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1 School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States, 2Department of Earth and

Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States, 3 Lawrence Berkeley National Laboratory,

Berkeley, CA, United States

Viruses are the most abundant biological entity on Earth and their interactions with

microbial communities are recognized to influence microbial ecology and impact

biogeochemical cycling in various ecosystems. While the factors that control the

distribution of viruses in surface aquatic environments are well-characterized, the

abundance and distribution of continental subsurface viruses with respect to microbial

abundance and biogeochemical parameters have not yet been established. In order to

begin to understand the factors governing virus distribution in subsurface environments,

we assessed microbial cell and virus abundance in groundwater concurrent with

groundwater chemistry in a uranium impacted alluvial aquifer adjoining the Colorado River

near Rifle, CO. Virus abundance ranged from 8.0× 104 to 1.0×106 mL−1 and exceeded

cell abundance in all samples (cell abundance ranged from 5.8 × 104 to 6.1 × 105

mL−1). The virus to microbial cell ratio ranged from 1.1 to 8.1 and averaged 3.0 ± 1.6

with virus abundance most strongly correlated to cell abundance (Spearman’s ρ = 0.73,

p < 0.001). Both viruses and cells were positively correlated to dissolved organic carbon

(DOC) with cells having a slightly stronger correlation (Spearman’s ρ = 0.46, p< 0.05 and

ρ = 0.54, p< 0.05; respectively). Groundwater uraniumwas also strongly correlated with

DOC and virus and cell abundance (Spearman’s ρ = 0.62, p< 0.05; ρ = 0.46, p< 0.05;

and ρ = 0.50, p < 0.05; respectively). Together the data indicate that microbial cell and

virus abundance are correlated to the geochemical conditions in the aquifer. As such local

geochemical conditions likely control microbial host cell abundance which in turn controls

viral abundance. Given the potential impacts of viral-mediated cell lysis such as liberation

of labile organic matter from lysed cells and changes in microbial community structure,

viral interactions with the microbiota should be considered in an effort to understand

subsurface biogeochemical cycling and contaminant mobility.

Keywords: virus, bacteriophage, dissolved organic carbon, aquifer, subsurface, uranium, groundwater

INTRODUCTION

Viruses have been identified in every environment where microorganisms are present, often equal
to or exceeding microbial cell abundance (Suttle, 2005; Anderson et al., 2013; Knowles et al.,
2016). Within the continental subsurface sediments (103–109 cm−3; Engelhardt et al., 2014; Pan
et al., 2014; Yanagawa et al., 2014) and groundwater (105–107 mL−1; Kyle et al., 2008; Roudnew
et al., 2012) viruses may outnumber cells in situ by as much as 225 to one in the subsurface
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(Engelhardt et al., 2014). Considering that the continental
subsurface harbors an estimated one-third of all microbial life
on Earth (Whitman et al., 1998; Kallmeyer et al., 2012), the
impact of viruses in terrestrial subsurface biogeochemical cycling
is of growing interest (Pan et al., 2014; Wilkins and Fredrickson,
2015). However, we know very little about the role viruses play
in subsurface microbial ecology and biogeochemistry. Viruses
are obligate intracellular parasites that use the host cell for
replication and often lyse the host cell upon release into the
environment. Lysogenic viruses may also exist as prophage
integrated into host genomes but may be triggered back into
a lytic life cycle. As a consequence, virus-mediated cell lysis
has the potential to liberate DOC and other nutrients into
the surrounding environment contributing to food webs and
biogeochemical carbon cycling (Fuhrman, 1999; Wommack and
Colwell, 2000; Middelboe and Lyck, 2002; Suttle, 2005, 2007;
Weitz and Wilhelm, 2012).

