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Abstract

The abundance and distribution of microplastics within 5 sediment size classes (>5000 μm,

1000–5000 μm, 250–1000 μm, 250–0.63 μm and < 0.63 μm) were determined for 16 sites

within Lambert Channel and Baynes Sound, British Columbia, Canada. This region is Cana-

da’s premier growing area for the Pacific oyster (Crassostrea gigas). Microplastics were

found at all sampling locations indicating widespread contamination of this region with these

particles. Three types of microplastics were recovered: microbeads, which occurred in the

greatest number (up to 25000/kg dry sediment) and microfibers and microfragments, which

were much less in number compared with microbeads and occurred in similar amounts

(100–300/kg dry sediment). Microbeads were recovered primarily in the < 0.63 μm and

250–0.63 μm sediment size class, whereas microfragments and microfibers were generally

identified in all 5 sediment size classes. Abundance and distribution of the three types of

microplastics were spatially dependent with principal component analysis (PCA) indicating

that 84 percent of the variation in abundance and distribution was due to the presence of

high numbers of microbeads at three locations within the study region. At these sites,

microbeads expressed as a percent component of the sediment by weight was similar to

key geochemical components that govern trace metal behavior and availability to benthic

organisms. Microbeads have been shown to accumulate metals from the aquatic environ-

ment, hence in addition to the traditional geochemical components such as silt and organic

matter, microplastics also need to be considered as a sediment component that can influ-

ence trace metal geochemistry. Our findings have shown that BC’s premier oyster growing

region is highly contaminated with microplastics, notably microbeads. It would be prudent

to assess the degree to which oysters from this region are ingesting microplastics. If so,

it would have direct implications for Canada’s oyster farming industry with respect to the

health of the oyster and the quality of product that is being farmed and sets an example for

other shellfish growing regions of the world.

PLOSONE | https://doi.org/10.1371/journal.pone.0196005 May 23, 2018 1 / 16

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Kazmiruk TN, Kazmiruk VD, Bendell LI

(2018) Abundance and distribution of

microplastics within surface sediments of a key

shellfish growing region of Canada. PLoS ONE 13

(5): e0196005. https://doi.org/10.1371/journal.

pone.0196005

Editor: Vanesa Magar, Centro de Investigacion

Cientifica y de Educacion Superior de Ensenada

Division de Fisica Aplicada, MEXICO

Received:October 17, 2017

Accepted: April 4, 2018

Published:May 23, 2018

Copyright: © 2018 Kazmiruk et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and Supporting Information

files.

Funding: Funding was provided by the Centre of

Coastal Science and Management, Faculty of

Environment, Simon Fraser University (LIB).

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0196005
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0196005&domain=pdf&date_stamp=2018-05-23
https://doi.org/10.1371/journal.pone.0196005
https://doi.org/10.1371/journal.pone.0196005
http://creativecommons.org/licenses/by/4.0/


Introduction

Microplastics have been defined as plastic particles �5 mm in length [1, 2, 3, 4] and depend-

ing on their origin, can be divided into two groups: primary, virgin granules originally

constructed to be of microscopic size and used to produce macroplastics and secondary,

originating from the degradation of macroplastics [5]. Global production of plastic has

increased from approximately 5 million tons per year during the 1950s to over 280 million

tons in 2016 and is expected to grow at a rate of 9 percent per year, as India, China, and the

African continent begin to discover the benefits and advantages that plastics offer [6,7]. Not

surprisingly, plastics are reported to be the main contributor to marine and beach litter

(between 60 and 80 percent) [5, 8, 9, 10, 11] and occur in concentrations of 3 particles per

m3 in water [12] and 15 particles per kg in surface sediments [13], to hot-spot concentrations

of 9200 particles m3 in water [13] and 621,000 particles per kg in sediments [14]. Nine types

of polymers have been identified in intertidal sediments: acrylic, alkyd, polyethylene, poly-

propylene, polyamide (nylon), polyester, polymethyl acrylate, and polyvinyl-alcohol [4, 15].

