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ABSTRACT
Configuration changes are a common source of instability in net-
works, leading to outages, performance disruptions, and security
vulnerabilities. Even when the initial and final configurations are
correct, the update process itself often steps through intermediate
configurations that exhibit incorrect behaviors. This paper intro-
duces the notion of consistent network updates—updates that are
guaranteed to preserve well-defined behaviors when transitioning
between configurations. We identify two distinct consistency lev-
els, per-packet and per-flow, and we present general mechanisms
for implementing them in Software-Defined Networks using switch
APIs like OpenFlow. We develop a formal model of OpenFlow net-
works, and prove that consistent updates preserve a large class of
properties. We describe our prototype implementation, including
several optimizations that reduce the overhead required to perform
consistent updates. We present a verification tool that leverages
consistent updates to significantly reduce the complexity of check-
ing the correctness of network control software. Finally, we de-
scribe the results of some simple experiments demonstrating the
effectiveness of these optimizations on example applications.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Distributed Sys-
tems—Network Operating Systems

General Terms
Design, Languages, Theory

Keywords
Consistency, planned change, software-defined networking, Open-
Flow, network programming languages, Frenetic.

1. INTRODUCTION

“Nothing endures but change.”
—Heraclitus
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Networks exist in a constant state of flux. Operators frequently
modify routing tables, adjust link weights, and change access con-
trol lists to perform tasks from planned maintenance, to traffic en-
gineering, to patching security vulnerabilities, to migrating virtual
machines in a datacenter. But even when updates are planned well
in advance, they are difficult to implement correctly, and can result
in disruptions such as transient outages, lost server connections, un-
expected security vulnerabilities, hiccups in VoIP calls, or the death
of a player’s favorite character in an online game.

To address these problems, researchers have proposed a number
of extensions to protocols and operational practices that aim to pre-
vent transient anomalies [8, 2, 9, 3, 5]. However, each of these so-
lutions is limited to a specific protocol (e.g., OSPF and BGP) and a
specific set of properties (e.g., freedom from loops and blackholes)
and increases the complexity of the system considerably. Hence, in
practice, network operators have little help when designing a new
protocol or trying to ensure an additional property not covered by
existing techniques. A list of example applications and their prop-
erties is summarized in Table 1.

We believe that, instead of relying on point solutions for network
updates, the networking community needs foundational principles
for designing solutions that are applicable to a wide range of pro-
tocols and properties. These solutions should come with two parts:
(1) an abstract interface that offers strong, precise, and intuitive
semantic guarantees, and (2) concrete mechanisms that faithfully
implement the semantics specified in the abstract interface. Pro-
grammers can use the interface to build robust applications on top
of a reliable foundation. The mechanisms, while possibly complex,
would be implemented once by experts, tuned and optimized, and
used over and over, much like register allocation or garbage collec-
tion in a high-level programming language.

Software-defined networks. The emergence of Software De-
fined Networks (SDN) presents a tremendous opportunity for de-
veloping general abstractions for managing network updates. In an
SDN, a program running on a logically-centralized controller man-
ages the network directly by configuring the packet-handling mech-
anisms in the underlying switches. For example, the OpenFlow API
allows a controller to install rules that each specify a pattern that
matches on bits in the packet header, actions performed on match-
ing packets (such as drop, forward, or divert to the controller), a pri-
ority (to disambiguate between overlapping patterns), and timeouts
(to allow the switch to remove stale rules) [10]. Hence, whereas
today network operators have (at best) indirect control over the dis-
tributed implementations of routing, access control, and load bal-
ancing, SDN platforms like OpenFlow provide programmers with
direct control over the processing of packets in the network.

However, despite the conceptual appeal of centralized control,



Example Application Policy Change Desired Property Practical Implications
Stateless firewall Changing access control list No security holes Admitting malicious traffic
Planned maintenance [1, 2, 3] Shut down a node/link No loops/blackholes Packet/bandwidth loss
Traffic engineering [1, 3] Changing a link weight No loops/blackholes Packet/bandwidth loss
VM migration [4] Move server to new location No loops/blackholes Packet/bandwidth loss
IGP migration [5] Adding route summarization No loops/blackholes Packet/bandwidth loss
Traffic monitoring Changing traffic partitions Consistent counts Inaccurate measurements
Server load balancing [6, 7] Changing load distribution Connection affinity Broken connections
NAT or stateful firewall Adding/replacing equipment Connection affinity Outages, broken connections

Table 1: Example changes to network configuration, and the desired update properties.

an OpenFlow network is still a distributed system, with inevitable
delays between the switches and the controller. To implement a
transition from one configuration to another, programmers must is-
sue a painstaking sequence of low-level install and uninstall com-
mands that work rule by rule and switch by switch. Moreover, to
ensure that the network behaves correctly during the transition, they
must worry about the properties of every possible intermediate state
during the update, and the effects on any packets already in flight
through the network. This often results in a combinatorial explo-
sion of possible behaviors—too many for a programmer to manage
by hand, even in a small network. A recent study on testing Open-
Flow applications shows that programmers often introduce subtle
bugs when handling network updates [11].

Our approach. This paper describes a different alternative. In-
stead of requiring SDN programmers to implement configuration
changes using today’s low-level interfaces, our high-level, abstract
operations allow the programmer to update the configuration of the
entire network in one fell swoop. The libraries implementing these
abstractions provide strong semantic guarantees about the observ-
able effects of the global updates, and handle all of the details of
transitioning between old and new configurations efficiently.

Our central abstraction is per-packet consistency, the guaran-
tee that every packet traversing the network is processed by ex-
actly one consistent global network configuration. When a net-
work update occurs, this guarantee persists: each packet is pro-
cessed either using the configuration in place prior to the update,
or the configuration in place after the update, but never a mixture
of the two. Note that this consistency abstraction is more powerful
than an “atomic” update mechanism that simultaneously updates all
switches in the network. Such a simultaneous update could easily
catch many packets in flight in the middle of the network, and such
packets may wind up traversing a mixture of configurations, caus-
ing them to be dropped or sent to the wrong destination. We also
introduce per-flow consistency, a generalization of per-packet con-
sistency that guarantees all packets in the same flow are processed
with the same configuration. This stronger guarantee is needed in
applications such as HTTP load balancers, which need to ensure
that all packets in the same TCP connection reach the same server
replica to avoid breaking connections.

To support these abstractions, we develop several update mecha-
nisms that use features commonly available on OpenFlow switches.
Our most general mechanism, which enables transition between
any two configurations, performs a two-phase update of the rules in
the new configuration onto the switches. The other mechanisms are
optimizations that achieve better performance under circumstances
that arise often in practice. These optimizations transition to new
configurations in less time, update fewer switches, or fewer rules.

To analyze our abstractions and mechanisms, we develop a sim-

ple, formal model that captures the essential features of OpenFlow
networks. This model allows us to define a class of network prop-
erties, called trace properties, that characterize the paths individual
packets take through the network. The model also allows us to
prove a remarkable result: if any trace property P holds of a net-
work configuration prior to a per-packet consistent update as well
as after the update, then P also holds continuously throughout the
update process. This illustrates the true power of our abstractions:
programmers do not need to specify which trace properties our sys-
tem must maintain during an update, because a per-packet consis-
tent update preserves all of them! For example, if the old and new
configurations are free from forwarding loops, then the network
will be loop-free before, during, and after the update. In addition to
the proof sketch included in this paper, this result has been formally
verified in the Coq proof assistant [12].

