

Technical Report HCSU-075

ABUNDANCE, DISTRIBUTION, AND REMOVALS OF FERAL PIGS AT BIG ISLAND NATIONAL WILDLIFE REFUGE COMPLEX 2010-2015

Christina R. Leopold¹, Steven C. Hess², Steve J. Kendall³, and Seth W. Judge¹

¹Hawai`i Cooperative Studies Unit, University of Hawai`i at Hilo, P.O. Box 44, Hawai`i Volcanoes National Park, HI 96718
²U.S. Geological Survey, Pacific Island Ecosystems Research Center, Kīlauea Field Station, P.O. Box 44, Hawai`i National Park, HI 96718
³Big Island National Wildlife Refuge Complex, 60 Nowelo Street, Suite 100, Hilo, Hawai`i 96720

> Hawai`i Cooperative Studies Unit University of Hawai`i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706

> > March 2016

UNIVERSITY of HAWAI'I" HILO

This product was prepared under Cooperative Agreement G13AC00097 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey.

This information is deliberative and pre-decisional and the findings and conclusions in the document have not been formally approved for release by the U.S. Geological Survey (USGS). It does not represent and should not be construed to represent any USGS determination or policy.

List of Tables	ii
List of Figures	ii
Abstract	1
Introduction	1
Methods	2
Ungulate and Weed Surveys	2
Canopy Cover at KFU	2
Data Management	3
Analyses	3
Results	4
Ungulates	4
Weeds	22
Canopy Cover at KFU	22
Discussion	34
Acknowledgments	36
Literature Cited	36
Appendix I. Data Management and Summarization Instructions	38
Appendix II. Ungulate Survey Data Sheet and Data Entry File Example	39
Appendix III. Hakalau Forest Unit Ungulate Survey Station UTM Coordinates	40
Appendix IV. Kona Forest Unit Ungulate Survey Station UTM Coordinates	41
Appendix V. R Script for Summarizing Ungulate Data	41
Appendix VI. Hakalau Forest Unit Weed Summary R Script	42
Appendix VII. Kona Forest Unit Weed Summary R Script	42
Appendix VIII. Minitab Regression File for Population Estimation	43
	List of Tables

TABLE OF CONTENTS

LIST OF TABLES

Table 1. Summary of transects, and number of stations and plots surveyed at HFU of theBINWRC
Table 2. Percent of plots with feral pig sign in HFU of the BINWRC
Table 3. Estimated abundance of feral pigs within enclosed and unenclosed areas
Table 4. Number of feral pigs removed from eight enclosed management units at HFU of the BINWRC
Table 5. Summary of transects, and number of stations and plots surveyed at the KFU of the BINWRC
Table 6. Number of plots with feral ungulate sign in enclosed and unenclosed untis of KFU of the BINWRC
Table 7. Number of stations with <i>Rubus argutus</i> and <i>R. argutus</i> detections within HFU of the BINWRC
Table 8. Number of stations with Passiflora tarminariana and P. tarminariana detections26
Table 9. Number of stations with detections of three weed species at HFU of the BINWRC28
Table 10. Number of stations with detections of three weed species at KFU of the BINWRC30
Table 11. Forest canopy cover estimates of vegetation plots across vegetation types at the KFU of the BINWRC.

LIST OF FIGURES

Figure 1. Estimated total abundance of feral pigs at the HFU of the BINWRC, November 2010– September 2015
Figure 2. Feral pig sign from enclosed and unenclosed management units at HFU of the BINWRC, 2014–2015
Figure 3. Estimated total maximum abundance and total number of feral pigs removed by year from enclosed management units at the HFU of the BINWRC, 2010–2015
Figure 4. Estimated maximum recombined total abundance of feral pigs and total number of feral pigs removed by year from KFU of the BINWRC
Figure 5. Maximum values of feral ungulate sign from enclosed management units at the KFU of the BINWRC during January and April of 2015
Figure 6. Feral ungulate sign from enclosed management units at the KFU of the BINWRC January of 2015

Figure 7. Feral ungulate sign from enclosed management units at the KFU of the BINWRC. during April of 2015
Figure 8. Percent cover of five weed species in enclosed management units at the HFU of the BINWRC during 2014
Figure 9. Percent cover of five weed species in enclosed management units at the HFU of the BINWRC during 2015
Figure 10. Percent cover of three weed species in enclosed management units at the KFU of the BINWRC during January of 2015
Figure 11. Percent cover of three weed species in two enclosed management units at the KFU of the BINWRC during April of 201531
Figure 12. Relationship between two methods for estimating forest canopy cover at 20 vegetation plots in four vegetation types at the KFU of the BINWRC.