While we recognize that viruses are abundant in aquifers
and other subsurface environments, the factors which
influence the distribution and abundance of viruses are
poorly characterized. In surface aquatic environments, these
factors are well characterized such as host cell abundance
(Liang et al., 2014; Wigington et al., 2015) and productivity
(Maranger and Bird, 1995; Clasen et al., 2008); however the
abundance and distribution of continental viruses with respect
to subsurface parameters such as microbial abundance and
geochemical properties have not yet been established. Since
virus replication depends on host cells, factors that alter host
microbial growth and productivity will also have an impact
on virus production. In surface aquatic microbial ecosystems,
the abundance, distribution, and biogeochemical impact of
viral infection are not homogenous, but often correspond
to the distribution of nutrients accessible in the aqueous
environment (Seymour et al., 2006; Dann et al., 2014, 2016;
Wang et al., 2016). Chemical factors including DOC have
been demonstrated to influence the activity of microorganisms
(Peter et al., 2012) and are linked to the distribution of
viruses in aquatic environments (Laybourn-Parry et al., 2001;
Farnell-Jackson and Ward, 2003). Thus, the distribution of
subsurface viruses may also be linked to factors that govern
cell distribution, such as carbon, nutrients, and energy in the
subsurface. Previous studies have shown that the addition of
acetate and an electron acceptor, nitrate, to subsurface sediment
stimulated the production of viruses (Pan et al., 2014), suggesting
that carbon and electron acceptor availability can influence
virus abundance. While stimulation of microbial activity
increases virus production, little information exists regarding
the distribution of viruses and organic carbon in the shallow
subsurface.

Subsurface sediments are geochemically and physically
heterogeneous due to deposition and burial of soil horizons
and surface derived organic material. Deposition thus forms
dispersed organic-rich lenses (Blazejewski et al., 2005, 2009)
and is common within alluvial sedimentary environments
(Blazejewski et al., 2009; Ricker et al., 2013; Chaopricha and
Marín-Spiotta, 2014). As a unique facies type organic-rich
deposits represent an important component of subsurface

sedimentary systems and contribute to the generation of
geochemically reduced zones or hotspots in the subsurface
(McClain et al., 2003). These hotspots consist of high
concentrations of sediment-associated organic matter in
reduced zones that maintain microbial activity and contain
elevated concentrations of highly reduced chemical species
(Qafoku et al., 2009; Campbell et al., 2012). Together both
surface derived and buried organic matter play a significant role
influencing microbial activity and biogeochemistry, controlling
metal/radionuclide mobility across the upper Colorado River
basin (Baker et al., 2000; Janot et al., 2015). One such aquifer
is the Rifle alluvial aquifer, a former U.S. Department of
Energy uranium ore-processing site near the city of Rifle, CO.
Storage of uranium mill tailings at the site resulted in a large
resilient groundwater uranium plume (Zachara et al., 2013).
Recent research indicates that organic carbon rich regions
contribute to geochemically reduced zones that play a role
in the persistence of the U plume retaining U as a reduced
mineral phase (Campbell et al., 2012; Qafoku et al., 2014; Janot
et al., 2015). Uranium reduction to an insoluble mineral form
is largely mediated by microbial activity, and as such it is not
surprising that the presence of viruses in groundwater within
the uranium plume was revealed in metagenomic datasets
obtained from this aquifer (Wrighton et al., 2012; Holmes et al.,
2015). The activity of viruses has implications for microbially-
mediated biogeochemical processes such as metal reduction
by directly influencing active populations of metal-reducing
microorganisms. While viruses have been identified at this site,
studies have not elucidated the abundance and distribution of
viruses in the aquifer with respect to host cell abundance and
geochemistry. Here, we determined the spatial distribution of
microbial cells and viruses in groundwater collected from the
Rifle aquifer with respect to groundwater geochemical data. To
our knowledge, this is the first report of the spatial distribution of
total virus abundance in correlation with aquifer geochemistry.
Due to the importance of biogeochemical cycling in subsurface
systems and the subsequent impact on the fate and transport
of contaminants, understanding factors that control host cell
and virus distribution in subsurface systems can help elucidate
subsurface biogeochemistry.