An important and useful corollary of these observations is that
it is possible to take any verification tool that checks trace prop-
erties of static network configurations and transform it into a tool
that checks invariance of trace properties as the network configu-
rations evolve dynamically—it suffices to check the static policies
before and after the update. We illustrate the utility of this idea
concretely by deploying the NuSMV model checker [13] to ver-
ify invariance of a variety of important trace properties that arise
in practice. However, other tools, such as the recently-proposed
header space analysis tool [14], also benefit from our approach.

Contributions. This paper makes the following contributions:

• Update abstractions: We propose per-packet and per-flow
consistency as canonical, general abstractions for specifying
network updates (§2,§7).

• Update mechanisms: We describe OpenFlow-compatible
implementation mechanisms and several optimizations tai-
lored to common scenarios (§5,§8).

• Theoretical model: We develop a mathematical model that
captures the essential behavior of SDNs, and we prove that
the mechanisms correctly implement the abstractions (§3).
We have formalized the model and proved the main theorems
in the Coq proof assistant.

• Verification tools: We show how to exploit the power of
our abstractions by building a tool for verifying properties of
network control programs (§6).

• Implementation: We describe a prototype implementation
on top of the OpenFlow/NOX platform (§8).

• Experiments: We present results from experiments run on
small, but canonical applications that compare the total num-
ber of control messages and rule overhead needed to imple-
ment updates in each of these applications (§8).
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Configuration I
Type Action

I U,G Forward F1

S Forward F2

F Forward F3

F1 SSH Monitor
∗ Allow

F2 ∗ Allow

F3 ∗ Allow

Configuration II
Type Action

I U Forward F1

G Forward F2

S, F Forward F3

F1 SSH Monitor
∗ Allow

F2 SSH Monitor
∗ Allow

F3 ∗ Allow

Figure 1: Access control example.

2. EXAMPLE
To illustrate the challenges surrounding network updates, con-

sider an example network with one ingress switch I and three “fil-
tering” switches F1, F2, and F3, each sitting between I and the
rest of the Internet, as shown on the left side of Figure 1. Several
classes of traffic are connected to I: untrustworthy packets from
Unknown and Guest hosts, and trustworthy packets from Student
and F aculty hosts. At all times, the network should enforce a se-
curity policy that denies SSH traffic from untrustworthy hosts, but
allows all other traffic to pass through the network unmodified. We
assume that any of the filtering switches have the capability to per-
form the requisite monitoring, blocking, and forwarding.

There are several ways to implement this policy, and depending
on the traffic load, one may be better than another. Suppose that
initially we configure the switches as shown in the leftmost table
in Figure 1: switch I sends traffic from U and G hosts to F1, from
S hosts to F2, and from F hosts to F3. Switch F1 monitors (and
denies) SSH packets and allows all other packets to pass through,
while F2 and F3 simply let all packets pass through.

Now, suppose the load shifts, and we need more resources to
monitor the untrustworthy traffic. We might reconfigure the net-
work as shown in the table on the right of Figure 1, where the task
of monitoring traffic from untrustworthy hosts is divided between
F1 and F2, and all traffic from trustworthy hosts is forwarded to F3.
Because we cannot update the network all at once, the individual
switches need to be reconfigured one-by-one. However, if we are
not careful, making incremental updates to the individual switches
can lead to intermediate configurations that violate the intended se-
curity policy. For instance, if we start by updating F2 to deny SSH
traffic, we interfere with traffic sent by trustworthy hosts. If, on the
other hand, we start by updating switch I to forward traffic accord-
ing to the new configuration (sending U traffic to F1, G traffic to
F2, and S and F traffic to F3), then SSH packets from untrustwor-
thy hosts will incorrectly be allowed to pass through the network.
There is one valid transition plan:

1. Update I to forward S traffic to F3, while continuing to for-
ward U and G traffic to F1 and F traffic to F3.

2. Wait until in-flight packets have been processed by F2.

3. Update F2 to deny SSH packets.

4. Update I to forward G traffic to F2, while continuing to for-
ward U traffic to F1 and S and F traffic to F3.

But finding this ordering and verifying that it behaves correctly
requires performing intricate reasoning about a sequence of inter-
mediate configurations—something that is tedious and error-prone,
even for this simple example. Even worse, in some examples it is
impossible to find an ordering that implements the transition sim-
ply by adding one part of the new configuration at a time (e.g., if we
swap the roles of F1 and F3 while enforcing the intended security
policy). In general, more powerful update mechanisms are needed.

We believe that any energy the programmer devotes to navigat-
ing this space would be better spent in other ways. The tedious job
of finding a safe sequence of commands that implement an update
should be factored out, optimized, and reused across many applica-
tions. This is the main achievement of this paper. To implement the
update using our abstractions, the programmer would simply write:

per_packet_update(config2)

Here config2 represents the new global network configuration.
The per-packet update library analyzes the configuration and topol-
ogy and selects a suitable mechanism to implement the update.
Note that the programmer does not write any tricky code, does not
need to consider how to synchronize switch update commands, and
does not need to consider the packets in flight across the network.
The per_packet_update library handles all of the low-level de-
tails, and even attempts to select a mechanism that minimizes the
cost of implementing the update.

Further, suppose the programmer knows that the security pol-
icy holds initially but wants to be sure it is enforced continuously
through the update process and also afterwards when config2 is in
force. In this case, the programmer can execute another command:

ok = verify(config2, topo, pol)

If the boolean ok is true, then the security policy represented by pol
holds continuously. If not, the programmer has made a mistake and
can work on debugging it. The policy pol itself is expressed in
a common specification language called CTL and is verified with
the help of a model checker. We supply a library of common net-
work properties such as loop-freeness for use with our system and
programmers can write their own custom properties.

To implement the update, the library could use the safe, switch-
update ordering described above. However, in general, it is not
always possible to find such an ordering. Nevertheless, one can al-
ways achieve a per-packet consistent update using a two-phase up-
date supported by configuration versioning. Intuitively, this univer-
sal update mechanism works by stamping every incoming packet
with a version number (e.g., stored in a VLAN tag) and modify-
ing every configuration so that it only processes packets with a set
version number. To change from one configuration to the next, it
first populates the switches in the middle of the network with new
configurations guarded by the next version number. Once that is
complete, it enables the new configurations by installing rules at
the perimeter of the network that stamp packets with that next ver-
sion number. Though this general mechanism is somewhat heavy-
weight, our libraries identify and apply lightweight optimizations.

This short example illustrates some of the challenges that arise
when implementing a network update with strong semantic guar-
antees. However, it also shows that all of these complexities can
be hidden from the programmer, leaving only the simplest of in-
terfaces for global network update. We believe this simplicity will
lead to a more reliable and secure network infrastructure. The fol-
lowing sections describe our approach in more detail.

