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Abstract

In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense cano-

pies up to 1 m high. Such habitats, called ‘Cystoseira forests’, are regressing across the

entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large

brown algae forests worldwide. Cystoseira forests are being replaced by structurally less

complex habitats, but little information is available regarding the potential difference in the

structure and composition of fish assemblages between these habitats. To fill this void, we

compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between

Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two

sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual

Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since

UVC is known to underestimate the diversity and density of the ‘hard to spot’ CB fish. We

found that both taxonomic diversity and total density of NB and CB fish were highest in

Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at

Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not

differ between habitats because the larger average size of fish in barrens (and turfs) com-

pensated for their lower densities. The NB families Labridae and Serranidae, and the CB

families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more

abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant

in barrens. Our study highlights the importance of using EASV for sampling CB fish, and

shows that Cystoseira forests support rich and diversified fish assemblages. This evidence
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suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages

and related goods and services to humans, and stresses the need to implement strategies

for the successful conservation and/or recovery of marine forests.

Introduction

Habitat degradation, including the loss of structural complexity (e.g. loss of structural compo-

nents such as boulders, trees or corals) [1], is recognized as a major threat to terrestrial, aquatic

and marine ecosystems [2, 3]. This may affect ecological processes underlying abundances and

distributions of organisms, community structures, ecosystem functions and ecosystem resis-

tance and resilience. Ultimately, this may reduce the potential of the ecosystem to sustainably

provide goods and services to humans [3–5].

In temperate subtidal seascapes worldwide, somemacrophytes (seaweeds and seagrasses)

may form structurally complex benthic habitats, such as kelp forests on hard bottoms and sea-

grass meadows on soft bottoms. These macrophyte-formed habitats are usually characterized

by high biodiversity and high production rates [6]. However, these habitats are being degraded

or lost worldwide due to a broad spectrumof anthropogenic and natural causes [7, 8]. This

process has negative impacts on associated communities [9], including species that are of eco-

logical and socio-economic importance, such as some fish [10, 11].

Mediterranean algal forests are formed in subtidal rocky reefs by Cystoseira (and some Sar-

gassum) species (Phaeophyceae), forming a dense canopy up to 1 m high (depending on the

species, site and season, e.g. [12, 13–15]). These habitats are suffering degradation as well [16],

and past and ongoing losses of Cystoseira forests have been recorded throughout the Mediter-

ranean Sea [17, 18–21]. Depending on the identity and intensity of natural and/or anthropo-

genic stressors, Cystoseira forests can be replaced by structurally less complex macroalgal

habitats. For instance, in some areas with degradedwater quality (e.g. eutrophication, increased

turbidity, waste water discharge, other pollutants), Cystoseira forests can be replaced by turfs

[22, 23] or shrubland-like habitats (hereafter ‘shrubs’), formed by Dictyotales, Sphacelariales

and/or articulated Corallinales [24, 25]. In addition, herbivory can be a major cause of Cysto-

seira forest loss. For example, in areas where sea urchins are abundant (due to natural [26]

and/or anthropogenic [27–29] stressors), they can over-graze erect macrophyte assemblages

(including Cystoseira forests) and produce barren grounds, i.e. bare rocks covered only by

encrusting corallinales, hereafter called 'barrens' [19, 26–29] (Fig 1).

Although the impact of kelp forest loss on coastal ecosystems worldwide is well known [6,

31], effects of Mediterranean Cystoseira forest losses on the associated assemblages remain

poorly understood. This is mainly because 1) time series analyses are usually not feasible due to

a general lack of historical data on Mediterranean subtidal rocky reef ecosystem structures (but

see [19]), and 2) Cystoseira forest large-scale removal experimentsmay not be acceptable from

a conservation point of view since the recovery of the Cystoseira forest would be slow (> 10

years) or even null [18, 32]. Using the ‘space for time’ approach therefore appears a likely solu-

tion to gain insights into the possible effects of Mediterranean Cystoseira forest losses although

it cannot control all the alternative hypotheses that may explain the results obtained through

this approach.

Sala et al. [33] compared fish assemblage structure within and outside marine reserves in

rocky habitats (8–12 m deep, in different algal assemblages) throughout the Mediterranean

Sea. The authors identified 4 main ecosystem states. These included one ‘predator dominated’
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state with high fish biomass and extensive shrubs, occurring inside the well-enforcedmarine

reserves which prohibit fishing of sea urchin predators, and 3 states occurringoutside the well-

enforcedmarine reserves which were poorly protected or unprotected. The authors expected

Cystoseira forest to be indicative of ‘healthy’ rocky reefs and to be associated with high fish bio-

masses in well-enforcedmarine reserves.However, most of the Cystoseira forests were found

in unprotected (fished) localities and therefore fish biomass in forests was lower than that

recorded in well-protected (unfished) localities, generally characterized by shrubs.

A few other studies [34–36] have compared fish assemblage structure betweenCystoseira

forest and other habitats. Despite potential biases related to possible confounding effects from

variability in abiotic features known to affect fish assemblages (e.g. depth, substrate nature and

rugosity [37–39]), results suggested the importance of Cystoseira forests for some fish taxa, at

least for some life stages. One study [40] resolved confounding effects by comparing juvenile

fish assemblage structure between patches of Cystoseira forests and patches of shrubs sharing

the same abiotic features within the same localities/protection levels, and highlighted that juve-

nile Symphodus spp. densities were higher in patches of Cystoseira forests while juvenile Coris

julis densities were lower, and juveniles of all other fish taxa showed no significant difference

between habitats.

The above-mentioned studies estimated fish assemblage structure using Underwater fish

Visual Census (UVC). UVC has the main advantage of being non-destructive, and is particu-

larly suitable for assessing necto-benthic (NB) fish, which are conspicuous fish swimming just

above the substrate [41]. However, UVC underestimates richness and densities of crypto-ben-

thic (CB) fish (e.g. Blenniidae and Gobiidae), which are 'hard to spot' due to somemorphologi-

cal (small body-size and/or camouflage) and/or behavioural traits (motionless and/or hiding

within shelter) [42–45]. Consequently, the sole use of UVC may result in an incomplete picture

of fish assemblage composition and density patterns biased towards conspicuous NB fish. CB

fish assemblage structure can reliably be assessed only by using harvestingmethods (e.g. using

anesthetic such as quinaldine or piscicide such as rotenone: [42, 43–48]).