These have a wide range of uses, including clothing, packaging, rope, basic household items,

personal care products, agriculture and industry.

Aquatic sediments have long been the repository of metals introduced into aquatic environ-

ments. Understanding the role of sediment geochemistry in influencing metal behavior has

been an extensive area of study since the early 1970s because sediments, in addition to acting

as a sink, can also be a source of metals to sediment-dwelling organisms. The sediment can

therefore provide an entry of potentially toxic metals to the base of food webs. Zhang et al. [16]

recently reviewed the literature on the effects of sediment geochemical properties on heavy

metal bioavailability and noted that under anoxic conditions, acid-volatile sulfides reduce solu-

bility and hence toxicity of metals, whereas oxides and iron and manganese, organic matter,

clay and silt can stabilize metals in oxic environments.

Important was the recognition that trace metal availability to sediment ingesting organisms

was to some extent dependent on sediment geochemistry. Microplastics present in sediments

relative to other key sediment components that govern metal behavior could also influence

metal bioavailability. For example, microplastics within sediments from the Rhine River can

account for 0.1 percent by weight of the sediment [17] which is an amount similar to percent

organic matter and silt, two key sediment components that govern trace metal availability of

benthic invertebrates.

Although much has been documented on the abundance, fate and distribution of micro-

plastics within marine and freshwater sedimentary environments [18,19] still not well known

is the abundance and distribution of different types of microplastics within sedimentary envi-

ronments relative to each other. As each type of microplastic will have its own unique physical

properties, such information would aid in linking processes that influence the distribution and

depositional behavior of microplastics within sediments.

The objectives of the current study are two fold: 1) to assess the abundance in terms of both

number and mass, and the distribution of different microplastic types within a defined geo-

graphical area and 2) to determine the relative importance of microplastics as a sediment com-

ponent compared with the traditional sediment descriptors and predictors of sediment metal

bioavailability, percent by weight of silt and organic matter. To meet our objectives we sam-

pled sediments for microplastics, grain size and organic matter within Baynes Sound and Lam-

bert Channel, British Columbia (BC), Canada’s premier shellfish growing region. The sound

is a geographically defined region where hydrodynamic processes that govern microplastic

behavior could possibly be identified. Recovered amounts of microplastics expressed as a per-

cent by weight of sediment could also be compared with percent organic matter and silt to
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assess the significance of their contribution to the sediment matrix. Finally, shellfish such as

oysters and mussels have been shown to ingest microplastics, both beads and fibers [20] which

have been shown to be a source of pollutants to shellfish [21], as well as negatively affect shell-

fish reproductive output [22]. An important outcome of our findings will be to assess the risk

that microplastics pose to shellfish within a region used exclusively for shellfish aquaculture.

Materials andmethods

Study area

Baynes Sound and Lambert Channel fall within the Regional District of Comox Strathcona

and include the foreshore of the City of Courtenay and the Town of Comox [23]. The sound

is ca. 25 km long and 3.5 km wide at its widest point, with the average width being 2 km.

Baynes Sound has over 9000 ha of shallow coastal channel fringed by protected bays, open

foreshore, tidal estuaries, and inshore marshes. Comox Harbour is one of the largest low gra-

dient deltaic deposits on the east coast of Vancouver Island (Fig 1a). An important feature

of the sound is the Comox Bar, a shallow underwater plateau that extends north of Denman

Fig 1. (a and b.) Location of the study site, Baynes Sound and Lambert Channel (Lat: 49˚ 31’59.99” N Long: -124 ˚ 49’ 59.99”W) (a), and study site sampling
locations (b). Sample sites are as follows: 1 Comox Estuary Low Tide, 2 Royston Bay Low Tide, 3 Mud Bay Low Tide, 4 Deep Bay Low Tide, 5/6 Henry Bay Low and
High Tide, 7/8 Morningside Beach Low and High Tide, 9/10 Fillongley Park Low and High Tide, 11/12 Gravelly Bay Low and High Tide, 13/14 Metcalfe Bay Low and
High Tide, Ferry Terminal Low and High Tide 15/16. Sites 1–6 and 13–16 are within Baynes Sound, whereas sites 7–12 are within Lambert Channel. The shallow
underwater plateau is indicated with a red circle [24].

https://doi.org/10.1371/journal.pone.0196005.g001
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Island which reduces circulation at the north end of Baynes Sound, with this portion of the

sound behaving like an embayed water body rather than an open channel (Fig 1b) [24].