ABSTRACT

The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. In this report we: 1) provide results from recent ungulate surveys and the number of removals at HFU to determine the distribution, abundance, and efficacy of removals of feral pigs, the dominant ungulate, from 2010 to 2015; 2) present results of surveys of the presence and distribution of several ungulate species at the Kona Forest Unit (KFU) of BINWRC from November of 2012 to April of 2015; 3) present results of surveys of weed presence and cover at both refuge units; and 4) present comparative analyses of forest canopy cover at KFU from visual estimates and geospatial imagery. Removals of feral pigs at HFU appear to have significantly decreased pig abundance over the study period from 2010-2015. A grand total of 1,660 feral pigs were removed from managed areas of HFU from 2010 until September of 2015. Management units 2 and 4 contained the majority of pigs at HFU. Recent surveys recorded high densities of pigs in the unenclosed, unmanaged area of Lower Maulua, reaching 14.9 \pm (3.2) pigs/km² in March of 2015. The total amount of ungulate sign ranged from 22.2 to 54.3 percent of plots surveyed at KFU from November of 2012 to April of 2015. The ability to differentiate sign of ungulate species remains problematic at KFU; although there appears to have been a significant decline in feral cattle sign at KFU, this result is likely to be unreliable because cattle and pig sign were not differentiated consistently during later surveys. Spatial distributions in weed cover are distinctive; however, some weed species may not be reliably represented due to observers' inconsistencies in recording data and abilities to recognize less common weeds.

INTRODUCTION

The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral pigs (Sus scrofa) and monitored presence of pigs and weeds during surveys of all managed areas since 1988. Results of all available data regarding pig management activities through 2004 were compiled and analyzed by Hess et al. (2006). Further analyses of feral pig abundance at HFU from 2010–2013 were reported by Hess et al. (2013) and results of ungulate and weed surveys through 2014 were reported by Leopold et al. (2015). The distribution and relative abundance of feral pigs, weeds, and vegetation composition and structure was also monitored and reported for the Kona Forest Unit (KFU) of BINWRC, although absolute abundance estimates of ungulates were not determined for this area (Leopold et al. 2015). None of the previous reports included data or analyses on the number of feral pigs that have been removed since 2010. Analyses of continued monitoring of feral pig abundance, distribution, and management actions of recent feral pigs removals may provide an updated perspective and inform management decisions, as well as insight about potential relationships between feral pigs and weeds. The objective of this report is to analyze recent feral ungulate surveys at BINWRC to determine current pig abundance and distribution relative to management removals of feral pigs from 2010–2015 and to help managers identify priority

areas for ungulate management. In this report we: 1) provide results from recent ungulate surveys and the number of removals at HFU to determine the distribution, abundance, and efficacy of removals feral pigs, the dominant ungulate, from 2010 to 2015; 2) present results of surveys of the presence and distribution of several ungulate species at the KFU of BINWRC from November of 2012 to April of 2015; 3) present results of surveys of weed presence and cover at both refuge units; and 4) present comparative analyses of forest canopy cover at KFU from geospatial imagery and visual estimates reported in Leopold et al. (2015) to determine if estimates of canopy cover from geospatial imagery obviate the need for visual estimates made in the field during future vegetation surveys.