Kovačić et al. [47], for the first time in the Mediterranean Sea, used a quantitative harvesting

method specifically designed to sample CB fish by using quinaldine within a 1 m² sampling

area. This enabled sampling of a higher number of CB species compared to previous studies

using UVC [49, 50], and assessment of CB fish densities, which is an improvement on previous

qualitative harvestingmethods (e.g. [51]). Thus, Kovačić et al. [47] highlighted the high diver-

sity and densities of CB fish inhabiting various benthic habitat types (from 1 to 20 m depth, in

the Adriatic Sea). Unfortunately, this study [47] and the previous ones on CB fish [49–51] did

not include Cystoseira forests. CB fish assemblages associated with Cystoseira forests remain

therefore mostly unknown, although they may have important roles in ecosystem functioning

[46].

To fill this gap and to assess the potential role of the Cystoseira forest for fish assemblages,

we carried out a spatial comparison of small-medium (total length< 30 cm) fish assemblage

structure betweenCystoseira forest and two structurally less complex habitat types usually

replacing the forests (turf and barren). In each of the 3 habitat types investigated, we sampled

Fig 1. Four habitat types in North-Western Mediterranean subtidal rocky reefs. (A) forest formed by the
locally threatened speciesCystoseira brachycarpa var. balearica, and 3 habitat types that may replace lost
Cystoseira forests: (B) shrubs formed by Dictyotales and Sphacelariales, (C) turf formed by articulated
corallinales, and (D) barren characterized by the absence of erect macrophytes. Upper panel: schematic
representations of the habitat structure provided by the dominant macrophytes. Habitat complexity decreases
from A to D. Lower panel: pictures taken in Corsica during summer 2011, at 8 m depth. Foregrounds span around
2 m width. Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g001
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NB fish using UVC, and for the first time, CB fish using EnclosedAnaesthetic Station Vacuum-

ing (EASV).

Material and Methods

Sampling design

We sampled fish and macrophyte assemblages within 2 regions of the North-Western Mediter-

ranean Sea: Corsica (10 sites, May 2011) and Menorca (13 sites, July 2011). For logistical rea-

sons, we did not sample the two regions at the same time. However, we sampled both regions

during the period of maximum temporal stability of macrophyte biomass (late spring to early

summer [15]) to minimize the potential effects of variation in habitat structures, which may

have impacted fish assemblages.Within each of the two region-time combinations (Corsica-

May and Menorca-July), we sampled two localities (L): one protected (within a marine pro-

tected area, L1 and L3 respectively in Corsica and Menorca) and one unprotected (outside

marine protected area, L2 and L4 respectively in Corsica and Menorca) (Fig 2). We aimed to

sample all habitat types (forest, shrub, turf and barren) within each locality in order to avoid

possible confounding effects between the putative effects of habitat types and inter-locality var-

iations related to natural variations and/or potential protection effects (which are at present

not distinguishable [52]). Within each locality, we found 1 to 4 sampling sites (750 to 1000 m²

areas) of both forest and barren. Turf was only sampled at 4 sites in Menorca (within L4). We

did not find suitable areas for sampling shrub (Fig 2, and S2 Table for geographical coordinates

of all sites). This was due to our stringent procedure of sampling site selection, which was as

follows.Within each locality, sampling sites were randomly chosen among the 750 to 1000 m²

areas that fulfilled two criteria: (1) at least 80% of the area was covered by one of the 4 targeted

habitat types, and (2) the whole area was between 4 m to 9 m in depth, presenting only mono-

lithic rock (as opposed to blocks, pebbles etc.), with gentle slope (0° to 15°) and low substrate

rugosity (i.e. holes, steps, crevasses and overhangs were avoided). These abiotic features known

to affect fish assemblage structure [39] were constrained in order to avoid possible confound-

ing effects. The surface area of sampling sites (750 to 1000 m²) was chosen as a trade-off

between (1) a surface area small enough so that it was possible to find sufficient areas fulfilling

all of the above criteria for each habitat type within each locality, and (2) a surface area large

enough so that it may be regarded as a habitat rather than a patch, at least for low mobility

organisms (see below).

Data collection

Ethics statement. Small surfaces (625 cm²) of macrophyte communities were harvested

(using chisel and hammer) to perform species identification and biomass assessment in the lab-

oratory. Removal of algae was necessary since non-destructivemethods (e.g. visual estimation

of percent cover) did not allow for quantification of the understorymacrophyte assemblages.

Even though knowledge regarding the role of Cystoseira species in coastal ecosystems is

improving, as is the awareness that they may be locally threatened (for this reason most Cysto-

seira species are listed in the Bern Convention and in the Aspim Protocol), no conservation

measures have yet been adopted at the national or international level. Independently of regula-

tions, the surface area sampled and the number of samples were kept to the minimum. Care

was taken to avoid sampling isolated populations or damaged / declining forests.

The non-destructivemethodologyUVC was used to gather data on NB fish. However, UVC

is not suitable for gathering data on CB fish. Thus, we harvested CB fish by scuba diving using

EASV (see below). Fish were anesthetized before being collected by spraying locally (1 m²) 2 L

of 5 ppm quinaldine solution (0.01 L of quinaldine, 0.1 L of acetone and 1.89 L of seawater).

Crypto- and Necto-Benthic Fish in Mediterranean Macroalgal Assemblages
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After each dive, collected fish, still anesthetized, were killed immediately by anaesthesia over-

dose (immersion in a 2 L tank filledwith 25 ppm quinaldine solution: 0.05 L of quinaldine, 0.5

L of acetone and 1.45 L of seawater), following Directive 2010/63/EU of the European Parlia-

ment and of the Council on the protection of animals used for scientific purposes. The EASV

protocol did not require animal ethics committee approval since fish were killed in the field

directly after collection (no housing, husbandry nor experiments) using anaesthesia overdose.

No negative effects of EASV on the benthic community were recorded during the sampling. A

fewmobile macroinvertebrates were caught unintentionally on rare occasions. They were

released alive and unharmed after each dive. Sessile benthic organisms did not show any dam-

age related to the EASV sampling procedure. The whole experimental protocol was approved

by the relevant regulatory bodies of each sampling locality. Permission for sampling in Locality

1 (Corsica, inside the MPA RéserveNaturelle de Scandola) and Locality 2 (Corsica,

Fig 2. Location of the sampling sites.Green filled arrows indicate forest sites, red filled arrows indicate barren sites, orange filled arrows indicate turf
sites. Localities ’L1’ and ’L3’ were within the Marine Protected Areas (MPA) Scandola Marine Reserve and Norte de Menorca Marine Reserve,
respectively. Dotted lines indicate MPA boundaries. Localities ’L2’ and ’L4’ were both outside MPAs. See also S2 Table for geographical coordinates of
all sites. Public domain source of backgrounds maps: OpenStreetMap contributors, available under ODbL licence at http://www.openstreetmap.org/.
Figure modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g002
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unprotected) was issued by the Direction Interrégionale de la Mer Méditerranée in the form of

the prefectural rulingDécision du 8 avril 2011. Additional permission for sampling in Locality

1 (insideMPA) was issued by the Parc Naturel Regional de Corse (the institution managing

the MPA). The permission for sampling in Locality 3 (Menorca, inside the MPA Reserva del

Nord de Menorca) and Locality 4 (Menorca, unprotected) was issued by the Direccio General

de Pesca, Govern de Illes Balears (the Spanish administration in charge of Maritime affairs in

Menorca, managing the MPA).