Tides are mixed and mainly semi-diurnal. Tidal range at Comox BC ranges from 0.1m to 5.4

m above chart datum [25]. Baynes Sound has a long history of shellfish aquaculture dating

back to the 1900’s [23] with the Pacific oyster Crassostrea gigas 80 percent of the product

farmed. In 2001, over 55 percent of the viable intertidal zone was used exclusively for shell-

fish farming purposes [23].

Field sampling was conducted along the east coast of Vancouver Island (Deep Bay, Mud

Bay, Buckley Bay, Royston Estuary, and Comox Estuary), west coast of Denman Island (Henry

Bay, Ferry Terminal and Metcalfe Bay), and Lambert Channel on the east coast of Denman

Island (Morningside Beach Park, Fillongley Provincial Park and Gravelly Bay). Sample sites

were as follows: 1 Comox Estuary Low Tide (CVLT), 2 Royston Bay Low Tide (RLT), 3 Mud

Bay Low Tide (MBLT), 4 Deep Bay Low Tide (DBLT), 5/6 Henry Bay Low and High Tide

(HBLT, HBHT), 7/8 Morningside Beach Low and High Tide (MSLT, MSHT), 9/10 Fillongley

Park Low and High Tide (FPLT, FPHT), 11/12 Gravelly Bay Low and High Tide (GBLT,

GBHT), 13/14 Metcalfe Bay Low and High Tide (MBLT, MBHT), Ferry Terminal Low and

High Tide 15/16 (FTLT, FTHT) (Fig 1b). Sites 1–6, 13–14 are in Baynes Sound, whereas sites

7–12 are located within Lambert Channel (Fig 1b). Field sampling of sediments occurred on

Provincial and Crown Land. Permits are required for the sampling of invertebrates and fish,

none are required for sediment collection. No endangered species were compromised by sam-

ple collection.

Sediment sampling

Sampling was conducted during the period of maximum low tides that occur in late June. At

each site two sets of sub- samples were collected, one for sediment characteristics of grain size

and organic matter content and one for microplastic analyses. Intertidal surface sediment were

collected from the top oxic 5 cm of sediment in the intertidal zone at the low and high tide

mark at each site except for sites 1, 2 and 3 where only low tide samples were collected. Repli-

cate sediments samples were taken from 3 to 5 separate 0.5 m x 0.5 m quadrats, located 3–5 m

apart in undisturbed areas using a clean stainless steel spatula [26,27]. All replicate sediment

samples at each point were pooled to form one composite sample (a total of 32 composite sedi-

ment samples, 16 for microplastics, 16 for sediment characteristics), were packed into pre-

labelled sealed freezer bags, transferred to the laboratory within 48 hrs. and stored at—20 ˚C

until required for analysis.

Sediment analyses

Sediments were defrosted and air dried at room temperature, gently homogenized by mortar

and pestle and then stored at 4˚C prior to analysis.

Grain size

Sediments were separated into 5 different size factions;>5000 μm (coarse gravel), 5000–

1000 μm (gravel), 1000–250 μm (sand), 250–0.63 μm (fine sand), and< 0.63 μm (fine silts and

clays) after methods of Mudroch et al. [28]. The different size fractions were dried and con-

verted to percent sediment composition on a dry weight basis. After each sample was pro-

cessed, sieves were rinsed and cleaned to ensure no cross contamination from one sample to

the next.