METHODS

Ungulate and Weed Surveys

Surveys were conducted for the presence, distribution, and age of non-native ungulate activity consisting of scat, digging, tracks, or browsed vegetation within 50-m² contiguous plots using field methods consistent with Stone et al. (1991). At HFU, 417 stations, each with approximately 20 sample plots, along 17 transects were surveyed during 2010–2015. At KFU, 147 stations, each with approximately 17 sample plots, along four transects were surveyed during 2012–2015. Ungulate sign was categorized as fresh (F), intermediate (I), or old (O) for evidence of digging, scat, tracks and trails, or browse as described by Stone et al. (1991). The presence and cover of weeds was also recorded at the same sample plots. Weed cover was surveyed for Florida blackberry (*Rubus argutus*), banana poka (*Passiflora tarminariana*), photinia (*Photinia davidiana*), English holly (*Ilex aquifolium*), and gorse (*Ulex europaeus*) at HFU and for Koster's curse (Clidemia hirta), strawberry guava (Psidium cattleianum), and fireweed (Senecio madagascariensis) at KFU. Amount of cover for each weed species was estimated in five categories: < 5%; 6–25%; 26–50%; 51–75%; and > 75%. Observers were trained in distance measurement by pacing and in identifying and ageing sign by more experienced observers. Surveys were conducted at HFU during November 2010 and 2011; October 2012; March, May, September, and December of 2013; March, June, September, and December of 2014; and March, June, and September of 2015 (Table 1). Twenty-three additional survey plots from Management Unit 8 (Pua Akala) were augmented in September of 2014. Surveys were conducted at the KFU during November 2012, March, June, and September of 2013, March 2014, and January and April of 2015 (Table 2).

Canopy Cover at KFU

We investigated alternative remote methods to examine vegetation structure at KFU because we were unable to gain access to conduct additional ground-based vegetation surveys during much of 2014 and 2015. To examine accuracy and bias for two methods of canopy cover estimation, we compared canopy cover estimates from 20 vegetation plots at KFU using aerial imagery from Pictometry (EagleView Technologies, Inc. 2015) to estimates of canopy cover made visually from the ground as reported in Leopold et al. (2015). We used the most recent images available for the KFU area, which were from 2009. UTM coordinates of vegetation plot corners were marked on the clearest image available. Cover was determined to be the proportion of plot area occupied by plant material, and estimated in increments of 5%. All images were saved as .jpg files.

Data Management

Date, observer, transect, station, and status of ungulate sign was entered for each plot surveyed on a Microsoft Excel spreadsheet (Appendix 1, 2). Fresh sign was given priority over intermediate sign, which were both given priority over old sign for each of the four types of sign: digging, scat, browse, or tracks/trails. The single highest priority sign in any of the categories was used to represent the status of ungulate sign for each plot for analyses. All data were error-checked for $\leq 1\%$ entry error. Data were summarized and joined to their spatial coordinates (Appendix 3, 4, 5) using RStudio (RStudio Team 2015) and plotted using ArcGIS 10.2.1 Geographic Information System (ESRI, Redlands, CA). Locations were assigned to appropriate management units by UTM coordinates.

Analyses

We calculated the proportion of plots with fresh or intermediate pig sign (p) in each management unit during each survey. Old sign was previously determined to be a poor predictor of pig abundance and not used in further analyses (Hess et al. 2006). Proportions were transformed to arcsine values for analyses to determine feral pig abundance (Sokal and Rohlf 1981). Estimated pig density (\hat{D}) in unenclosed areas and estimated population sizes within enclosed units with 95% predictive confidence intervals were determined based on the estimated best regression equation and its variance (S = 2.290) from Hess et al. (2006):

$$\widehat{D}$$
 (pigs/km²) = 20.665 * arcsine (\sqrt{p})

Estimated pig density was then multiplied by the area of each enclosed unit to determine the estimated number of pigs present. We compiled the total annual number of feral pigs reported to have been removed from management units at HFU between 2010 and 2015. We recombined the maximum estimated abundance within each management unit for each year as indicated in Table 3 and compared estimates to total annual removals and removals within management units.

Weed presence was summarized by percent of stations where each species was detected (Appendix 6, 7). The maximum percent of weed cover from each station was also displayed in six categories: 0% sign (white); < 5% (green); 5-25% (blue); 26-50% (yellow); 51-75% (orange); > 75% (red).