Macrophyte Assemblage. We measured biomass of macrophytes in order to verify a poste-

riori that sampling sites (visually selected)were appropriately classified into meaningful and

objective habitat types, and to describe the macrophyte assemblages.While scuba diving, we

scraped (using chisel and hammer) all non-encrustingmacrophytes in three replicate 25 x 25

cm² quadrats at each site. Each sample was placed in an individual zip-lock bag. After the dive,

macrophyte samples were individually removed from their bags, wrapped in a terrycloth soaked

with 70% alcohol, packed again in a hermetic bag and stored in a cooler until we reached the

field laboratory where we stored samples in a freezer. Macrophyte biomass was measured within

3 days after collection.Excess water and alcohol were removed from samples by centrifuging

them using a salad spinner for 30 seconds [33]. Samples were individually sorted and weighed

using operational taxonomic units (S1 Table). In order to characterize fish habitat types, macro-

phytes were pooled into 6 functional groups before data analyses: (1) canopy-forming macro-

phytes (mostly Cystoseira brachycarpa var. balearica, with sometimes less than 5% of C.

compressa and/or Sargassum spp.), (2) large erect macrophytes (e.g.Dictyota spp.), (3) small erect

macrophytes (e.g.Acetabularia acetabulum), (4) turf-forming articulated corallinales, (5) turf-

forming filamentousmacrophytes, and (6) massive macrophytes (i.e.Codium bursa) (S1 Table).

Fish assemblage. Given the extent of our sampling sites (750 to 1000 m²), we did not take

into account some NB fish that clearly move on broader spatial scales, such as transient preda-

tors (e.g.Dentex dentex), shoaling species (e.g. Chromis chromis, Oblada melanura, Sarpa

salpa) and also large (Total Length, TL> 30 cm) resident fish (e.g. (sub-) adult Epinephelus

marginatus, large-sizedDiplodus spp.). We restricted our fish surveys to fish individuals that

were a priori more sedentary at the scale of our sampling sites, hereafter referred as ‘small-

medium resident fish’, which were juveniles of all CB and NB fish species, along with all older

life stages for the small-medium species (maximum TL<30 cm) or only some of the older

stages for larger species, depending on their maximum TL. Hence, in the present study, ‘all

fish’ refers only to all individuals of small-medium resident fish. Likewise, ‘total density’ and

‘total biomass’ also refer to small-medium resident fish.

We used EASV to sample CB fish, which were defined in the present study as the 'hard to

spot' fish individuals (see [47] for other definitions), including (1) early juveniles of NB species,

which are small-sized individuals (TL< 25 mm for Labridae,< 35 mm for Serranidae) spend-

ing most of their time hidden within macrophytes [53], and (2) all life stages of CB fish species

(e.g. Blenniidae and Gobiidae). During daylight (10AM–4PM), we conducted 3 replicate EASV

samples of 1 m² at each site. The 1 m² sample area was enclosed by a perimeter fence and all

fish inside were collected using anaesthetic and an air-lift pump (Fig 3). The perimeter fence

(0.56 m in radius, 1 m in height) was a circular 1 mm nylon mesh mounted on a metal hoop.

The base of the perimeter fence was extended by a tissue strip (0.25 m in width) weighted with

galvanized chain so that the base of the perimeter fence could be moulded to the substrate

shape. Two litres of anaesthetic solution (5 ppm quinaldine solution: 1 cl of quinaldine, 10 cl of

acetone, 189 cl of seawater) were sprayed 15 cm above the substrate [47]. One minute later, fish

were collected by vacuuming using an air-lift pump (with a 1mmmesh collecting bag). The

pump head was moved all around the 1 m² sample area for 2 minutes. After the dive, fish sam-

ples, still anesthetised, were killed by an anaesthetic overdose and stored in plastic tubes filled

Crypto- and Necto-Benthic Fish in Mediterranean Macroalgal Assemblages
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with 70% alcohol. In the laboratory, samples were sorted, and individuals were measured (to

the nearest mm), weighed (mg), and identified to the species level whenever possible, or alter-

natively to the family level. EASV samples contained both CB and NB fish individuals. NB fish

were removed in order to prevent overlap with NB sampled using UVC.

Fig 3. Quantitative sampling of crypto-benthic fish using Enclosed Anaesthetic Station Vacuuming. Steps include: (A) Setting-up the perimeter
fence by arriving vertically from 2 m above the substrate, and moulding the base of the perimeter fence (weighted with galvanized chain) to the substrate
in order to avoid fish escapes; (B) Spraying of the anaesthetic and waiting for 1 minute; (C) Vacuuming for 2 minutes using an air-lift sampler; (D) Closing
the collecting bag as soon as the vacuuming session ends. Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g003
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We used UVC for sampling small-medium resident NB fish, which are late juveniles of NB

species (� 25 mm for Labridae,� 35 mm for other taxa) that reached the NB behaviour stage

[53] and (sub-) adult fish individuals (TL<30 cm) belonging to NB species, hereafter referred

as ‘NB fish’. We did not use the standard method 5 x 25 m² transect [41] because it would have

not been possible to fit multiple 125 m² replicates within our sampling sites (750 to 1000 m²)

and to meet the independence assumption. Instead, we used 9-m² stationary-point snapshot-

count, conducted during daylight (10AM–4PM). Six random replicates, which were at least 10

m apart from each other, were done at each site. The 9-m² sampling area was a semicircle 2.5

m in radius in front of the diver, excluding the inner semicircle 0.7 m in radius nearest to the

diver (S1 Fig). The diver did a snapshot count of everyNB fish individual inside the sampling

area at the time the census started, by estimating the species and the body size (total length to

the nearest 0.5 cm for fish� 5cm, to the nearest 1 cm for larger fish). Fish biomass was esti-

mated using the existing length—weight relationship from the literature [54, 55].