Microplastics in oxic sediments
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Organic matter

Percent sediment organic matter was determined by "loss-on-ignition" (LOI) [28]. Dried sedi-

ment subsamples of 1.0 g– 2.0 g were ignited at 400˚C–440˚C (to avoid the destruction of any

inorganic carbonates in the sediments) for 5–10 hrs.

Microplastics

Sediments were dried at air temperature, gently homogenized then sieved into 5 size fractions

(>5000 μm, 5000–1000 μm, 1000–250 μm, 250–0.63 μm, and<0.63 μm). Microplastic parti-

cles were extracted from sediment using the flotation method described by Thompson et al.

[4] with some modifications. Saturated saline (NaCl and sea salt) solutions with a density of

1.35 g/cm3 (360 g NaCl/l H2O- solubility of NaCl at 25˚C) was used to separate microplastics

from sediment. To determine the optimum amount of subsample for the extraction of micro-

plastic particles from the sediment fractions, experiments with different weights of subsample

of different grain sizes were performed. From these preliminary experiments subsamples of

100.0 g (grain size>5000 μm), 75.0–50.0 g (grain size 1000–250 μm), 50.0–30.0 g (grain size

250–0.63 μm), and 15.0–10.0 g (grain size of<0.63 μm) were determined as appropriate.

Microplastics captured within the largest grain size> 5000 μm are not microplastics as they

are larger than 5 mm. However we wanted to include this size fraction to determine the

amount of larger plastic debris that would be recovered from the surface sediments through

the saline extraction procedure. Sieved sediment was transferred directly to Erlenmeyer1

flasks used for density separation and 250–900 ml (depending on volume of flask) of NaCl /sea

salt solution were added. Sediment were stirred at high intensity for 20–25 min then allowed

to settle for 12 to 24 hrs. depending on the observed clearance rate of the sediment from sus-

pension. Prior to filtering, glass fiber filters (Whatman GF/A 47 mm diameter, GE Healthcare

Whatman) were weighed (accuracy 0.0001 g) and rinsed with distilled deionized water (dd

H2O) to minimize contamination. After the sediments settled, the supernatant was extracted

by moving a 30–50 ml pipette across the solution surface, and expelling the pipette onto a glass

fiber filter. The pipette was rinsed with distilled deionised water to capture all remaining small

particles possibly adhering to the pipette walls. The remaining 250–500 ml supernatant was

decanted and filtered through a separate glass microfiber filter by vacuum filtration. After

the extracting of supernatant, an additional volume (250–500 ml) of NaCl solution was added

to each sample, and after allowing sediments to settle the same procedure of filtration was

repeated to extract any remaining microplastic particles. This extraction procedure was carried

out 2–5 times for each sediments subsample. This procedure of filtration was applied to all 5

size fractions. After filtration, filters were dried at 50˚C for 24 h. All filters were inspected

under dissecting microscope at 40X magnification (Olympus SZ51) and all polymer material

investigated by visual inspection was considered as potential microplastic particles or fibers. In

addition the the hot needle test [29] was used as an alternative means to identify microplastic

particles. Following visual inspection microplastic particles and fibers were analyzed under a

dissecting stereo microscope equipped with the DP21 digital camera with a 10 fold magnifica-

tion to facilitate the distinction between microplastic particles and natural sediment or organic

matter, as well as between synthetic/anthropogenic and organic fibers. Potential microplastic

particles, fragments and synthetic fibers were photo-catalogued with high magnification. An

image analysis technique initially developed for the particle size analysis in sediments was used

to count large numbers of microplastic beads, fragments, and fibers. All material visually iden-

tified as plastic was measured, counted and categorized into three different types: bead, fiber,

and fragment [17]. Precautions were taken to minimize sample contamination, notably for

microfibers (e.g., cotton lab coats worn throughout the procedure, clean and isolated work
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space). However, numbers of particles recovered from the sediment samples indicated that the

primary particulates present were microbeads, which do not have the same degree of contami-

nation concerns (e.g., false positives) as with microfibers.