MATERIALS AND METHODS

Study Area
Groundwater was sampled using peristaltic pumps from 20
monitoring wells within a shallow (20–30 ft), unconfined alluvial
aquifer adjoining the Colorado River located 0.3 miles east of
Rifle, Colorado (USA) (Figure 1). Groundwater flows in a south-
southwesterly direction and discharges into the Colorado River.
The Holocene-age alluvial sediments consist of sandy gravel
and gravelly sand containing silts and clays, characteristic of
many alluvial aquifers. Distributed throughout the aquifer are
also lenses of naturally reduced sediments containing reduced
minerals and high concentrations of organic carbon originating
from buried plant material (Campbell et al., 2012; Janot et al.,
2015). Groundwater within the aquifer is typically suboxic
(<1mg L−1) and contains spatially varying concentrations of
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FIGURE 1 | Location of monitoring wells within a uranium contaminated alluvial aquifer located 0.3 miles east of Rifle, Colorado (USA) and adjoining the Colorado

River (Well 309 39.52842, −107.774426 and Well SY07 39.529335, −107.770864). Monitoring wells located inside the contaminant plume are denoted with red

stars whereas monitoring wells located outside of the contaminant plume are denoted as black boxes. Groundwater virus abundance (A), cell abundance (B), and

virus-to-microbial cell ratio (VMR) (C) data collected from monitoring wells across the alluvial aquifer. Error bars denoted standard error of measure for duplicate

samples. Spatial interpolation of groundwater viruses (D), cells (E), and virus-to-microbial cell ratio (F) data collected from monitoring wells in the alluvial aquifer

depicting spatial distribution. Color gradient from high (red) to low (blue) denotes interpolated values.

reduced chemical species such as Fe(II) (10–50 µM; Williams
et al., 2011). Leaching of U from former stockpiles of ore and
mill tailings stored at the site resulted in a persistent plume
of groundwater with elevated U concentrations (>100 µg L−1;
Zachara et al., 2013).

The major plume region has been described in prior studies
conducted at the Rifle field site (Zachara et al., 2013). For the
purpose of this study the boundaries of the plume region were
defined where groundwater U concentrations exceeded 100 µg
L−1. An elevated groundwater U concentration (171 µg L−1)
was measured in well 656 in the eastern portion of the site, but
groundwater in this region is geochemically distinct from the
major plume with significantly lower groundwater DOC, DIC,
and sulfate concentrations. Accordingly, well 656 is excluded
from assignment to the major contaminant plume that is located
at the center of the field site. Eleven monitoring wells within
the uranium contaminated plume and nine monitoring wells
outside the plume region were sampled in this study (Figure 1).

Each well was approximately 6m deep. Wells directly associated
with regions impacted during prior experimental augmentation
(Anderson et al., 2003) were excluded from this study. Further
site details have been described elsewhere (Anderson et al., 2003;
Vrionis et al., 2005; Zachara et al., 2013).

Data Collection and Processing
Replicate groundwater samples (<50 mL) for geochemical
analyses and enumeration of cells and viruses were collected
from purged (12 L, ca. 1–1.5 well volumes) wells at a 5m depth
using a peristaltic pump. Groundwater was filtered through
0.45 µm PVDF filters to remove sediment particles for cell
enumeration, and through 0.1µm PVDF filters to remove cells
for virus enumeration. In order to reduce background noise
and improve filter clarity, samples for virus enumeration were
treated with a nuclease, DNase I (10 U mL−1; Danovaro and
Middelboe, 2010; Carreira et al., 2015). In this study, viruses
are operationally defined as DNase resistant, SYBR Green I
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fluorescent particles smaller than 0.1µm and larger than 20
nm. Using this operational definition, defective viruses, gene
transfer agents, and other unknown particles may plausibly be
included. A maximum cutoff size of 0.1 µm was selected to
prevent inclusion of cells smaller than 0.2 µm as was identified
by Luef and colleagues at the Rifle site (Luef et al., 2015).
To avoid including viruses larger than 0.1 µm in the cellular
fraction, a minimum cutoff size of 0.2 µm was used for cell
enumeration. A comparison of the sub 0.2µm fraction and
the sub 0.1µm fraction showed that there was no statistically
signficant difference (Figure S1). Thus viruses and cells that are
between 0.1 µm to 0.2µm were not enumerated in this study.
Aliquots (1 mL) were preserved for both virus and cell counts
by adding glutaraldehyde to a final concentration of 0.5% and
incubating 15–30 min at 4◦C prior to freezing in liquid N2

(Brussaard, 2009). Samples were packed in dry ice and shipped
to the University of Nebraska-Lincoln for storage at−80◦C prior
to enumeration.