RESULTS

Ungulates

A grand total of 23,395 plots were resurveyed at HFU between September of 2014 and September 2015 (Table 1). The total amount of feral pig sign ranged from 6.7 to 20.2 percent of plots surveyed at HFU since November of 2010 (Table 2). Estimated total feral pig abundance (\pm 95% confidence intervals) at HFU ranged from 489.1 (\pm 105.6) in November 2010 to 237.2 (± 51.2) in September 2015 (Table 3). Estimated total feral pig abundance during sequential surveys at HFU appears to have steadily decreased over this time period (Figure 1). Confidence intervals of estimates in June and September of 2015 were exclusively less than those of November 2010 and 2012, and March 2013 indicating a significant decrease in feral pig abundance over the study period despite the addition of the 2.3 km^2 area of Management Unit 8 (Pua Akala) in September of 2014 (Table 3). Management Unit 2 (Shipman) consistently contained the greatest number of pigs during the entire study period, ranging from 121.4 (± 26.2) in May of 2013 to 247.8 (± 53.5) in December of 2013 (Figure 2). Unit 4 (Upper Maulua) contained the second highest number of pigs, ranging from a high of $165.6 (\pm 35.7)$ in September of 2014 to a low of $61.9 (\pm 13.4)$ in September of 2015. Although there had been a significant decline in pig density in the unenclosed area of Lower Maulua from $15.1 (\pm 3.3)$ pigs/km² in November of 2010 to 6.6 (\pm 1.4) pigs/km² in March of 2014, recent surveys recorded high densities of pigs in this area, reaching $14.9 \pm (3.2)$ pigs/km² in March of 2015 (Figure 3).

Table 1. Summary of transects, and number of stations and plots surveyed at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, from September of 2014 until September of 2015. The number of sampled transects and stations varied between surveys, and some stations were not sampled because they extended into unmanaged areas. Twenty-four additional stations were augmented to transects 1, 1A, 2, and 3 at Pua Akala (Unit 8) in September of 2014.

	Number of	Number of Stations Surveyed					Number of Plots Surveyed					
Transect	Stations	Sep 2014	Dec 2014	Mar 2015	Jun 2015	Sep 2015	Sep 2014	Dec 2014	Mar 2015	Jun 2015	Sep 2015	
1	24	6	23	5	18	20	118	451	100	320	382	
1A	25	5	25	6	18	15	92	478	108	350	428	
1B	17	0	8	0	8	0	0	158	0	162	0	
2	24	13	15	12	10	21	250	294	228	189	458	
3	24	14	16	14	10	24	267	304	267	199	474	
4	20	7	11	8	11	17	131	215	153	198	333	
5	26	8	14	9	15	25	140	281	154	305	490	
6	27	7	16	8	16	23	136	260	151	328	440	
7	27	21	15	25	0	22	399	261	467	0	436	
7A	26	0	9	25	0	24	0	166	501	0	499	
8	27	10	26	9	16	25	183	499	171	330	511	

8A	26	26	0	25	0	25	519	0	474	0	504
9	27	24	0	24	0	22	503	0	453	0	442
10	28	16	19	27	0	27	309	380	541	0	523
11	28	12	20	0	0	26	240	399	0	0	519
13	31	10	20	11	19	29	202	381	200	363	562
14	31	9	18	10	19	29	174	363	196	358	575
Total	422	188	255	218	160	374	3663	4890	4164	3102	7576