Data analyses

Data pre-processing. In order to analyse relationships betweenmacrophytes and NB and

CB fish, data for algae, CB and NB fish (each stored in a database) were aggregated at the site

level, which was the smallest sampling unit shared by the 3 databases. Biomass (and/or densi-

ties) was averaged over replicates and mean values (for each site) were stated in grams (and/or

number of individuals) per 1 m² for macrophytes and per 10 m² for fish. These values were

used for all statistical analyses. Using sites as statistical units did not lower the power of the

analyses of variances (see below) when comparing inter-habitat variability over intra-habitat

(inter-site within habitat) variability [56].

Habitat types. In order to verify a posteriori that sampled sites were appropriately classi-

fied into meaningful and objective habitat types (forest, turf, or barren), biomass of the 6 mac-

rophyte functional groups was used for clustering sites into internally homogenous groups of

habitat types, by running the PRIMER routine combining hierarchical clustering (group-aver-

age) and Type 1 SIMPROF test (defining the most appropriate number of clusters), on Bray-

Curtis dissimilarity matrices with square root transformed data [57, 58].

Fish assemblages. To compare multiple aspects of fish assemblage structure between habi-

tat types, we considered 9 multivariate descriptors, combining 3 sets of fish category (only CB

fish sampled by EASV, only NB fish sampled by UVC and all fish) and 3 types of metrics (pres-

ence/absence, density and biomass). Jaccard similarity was used on presence/absence, and

Bray-Curtis dissimilarity was used on square root transformed densities and biomasses. Simi-

larly, nine univariate descriptors were also used: number of taxa, total density and total biomass

for each of the 3 sets of fish category.

Based on each descriptor (multivariate or univariate), we tested for putative differences

between forest and barren, by using 3-way permutational (multivariate or univariate) analyses

of variance (PERMANOVAs): factor region-time ('RT', fixed, 2 levels: Corsica-May and

Menorca-July), factor locality-protection ('LP', fixed, 2 levels nested within each 'RT' level), fac-

tor habitat ('HA', fixed, 2 levels: forest, barren). The habitat turf was excluded from the PER-

MANOVA design because turf sites were sampled only within locality L4 of Menorca-July, this

would have induced a large amount of empty cells in the design. Because the design was still

unbalanced, we used Type III sum of squares (SS). P-values were obtained by 9999 permuta-

tions of residuals under a reducedmodel. Post-hoc pair-wise comparisons were used when

appropriate. Univariate PERMANOVA were based on Euclidean distances which makes this a

non-parametric test that is equivalent to a parametric ANOVA but free from the assumption

of normality of residuals [59].
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To identify groups of fish taxa responding similarly to factors evidenced as significant by

PERMANOVA on densities of all fish, we performedType 2 and Type 3 SIMPROF tests.

Densities were averaged for each level of the factor combining all significant factors (i.e. the

combination of habitat and region-time, see ‘Results‘). Type 2 SIMPROF test tested the null

hypothesis of 'no associations among taxa'. Type 3 SIMPROF test was used to identify statisti-

cally distinct groups of taxa, by combining hierarchical clustering (group-average) of taxa and

Type 2 SIMPROF test (see [58] for more details). Only taxa that occurred in at least 4 out of

the 23 sampling sites were retained since the method is sensitive to the inclusion of the rarest

taxa [58]. For this test (very conservative since it controls experiment-wise type I error rate

[58]), we used the threshold 0.1 as significance level instead of the common threshold 0.05,

since we aimed to explore ecological trends rather than to test ecological inferences. For all

other statistical significance tests (of inferences), we used 0.05 as threshold.

To visualizemultivariate patterns, Principal Coordinates Analyses (PCoA) were used on the

3 dissimilarity matrices involving all fish taxa. Due to high variability among replicates that

prevented getting reliable visualizations of dissimilarities in 2D (first two PCoA axes), we used

only centroids of each level of the factor combining all factors (HA x RT x LP(RT)).

All SIMPROF tests and PERMANOVAs were performedusing the PRIMER 6 and PERMA-

NOVA + B20 package [60, 61]. All graphical visualizations were performed in R Environment

[62] using the libraries vegan [63] and ggplot2 [64].

As a supplement, we investigated fish body-size (total length) distributions in order to (1)

assess the relative contributions of CB and NB fish to total fish density and total fish biomass,

and (2) visualize putative differences among habitats. Methods and results of this complemen-

tary analysis are reported in S1 Text and S2 Fig.

Results

Habitat types

Biomass of the 6 macrophyte functional groups was not homogeneous among sites (Type 1

SIMPROF test, π = 2.186, p = 0.02). The combined clustering/SIMPROF analysis showed that

3 groups of sites were significantly different from each other but internally homogeneous. The

clustering matched with our a priori grouping of sampling sites by habitat types (presented in

Fig 2). The habitat forest exhibited the highest total macrophyte biomass (Fig 4). It was domi-

nated by Fucales (> 90% of Cystoseira brachycarpa var. balearica in both Corsica and

Menorca) forming a dense canopy (around 15 to 20 cm in height). The habitat turf exhibited

lower total macrophyte biomass (70% of forest's biomass). It was dominated by erect articu-

lated Corallinales forming a dense layer of turf (around 5 cm thick). The turf layer sometimes

smothered short-sized individuals of Fucales and/or was sparsely epiphyted by some other

erect macrophytes. The habitat barren exhibited very low total macrophyte biomass (10% of

forest's biomass). In some barren sites, short-sized individuals of Fucales (< 5cm) and/or of

erect non canopy-forming macrophyte (mostly Padina sp.) were sparsely present.

Multivariate descriptors of fish assemblage structure

All 9 multivariate descriptors considered were significantly different between forest and barren,

and betweenCorsica-May and Menorca-July (Table 1). This showed that (1) the differences in

the whole fish assemblage structure were due to both the subsets of CB and NB fish, and (2) the

differences in fish assemblage structure were in terms of taxa composition, and possibly also in

terms of densities and biomass.

When considering fish assemblage composition (presence/absence of all fish), the inter-hab-

itat and inter- region-time differences were additive (Table 1 and Fig 5A). When considering

Crypto- and Necto-Benthic Fish in Mediterranean Macroalgal Assemblages
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Table 1. Results of multivariate PERMANOVAs comparing fish assemblage structure between forest and barren.