3. THE NETWORK MODEL
This section presents a simple mathematical model of the essen-

tial features of SDNs. This model is defined by a relation that de-
scribes the fine-grained, step-by-step execution of a network. We
write the relation using the notation N us−→?N ′, where N is the
network at the beginning of an execution, N ′ is the network after
some number of steps of execution, and us is a list of “observa-
tions” that are made during the execution.1 Intuitively, an obser-
vation should be thought of as a message between the controller
1When a network takes a series of steps and there are no observa-



Bit b ::= 0 | 1
Packet pk ::= [b1, ..., bk]
Port p ::= 1 | · · · | k | Drop |World
Located Pkt lp ::= (p, pk)
Trace t ::= [lp1, ..., lpn]
Update u ∈ LocatedPkt ⇀ LocatedPkt list
Switch Func. S ∈ LocatedPkt → LocatedPkt list
Topology Func. T ∈ Port → Port
Port Queue Q ∈ Port → (Packet × Trace) list
Configuration C ::= (S, T )
Network State N ::= (Q,C)

(a)

T-PROCESS

if p is any port (1)
and Q(p) = [(pk1, t1), (pk2, t2), ..., (pkj , tj)] (2)
and C = (S, T ) (3)
and S(p, pk1) = [(p′1, pk

′
1), ..., (p′k, pk

′
k)] (4)

and T (p′i) = p′′i , for i from 1 to k (5)
and t′1 = t1 ++ [(p, pk1)] (6)
and Q′0 = override(Q, p 7→ [(pk2, t2), ..., (pkj , tj)]) (7)
and Q′1 = override(Q′0, p

′′
1 7→ Q(p′′1 ) ++ [(pk′1, t

′
1)])

...
and Q′k = override(Q′k−1, p

′′
k 7→ Q(p′′k) ++ [(pk′k, t

′
1)])

then (Q,C) −→ (Q′k, C) (8)

T-UPDATE

if S′ = override(S, u) (9)

then (Q, (S, T ))
u−→ (Q, (S′, T )) (10)

(b)

Figure 2: The network model: (a) syntax and (b) semantics.

and the network. In this paper, we are interested in a single kind
of message—a message u that directs a particular switch in the
network to update its forwarding table with some new rules. The
formal system could easily be augmented with other kinds of ob-
servations, such as topology changes or failures. For the sake of
brevity, we elide these features in this paper.

The main purpose of the model is to compute the traces, or paths,
that a packet takes through a network that is configured in a partic-
ular way. These traces in turn define the properties, be they access
control or connectivity or others, that a network configuration sat-
isfies. Our end goal is to use this model and the traces it generates
to prove that, when we update a network, the properties satisfied by
the initial and final configurations are preserved. The rest of this
section will make these ideas precise.

Notation. We use standard notation for types. In particular, the
type T1 → T2 denotes the set of total functions that take arguments
of type T1 and produce results of type T2, while T1 ⇀ T2 denotes
the set of partial functions from T1 to T2; the type T1×T2 denotes
the set of pairs with components of type T1 and T2; and T list
denotes the set of lists with elements of type T .

We also use standard notation to construct tuples: (x1, x2) is a
pair of items x1 and x2. For lists, we use the notation [x1, ..., xn]
for the list of n elements x1 through xn, [ ] for the empty list, and
xs1 ++ xs2 for the concatenation of the two lists xs1 and xs2.
Notice that if x is some sort of object, we will typically use xs as
the variable for a list of such objects. For example, we use u to
represent a single update and us to represent a list of updates.

Basic Structures. Figure 2(a) defines the syntax of the elements
of the network model. A packet pk is a sequence of bits, where a
bit b is either 0 or 1. A port p represents a location in the net-
work where packets may be waiting to be processed. We distin-
guish two kinds of ports: ordinary ports numbered uniquely from
1 to k, which correspond to the physical input and output ports
on switches, and two special ports, Drop and World . Intuitively,
packets queued at the Drop port represent packets that have been

tions (i.e., no updates happen), we omit the list above the arrow,
writing N −→?N ′ instead.

dropped, while packets queued at the World port represent packets
that have been forwarded beyond the confines of the network. Each
ordinary port will be located on some switch in the network. How-
ever, we will leave the mapping from ports to switches unspecified,
as it is not needed for our primary analyses.

Switch and Topology Functions. A network is a packet pro-
cessor that forwards packets and optionally modifies the contents
of those packets on each hop. Following Kazemian et al. [14], we
model packet processing as the composition of two simpler behav-
iors: (1) forwarding a packet across a switch and (2) moving pack-
ets from one end of a link to the other end. The switch function
S takes a located packet lp (a pair of a packet and a port) as input
and returns a list of located packets as a result. In many applica-
tions, a switch function only produces a single located packet, but
in applications such as multicast, it may produce several. To drop a
packet, a switch function maps the packet to the special Drop port.
The topology function T maps one port to another if the two ports
are connected by a link in the network. Given a topology func-
tion T , we define an ordinary port p to be an ingress port if for all
other ordinary ports p′ we have T (p′) 6= p. Similarly, we define an
ordinary port p to be an internal port if it is not an ingress port.

To ensure that switch and topology functions are reasonable, we
impose the following conditions:

(1) For all packets pk, S(Drop, pk) = [(Drop, pk)] and
S(World , pk) = [(World , pk)];

(2) T (Drop) = Drop and T (World) = World ; and

(3) For all ports p and packets pk
if S(p, pk) = [(p1, pk1), ..., (pk, pkk)] we have k ≥ 1.

Taken together, the first and second conditions state that once a
packet is dropped or forwarded beyond the perimeter of the net-
work, it must stay dropped or beyond the perimeter of the network
and never return. If our network forwards a packet out to another
network and that other network forwards the packet back to us, we
treat the return packet as a “fresh” packet—i.e., we do not explicitly
model inter-domain forwarding. The third condition states that ap-
plying the forwarding function to a port and a packet must produce
at least one packet. This third condition means that the network



cannot drop a packet simply by not forwarding it anywhere. Drop-
ping packets occurs by explicitly forwarding a single packet to the
Drop port. This feature makes it possible to state network proper-
ties that require packets either be dropped or not.

Configurations and Network States. A trace t is a list of
located packets that keeps track of the hops that a packet takes as it
traverses the network. A port queueQ is a total function from ports
to lists of packet-trace pairs. These port queues record the packets
waiting to be processed at each port in the network, along with the
full processing history of that packet. Several of our definitions
require modifying the state of a port queue. We do this by building
a new function that overrides the old queue with a new mapping for
one of its ports: override(Q, p 7→ l) produces a new port queue
Q′ that maps p to l and like Q otherwise.

override(Q, p 7→ l) = Q′

where Q′(p′) =

{
l if p = p′

Q(p′) otherwise

A configuration C comprises a switch function S and a topology
function T . A network state N is a pair (Q,C) containing a port
queue Q and configuration C.

Transitions. The formal definition of the network semantics is
given by the relations defined in Figure 2(b), which describe how
the network transitions from one state to the next one. The sys-
tem has two kinds of transitions: packet-processing transitions and
update transitions. In a packet-processing transition, a packet is
retrieved from the queue for some port, processed using the switch
function S and topology function T , and the newly generated pack-
ets are enqueued onto the appropriate port queues. More formally,
packet-processing transitions are defined by the T-PROCESS case
in Figure 2(b). Lines 1-8 may be read roughly as follows:

(1) If p is any port,
(2) a list of packets is waiting on p,
(3) the configurationC is a pair of a switch function S and topol-

ogy function T ,
(4) the switch function S forwards the chosen packet to a sin-

gle output port, or several ports in the case of multicast, and
possibly modifies the packet

(5) the topology function T connects each output port to an input
port,

(6) a new trace t′1, which extends the old trace and records the
current hop, is generated,

(7) a new queue Q′k is generated by moving packets across links
as specified in steps (4), (5) and (6),

(8) then (Q,C) can step to (Q′k, C).