	Management Unit												
Survey	Middle Honohina	Shipman	Lower Honohina	Upper Maulua	Upper Honohina	Middle Hakalau	Middle Papaikou	Pua Akala	Lower Maulua	Total			
	2.21 km ²	22.13 km ²	7.99 km ²	8.39 km ²	4.49 km ²	5.23 km ²	7.22 km ²	2.3 km ²	Unenclosed	59.96 km ²			
Nov 2010	52.2	17.4	29.7	26.2	38.2	2.5	6.7		44.7	20.2			
Nov 2011	2.5			24.9	10.7					16.6			
Nov 2012	2.2	26.1	27.8	25.5	22.5	3.9	1.0			19.2			
Mar 2013	18.0	23.2	38.4	6.3	9.6	0.2	0.7			16.5			
May 2013	4.4	6.9	27.0	7.7	5.5	0.6	0.0			6.7			
Sep 2013	36.5	13.1	20.9	9.1	14.8	2.0	3.2	13.9		12.5			
Dec 2013	30.6	26.6	21.0	7.5	1.5	0.0	0.0			10.3			
Mar 2014	12.0	24.4	10.2	7.5	14.0	0.0	0.0		9.9	16.9			
Jun 2014		27.5		18.4	0.0	0.6	0.4			17.0			
Sep 2014	1.2	11.3	2.6	66.7	0.0	0.4	0.0	1.5	36.0	8.0			

Table 2. Percent of plots with fresh or intermediate feral pig sign within eight enclosed management units and an unenclosed area of the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

Sep 2015	2.4	8.0	0.0	12.2	0.9	2.4	0.2	1.0	32.4	6.8
Jun 2015		13.9		18.6			0.3			13.6
Mar 2015	0.7	13.8	1.2	21.4	0.0	2.2	5.9	0.3	43.5	10.1
Dec 2014	0.8	16.7	0.0	39.3	1.7	0.0	0.7	5.2		14.6

Table 3. Estimated abundance of feral pigs (± 95% confidence intervals) within eight enclosed management units and an unenclosed area of the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015 based on index surveys calibrated with a model developed by Hess et al. (2006). Maximum values within years when multiple surveys were conducted are highlighted in bold text and used to determine maximum annual recombined abundance estimates.

				Fer	al Pig Abundanc	e				
Survey	Middle Honohina	Shipman	Lower Honohina	Upper Maulua	Upper Honohina	Middle Hakalau	Middle Papaikou	Pua Akala	Lower Maulua	Total
	2.21 km ²	22.13 km ²	7.99 km ²	8.39 km ²	4.49 km ²	5.23 km ²	7.22 km ²	2.3 km ²	Unenclosed	59.96 km ²
Nov 2010	33.4 ± 7.2	178.0 ± 38.4	86.3 ± 18.6	84.3 ± 18.2	56.1 ± 12.1	15.6 ± 3.4	35.4 ± 7.6		15.1 ± 3.3 /km ²	489.1 ± 105.6
Nov 2011	6.5 ± 1.4			82.1 ± 17.1	28.1 ± 6.1					116.7 ± 24.6
Nov 2012	6.2 ± 1.3	231.6 ± 50.0	84.8 ± 18.3	83.1 ± 17.9	41.0 ± 8.8	6.7 ± 1.4	7.5 ± 1.6			461.0 ± 99.5
Mar 2013	18.1 ± 3.9	208.2 ± 45.0	99.9 ± 21.6	39.7 ± 8.6	26.6 ± 5.7	4.0 ± 0.9	11.1 ± 2.4			407.6 ± 88.0
May 2013	9.7 ± 2.1	121.4 ± 26.2	90.2 ± 19.5	48.9 ± 10.6	21.9 ± 4.7	8.4 ± 1.8	0 ± 0			300.4 ± 64.9
Sep 2013	29.6 ± 6.4	169.7 ± 36.6	78.4 ± 16.9	53.1 ± 11.5	36.7 ± 7.9	15.5 ± 3.3	26.7 ± 5.8		$7.9 \pm 1.7/km^2$	409.6 ± 88.4
Dec 2013	8.0 ± 1.7	247.8 ± 53.5	78.4 ± 16.9	48.0 ± 10.4	11.5 ± 2.5	0 ± 0	0 ± 0			393.7 ± 85.0
Mar 2014	16.1 ± 3.5	236.5 ± 51.1	53.7 ± 11.6	48.2 ± 10.4	35.6 ± 7.7	0 ± 0	0 ± 0		$6.6 \pm 1.4/\text{km}^2$	390.2 ± 84.2
Jun 2014		252.2 ± 54.4		76.8 ± 16.6	0 ± 0	8.2 ± 1.8	9.4 ± 2.0			346.7 ± 74.8