Duplicate samples were thawed for enumeration by
epifluorescence microscopy. Viruses were collected on
Anodisc filters (0.02 µm), while cells were collected on
black polycarbonate filters (0.2 µm). Between 0.5 and 1 mL
of sample was passed through each filter. SYBR Green I (400x
dilution from original stock) was used to stain the filters (15min)
for enumeration by epifluorescence microscopy. We note that
because SYBR Green I binds to dsDNA more efficiently than
ssDNA and RNA, the total virus count may be underestimated.
After staining and drying, filters were mounted on slides with
an anti-fading solution (50% glycerol, 50% phosphate buffered
saline, 0.1% p-phenylenediamine). Background fluoresence in
groundwater samples was minimal and did not interfere with
enumeration (Figure S2). At least 10 fields or 200 particles
were enumerated per filter (Patel et al., 2007). For each sample,
duplicate field replicates were enumerated for cells and viruses.
Blanks of TE buffer were routinely checked to confirm the lack
of viral and microbial contaminants on filters.

Groundwater dissolved oxygen (DO) concentrations were
measured in situ deploying multi-parameter sondes (YSI Inc.,
OH) into the well. Groundwater samples were directly filtered
(0.45 µm PTFE) into glass vials for analysis of DOC/DIC while
samples for anion analysis were filtered directly into HDPE vials.
Vials were capped, leaving no headspace, and stored at 4◦C
prior to analyses (Williams et al., 2011). Aqueous anions (sulfate
and nitrate) were measured by ion chromatography (ICS-2100
equipped with AS18 column, Dionex, CA; Kantor et al., 2013).
DOC/DIC was measured by combustion catalytic oxidation and
NDIR method using a Shimadzu Total Organic Carbon Analyzer
(TOC-VCSH; Shimadzu, Corp.). Measurements of DOCwill also
include cell and viral biomass due to the cutoff used for defining
the aqueous fraction (<0.45 µm), however cell and viral biomass
do not make a significant portion of any DOC measurement in
this study. Using upper limits of 149 fg of C per cell (Vrede et al.,
2002) and 106 cells mL−1, no more than 0.15mg L−1 can come
from cellular biomass, which constitutes only a minor fraction
of the DOC measured in this study. Viruses, being orders of
magnitude smaller than cells, are a negligible component of total
measured DOC.

Data Analyses
Spatial interpolation (ArcGIS, Desktop Release 10.1,
Environmental Systems Research Institute, Redlands, CA)
was used to geographically represent the distribution of viruses
and cells as well as geochemical parameters (DOC, DIC, sulfate,
dissolved Fe, dissolved Mn, nitrate, and pH) across the alluvial
aquifer (Nolan and Weber, 2015). Spline interpolation method
(from the ArcGIS Spatial Analyst extension) was selected from
among three interpolation methods (kriging, inverse distance
weighting, spline) as it resulted in the lowest residual error
(Akkala et al., 2010).

Correlation analyses and statistical comparisons were
conducted in GraphPad Prism 5.0.3 (GraphPad Software).
Significance level was defined at p < 0.05. Analyses involving
cell and virus abundances were conducted on log-transformed
values. All correlations between all measured parameters were
calculated by the Spearman rank correlation method. Statistical
comparisons between parameters within the major plume region
and outside were conducted by t-test.