All fish Crypto-benthic fish Necto-benthic fish

Data and dissimilarity measure used Source df SS F SS F SS F

Jaccard on presence / absence HA 1 7334.8 5.17 *** 4254.2 3.50 * 9762.7 8.06 ***

RT 1 7428.1 5.23 *** 6140.4 5.06 ** 7296.3 6.02 ***

LP(RT) 2 3296.0 1.16 ns 1022.6 0.42 ns 3809.2 1.57 ns

RTxHA 1 2056.1 1.45 ns 2626.2 2.16 ˚ 997.2 0.82 ns

LP(RT)xHA 2 3570.9 1.26 ns 1508.7 0.62 ns 4356.3 1.80 ˚

Residual 11 15613.0 13359.0 13332.0

Bray-Curtis on square root transformed densities HA 1 5139.7 4.08 ** 4389.9 4.14 * 8452.9 10.36 ***

RT 1 7498.9 5.96 *** 7209.2 6.81 *** 5860.0 7.18 ***

LP(RT) 2 3023.3 1.20 ns 1076.5 0.51 ns 3456.5 2.12 ˚

RTxHA 1 2872.2 2.28 ˚ 2369.0 2.24 ˚ 1598.7 1.96 ns

LP(RT)xHA 2 3177.1 1.26 ns 1354.1 0.64 ns 3640.2 2.23 ˚

Residual 11 13849.0 11652.0 8977.9

Bray-Curtis on square root transformed biomasses HA 1 5621.5 5.75 *** 6097.4 2.99 * 5629.7 6.10 ***

RT 1 6475.2 6.62 *** 5491.8 2.70 * 6576.4 7.13 ***

LP(RT) 2 5776.4 2.96 ** 3036.8 0.75 ns 5685.4 3.08 ***

RTxHA 1 2272.3 2.32 ˚ 3810.9 1.87 ˚ 2234.4 2.42 ˚

LP(RT)xHA 2 4075.9 2.09 ˚ 2987.4 0.73 ns 4184.4 2.27 ˚

Residual 11 10751.0 22401.0 10149.0

HA: habitat; RT: region-time; LP: locality-protection.
ns not significant

˚ p < 0.1

* p < 0.05

** p < 0.01

*** p < 0.001.

doi:10.1371/journal.pone.0164121.t001

Fig 4. Macrophyte assemblage structures discriminating the 3 habitat types.Mean total macrophyte
biomass (+SE) and mean biomass (+SE) of the 6 macrophyte functional groups for each of the 3 habitat types
sampled (see also Fig 1A, 1C and 1D). Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g004
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Fig 5. Fish assemblage structure compared among habitats and regions-times, in terms of (A) presence / absence, (B) densities, and (C)
biomasses of all crypto- and necto- benthic fish. Principal coordinates analyses (PCoA) were built using dissimilarities among centroids of each
levels of the combined factor habitat X locality-protection (region-time), which were computed using Jaccard dissimilarity for presence / absence data
and Bray-Curtis dissimilarity for both square root transformed densities and biomass data. First two axes (MDS 1 and 2) are plotted and percentages
of explained variance are indicated within brackets. Labels refer to the 4 locality-protection levels (see Fig 2). Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g005
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fish densities, inter-habitat differences appeared slightly higher within Menorca-July than

within Corsica-May (Table 1 and Fig 5B). In contrast, when considering fish biomass, inter-

habitat differences appeared slightly lower withinMenorca-July than within Corsica-May

(Table 1 and Fig 5C).

Considering the habitat turf (not included in PERMANOVAs, seeMaterial & Methods sec-

tion) sampled only within Locality 4 (L4), the centroid of turf X L4 was positioned between the

centroids of barren X L4 and forest X L4, particularly on PCoA biplot based on presence/

absence (Fig 5A) and densities (Fig 5B).

Univariate descriptors of fish assemblage structure

The number of taxa of all fish, of the subset CB fish and of the subset NB fish were all signifi-

cantly higher in forest than in barren (Table 2 and Fig 6). The number of taxa of all fish and of

the subset CB fish were both significantly higher inMenorca-July than in Corsica-May (Table 2

and Fig 6). The number of taxa of all fish, of the subset CB fish and of the subset NB fish, were

similar between the turf sites and the barren sites of the same locality (see L4 in Fig 6).

The total densities of all fish and of CB fish in Menorca-July were significantly higher in for-

est than in barren. This trend was almost significant within Corsica-May (Table 2 and Fig 6).

The higher densities of CB fish in forests of Menorca-July compared to forests of Corsica-May

Table 2. Results of univariate PERMANOVAs comparing fish assemblage structure between forest and barren.

All fish Crypto-benthic fish Necto-benthic fish

Response variable Source df SS F SS F SS F

Number of taxa HA 1 159.6 29.50 *** 44.3 23.00 *** 35.8 13.72 **

RT 1 65.4 12.08 ** 26.4 13.72 ** 8.7 3.33 ˚

LP(RT) 2 28.1 2.60 ns 2.1 0.54 ns 23.1 4.44 *

RTxHA 1 1.0 0.19 ns 3.8 1.95 ns 0.9 0.33 ns

LP(RT)xHA 2 8.4 0.77 ns 1.2 0.31 ns 3.3 0.63 ns

Residual 11 59.5 21.2 28.7

Total density HA 1 492.8 39.16 *** 420.5 34.95 *** 2.9 39.54 ***

RT 1 399.7 31.77 *** 406.8 33.81 *** 0.0 0.43 ns

LP(RT) 2 19.2 0.76 ns 12.1 0.50 ns 1.1 7.49 **

RTxHA 1 203.0 16.13 ** 223.5 18.57 ** 0.5 6.77 *

LP(RT)xHA 2 8.1 0.32 ns 5.9 0.25 ns 0.2 1.38 ns

Residual 11 138.4 132.7 0.8

Pairwise tests Forest vs
Barren

Corsica: t = 2.05˚; Menorca: t =
5.86**

Corsica: t = 1.50ns; Menorca: t =
5.70 ***

Corsica: t = 5.27**; Menorca: t
= 5.51**

Total biomass HA 1 21.8 0.70 ns 6.0 3.42 ns 4.9 0.16 ns

RT 1 23.5 0.76 ns 1.1 0.62 ns 34.7 1.11 ns

LP(RT) 2 395.3 6.38 * 4.9 1.38 ns 404.5 6.48 *

RTxHA 1 130.6 4.22 ˚ 1.5 0.82 ns 104.6 3.35 ˚

LP(RT)xHA 2 202.1 3.26 ˚ 6.6 1.88 ns 166.7 2.67 ns

Residual 11 340.7 19.4 343.0

HA: habitat; RT: region-time; LP: locality-protection.
ns not significant

˚ p < 0.1

* p < 0.05

** p < 0.01

*** p < 0.001.

doi:10.1371/journal.pone.0164121.t002
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Fig 6. Univariate descriptors of fish assemblage structure compared among habitats and regions-times.Mean values (+/- SE) of the number of
taxa (observed per site), the total density and the total biomass of all fish, only crypto-benthic fish and only necto-benthic fish, for each habitat x locality-
protection (region-time) level combination. Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g006
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were mainly driven by very small sized individuals (TLs between 5 and 15 mm) that were

highly abundant in Menorca-July (see below description of group 6, and S1 Text and S2 Fig).