9

Sep 2014	4.9 ± 1.1	157.0 ± 33.9	27.0 ± 5.8	165.6 ± 35.7	0 ± 0	6.6 ± 1.4	0 ± 0	5.8 ± 1.3	$13.3 \pm 2.9/km^2$	366.9 ± 79.2
Dec 2014	4.1 ± 0.9	192.3 ± 41.5	0 ± 0	117.4 ± 25.3	12.1 ± 2.6	0 ± 0	12.1 ± 2.6	10.9 ± 2.4		348.0 ± 75.3
Mar 2015	3.9 ± 0.8	174.3 ± 37.6	18.4 ± 4.0	83.4 ± 18.0	0 ± 0	16.0 ± 3.4	36.5 ± 7.9	2.4 ± 0.5	14.9 ± 3.2/km ²	335.0 ± 72.3
Jun 2015		174.8 ± 37.7		77.3 ± 16.7			8.4 ± 1.8			260.5 ± 56.2
Sep 2015	7.0 ± 1.5	131.3 ± 28.3	0 ± 0	61.9 ± 13.4	8.7 ± 1.9	16.7 ± 3.6	6.9 ± 1.5	4.7 ± 1.0	12.5 ± 2.7/km ²	237.2 ± 51.2

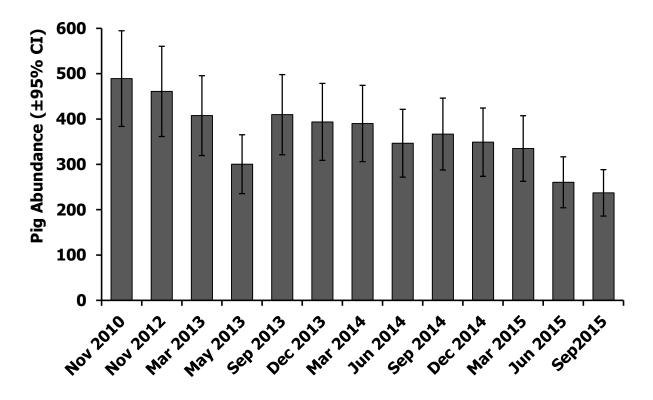


Figure 1. Estimated total abundance of feral pigs (± 95% confidence intervals) at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, November 2010– September 2015 based on sequential index surveys calibrated with a model developed by Hess et al. (2006). Total pig abundance was underestimated in June of 2014 because two management units were not surveyed. The May 2013 estimate is also anomalously low.

A grand total of 1,660 feral pigs were removed from managed areas of HFU from 2010 until September of 2015. The total number of feral pigs removed annually ranged from 32 in 2010 to 407 in 2013 (Table 4). The total number of feral pigs removed annually approached the estimated highest recombined total abundance in years 2013–2015 (Figure 4). The total number of annual removals and population estimates are highly correlated in years 2012–2015 ($R^2 = 0.71$). Total removals in year 2013 were greater than 72% of the estimated highest total abundance for the same year which may reflect biases such as underestimation during surveys, possible ingress into one or more management units, or a large number of pigs caught in snares over a period of several years. Annual removals from management units 1, 3, 4, and 8 in some years exceed the estimated highest total abundance, indicating the source of potential biases in particular management units (Figure 4).