RESULTS AND DISCUSSION

Groundwater Geochemistry and Virus and
Microbial Cell Distribution and Abundance
Groundwater virus abundance ranged from 8.0 × 104 to 1.0 ×

106 viruses mL−1 (Figures 1A,D) and exceeded cell abundance
(range 6.0 × 104 to 6.1 × 105 cells ml−1; Figures 1B,E) in all
20 monitoring wells. These total abundance values of viruses
enumerated in groundwater were similar to results obtained
from other groundwater sites (Kyle et al., 2008; Roudnew et al.,
2012). Virus abundance in this shallow aquifer was strongly
correlated to cell abundance (ρ = 0.73, p < 0.001) (Figure 2C)
and is consistent with prior studies comparing virus and cell
abundance in aquatic and sedimentary environments including
lakes (Maranger and Bird, 1995; Bettarel et al., 2006; de Araújo
and Godinho, 2009; Barros et al., 2010), marine waters (Alonso
et al., 2001; Pereira et al., 2009), marine surface sediments
(Danovaro and Serresi, 2000), marine subsurface sediment
(Bird et al., 2001; Engelhardt et al., 2014), and deep granitic
groundwater (Kyle et al., 2008). The virus-to-microbial cell ratio
(VMR) in this shallow aquifer ranged from 1.1 to 8.1 and
averaged 3.0 ± 1.6 (mean ± S.D., n = 20; Figures 1C,F). VMR
range observed in groundwater collected from the Rifle aquifer
is consistent with another shallow aquifer ranging from 0.4 to
6.1 (Roudnew et al., 2012) but is slightly less than has been
observed in deep aquifers (average VMR of 12; Kyle et al., 2008).
However, the VMR was notably lower than was measured in
water collected from the Colorado River (VMR = 33; Table S1).
It should be noted that the VMR in the Colorado River reported
in this study is consistent with results from other river systems
(Mathias et al., 1995; Jiao et al., 2006; Luef et al., 2007). This
result is not surprising as total virus abundance in the river water
sample exceeds virus abundance in groundwater. The lower VMR
in groundwater relative to the river water sample could be a result
of adsorption of viruses to the aquifer alluvium. Free (planktonic)
viruses in the groundwater were enumerated in this study so any
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FIGURE 2 | Spearman’s rank correlations between DOC and abundances of

cells (A) and viruses (B). Spearman’s rank correlation between viruses and

cells (C) in groundwater samples. Error bars represent the standard deviation

of the mean of duplicate measurements. Error bars not visible are smaller than

the symbol. Dashed lines represent the 95% confidence interval for the lines of

regression presented in the figure.

viruses produced that were adsorbed onto the aquifer alluvium
(including clays and reactive minerals) would have been excluded
resulting in a lower total virus abundance in the groundwater.
The adsorption of viruses to minerals such as clays and iron
oxides (Hewson and Fuhrman, 2003; You et al., 2005; Kernegger
et al., 2009; Nieto-Juarez and Kohn, 2013) is recognized to
reduce planktonic virus abundance. Previous studies have found
a correlation between viral abundance and microbial activity in
marine waters (Corinaldesi et al., 2003). In subsurface sediments,

stimulation of microbial activity was found to result in an
increase in VMR (Pan et al., 2014). Thus, the differences in
viral abundance/VMR may indicate differences in microbial
activity between groundwater and surface water. Together these
are plausible reasons that may explain the difference in the
abundance of viruses between the river water and groundwater
samples.

A correlation between microbial cell abundance, virus
abundance, and groundwater geochemistry was observed within
the aquifer. Microbial cell abundance in groundwater was
significantly higher (Unpaired t-test, p < 0.01) within the
uranium plume (2.0 × 105 ± 1.4 × 105 cells mL−1, mean
± S.D., n = 11) compared to cell abundance in groundwater
outside of the plume (8.6 × 104 ± 3.1 × 104 cells mL−1, mean
± S.D., n = 9; Table 1, Figures 1B,E). Cell abundance had a
strong positive correlation to groundwater DOC (Spearman’s ρ