The total NB fish density was significantly higher in forest than in barren within both regions,

but this was more pronounced within Corsica-May (Table 2 and Fig 6). The total densities of

(1) all fish and (2) only CB fish recorded in turf were intermediate between densities recorded

in barrens (low) and in forests (high) of the same locality (Fig 6). Contrastingly, the total NB

fish density recorded in turfs was similar to that recorded in barrens (Fig 6). None of the 3 total

biomass variables (all fish, only CB and only NB) showed significant difference between habitat

types or between regions-times (Table 2 and Fig 6).

Total CB fish density represented on average 92% of all small-medium resident fish density,

and total CB fish biomass represented on average 17% of all small-medium resident fish bio-

mass. This was related to the fact that total-lengths (and correlated body-weight) of CB fish

were on average smaller than total-lengths of NB fish (Table 3, S1 Text and S2 Fig).

Table 3. Groups of fish sharing the same density variations across habitats and regions-times.

G Family Taxa (and life history
traits)

Size range in
mm

Mean Size
(SE)

Mean densities (SE) (indiv./ 10 m)

Corsica-May Menorca-July

Forest
(n = 5)

Barren
(n = 5)

Forest
(n = 5)

Barren
(n = 4)

Turf (n = 4)

1 Sparidae Diplodus sargus (NB) [80,300] 144 (20.2) 0.04 (0.04) 0.3 (0.17) - - 0.05 (0.05)

2 Labridae Thalassoma pavo (NB) [50,160] 92.7 (3.1) - - 0.3 (0.15) 2.41 (0.33) 1.16 (0.54)

Sparidae Diplodus vulgaris (NB) [60,160] 109.5 (3.4) 0.04 (0.04) 0.11 (0.07) 0.26 (0.26) 1.39 (0.44) 0.65 (0.44)

Total G2 0.04 (0.04) 0.11 (0.07) 0.56 (0.38) 3.8 (0.77) 1.81 (0.67)

3 Labridae Symphodus ocellatus
(NB)

[30,120] 59.8 (1) 7.52 (1.42) 0.19 (0.19) 0.89 (0.26) - 0.05 (0.05)

4 Labridae Symphodus roissali (NB) [25,150] 70.6 (3.2) 1.96 (0.4) - 1.33 (0.34) - 0.05 (0.05)

Scorpaenidae [15,43] 29 (5.1) 1.33 (1.33) - 1.33 (0.82) - 0.83 (0.83)

Serranidae Serranus cabrilla (NBJ) [12,32] 20 (2.1) 2 (1.33) 1.33 (1.33) 4.67 (0.82) - 0.83 (0.83)

Serranus cabrilla (NB) [35,180] 94.9 (6.7) 0.59 (0.27) 0.07 (0.07) 0.63 (0.16) 0.09 (0.05) 0.09 (0.05)

Serranus scriba (NB) [60,240] 135.3 (6.8) 0.3 (0.17) 0.04 (0.04) 0.52 (0.11) 0.19 (0.13) 0.14 (0.09)

Tripterygiidae (CBS) [13,56] 20.2 (1) 12.67 (6.27) 5.33 (3.89) 16 (2.21) 3.33 (2.36) 1.67 (1.67)

Total G4a 18.85 (6.69) 6.78 (5.18) 24.48 (2.53) 3.61 (2.36) 3.61 (1.29)

5 Labridae Coris julis (NB) [25,250] 88.9 (1.8) 4.96 (1.19) 4.26 (1.7) 5.89 (1.02) 2.55 (0.62) 5.6 (1.18)

Symphodus tinca (NB) [35,300] 126.6 (9.3) 1.04 (0.67) 0.41 (0.28) 0.15 (0.07) 0.19 (0.19) 0.32 (0.21)

Total G4b 6 (1.01) 4.67 (1.93) 6.04 (1) 2.73 (0.75) 5.93 (1.31)

6 Clinidae (CBS) [10,23] 17.9 (1.7) - - 4.67 (1.7) - -

Gobiesocidae (CBS) [5,14] 8 (0.2) 2.67 (1.94) 0.67 (0.67) 50.67 (13.6) 4.17 (1.6) 8.33 (4.41)

Labridae Coris julis (NBJ) [15,21] 18.7 (0.8) - - 3.33 (2.58) - 1.67 (0.96)

Symphodus spp. (NBJ) [7,20] 10.4 (1.1) - - 10 (3.5) - 1.67 (1.67)

Total G5 2.67 (1.94) 0.67 (0.67) 68.67 (10.98) 4.17 (1.6) 11.67 (4.19)

7 Blenniidae (CBS) [15,43] 21.5 (1) 2.67 (1.94) 1.33 (1.33) 14 (4.52) 8.33 (2.15) 15.83 (4.79)

Gobiidae (CBS) [7,95] 13.9 (0.6) 10.67 (3.4) 2.67 (1.94) 101.33
(25.55)

25.83 (9.85) 122.5 (35.26)

Mullidae Mullus surmuletus (NB) [50,100] 75 (2) - - 0.7 (0.32) 0.37 (0.31) 0.69 (0.69)

Total G6 13.33 (4.94) 4 (2.45) 116.04
(28.85)

34.54 (8.56) 139.03
(39.24)

G: groups delimited by Type 3 SIMPROF test (see also Fig 7); NB: late juveniles and (sub-) adult of necto-benthic species sampled by UVC; NBJ: early

juveniles of necto-benthic species sampled by EASV; CBS: all life stages of crypto-benthic species sampled by EASV. Size are fish total lengths expressed

in mm.

doi:10.1371/journal.pone.0164121.t003
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Groups of fish

The null hypothesis of 'no associations among species' was rejected (Type 2 SIMPROF test, π =

0.043, p = 0.021). Seven groups of taxa were identified as significantly different from each other

but internally homogeneous (p-values< 0.1) in terms of their trends in density variations

across habitat and regions-times (results of Type 3 SIMPROF tests in Fig 7 and Table 3).

Groups 1 and 2 were composed of NB species that were more abundant in barren but species

were segregated by regions-times.Diplodus sargus (group 1) was recorded almost only in barren

in Corsica-May. Diplodus vulgaris and Thalassoma pavo (group 2) were recorded almost only in

Menorca-July, with higher densities in barren, intermediate in turf, and lower in forest.

Groups 3 to 6 were composed of fish generally more abundant in forest in at least one

region-time. The NB Symphodus ocellatus (forming group 3) was highly abundant in forests of

Corsica-May and was also abundant in forests of Menorca-July, while almost never recorded in

barren and turf, irrespective of the region-time.