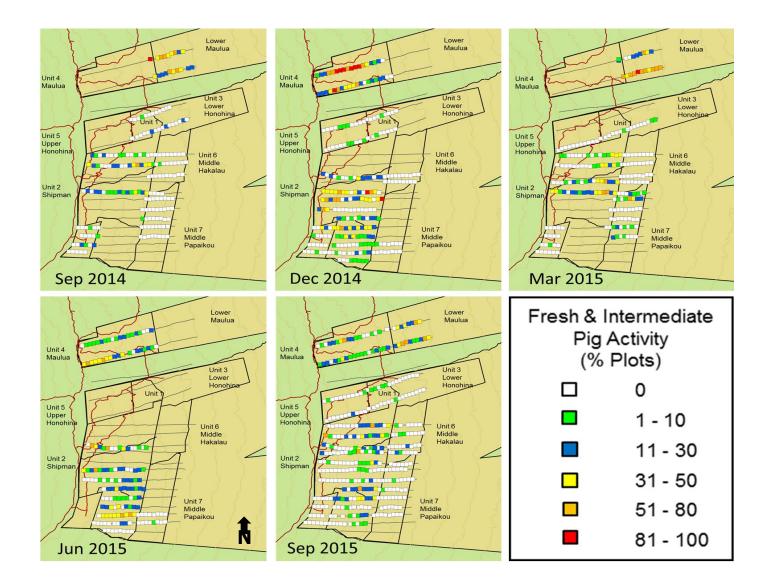


Figure 2. Feral pig sign from eight enclosed management units and one unenclosed area at Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2014–2015. Values represent the maximum recorded from each sample station.

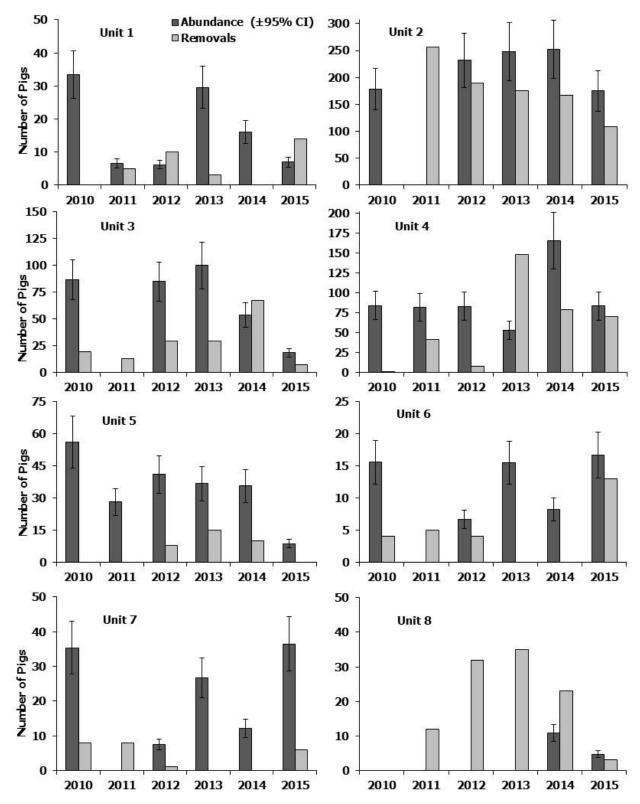


Figure 3. Estimated total maximum abundance (\pm 95% confidence intervals) and total number of feral pigs removed by year from eight enclosed management units at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

	Area Removals							
Management unit		km²	2010	2011	2012	2013	2014	2015
Middle Honohina	Unit 1	2.21	0	5	10	3	0	14
Shipman	Unit 2	22.13	0	257	189	176	167	109
Lower Honohina	Unit 3	7.99	19	13	29	29	67	7
Upper Maulua	Unit 4	8.39	1	41	8	148	79	70
Upper Honohina	Unit 5	4.49	0	0	8	15	10	0
Middle Hakalau	Unit 6	5.23	4	5	4	0	0	13
Middle Papaikou	Unit 7	7.22	8	8	1	0	0	6
Pua Akala	Unit 8	2.30	0	12	32	35	23	3
Unspecified areas			0	22	3	1	1	3
Total		59.96	32	363*	284*	407*	347*	227*

Table 4. Number of feral pigs removed from eight enclosed management units at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015. Totals with asterisks include small numbers of pigs which were removed from unspecified areas.