= 0.54, p < 0.05), U (Spearman’s ρ = 0.51, p < 0.05), and sulfate
concentrations (Spearman’s ρ = 0.47, p < 0.05). However, it
should be noted that groundwater DOC concentrations were also
higher within the uranium plume (3.45 ± 0.88mg L−1; mean ±

S.D., n = 11), relative to the concentrations measured outside
(2.36 ± 0.60mg L−1; mean ± S.D., n = 9) of the uranium plume
(Table 1, Figure 3A). Elevated concentrations of DOC may arise
from buried organic carbon identified at the site which have
been demonstrated to be responsible for persistence of the U
plume (Campbell et al., 2012; Janot et al., 2015; Boye et al., 2017).
Groundwater DOC and U concentrations were also correlated
with virus abundance (Spearman’s ρ = 0.46, p < 0.05 and ρ =

0.46, p < 0.05, respectively; Figures 2A,B, Table 2). Similar to
the distribution of cells in the aquifer, virus abundance in the
uranium plume region was statistically higher (Unpaired t-test,
p< 0.01), 5.2× 105 ± 2.4× 105 viruses mL−1 (mean± S.D., n=
11), relative to the abundance of viruses outside of the region, 2.5
× 105 ± 1.4 × 105 viruses mL−1 (mean ± S.D., n = 9; Table 1,
Figures 1A,D). While virus and cell abundance in groundwater
were positively correlated to groundwater DOC concentration,
VMR did not exhibit a statistically significant correlation to any
geochemical factor (Table 2, Figures 2A,B).

While there is the potential for hyporheic intrusion of DOC
from the Colorado River, elevated DOC concentrations were
not observed in samples collected from wells located near the
river, nor were other proxies for river water incursion into the
aquifer, such as low electrical conductivity (data not shown).
While we did not test lability of the DOC, correlations with
cell (Spearman’s ρ = 0.46, p < 0.05) and virus abundance
(Spearman’s ρ = 0.54, p < 0.05) strongly suggest that DOC was
sufficiently bioavailable to stimulate microbial activity. Microbial
activity in groundwater is often stimulated by inputs of DOC
(Baker et al., 2000; Sobczak and Findlay, 2002; Findlay et al., 2003;
Foulquier et al., 2011; Li et al., 2012). The presence of bioavailable
DOC and available electron acceptors may thus provide sufficient
energy for stimulation of microbial respiration. Because viruses
are reliant on metabolically active hosts for replication, microbial
host energy availability favors the production of viruses. Host
cell metabolic activity and growth rate has been directly
demonstrated to increase virus adsorption rate and decrease the
period of time between viral infection and lysis of the host for
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TABLE 1 | Comparison of biotic and geochemical parameters in samples collected from monitoring wells located inside and outside of the contaminant plume.

Inside plume (mean ± S.D.) (n = 11) Outside plume (mean ± S.D.) (n = 9) t-test p-value

Uranium (µg L−1) 157.5 ± 47.90 63.15 ± 45.62 0.0003***

Dissolved Organic Carbon (DOC) (mg L−1) 3.45 ± 0.88 2.36 ± 0.60 0.0055**

Dissolved Inorganic Carbon (DIC) (mg L−1) 69.8 ± 9.9 56.9 ± 12.5 0.0194*

Sulfate (mg L−1) 630.2 ± 134.5 451.5 ± 125.8 0.0071**

Electrical conductivity (µS/cm) 2,468 ± 366 1961 ± 444 0.0118*

Cell abundance (mL−1) (log) 5.24 ± 0.24 4.91 ± 0.14 0.0021**

Virus abundance (mL−1) (log) 5.68 ± 0.19 5.34 ± 0.24 0.0026**

Virus-to-microbial cell ratio (VMR) 3.00 ± 1.20 3.14 ± 2.06 0.8544

pH 7.37 ± 0.10 7.47 ± 0.14 0.0676

DO (mg L−1) 0.83 ± 1.38 0.49 ± 0.99 0.5438

Iron (mg L−1) 2.22 ± 2.96 1.03 ± 1.57 0.2899

Manganese (mg L−1) 0.78 ± 0.47 0.40 ± 0.34 0.0644

Nitrate (mg L−1) 1.76 ± 2.93 0.49 ± 0.67 0.2188

Stars indicate levels of significance (*P < 0.05,**P < 0.01,***P < 0.001).