In an update transition, the switch forwarding function is updated
with new behavior. We represent an update u as a partial func-
tion from located packets to lists of located packets (i.e., an update
is just a “part” of a global (distributed) switch function). To ap-
ply an update to a switch function, we overwrite the function us-
ing all of the mappings contained in the update. More formally,
override(S, u) produces a new function S′ that behaves like u on
located packets in the domain2 of u, and like S otherwise.

override(S, u) = S′

where S′(p, pk) =

{
u(p, pk) if (p, pk) ∈ dom(u)

S(p, pk) otherwise
2Domain of an update is the set of located packets it’s defined upon.

Update transitions are defined formally by the T-UPDATE case in
Figure 2(b). Lines 9-10 may be read as follows: if S′ is obtained
by applying update u to a switch in the network then network state
(Q, (S, T )) can step to new network state (Q, (S′, T )).

Network Semantics. The overall semantics of a network in our
model is defined by allowing the system to take an arbitrary number
of steps starting from an initial state in which the queues of all in-
ternal ports as well as World and Drop are empty, and the queues
of external ports are filled with pairs of packets and the empty trace.
The reflexive and transitive closure of the single-step transition re-
lation N us−→?N ′ is defined in the usual way, where the sequence
of updates recorded in the label above the arrow is obtained by con-
catenating all of the updates in the underlying transitions in order.3

A network generates a trace t if and only if there exists an initial
state Q such that (Q,C) −→?(Q′, C) and t appears in Q′. Note
that no updates may occur when generating a trace.

Properties. In general, there are myriad properties a network
might satisfy—e.g., access control, connectivity, in-order delivery,
quality of service, fault tolerance, to name a few. In this paper, we
will primarily be interested in trace properties, which are prefix-
closed sets of traces. Trace properties characterize the paths (and
the state of the packet at each hop) that an individual packet is
allowed to take through the network. Many network properties,
including access control, connectivity, routing correctness, loop-
freedom, correct VLAN tagging, and waypointing can be expressed
using trace properties. For example, loop-freedom can be specified
using a set that contain all traces except those in which some or-
dinary port p appears twice. In contrast, timing properties and re-
lations between multiple packets including quality of service, con-
gestion control, in-order delivery, or flow affinity are not trace prop-
erties.

We say that a port queue Q satisfies a trace property P if all
of the traces that appear in Q also appear in the set P . Similarly,
we say that a network configuration C satisfies a trace property
P if for all initial port queues Q and all (update-free) executions
(Q,C) −→?(Q′, C), it is the case that Q′ satisfies P .

4. PER-PACKET ABSTRACTION
One reason that network updates are difficult to get right is that

they are a form of concurrent programming. Concurrent program-
ming is hard because programmers must consider the interleaving
of every operation in every thread and this leads to a combinato-
rial explosion of possible outcomes—too many outcomes for most
programmers to manage. Likewise, when performing a network
update, a programmer must consider the interleaving of switch up-
date operations with every kind of packet that might be traversing
their network. Again, the number of possibilities explodes.

Per-packet consistent updates reduce the number of scenarios a
programmer must consider to just two: for every packet, it is as if
the packet flows through the network completely before the update
occurs, or completely after the update occurs.

One might be tempted to think of per-packet consistent updates
as “atomic updates”, but they are actually better than that. An
atomic update would cause packets in flight to be processed partly
according to the configuration in place prior to the update, and
partly according to the configuration in place after the update. To
understand what happens to those packets (e.g., whether they get
dropped), a programmer would have to reason about every possible
3The semantics of the network is defined from the perspective of an
omniscient observer, so there is an order in which the steps occur.



trace formed by concatenating a prefix generated by the original
configuration with a suffix generated by the new configuration.

Intuitively, per-packet consistency states that for a given packet,
the traces generated during an update come from the old configura-
tions, or the new configuration, but not a mixture of the two. In the
formal definition of per-packet consistency, we introduce an equiv-
alence relation ∼ on packets. We extend this equivalence relation
to traces by considering two traces to be equivalent if the packets
they contain are equivalent according to the ∼ relation (similarly,
we extend ∼ to properties in the obvious way). We then require
that all traces generated during the update be equivalent to a trace
generated by either the initial or final configuration. For the rest of
the paper, when we say that ∼ is an equivalence relation on traces,
we assume that it has been constructed like this. This specifica-
tion gives implementations of updates flexibility by allowing some
minor, irrelevant differences to appear in traces (where ∼ defines
the notion of irrelevance precisely). For example, we can define
a “version” equivalence relation that relates packets pk and pk′

which differ only in the value of their version tags. This relation
will allow us to state that changes to version tags performed by the
implementation mechanism for per-packet update are irrelevant. In
other words, a per-packet mechanism may perform internal book-
keeping by stamping version tags without violating our technical
requirements on the correctness of the mechanism. The precise
definition of per-packet consistency is as follows.

Definition 1 (Per-packet ∼-consistent update) Let∼ be a trace-
equivalence relation. An update sequence us is a per-packet ∼-
consistent update from C1 to C2 if and only if, for all

• initial states Q,
• executions (Q,C1)

us−→?(Q′, C2),
• and traces t in Q′,

there exists

• an initial state Qi,
• and either an execution (Qi, C1) −→?(Q′′, C1) or an exe-

cution (Qi, C2) −→?(Q′′, C2),

such that Q′′ contains t′, for some trace t′ with t′ ∼ t.

From an implementer’s perspective, the operational definition of
per-packet consistency given above provides a specification that he
or she must meet. However, from a programmer’s perspective,
there is another, more useful side to per-packet consistency: per-
packet consistent updates preserve every trace property.

Definition 2 (∼-property preservation) Let C1 and C2 be con-
figurations and ∼ be a trace-equivalence relation. A sequence us
is a ∼-property-preserving update from C1 and C2 if and only if,
for all

• initial states Q,
• executions (Q,C1)

us−→?(Q′, C2),
• and properties P that are satisfied by C1 and C2 and do not

distinguish traces related by ∼,

we have that Q′ satisfies P .

Universal ∼-property preservation gives programmers a strong
principle they can use to reason about their programs. If program-
mers check that a trace property such as loop-freedom or access
control holds of the network configurations before and after an up-
date, they are guaranteed it holds of every trace generated through-
out the update process, even though the series of observations us
may contain many discrete update steps. Our main theorem states
that per-packet consistent updates preserve all properties:

Theorem 1 For all trace-equivalence relations ∼, if us is a per-
packet ∼-consistent update of C1 to C2 then us is a ∼-property-
preserving update of C1 to C2.

The proof of the theorem is a relatively straightforward application
of our definitions. From a practical perspective, this theorem allows
a programmer to get great mileage out of per-packet consistent up-
dates. In particular, since per-packet consistent updates preserve
all trace properties, the programmers do not have to tell the system
which specific properties must be invariant in their applications.

From a theoretical perspective, it is also interesting that the con-
verse of the above theorem holds. This gives us a sort of com-
pleteness result: if programmers want an update that preserves all
properties, they need not search for it outside of the space of per-
packet consistent updates—any universal trace-property preserving
update is a per-packet consistent update.

Theorem 2 For all trace-equivalence relations ∼, if us is a ∼-
property-preserving update of C1 to C2 then us is a per-packet
∼-consistent update of C1 to C2.