Mass of microbead in surface sediments. The number of recovered microbeads was con-

verted to a percent mass of sediment (for comparison with percent silt and organic matter by

weight) as:

Mt ¼ Vt � density;

where Mt is the total mass

Vt ¼ V � N

where V = 4/3πr3 (volume of a sphere assuming a radius of 150 μm [30],

N is the number of recovered microbeads as #/kg, and density is either 0.9 g/cm3 or 1.34

g/cm3 i.e., minimum polymer density [reviewed in 24] and maximum polymer density based

on the 1.35 density solution used to separate polymers in this study. To express values as a per-

cent of sediment to allow for the comparison of % microbeads to % silt and % organic matter

by weight, Mt is divided by 10 (g/kg/10 = g/100g or % microbead by weight).

Statistical analysis

Recovered microplastics were expressed on a number basis (items of particles per one kilo-

gram of dry sediment (items/kg) and items of particles per one square meter (with 1 cm of

depth) (items/m2). Software used to analyze data included SigmaPlot 12 (Systat Software Inc.),

and PRIMER v6 [31].

Sediment analysis

Data were square root transformed (to reduce right skewness and to stabilize variance) [31].

As there were strong inter-correlations among the four grain size parameters, a principal com-

ponent analysis (PCA) which takes into account data co-linearity was applied to sediment

characteristics (percent grain size and organic matter) to determine which combination of sed-

iment characteristics best accounted for most variability among the sampling sites (e.g., [32])

Microplastic analysis

A multivariate analysis most commonly applied in ecological studies that address factors

that affect the abundance and distribution of organisms was applied, PRIMER (Plymouth

Routines in Multivariate Ecological Research) [31]. PRIMER provides a number of routines

for analyzing data from community ecology but also can be applied to physical values and

chemical concentrations [31]. In this application, we have applied a PCA and Bray Curtis

similarity profiles to seventeen variables: the number of microbeads, microfibers and micro-

fragments recovered in each of the 5 size classes, plus the total number of microplastics (the

sum of all fractions). (No microbeads were recovered in the> 5000 μmmesh size, hence

n = 17). In this application we are using routines available through PRIMER to determine,

based on these 17 variables, which sites were most similar to each other. The ecological anal-

ogy would be “which site is most similar based on species composition”. Data was square

root transformed (for reasons given above for the sediment characteristics) and a PCA

applied to determine which combination of variables best accounted for the variability

among the sampling sites. Bray Curtis similarity profiles were applied to show those sites

which were most similar at 70 percent similarity.

Microplastics in oxic sediments
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Results and discussion

While we know much about the abundance and distribution of microplastics as defined by

those plastics< 5 mm in size [e.g. 17, 18], less is known about how different microplastics

behave within marine sedimentary environments, specifically the abundance and distribution

of different types of microplastics. Also unknown is how important microplastics are as com-

pared to traditional sediment components such as percent weight of organic matter and silt,

key determinants for the fate of metals within sedimentary environments. Here we applied a

multivariate approach to determine the abundance and distribution of microplastics within

Baynes Sound/Lambert Channel as well as assessing the importance of microplastics relative to

percent silt and organic matter as a component of intertidal sediments. We use Baynes Sound/

Lambert Channel as an example ecosystem, with our findings readily applicable to other sensi-

tive ecosystems world wide.

Sediment characteristics

Principal Component Analysis indicated that the 16 sampling locations grouped into 3 similar

sediment types based on organic matter and 250–0.63 μm grain size. Metcalfe Bay and the

Ferry Terminal Low and High Tide (sites 13/14 and 15/16) were characterized by high organic

matter as compared to all other sites (Fig 2). Gravelly Bay, (sites 11/12) both Low and High

Tide and Fillongley Park High Tide (site 9) were characterized by a grain size of 250–0.63 μm

(Fig 2). Complete results of the PCA are presented in S1 Table.