Fig 7. Groups of fish sharing the same density variations across habitats and regions-times.Mean standardized density (+/-SE) indicates
variations of every fish taxon on a common scale even if their respective absolute densities may be different. NBJ: early juveniles of necto-benthic species
sampled by EASV, while late juveniles and (sub-)adults were sampled by UVC. See Table 3 for detailed information about body-size and absolute
densities of each fish taxon. Modified from Thiriet et al. [30].

doi:10.1371/journal.pone.0164121.g007
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Group 4 was the larger and more diversified group, composed of both CB and NB fish with

sizes ranging from 1 to 24 cm (Table 3), which were abundant in forest but rarely observed in

other habitats, consistently across regions-times.

Group 5 was composed of the labrids Coris julis and Symphodus tinca, which were slightly

more abundant in forest (especially for S. tinca), although densities were high in every habitat

(Table 3).

Group 6 was composed essentially of CB juvenile fish, belonging to CB taxa (Clinidae and

Gobiesocidae juveniles) and NB taxa (early juveniles of Coris julis and Symphodus spp. at the

CB stage). They were almost exclusively recorded in Menorca-July (excepting Gobiesocidae)

where they were more abundant in forest than in turf and almost absent in barren. The few

individuals of Gobiesocidae recorded in Corsica-May (relatively to the other region-time,

Table 3) were also more abundant in forest.

Group 7 was composed of CB fish belonging to the family Blenniidae and Gobiidae and of

juveniles of the NB speciesMullus surmuletus. They were mainly recorded in Menorca-July,

with higher densities in forest and turf than in barren. The few individuals of Blenniidae and

Gobiidae recorded in Corsica-May were more abundant in forest (Table 3).

Discussion

Taxonomic diversity and total density of small-medium resident fish were highest in Cystoseira

forest and lowest in barren. Turf showed intermediate values, but this finding should be

regarded with caution as turf was sampled only at 4 sites in Menorca. Total fish biomass did

not differ between habitats because the larger average size of fish in barrens compensated for

their lower densities. Effects of habitat were consistent between regions-times in terms of direc-

tion, but showed variability in their magnitude. This was mainly due to high densities of very

small new settlers of Gobiesocidae,Clinidae, Blenniidae, Gobiidae,Coris julis and Symphodus

spp. in Cystoseira forests of Menorca-July. This suggests that Cystoseira forests, at least in

Menorca, act as nursery habitat for these species, as previously suggested for Symphodus spp.

in Corsica [40]. Settler densities were considerably lower at Corsica-May probably due to the

sampling period (i.e. May) that was too early to detect settlement peaks for these species (from

late spring to autumn [30, 40, 65–68]). Therefore, observeddifference between regions were

likely due, at least in part, to seasonal variability.

Small-medium resident fish were also more diverse in Cystoseira forests in terms of trophic

groups. Fish with the highest densities in Cystoseira forests included both juvenile and adult

fish belonging to (1) the CB taxa Blenniidae, Gobiidae, Trypterigiidae and Cliniidae, which are

omnivores, micro- or meso- carnivorous (depending on taxa and/or life stage), (2) the NB Lab-

ridae, which are mainly mesocarnivorous, and (3) the CB Scorpaenidae and NB Serranidae,

which are meso- or macro- carnivorous (depending on life stages) whose food items include

small-sizedCB and/or NB fish [30, 69, 70]. In contrast, the only fishes that displayed the high-

est densities in barrens were the NB sea urchin feedersDiplodus spp. and Thalassoma pavo

[28] (See S2 Text for more details).

Small-sized fish and large-sizedmacrocarnivorous fish cohabit at higher densities in Cysto-

seira forests. This may be due to lower mortality in Cystoseira forest (starvation- and/or preda-

tion- induced) and/or net immigration from other habitats (due to habitat selection toward

Cystoseira forests) [71]. Lower mortality and habitat selection could both be related to: 1)

increased food resources in Cystoseira forest (invertebrates for small-sized fish, and inverte-

brates and small-sized fish for macrocarnivorous fish [72, 73]) and/or 2) forest structural com-

plexity providing shelters against predators (small sized-fish threatened by macrocarnivorous
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fish, and macrocarnivorous fish threatened by higher order predators such as Epinephelus mar-

ginatus or Dentex dentex [71]).

CB fish included omnivorous and micro-carnivorous fish while NB fish did not. Consider-

ing their relatively high densities (92% of small-medium resident fish density) and their exclu-

siveness at intermediate trophic positions (among small-medium resident fish), CB fish may

play a crucial role with regard to the trophic functioning of Cystoseira forest-dominated ecosys-

tems. This highlights the need for further research on CB fish assemblages, as they are underes-

timated by UVC sampling [46] and therefore have been largely understudied. As demonstrated

in this study, EASV is an effective quantitative harvestingmethod that can be used in complex

habitats to study CB assemblages.

Our finding of higher diversity and densities of small-medium resident fish in Cystoseira

forest than in barren corroborates broad patterns of higher fish diversity and density in high

complexity biotic habitats compared to adjacent, structurally less complex habitats. Examples

include seagrass meadows compared to adjacent bare sediments [74–78], mangrove roots com-

pared to adjacent mud flats [79–81], algal forests [59, 82] or other erect or turf-forming algae

[27] compared to adjacent bare rocks. Studies that compared some components of the whole

fish assemblage betweenCystoseira forest and various habitat types [33–36, 40] also reported

higher fish diversity and/or density and/or biomass in Cystoseira forests, at least for some fish

taxa and/or at some of their life stages (see S2 Text). Although all the studies assessed potential

variability using the same variables (i.e. diversity, density, biomass), the response of each single

variable was inconsistent among the studies. Such discrepancies among studies (including

ours) may be primarily related to: (1) differences in the fish assemblages studied, which were

either the whole NB fish assemblage including transient and large resident fish [33–35], only

NB juvenile fish [40], or the assemblage of small-medium resident CB and NB fish (the present

study), and/or (2) the inaccurate sampling of CB fish using UVC [36], and/or (3) sampling

designs where the results are confounded with protection levels [33] or abiotic variations [34–

36].

Our study has significantly contributed to the knowledge of CB and NB small-medium resi-

dent fish assemblage structure in Cystoseira forests and barrens (and turf to some extent).

Based on the differences between habitat types, we can speculate that Cystoseira forest degrada-

tion into barrens (and likely turfs) may reduce the density and diversity of small-medium resi-

dent fish. This includes both juvenile fish which are important for population replenishment as

well as socio-economically important fish species such as Scorpaena spp. and Serranus spp.