lytic viruses (Hadas et al., 1997). Lysogenic bacteriophage have
also been demonstrated to respond to host cell metabolic activity;
control of the lytic and lysogenic pathway is controlled by levels
of cAMP, with high energy conditions favoring lysis (Hong et al.,
1971; Rolfe et al., 1973). In addition, chronic infections, in which
viruses are released without lysis of the host, also produce greater
numbers of viruses under higher energy conditions (Brown and
Dowell, 1968). This was recently demonstrated in a series of
alluvial aquifer sediment microcosms where additions of an
energy source, acetate, and electron acceptor, nitrate, not only
resulted in the oxidation of organic carbon, but also significant
virus production (Pan et al., 2014). This result is consistent
with prior studies conducted in surface aquatic environments in
which correlation between virus abundance and DOC has been
observed (Laybourn-Parry et al., 2001, 2013; Auguet et al., 2005;
Holmfeldt et al., 2010; Säwström and Pollard, 2012). Inputs of
organic carbon increase microbial activity (Peter et al., 2012), and
organic-rich regions are also inferred to have elevated microbial
activities (Campbell et al., 2012). As a result elevated microbial
activity would result in enhanced virus production and hence
higher virus abundance within the plume. Viral production and
expression of virus-related genes following acetate biostimulation
has been demonstrated previously at the Rifle site (Holmes et al.,
2015). Given that stimulated microbial activity will result in the
production of viruses (Pan et al., 2014), the elevated abundance
of viruses in the plume correlated with organic carbon suggests
that there is ongoing microbial activity and virus production in
the aquifer.

The consumption of organic carbon in this aquifer has
been linked to the reduction of molecular oxygen, nitrate,
iron, manganese, uranium, and sulfate as well as fermentation
reactions (Wrighton et al., 2012; Anantharaman et al., 2016).
While suboxic conditions (DO < 1mg L−1) predominated
throughout most of the plume, oxic conditions were identified
in two wells within the center of the plume region: LQ105
(4.3mg L−1) and U01 (2.6mg L−1) (Table S2). Dissolved Fe
and Mn concentrations suggested the presence of reduced Fe

(Fe(II)) and Mn (Mn(II)) and were also substantially lower
within these two wells (Table S2, Figure S3). Thus lower Fe
and Mn concentrations may be due to oxidative precipitation
of Fe or Mn oxide minerals or lack of metal reduction due
to oxic conditions in the groundwater. The highest dissolved
Fe and Mn concentrations were found in wells located along
the central portion of the site closest to the Colorado River
(744, 310, 743, JB01, LQ107, 304) (Figure S3). Groundwater U
concentrations ranged from 26.5 µg L−1 to 7.4mg L−1, largely
localized to the center of the site (Figure 3B). Nitrate was also low
to undetectable in most of the wells throughout the floodplain
with the exception of the two oxic monitoring wells LQ105
and U01 (5.89mg L−1 and 8.25mg L−1, respectively) (Table S2,
Figure 3C). This may reflect operative nitrification processes or
lack of denitrification due to oxic conditions in these wells. These
geochemical conditions indicate a substantially different redox
environment, potentially due to intrusion of dissolved oxygen
or nitrate at the capillary fringe (Williams and Oostrom, 2000).
The oxic monitoring wells U01 and LQ105 also contained some
of the highest cell and virus abundances in the major plume
region (Figure 1). This may be expected because O2 mediated
respiration is expected to support greater cell abundance and
hence greater virus abundance. Sulfate concentrations averaged
630.2 ± 134.5mg L−1 (mean ± S.D., n = 11) within the plume
and 451.5 ± 125.8mg L−1 outside of the contaminant plume
(mean ± S.D., n = 9) (Unpaired t-test P < 0.05; Table 1,
Figure 3D). In addition, DIC was also higher within the plume
(69.8 ± 9.9mg L−1, mean ± S.D., n = 11) compared to outside
(56.9 ± 12.5mg L−1, mean ± S.D., n = 9) (Table 1, Figure 3E).
Sulfate could also serve as a potential electron acceptor and has
been implicated in the generation and precipitation of reduced
sulfur phases such as framboidal pyrite, mackinwite, and greigite
(Qafoku et al., 2009; Janot et al., 2015) within the aquifer.
Elevated virus abundance in the plume region is consistent
with prior results demonstrating that bacterial sulfate reduction
rates were correlated with viral abundance and distribution in
estuarine sediments (Middelboe et al., 2003). As such microbial
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metabolisms could thus be supported by the dynamic changes in
redox conditions that are associated with the influx of oxidants
into a carbon-rich reduced system.