The proof of this theorem proceeds by observing that since us
preserves all ∼-properties, it certainly preserves the following ∼-
property Por:

{t | there exists an initial Q and a trace t′

and ((Q,C1) −→?(Q′, C1) or (Q,C2) −→?(Q′, C2)),
and t ∼ t′,
and t′ ∈ Q′}

By the definition of Por, the update us generates no traces that can-
not be generated either by the initial configurationC1 or by the final
configurationC2. Hence, by definition, us is per-packet consistent.

5. PER-PACKET MECHANISMS
Depending on the network topology and the specifics of the con-

figurations involved, there may be several ways to implement a per-
packet consistent update. However, all of the techniques we have
discovered so far, no matter how complicated, can be reduced to
two fundamental building blocks: the one-touch update and the un-
observable update. For example, our two-phase update mechanism
uses unobservable updates to install the new configuration before
it is used, and then “unlocks” the new policy by performing a one-
touch update on the ingress ports.

One-touch updates. A one-touch update is an update with the
property that no packet can follow a path through the network that
reaches an updated (or to-be-updated) part of the switch rule space
more than once.

Definition 3 (One-touch Update) Let C1 = (S, T ) be the origi-
nal network configuration, us = [u1, ..., uk] an update sequence,
and C2 = (S[u1, ..., uk], T ) the new configuration, such that the
domains of each update u1 to uk are mutually disjoint. If, for all

• initial states Q,

• and executions (Q,C1)
us−→?(Q′, C2),

there does not exist a trace t in Q′ such that

• t contains distinct trace elements (p1, pk1) and (p2, pk2),

• and (p1, pk1) and (p2, pk2) both appear in the domain of
update functions [u1, ..., uk],

then us is a one-touch update from C1 to C2.



Theorem 3 If us is a one-touch update then us is a ∼-per-packet
consistent update for any ∼.

The proof proceeds by considering the possible traces t generated
by an execution (Q,C1)

us−→?(Q′, C2). There are two cases: (1)
There is no element of t that appears in the domain of an update
function in us , or (2) some element lp of t appears in the domain of
an update function in us . In case (1), t can also be generated by an
execution with no update observations: (Q,C1) −→?(Q′′, C1),
and the definition of per-packet consistency vacuously holds. In
case (2), there are two subcases:

(i) lp appears in the trace prior to the update taking place and so
t is also generated by (Q,C1) −→?(Q′′, C1).

(ii) lp appears in the trace after the update has taken place and so
t is also generated by (Q,C2) −→?(Q′′, C2).

The one-touch update mechanism has a few immediate, more
specific applications:

• Loop-free switch updates: If a switch is not part of a topolog-
ical loop (either before or after the update), then updating all
the ports on that switch is an instance of a one-touch update
and is per-packet consistent.

• Ingress port updates: An ingress port interfaces exclusively
with the external world, so it can not be a part of an internal
topological loop and is never on the same trace as any other
ingress port. Consequently, any update to ingress ports is a
one-touch update and is per-packet consistent. Such updates
can be used to change the admission control policy for the
network, either by adding or excluding flows.

When one-touch updates are combined with unobservable updates,
there are many more possibilities.

Unobservable updates. An unobservable update is an update
that does not change the set of traces generated by a network.

Definition 4 (Unobservable Update) LetC1 =(S, T ) be the orig-
inal network configuration, us = [u1, ..., uk] an update sequence,
and C2 = (S[u1, ..., uk], T ) the new configuration. If, for all

• initial states Q,

• executions (Q,C1)
us−→?(Q′, C2),

• and traces t in Q′,

there exists

• an initial state Qi,

• and an execution (Qi, C1) −→?(Q′′, C1),

such that the trace t is in Q′′, then us is an unobservable update
from C1 to C2.

Theorem 4 If us is an unobservable update then us is a per-packet
consistent update.

The proof proceeds by observing that every trace generated during
the unobservable update (Q,C1)

us−→?(Q′, C2) also appears in the
traces generated by C1.

On their own, unobservable updates are useless as they do not
change the semantics of packet forwarding. However, they may be
combined with other per-packet consistent updates to great effect
using the following theorem.

Theorem 5 (Composition) If us1 is an unobservable update from
C1 to C2 and us2 is a per-packet consistent update from C2 to C3

then us1 ++ us2 is a per-packet consistent update from C1 to C3.

A simple use of composition arises when one wants to achieve
a per-packet consistent update that extends a policy with a com-
pletely new path.

• Path extension: Consider an initial configuration C1. Sup-
pose [u1, u2, ..., uk] updates ports p1, p2, ..., pk respectively
to lay down a new path through the network with u1 updat-
ing the ingress port. Suppose also that the ports updated by
us = [u2, ..., uk] are unreachable in network configuration
C1. Hence, us is an unobservable update. Since [u1] updates
an ingress port, it is a one-touch update and also per-packet
consistent. By the composition principle, us ++ [u1] is a
per-packet consistent update.

Notice that the path update is achieved by first laying down rules
on switches 2 to k and then, when that is complete, laying down the
rules on switch 1. A well-known (but still common!) bug occurs
when programmers attempt to install new forwarding paths but lay
down the elements of the path in wrong order [11]. Typically, there
is a race condition in which packets traverse the first link and reach
the switch 2 before the program has had time to lay down the rules
on links 2 to k. Then when packets reach switch 2, it does not yet
know how to handle them, and a default rule sends the packets to
the controller. The controller often becomes confused as it begins
to see additional packets that should have already been dealt with
by laying down the new rules. The underlying cause of this bug is
explained with our model—the programmer intended a per-packet
consistent update of the policy with a new path, but failed to imple-
ment per-packet consistency correctly. All such bugs are eradicated
from network programs if programmers use per-packet consistent
updates and never use their own ad hoc update mechanisms.

Two-phase update. So far, all of our update mechanisms have
applied to special cases in which the topology, existing configura-
tion, and/or updates have specific properties. Fortunately, provided
there are a few bits in packets that are irrelevant to the network
properties a programmer wishes to enforce, and can be used for
bookkeeping purposes, we can define a mechanism that handles ar-
bitrary updates using a two-phase update protocol.

Intuitively, the two-phase update works by first installing the new
configuration on internal ports, but only enabling the new configu-
ration for packets containing the correct version number. It then
updates the ingress ports one-by-one to stamp packets with the
new version number. Notice that the updates in the first phase are
all unobservable, since before the update, the ingress ports do not
stamp packets with the new version number. Hence, since updating
ingress ports is per-packet consistent, by the composition principle,
the two-phase update is also per-packet consistent.

To define the two-phase update formally, we need a few addi-
tional definitions. Let a version-property be a trace property that
does not distinguish traces based on the value of version tags. A
configuration C is a version-n configuration if C = (S, T ) and
S modifies packets processed by any ingress port pin so that af-
ter passing through pin , the packet’s version bit is n. We assume
that the S function does not otherwise modify the version bit of
the packet. Two configurations C and C′ coincide internally on
version-n packets whenever C = (S, T ) and C′ = (S′, T ′) and
for all internal ports p, and for all packets pk with version bit set
to n, we have that S(p, pk) = S′(p, pk). Finally, an update u is a
refinement of S, if for all located packets lp in the domain of u, we
have that u(lp) = S(lp).



