of the
strategies found. Also, different solutions to the same ab-
stract game are not equally strong in the full game. We can
no longer solely blame an abstraction technique if a poor
strategy is produced.

With this result, we are now aware of the possible conse-
quences when using abstraction in extensive games. Though
the consequences can be dire, we are still forced to abstract
when solving large games for the foreseeable future. As
such, new techniques and methods of evaluating abstrac-
tions are required. Most importantly, more careful selection
of equilibrium in abstract games could dramatically impact
the strength of strategies that are computed.

Acknowledgments

We would like to thank the Computer Poker Research Group
at the University of Alberta for helpful discussions related
to this work.

8. REFERENCES
[1] D. Billings, N. Burch, A. Davidson, R. Holte,

J. Schaeffer, T. Schauenberg, and D. Szafron.
Approximating game-theoretic optimal strategies for
full-scale poker. In Proceedings of the Eighteenth
International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[2] S. Ganzfried and T. Sandholm. Computing an
approximate jam/fold equilibrium for 3-agent no-limit
texas hold’em tournaments. In AAMAS ’08:
Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems, 2008.

[3] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm.
Gradient-based algorithms for finding nash equilibria
in extensive form games. In Proceedings of the
Eighteenth International Conference on Game Theory,
2007.

[4] A. Gilpin and T. Sandholm. A competitive texas
hold’em poker poker via automated abstraction and
real-time equilibrium computation. In Proceedings of
the National Conference on Artificial Intelligence
(AAAI), 2006.

[5] A. Gilpin and T. Sandholm. Potential-aware
automated abstraction of sequential games, and
holistic equilibrium analysis of texas hold’em poker. In
Proceedings of the National Conference on Artificial
Intelligence (AAAI). AAAI Press, 2007.

[6] A. Gilpin, T. Sandholm, and T. B. Sorensen. A
heads-up no-limit texas hold’em poker player:
discretized betting models and automatically
generated equilibrium-finding programs. In AAMAS
’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent
systems, 2008.

[7] M. Johanson. Robust strategies and counter-strategies:
Building a champion level computer poker player.
Master’s thesis, University of Alberta, 2007.

[8] D. Koller and A. Pfeffer. Representations and
solutions for game-theoretic problems. Artificial
Intelligence, 94:167–215, 1997.

[9] J. V. Neumann. Zur theorie der gesellschaftsspiele.
Mathematische Annalen, 100(1):295–320, 1928.

[10] M. Osborne and A. Rubenstein. A Course in Game
Theory. The MIT Press, 1994.

[11] F. Southey, M. Bowling, B. Larson, C. Piccione,
N. Burch, D. Billings, and C. Rayner. Bayes. bluff:
Opponent modelling in poker. In Proceedings of the
21st Annual Conference on Uncertainty in Artificial
Intelligence (UAI), pages 550–558. AUAI Press, 2005.

[12] B. V. Stengel. Efficient computation of behavior
strategies. Games and Economic Behavior,
14:220–246, 1996.

[13] M. Zinkevich, M. Bowling, and N. Burch. A new
algorithm for generating equilibria in massive
zero-sum games. In Proceedings of the Twenty-Second
Conference on Artificial Intelligence (AAAI), pages
788–793, 2007.

[14] M. Zinkevich, M. Johanson, M. Bowling, and
C. Piccione. Regret minimization in games with
incomplete information. In Advances in Neural
Information Processing Systems 20 (NIPS), 2008.

[15] M. Zinkevich and M. Littman. The AAAI computer
poker competition. Journal of the International
Computer Games Association, 29, 2006. News item.