Microplastics: Characterization, distribution and abundance (number and
mass)

Microplastics were found at all sampling locations within Baynes Sound (sites 1–6 and 13–16)

and Lambert Channel (sites 7–12) indicating widespread pollution with these contaminants.

Three main types of microplastics were identified: microfibers, microbeads and microfrag-

ments (Fig 3). The greatest numbers of all three types were found within Baynes Sound coinci-

dent with regions of intense shellfish aquaculture (Henry Bay, site 5 and Metcalfe Bay, site 13).

Of the three types of microplastics, by far, microbeads were the most abundant with a maxi-

mum of 25,000/kg sediment recovered from Royston Low Tide (site 2) followed by Henry

Bay (site 5) (Fig 4a and 4b). Greater numbers of microfibers were recovered from Henry

Bay, Low Tide (site 5) and Ferry Terminal Low Tide (site 15) (Fig 4b) and sites 13 and 15 (Met-

calfe Bay and Ferry Terminal Low Tide) contained the greatest number of microfragments

(Fig 4a and 4b).

Principal Component Analysis and analysis of similarity separated sites Royston Low Tide,

Henry Bay Low and High Tide, Ferry Terminal Low and High Tide, and Metcalfe Bay Low

Tide (sites 2, 5, 6, 13, 15, and 16, Fig 1b) from all other sites based on the number of total

microbeads/kilogram sediment with the first principal component accounting for 84 percent

of total variation among sample sites (Fig 5). Of note, at sites 1–6 and 13–16, those sites within

Baynes Sound, 60 percent and greater of the microbeads were recovered in the 0.63 μm size

fraction, whereas at sites 8, 10, 11 and 12 located within Lambert Channel, microbeads

occurred in the next size fraction up, 250–0.63 μm (Fig 6a). Microfibers were generally repre-

sented in all size fractions with the exception of sites 4 and 16 where the majority occurred in

the< 0.63 μm size fractions and sites 8 and 11 where greater than 60 percent occurred with

the 250–0.63 μm size fraction (Fig 6b). As with microfibers, microfragments were recovered

from all size fractions with the exception of site 1 and 16 where more than 50 percent were in
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the<0.63 μm and at site 8 where 65 percent were recovered from the 250–0.63 μm fraction

(Fig 6c). Complete results of the PCA are presented in S2 Table.

Sites 8, 10, 11 and 12 occur on the west side of Denman Island within Lambert Channel,

whereas sites 1–6 and 13–16 occur on the east side of Denman Island and the west side of Van-

couver Island (Fig 1b) i.e., Baynes Sound. The discovery of two sizes of microbeads suggests

two independent sources of microbeads to this region of coastal British Columbia. For Lam-

bert Channel, microbeads would originate from sources within the Salish Sea, east of Denman

Island. Baynes Sound however, has since the 1940’s been actively farmed for shellfish, notably

the Pacific oyster with 50 percent of British Columbia’s product coming from this region.

Previous research has demonstrated the presence of microfibers directly linked to industry

practices [33], and it is likely that microbeads too originate from this source. Other possible

sources of microbeads include expanded polystyrene (e.g. Styrofoam) used for flotation pur-

poses [34], which can over time decompose into smaller particles, abrasives used for cleaning

boat hulls and equipment [35], and personal care products [29]. Another potential source of

microbeads to those sites where the greatest numbers were found (2 and 5), is the Courtney-

Fig 2. Principal component analysis for sediment characteristics of the 16 sampling sites. PC1 Principal component 1, PC2, Principal component 2,
OM; organic matter. Location identifiers for sites within the bivariate plot are provided within the text within the Methods section.

https://doi.org/10.1371/journal.pone.0196005.g002
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Comox estuary (Fig 1b). Previous studies [24,36] on the depositional patterns of mud and

gravel within Baynes Sound and the bathymetry of the region indicate that due to the presence

of the “Comox Bar”, circulation patterns within this region of the sound would suggest that

Royston and Henry Bay would be sites of greatest accumulation for materials possibly originat-

ing from the estuary. Indeed, Klein et al. [19] in their study of the occurrence and spatial

distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany

underlined the importance of rivers as vectors of transport of microplastics into the ocean.