Definition 5 (Two-phase Update) Let C1 = (S, T ) be a version-
1 configuration and C2 = (S′, T ) be a version-2 configuration.
Assume that C1 and C2 coincide internally on version-1 packets.
Let us = [ui

1, ..., u
i
m, u

e
1, ..., u

e
n] be an update sequence such that

• S′ = override(S, us),

• each ui
j and ue

k is a refinement of S′,

• p is internal, for each (p, pk) in the domain of ui
j ,

• and p is an ingress, for each (p, pk) in the domain of ue
k.

Then us is a two-phase update from C1 to C2.

Theorem 6 If us is a two-phase update then us is per-packet con-
sistent.

The proof simply observes that us1 = [ui
1, ..., u

i
m] is an unobserv-

able update, and us2 = [ue
1, ..., u

e
n] is a one-touch update (and

therefore per-packet consistent). Hence, by composition, the two-
phase update us1 ++ us2 is per-packet consistent.

Optimized mechanisms. Ideally, update mechanisms should
satisfy update proportionality, where the cost of installing a new
configuration should be proportional to the size of the configuration
change. A perfectly proportional update would (un)install just the
“delta” between the two configurations. The full two-phase update
mechanism that installs the full new policy and then uninstalls the
old policy lacks update proportionality. In this section, we describe
optimizations that substantially reduce overhead.

Pure extensions and retractions are one important case of up-
dates where a per-packet mechanism achieves perfect proportion-
ality. A pure extension is an update that adds new paths to the cur-
rent configuration that cannot be reached in the old configuration—
e.g., adding a forwarding path for a new host that comes online.
Such updates do not require a complete two-phase update, as only
the new forwarding rules need to be installed—first at the internal
ports and then at the ingresses. The rules are installed using the
current version number. A pure retraction is the dual of a pure ex-
tension in which some paths are removed from the configuration.
Again, the paths being removed must be unreachable in the new
configuration. Pure retractions can be implemented by updating
the ingresses, pausing to wait until packets in flight drain out of the
network, and then updating the internal ports.

If paths are not only added or removed but are modified then
more powerful optimizations are available. Per-packet consistency
requires that the active paths in the network come from either of
the configurations. The subset mechanism works by identifying the
paths that have been added, removed or changed and then updating
the rules along the entire path to use a new version. This optimiza-
tion is always applicable, but in the degenerate case it devolves into
a network-wide two-phase update.

6. CHECKING PROPERTY INVARIANCE
As per-packet consistent updates preserve all trace properties,

programmers can turn any trace property checker that verifies indi-
vidual, static network configurations into a verification engine that
verifies the invariance of trace properties as configurations evolve
over time. In this section, we demonstrate this idea concretely us-
ing a model checker, but it applies quite broadly; any kind of static
network analysis can also benefit from our abstractions.

Model Checking Trace Properties. Intuitively, trace prop-
erties describe the paths that an individual packet is allowed to

travel through the network, as well as the packet state at each point
in the path. Temporal logic is a natural fit for the specification of
such properties.

We use Computation Tree Logic (CTL) [15], a branching time
temporal logic, to specify the legal paths that a packet may take
through the network. Simple formulae describe attributes of pack-
ets in the network. For example, the formula

port = 3 & src_ip = 10.0.0.1

describes a packet with a source IP 10.0.0.1 at port 3. As a second
example, recall that our network model contains two special ports,
Drop and World . A dropped packet is one that arrives at the Drop
port; packets forwarded through our network correctly arrive at the
World port.4 Hence the formula port = DROP simply states that
the packet in question has been dropped.

While simple formulae describe a packet at one place in the net-
work, the following quantified formulae describe a packet’s path
through the network.

• AX φ or EX φ. The formula φ holds at the next position on all
paths (AX) from the current position, or at the next position
along at least one path (EX).

• AF φ or EF φ. On all paths (AF) or on some path (EF) from
the current position, φ holds on some future position.

• AG φ or EG φ. On all paths (AG) or on some path (EG) from
the current position, φ holds on all future positions.

With these operators, we can specify many interesting trace prop-
erties. For example, the ‘no black holes’ property (incoming traffic
must not be dropped) can be specified as AG (port != DROP).
Read aloud, this formula says, “On all paths, and at all future posi-
tions on those paths, the current port is never Drop.”

Below, we state other useful trace properties as CTL formulae.

• No loops: every packet will eventually be dropped or leave
the network. We represent this with the formula

AF (port = DROP | port = WORLD).

That is, on all paths through the network, a packet either
reaches the outside world or is dropped.

• Egress: all packets with a header field h = 1 reach the ex-
ternal world:

h = 1 -> AF (port = WORLD).

That is, all paths for packets with h = 1 eventually lead to
the World port.

• Waypointing:5 all packets with a header field h = 1 reach
switch s4.

h = 1 -> AF (switch = s4).

That is, all paths for packets with h = 1 eventually pass
through switch s4.

• Blacklisting: no packets with header h = 0 traverse link
(s2, s3).

4Recall that in our model, no packet is ever silently dropped—
packets are only explicitly dropped by virtue of being sent to the
Drop port.
5Though the model from the previous section did not mention
switches, our implementation contains a notion of a set of ports
belonging to a switch.



(h = 0) ->
AG (switch = s2 -> ~(EX switch = s3))

That is, if a packet header matches h = 0, then on all paths
where the packet reaches switch s2, it will not reach switch
s3 on the next hop—i.e. it cannot traverse the edge between
s2 and s3, if such an edge exists.

Blacklisting, which stipulates that a packet must not reach an edge
or switch, is roughly the negation of waypointing, which stipu-
lates that a packet must pass through an edge or switch. Thus,
both switches and edges can be waypointed or blacklisted. More-
over, both properties generalize to sets of edges and switches by
adding a clause for each element to the conclusion of the implica-
tion. For example, the waypointing property where packets with
headers h = 0 must pass through switches s1 and s2 is:

h = 0 -> (AF switch = s1 & AF switch = s2).

Deploying Trace Verification. Static analyses play a signif-
icant role in the traditional software development cycle, because
they offer an opportunity to verify program properties before the
final software deliverable ships. Software-defined networking pro-
vides a similar opportunity for network programmers: network up-
dates are programs and can be analyzed before being deployed to
update the network. As in the traditional software development cy-
cle, the judicious use of static analyses in network programming
can pinpoint bugs before deployment, reducing time spent diag-
nosing performance problems and patching security vulnerabilities.
We envision verification procedures, like the trace verification de-
scribed above, being deployed as part of the following scenarios:

• Planned change. Before deploying a planned network up-
date, programmers verify that the new configuration main-
tains expected security and reliability properties.

• Debugging. Trace verification can serve as an “assert” state-
ment, allowing the programmer to quickly check properties
of the configuration under development.

• Background verification. The programmer may also verify
a network configuration after deployment, reducing the delay
in making updates while still catching bad configurations in
a reasonably timely manner.

We implemented a library of canonical formulae based on the
properties presented above, which we used to verify the example
benchmarks we report on in this paper. On small examples—with
tens of switches and hundreds of rules—the NuSMV tool reports
results in under a second. Larger examples—such as guarantee-
ing no loops for shortest-path routing over Waxman graphs [16]
with hundreds of switches and hundreds of thousands of rules—
take over an hour.We leave it as an open question for the model
checking community to determine how far verification of network
trace properties can scale.