Implications of Viral Activity on
Microbially-Mediated Subsurface
Biogeochemical Cycling
Here we demonstrate that viruses, cells, and DOC are enriched
in the major plume region of the Rifle aquifer. The widespread
distribution of viruses at the Rifle aquifer is consistent with
prior suggestions that viruses may play a potential role in
influencing biogeochemical cycling at the site (Wrighton et al.,
2014; Holmes et al., 2015). Interactions between organic carbon,
cells, and viruses may be important in riparian aquifers across
the upper Colorado River basin where buried organic matter
plays an important role in mediating biogeochemical cycles and
metal/radionuclide sequestration. Organic carbon availability
can promote microbial activity (Baker et al., 2000; Sobczak and
Findlay, 2002; Findlay et al., 2003; Foulquier et al., 2011; Li
et al., 2012) and, in turn, virus production, which is reflected
by elevated virus abundances. Thus, organic rich sediments
may potentially represent regions of increased viral activity as a
response to higher microbial metabolic activity.

Within the Rifle aquifer, virus mediated cell lysis has been
suggested to contribute biologically available organic carbon or to
suppress certain taxa responsible for biogeochemically important
reactions at the site (Wrighton et al., 2014; Holmes et al., 2015).
In addition to lysis, lysogeny is another possible life cycle. Recent
proposed models of lysogeny have suggested that at high and
low host cell densities lysogenic life cycles may be favored,
however with the cell densities encountered in this study (105–
106 cells/mL), lytic kill-the-winner dynamics are suggested to be
favored (Knowles et al., 2016). Lysis of active members of the
microbial community and liberation of organic carbon can both
influence biogeochemical cycling. Together these impacts have
biogeochemical implications for the long-persisting groundwater
U plume located in the Rifle aquifer and other similar aquifers
within the upper Colorado River basin. The increase in
bioavailable carbon would accelerate cell turnover rates and
organic carbon liberation (Middelboe et al., 1996; Noble and
Fuhrman, 1999; Middelboe and Lyck, 2002; Eissler et al., 2003),
creating labile particulate and dissolved organic carbon thereby
providing a source of biologically available carbon (Xu et al.,
2013, 2014) subsequently controlling the community from the
bottom up. The liberated carbon can increase respiration rates of
heterotrophic bacteria (Middelboe and Lyck, 2002), which may
include U-reducing bacteria responsible for the precipitation
and immobilization of U(IV) (Anderson et al., 2003; Chang
et al., 2005; Williams et al., 2011). Alternatively, viruses may
also depress rates of biogeochemical transformations by infecting
and lysing the organisms responsible for important organic
carbon dependent subsurface processes such as denitrification
(Burt et al., 1999) or metal reduction (Holmes et al., 2015).
Further research is necessary to explore the role that viruses
play mediating microbial processes underpinning reactions
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FIGURE 3 | Spatial interpolation of groundwater DOC (A), uranium (B), nitrate (C), sulfate (D), and DIC (E) data collected from monitoring wells in the alluvial aquifer

depicting spatial distribution. Color gradient from high (red) to low (blue) denotes interpolated concentrations.
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responsible for the fate and transport of metals/radionuclides
impacting groundwater quality.
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