In addition to the shellfish aquaculture industry introducing microbeads into the intertidal

environment, the industry also makes extensive use of High Density Polyethylene (HDPE),

in the form of netting, oyster bags, trays, cages and fences (e.g., vexar) [37]. Each year, 3–4

tonnes of debris, comprised primarily of these plastic materials is recovered from the intertidal

regions of Baynes Sound [38]. Sites where the greatest number of microfragments and microfi-

bers were found (sites 5 and 15, and sites 13 and 15 respectively) also coincide with regions of

extensive shellfish aquaculture equipment. Greater numbers of microfragments recovered

from these regions could be a consequence of the continual mechanical breakdown of the

HDPE materials over time and their subsequent accumulation within intertidal sediments. As

well, recent research on the distribution of microplastics within the water column of Baynes

Sound found concentrations of approximately 4000–5000 m3 of which 80% were fibrous [39].

Examples of shellfish materials that could contribute to this high microfiber load include ‘‘oys-

ter blue” plastic rope, and ropes used for netting and longline culture.

Key determinants that control metal bioavailability to sediment ingesting organisms are

grain size distribution and organic matter [40]. Sediment-associated contaminants tend to

accumulate in depositional areas on small, fine-grained particles which have the highest sur-

face area to volume ratio of any particle size class and tendency for higher concentration of

organic matter [40]. Estimates of the percent mass of sediment microbeads indicated that

Fig 3. Examples of the types of microplastics recovered from sediments.

https://doi.org/10.1371/journal.pone.0196005.g003
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amounts of microbeads present were as important on a weight percentage basis as compared

to amounts of percent silt (< 0.63 μm) and percent organic matter at Royston Low Tide,

Henry Bay Low and High Tide (sites 2 and 5/6) (Table 1).

Microbeads are effective sorption surfaces for trace metals. Ashton et al. [41] determined

the association of metals with plastic production pellets (PPP), sampled from four beaches in

SW England and noted that pellets were enriched with cadmium and lead at two sites and that

the PPPs accumulated metals to concentrations approaching those of sediment and algal frag-

ments. Holmes et al. [42] assessed the interactions between trace metals and PPPs under estua-

rine conditions and concluded that plastic pellets effectively sorb trace metals and that PPPs

may represent an important vehicle for the transport of metals in the marine environment.

Rochman et al. [43] compared the long-term sorption of metals among plastic types in seawa-

ter and found that in general all types of plastics tended to accumulate similar concentrations

of metals and that over a 12 month study period the concentrations of all metals increased

over time and did not reach saturation. Thus at Royston and Henry Bay, microbeads may be

the key determinant of trace metal behavior as compared to site highs in organic matter such

as Metcalfe Bay.

Fig 4. (a and b) Number of microbeads (a) and microfiber and microfragments (b) recovered from the intertidal sediments from the 16 sampling locations
within Baynes Sound and Lambert Channel. Site name identifiers are provided within the text within the methods section.

https://doi.org/10.1371/journal.pone.0196005.g004
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Baynes Sound is home to a major shellfish industry of which 80 percent of the product is

oysters and the remaining 20 percent scallops (Patinopecten yessoensis) and Manila clams

(Venerupis philippinarum) [23]. Also commercially important is the varnish clam (Nuttallia

obscurata) although it is not intentionally farmed, but rather is an invasive species that now

dominates much of the intertidal clam community. All of these species filter and/or deposit

feed on suspended materials which include algae and suspended sediments. Yang et al. [20]

compared microplastics within 9 commercially important shellfish and noted that the type of

microplastic recovered was species dependent. Fibers were the most common in blue mussels

(Mytilus spp.) and Manila clams (63 percent of recovered particles from mussels and clams)

whereas microbeads were found exclusively in oysters (60 percent of recovered particles from

oysters). It is likely that oysters within this region of Baynes Sound are at risk of exposure via

diet to microfibers and microbeads. Indeed, recent studies of Davidson and Dudas [44] con-

firmed the presence of microfibers in Manila clams sampled from 6 sites within Baynes Sound.