7. PER-FLOW CONSISTENCY
Per-packet consistency, while simple and powerful, is not always

enough. Some applications require a stream of related packets to
be handled consistently. For example, a server load-balancer needs
all packets from the same TCP connection to reach the same server
replica. In this section, we introduce the per-flow consistency ab-
straction, and discuss mechanisms for per-flow consistent updates.

Per-flow abstraction. To see the need for per-flow consistency,
consider a network where a single switch S load-balances between
two back-end servers A and B. Initially, S directs traffic from
IP addresses starting with 0 (i.e., source addresses in 0.0.0.0/1)
to A and 1 (i.e., source addresses in 128.0.0.0/1) to B. At some
time later, we bring two additional servers C and D online, and
re-balance the load using a two-bit prefix, directing traffic from ad-
dresses starting with 00 to A, 01 to B, 10 to C, and 11 to D.

Intuitively, we want to process packets from new TCP connec-
tions according to the new configuration. However, all packets in
existing flows must go to the same server, where a flow is a se-
quence of packets with related header fields, entering the network
at the same port, and not separated by more than n seconds. The
particular value of n depends upon the protocol and application.
For example, the switch should send packets from a host whose ad-
dress starts with “11” to B, and not to D as the new configuration
would dictate, if the packets belong to an ongoing TCP connection.
Simply processing individual packets with a single configuration
does not guarantee the desired behavior.

Per-flow consistency guarantees that all packets in the same flow
are handled by the same version of the configuration. Formally,
the per-flow abstraction preserves all path properties, as well as all
properties that can be expressed in terms of the paths traversed by
sets of packets belonging to the same flow.

Per-flow mechanisms. Implementing per-flow consistent up-
dates is much more complicated than per-packet consistency be-
cause the system must identify packets that belong to active flows.
Below, we discuss three different mechanisms. Our system imple-
ments the first of the three; the latter two, while promising, depend
upon technology that is not yet available in OpenFlow.

Switch rules with timeouts: A simple mechanism can be ob-
tained by combining versioning with rule timeouts, similar to the
approach in [7]. The idea is to pre-install the new configuration
on the internal switches, leaving the old version in place, as in
per-packet consistency. Then, on ingress switches, the controller
sets soft timeouts on the rules for the old configuration and installs
the new configuration at lower priority. When all flows matching a
given rule finish, the rule automatically expires and the rules for the
new configuration take effect. When multiple flows match the same
rule, the rule may be artificially kept alive even though the “old”
flows have all completed. If the rules are too coarse, then they may
never die! To ensure rules expire in a timely fashion, the controller
can refine the old rules to cover a progressively smaller portion of
the flow space. However, “finer” rules require more rules, a po-
tentially scarce commodity. Managing the rules and dynamically
refining them over time can be a complex bookkeeping task, espe-
cially if the network undergoes a subsequent configuration change
before the previous one completes. However, this task can be im-
plemented and optimized once in a run-time system, and leveraged
over and over again in different applications.

Wildcard cloning: An alternative mechanism exploits the wild-
card clone feature of the DevoFlow extension of OpenFlow [17].
When processing a packet with a clone rule, a DevoFlow switch
creates a new “microflow” rule that matches the packet header fields
exactly. In effect, clone rules cause the switch to maintain a con-
crete representation of each active flow. This enables a simple up-
date mechanism: first, use clone rules whenever installing config-
urations; second, to update from old to new, simply replace all old
clone rules with the new configuration. Existing flows will continue
to be handled by the exact-match rules previously generated by the
old clone rules, and new flows will be handled by the new clone
rules, which themselves immediately spawn new microflow rules.



While this mechanism does not require complicated bookkeeping
on the controller, it does require a more complex switch.

End-host feedback: The third alternative exploits information
readily available on the end hosts, such as servers in a data center.
With a small extension, these servers could provide a list of active
sockets (identified by the “five tuple” of IP addresses, TCP/UDP
ports, and protocol) to the controller. As part of performing an
update, the controller would query the local hosts and install high-
priority microflow rules that direct each active flow to the assigned
server replica. These rules could “timeout” after a period of inac-
tivity, allowing future traffic to “fall through” to the new configu-
ration. Alternatively, the controller could install “permanent” mi-
croflow rules, and explicitly remove them when the socket no long
exists on the host, obviating the need for any assumptions about the
minimum interval time between packets of the same connection.

8. IMPLEMENTATION AND EVALUATION
We have built a system called Kinetic that implements the update

abstractions introduced in this paper, and evaluated its performance
on small but canonical example applications. This section summa-
rizes the key features of Kinetic and presents experimental results
that quantify the cost of implementing network updates in terms of
the number of rules added and deleted on each switch.

Implementation overview. Kinetic is a run-time system that
sits on top of the NOX OpenFlow controller [18]. The system com-
prises several Python classes for representing network configura-
tions and topologies, and a library of update mechanisms. The in-
terface to these mechanisms is through the per_packet_update
and per_flow_update functions. These functions take a new con-
figuration and a network topology, and implement a transition to the
new configuration while providing the desired consistency level.
Both functions are currently based on the two-phase update mecha-
nism, with the per_flow_update function using timeouts to track
active flows. In addition to this basic mechanism, we have im-
plemented a number of optimized mechanisms that can be applied
under certain conditions—e.g., when the update only affects a frac-
tion of the network or network traffic. The runtime automatically
analyzes the new configuration and topology and applies these op-
timizations when possible to reduce the cost of the update.

As described in Section 5, the two-phase update mechanism uses
versioning to isolate the old configuration and traffic from the up-
dated configuration. Because Kinetic runs on top of OpenFlow 1.0,
we currently use the VLAN field to carry version tags (other op-
tions, like MPLS labels, are available in newer versions of Open-
Flow). Our algorithms analyze the network topology to determine
the ingress and internal ports and perform a two-phase update.

Experiments. To evaluate the performance of Kinetic, we de-
veloped a suite of experiments using the Mininet [19] environment.
Because Mininet does not offer performance fidelity or resource
isolation between the simulated switches and the controller, we did
not measure the time needed to implement an update. However,
as a proxy for elapsed time, we counted the total number of install
OpenFlow messages needed to implement each update, as well as
the number of extra rules (beyond the size of either the old or new
configurations) installed on a switch.

To evaluate per-packet consistency, we have implemented two
canonical network applications: routing and multicast. The routing
application computes the shortest paths between each host in the
topology and updates routes as hosts come online or go offline and
switches are brought up and taken down for maintenance. The mul-

ticast application divides the hosts evenly into two multicast groups
and implements IP multicast along a spanning tree that connects all
of the hosts in a group. To evaluate the effects of our optimiza-
tions, we ran both applications on three different topologies each
containing 192 hosts and 48 switches in each of three different
scenarios. The topologies were chosen to represent realistic and
proposed network topologies found in datacenters (fattree, small-
world), enterprises (fattree) and a random topology (waxman). The
three scenarios can be divided up into:

1. Dynamic hosts and static routes
2. Static hosts and dynamic routes
3. Dynamic hosts and dynamic routes

In each scenario, we moved between 3 different configurations,
changing the network in a well-prescribed manner. In the dynamic
host scenario, we randomly selected between 10% − 20% of the
hosts and added or removed them from the network. In the dynamic
routes scenario, we randomly selected 20% of the routes in the
network, and forced them to re-route as if one of the switches in the
route had been removed. For the multicast example, we changed
one of the multicast groups each time. Static means that we did not
change the host or routes.