However, we note that our evidence relates to a relatively short observational period (May or

July) in two different localities and that our findings are based on a space-for-time approach

that does not allow consideration of all alternative hypotheses. A manipulative approach would

enable a broader range of inference, but would need to include large-scale removal experiments

of Cystoseira spp, which may not be appropriate given its conservation status. Hence, to better

assess the community-wide impact of Cystoseira forest losses, it is crucial to set up long-term

monitoring of Mediterranean subtidal macroalgal habitats and associated communities [19]. In

addition, further space-for-time studies would be of value (1) to compare the assemblage struc-

ture of large and/or highly mobile NB fish between habitats and (2) to extend sampling loca-

tions and periods (all seasons during several years) in order to draw a more robust picture of

the impact of changes in marine vegetation on fish assemblage structure.
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Musard O, Le Dû-Blayo L, Francour P, Beurier J-P, Feunteun E, Talassinos L, editors. Underwater
Seascapes: Springer International Publishing; 2014. p. 185–99.

72. Gozler AM, Kopuz U, Agirbas E. Seasonal changes of invertebrate fauna associated withCystoseira
barbata facies of Southeastern Black Sea coast. African Journal of Biotechnology. 2010; 9(51):8852–
9. PMID: ISI:000285846100020.

73. Chemello R, Milazzo M. Effect of algal architecture on associated fauna: some evidence from phytal
molluscs. Marine Biology. 2002; 140(5):981–90. doi: 10.1007/s00227-002-0777-x PMID:
WOS:000176211500010.

74. Bostrom C, Jackson EL, Simenstad CA. Seagrass landscapes and their effects on associated fauna: A
review. Estuar Coast Shelf Sci. 2006; 68(3–4):383–403. doi: 10.1016/j.ecss.2006.01.026 PMID:
ISI:000238871700003.

75. Guidetti P. Differences Among Fish Assemblages Associated with Nearshore Posidonia oceanica
Seagrass Beds, Rocky–algal Reefs and Unvegetated Sand Habitats in the Adriatic Sea. Estuarine,
Coastal and Shelf Science. 2000; 50(4):515–29. doi: http://dx.doi.org/10.1006/ecss.1999.0584

Crypto- and Necto-Benthic Fish in Mediterranean Macroalgal Assemblages

PLOSONE | DOI:10.1371/journal.pone.0164121 October 19, 2016 23 / 24

http://dx.doi.org/10.1016/S0165-7836(02)00250-3
http://www.fishbase.org
http://dx.doi.org/10.1890/0012-9658(2007)88[56:sacied]2.0.co;2
http://www.ncbi.nlm.nih.gov/pubmed/17489454
http://dx.doi.org/10.1016/j.jembe.2008.07.009
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000261272200008
http://dx.doi.org/10.1016/j.jembe.2013.10.002
http://dx.doi.org/10.1016/j.jembe.2003.12.011
http://dx.doi.org/10.1017/s0025315406014226
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000241311000035
http://dx.doi.org/10.1016/j.ecss.2013.05.029
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000323361400008
http://dx.doi.org/10.1016/j.ecss.2004.11.018
http://dx.doi.org/10.1016/j.ecss.2004.11.018
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000229809900002
http://dx.doi.org/10.1023/a:1020556722822
http://dx.doi.org/10.1111/j.1095-8649.1989.tb03352.x
http://dx.doi.org/10.1111/j.1095-8649.1989.tb03352.x
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000285846100020
http://dx.doi.org/10.1007/s00227-002-0777-x
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000176211500010
http://dx.doi.org/10.1016/j.ecss.2006.01.026
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000238871700003
http://dx.doi.org/10.1006/ecss.1999.0584


76. Horinouchi M, Mizuno N, Jo Y, Fujita M, Sano M, Suzuki Y. Seagrass habitat complexity does not
always decrease foraging efficiencies of piscivorous fishes. Marine Ecology-Progress Series. 2009;
377:43–9. doi: 10.3354/meps07869 PMID: ISI:000264557300005.

77. Schultz S, Kruschel C. Frequency and success of ambush and chase predation in fish assemblages
associated with seagrass and bare sediment in an Adriatic lagoon. Hydrobiologia. 2010; 649(1):25–37.
doi: 10.1007/s10750-010-0256-1

78. Schultz ST, Kruschel C, Bakran-Petricioli T. Influence of seagrass meadows on predator-prey habitat
segregation in an Adriatic lagoon. Marine Ecology-Progress Series. 2009; 374:85–99. doi: 10.3354/
meps07779 PMID: ISI:000263227300009.

79. Laegdsgaard P, Johnson C. Why do juvenile fish utilise mangrove habitats? Journal of Experimental
Marine Biology and Ecology. 2001; 257(2):229–53. doi: 10.1016/s0022-0981(00)00331-2 PMID:
11245878

80. Manson FJ, Loneragan NR, Skilleter GA, Phinn SR. An Evaluation of the Evidence for Linkages
between Mangroves and Fisheries. Oceanography and Marine Biology. Oceanography and Marine
Biology—An Annual Review: CRC Press; 2005. p. 483–513.

81. Nanjo K, Nakamura Y, Horinouchi M, Kohno H, Sano M. Predation risks for juvenile fishes in a man-
grove estuary: A comparison of vegetated and unvegetated microhabitats by tethering experiments.
Journal of Experimental Marine Biology and Ecology. 2011; 405(1–2):53–8. doi: http://dx.doi.org/10.
1016/j.jembe.2011.05.016

82. Jones GP. Population ecology of the temperate reef fish Pseudolabrus celidotus Bloch & Schneider
(Pisces: Labridae). I. Factors influencing recruitment. Journal of Experimental Marine Biology and
Ecology. 1984; 75(3):257–76. doi: 10.1016/0022-0981(84)90170-9

Crypto- and Necto-Benthic Fish in Mediterranean Macroalgal Assemblages

PLOSONE | DOI:10.1371/journal.pone.0164121 October 19, 2016 24 / 24

http://dx.doi.org/10.3354/meps07869
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000264557300005
http://dx.doi.org/10.1007/s10750-010-0256-1
http://dx.doi.org/10.3354/meps07779
http://dx.doi.org/10.3354/meps07779
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000263227300009
http://dx.doi.org/10.1016/s0022-0981(00)00331-2
http://www.ncbi.nlm.nih.gov/pubmed/11245878
http://dx.doi.org/10.1016/j.jembe.2011.05.016
http://dx.doi.org/10.1016/j.jembe.2011.05.016
http://dx.doi.org/10.1016/0022-0981(84)90170-9