These authors attempted to differentiate between clams sampled from 3 shellfish farms versus

those from 3 “reference” sites in hopes of assessing if the shellfish industry was contributing

to the burden of microplastics recovered from the clams. The widespread contamination of

Baynes Sound however, precludes a “reference” site, and that both wild and farmed clams had

ingested similar numbers of fibers given the wide spread contamination of this region is not

surprising. Of real concern are the recent studies of Sussarellu et al. [22]. These authors found

that oyster reproduction was adversely affected by exposure to polystyrene microplastics by

interfering with energy uptake and allocation, reproduction and overall performance. Oysters

exposed to microbeads have also been shown to be less fit with respect to reproduction and

overall health [22].

Fig 5. Principal component analysis for the microplastic characteristics of the 16 sampling sites. Those samples most similar at 70% are indicated by the green
circles. The presence of microbeads accounts for the greatest amount of variation among all sample sites.

https://doi.org/10.1371/journal.pone.0196005.g005
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Fig 6. (a, b and c.) Percent abundance of microbeads a), microfibers b) and microfragments c) from the 5 sediment size fractions for the 16 sampling sites.
Note how grain size grades of<0.63 μm and 250–0.63 μm contain the greatest number of microplastic particles.

https://doi.org/10.1371/journal.pone.0196005.g006

Table 1. % organic matter (%OM), % silt, total number of microbeads recovered from sediment and %microbeads for minimum and maximum polymer densities
for the 16 study sites. Two sites (values bolded, 2, Royston, Low Tide and 5/6, Henry Bay, Low and High Tide contained a percent mass of microbead equal to or greater
than either %OM or % silt, two key sediment components which govern trace metal behavior within coastal sediments.

Site % OM % silt Total number of micro-beads recovered from sediment % Microbeads
Density 1.34

% Microbeads
Density 0.9

1 2.7 4 2712 0.5088 0.3417

2 4.9 6.5 25368 4.759 3.1964

3 2.2 2.8 540 0.1013 0.068

4 1.8 4.1 1989 0.3731 0.2506

5 1.3 3.2 19806 3.7156 2.4956

6 1.3 1.7 9636 1.8077 1.2141

7 1.1 2.3 4192 0.7864 0.5282

8 1 1.3 2531 0.4748 0.3189

9 1.2 1.4 4087 0.7667 0.515

10 2.1 0.4 945 0.1773 0.1191

11 2.2 0.5 1873 0.3514 0.236

12 1 0.8 1706 0.32 0.215

13 8.6 4 5798 1.0877 0.7305

14 7.1 10.2 8198 1.5379 1.0329

15 8.2 14.5 10463 1.9629 1.3183

16 5.3 9.2 10618 1.9919 1.3379

https://doi.org/10.1371/journal.pone.0196005.t001
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Conclusions

We have shown that BC’s premier oyster growing region is highly contaminated with micro-

plastics, notably microbeads at two locations within the sound (Fig 7). Sources of the micro-

plastic include the shellfish industry as well as possible inputs from the Comox Estuary which

receives urban input from the adjacent towns. It would be prudent to assess the degree to

which oysters from this region are ingesting microplastics. If so, it would have direct

Fig 7. Sites of greatest microbead accumulation, likely a consequence of the Comox Bar a shallow underwater plateau that
extends north of Denman Island which reduces circulation at the north end of Baynes Sound with this portion of the sound
behaving like an embayed water body rather than an open channel [24].

https://doi.org/10.1371/journal.pone.0196005.g007
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implications for Canada’s oyster farming industry and sets an example for other shellfish

growing regions of the world.
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