To evaluate per-flow updates, we developed a load-balancing ap-
plication that divides traffic between two server replicas, using a
hash computed from the client’s IP address. The update for this ex-
periment involved bringing several new server replicas online and
re-balancing the load among all of the servers.

Results and analysis. Table 2 compares the performance of
the subset optimization to a full two-phase update. Extension up-
dates are not shown: whenever an extension update is applicable,
our subset mechanism performs the same update with the same
overhead. The two-phase update has high overhead in all scenarios.

We subject each application to a series of topology changes—
adding and dropping hosts and links—reflecting common network
events that force the deployment of new network configurations.
We measure the number of OpenFlow operations required for the
deployment of the new configuration, as well as the overhead of
installing extra rules to ensure per-packet consistency. The over-
head is the ratio of the number of extra rules installed during the
per-packet update of a switch divided by the (maximum) number
of rules in the old or new configuration. For example, if the old
and new configurations both had 100 rules and during the update
the switch had 120 rules installed, that would be a 20% overhead.
The Overhead column in Table 2 presents the maximum overhead
of all switches in the network. Two-phase update requires approx-
imately 100% overhead, because it leaves the old configuration on
the switch as it installs the new one. Because both configurations
may not be precisely the same size, it is not always exactly 100%.
In some cases, the new configuration may be much smaller than the
old (for example, when routes are diverted away from a switch) and
the overhead is much lower than 100%.

The first routing scenario, where hosts are added or removed,
demonstrates the potential of our optimizations. When a new host
comes online, the application computes routes between it and ev-
ery other online host. Because the rules for the new routes do not
affect traffic between existing hosts, they can be installed without
modifying or reinstalling the existing rules. Similarly, when a host
goes offline, only the installed rules routing traffic to or from that
host need to be uninstalled. This leads to update costs proportional
to the number of rules that changed between configurations, as op-
posed to a full two-phase update, where the cost is proportional to
the size of the entire new configuration.



Application Toplogy Update 2PC Subset
Ops Max Overhead Ops Ops % Max Overhead

Routing Fat Tree Hosts 239830 92% 119003 50% 20%
Routes 266234 100% 123929 47% 10%
Both 239830 92% 142379 59% 20%

Waxman Hosts 273514 88% 136230 49% 66%
Routes 299300 90% 116038 39% 9%
Both 267434 91% 143503 54% 66%

Small World Hosts 320758 80% 158792 50% 30%
Routes 326884 85% 134734 41% 23%
Both 314670 90% 180121 57% 41%

Multicast Fat Tree Hosts 1043 100% 885 85% 100%
Routes 1170 100% 634 54% 57%
Both 1043 100% 949 91% 100%

Waxman Hosts 1037 100% 813 78% 100%
Routes 1132 85% 421 37% 50%
Both 1005 100% 821 82% 100%

Small World Hosts 1133 100% 1133 100% 100%
Routes 1114 90% 537 48% 66%
Both 1008 100% 1008 100% 100%

Experimental results comparing two-phase update (2PC) with our subset optimization (Subset). We add or remove hosts and change
routes to trigger configuration updates. The Ops column measures the number of OpenFlow install operations used in each situation.
The Subset portion of the table also has an additional column (Ops %) that tabulates (Subset Ops / 2PC Ops). Overhead measures the
extra rules concurrently installed on a switch by our update mechanisms. We pessimistically present the maximum of the overheads
for all switches in the network – there may be many switches in the network that never suffer that maximum overhead.

Table 2: Experimental results.

Our optimizations yield fewer improvements for the multicast
example, due to the nature of the example: when the spanning tree
changes, almost all paths change, triggering an expensive update.

We have not applied our optimizations to the per-flow mecha-
nism, therefore we do not include an optimization evaluation of the
load balancing application.

9. RELATED WORK
This paper builds on our earlier workshop paper [20], which did

not include a formal model or proofs, the optimized per-packet up-
date mechanisms, formal verification of network configurations, or
an implementation and evaluation.

The problem of avoiding undesired transient behavior during
planned change has been well studied in the domain of distributed
routing protocols. Most prior work focused on protocol-specific
approaches of adjusting link metrics to minimize disruptions [8,
2, 3]. The recent work by Vanbever et. al [5] also handles more
significant intradomain routing changes, such as switching to a dif-
ferent routing protocol. Unlike our approach, these methods can
only preserve basic properties such as loop-freedom and connec-
tivity. In addition, these approaches are tied to distributed routing
protocols, rather than the logically-centralized world of SDN.

Consensus Routing [9] seeks to eliminate transient errors, such
as disconnectivity, that arise during BGP updates. In particular,
Consensus Routing’s “stable mode” is similar to our per-packet
consistency, though computed in a distributed manner for BGP
routes. On the other hand, Consensus Routing only applies to a
single protocol (BGP), whereas our work may benefit any protocol
or application developed in our framework. The BGP-LP mecha-
nism from [21] is essentially per-packet consistency for BGP.

The dynamic software update problem is related to network up-
date consistency. The problem of upgrading software in a general
distributed system is addressed in [22]. The scope of that work dif-

fers in that the nodes being updated are general purpose computers,
not switches, running general software.

The related problem of maintaining safety while updating fire-
wall configurations has been addressed by Zhang et. al [23]. That
work formalized a definition of safety similar in spirit to per-packet
consistency, but limited to a single device.

In the past, a number of tools have been developed to analyze
static network configurations [24]. Our main contribution is not to
show that it is possible to analyze static network configurations (or
that we can do so using a model checker). Rather, it is the fact
that any such static analysis technique (such as header space anal-
ysis [14]) can be combined with our per-packet consistent update
mechanisms to guarantee that trace properties are preserved as con-
figurations evolve over time.

The model developed by Kazemian et. al [14] was the starting
point for our own model. Since their model only spoke of a single,
static configuration, we extended the network semantics to include
updates so we could model a network changing dynamically over
time. In addition, while their model was used to help describe their
algorithms, ours was used to help us state and prove various cor-
rectness properties of our system.

10. CONCLUSIONS AND FUTURE WORK
Reasoning about concurrency is notoriously difficult, and net-

work software is no exception. To make fundamental progress, the
networking field needs simple, general, and reusable abstractions
for changing the configuration of the network. Our per-packet and
per-flow consistency abstractions allow programmers to focus their
attention on the state of the network before and after a configura-
tion change, without worrying about the transition in between. The
update abstractions are powerful, in that the programmer does not
need to identify the properties that should hold during the transi-
tion, since any property common to both configurations holds for



any packet traversing the network during the update. This enables
lightweight verification techniques that simply verify the properties
of the old and new configurations. In addition, our abstractions are
practical, in that efficient and correct update mechanisms exist and
are implementable using today’s OpenFlow switches.

In our ongoing work, we are exploring new mechanisms that
make network updates faster and cheaper, by limiting the number of
rules or the number of switches affected. In this investigation, our
theoretical model is a great asset, enabling us to prove that our pro-
posed optimizations are correct. We also plan to extend our formal
model to capture the per-flow consistent update abstraction, and
prove the correctness of the per-flow update mechanisms. In addi-
tion, we will make our update library available to the community,
to enable future OpenFlow applications to leverage these update
abstractions. Finally, while per-packet consistency and per-flow
consistency are core abstractions with excellent semantic proper-
ties, we want to explore other notions of consistency that either
perform better (but remain sufficiently strong to provide benefits
beyond eventual consistency) or provide even richer guarantees.
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