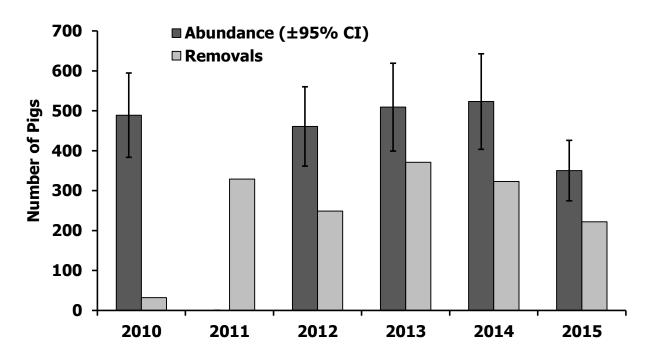


Figure 4. Estimated maximum recombined total abundance (\pm 95% confidence intervals) of feral pigs and total number of feral pigs removed by year from the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

A grand total of 4,163 plots were resurveyed at KFU during January and April of 2015 (Table 5). The total amount of ungulate sign ranged from 22.2 to 54.3 percent of plots surveyed at KFU since November of 2012 (Table 6; Figures 5-7). There were no trends in feral pig sign or overall ungulate sign over the course of this study at KFU (p > 0.31); however, although there appears to have been a significant decline in feral cattle sign at KFU (p < 0.03, R² = 0.65), this result is likely to be unreliable because cattle and pig sign were not differentiated consistently during later surveys.

				Total		
	-	1	2	3	4	
	Number of Stations	37	37	35	37	146
	Survey Date					
	Nov 2012	37	37	36	37	147
	Mar 2013	37	36	35	37	145
	Jun 2013	37	36	35	37	145
Number of Stations Surveyed	Sep 2013	37	36	36	37	146
,	Mar 2014	37	37	36	35	145
	Jan 2015	37	37	35	36	145
	Apr 2015	37	37	34	37	145
	Nov 2012	646	629	565	623	2463
	Mar 2013	613	619	579	692	2503
	Jun 2013	677	585	533	619	2414
Number of Plots Surveyed	Sep 2013	608	581	474	552	2215
	Mar 2014	555	728	487	570	2340
	Jan 2015	509	555	520	525	2109
	Apr 2015	550	557	426	521	2054

Table 5. Summary of transects, and number of stations and plots surveyed at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, during 2012–2015.

		Management Unit								
		Upper 7.	79 km²	Middle 7.	.53 km²	Total 15.32 km ²				
Type of Sign	Survey Date	Number of Plots	Percent of Plots	Number of Plots	Percent of Plots	Number of Plots	Percent of Plots			
	Nov 2012	203/1227	16.5	509/1236	41.2	712/2463	28.9			
	Mar 2013	118/1178	10.0	308/1325	23.2	426/2503	17.0			
	Jun 2013	181/1151	15.7	418/1263	33.1	599/2414	24.8			
Feral Cattle	Sep 2013	223/1131	19.7	291/1070	27.2	514/2201	23.4			
	Mar 2014	99/1122	8.8	339/1218	27.8	438/2340	18.7			
	Jan 2015	49/959	5.1	51/1150	4.4	100/2109	4.7			
	Apr 2015	126/1055	11.9	161/1031	15.6	287/2086	13.8			
	Nov 2012	21/1227	1.7	185/1236	15.0	206/2463	8.4			
	Mar 2013	44/1178	3.7	76/1325	5.7	120/2503	4.8			
	Jun 2013	11/1151	1.0	42/1263	3.3	53/2414	2.2			
Feral Pig	Sep 2013	4/1131	0.4	86/1070	8.0	90/2201	4.1			
	Mar 2014	7/1122	0.6	176/1218	14.5	183/2340	7.8			
	Jan 2015	19/959	2.0	65/1150	5.7	84/2109	4.0			
	Apr 2015	46/1055	4.4	165/1031	16.0	211/2086	10.1			

Table 6. Number of plots with fresh or intermediate feral ungulate sign/number of plots surveyed and percent of plots with sign within two enclosed management units of the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2012–2015.

	Nov 2012	251/1227	20.5	808/1236	65.4	1059/2463	43.0
	Mar 2013	159/1178	13.5	459/1325	34.6	618/2503	24.7
All	Jun 2013	215/1182	18.2	452/1232	36.7	667/2414	27.6
Ungulate	Sep 2013	456/1157	39.4	739/1044	70.8	1195/2201	54.3
	Mar 2014	126/1153	10.9	462/1187	38.9	588/2340	25.1
	Jan 2015	203/959	21.7	373/1150	32.4	576/2109	27.3
	Apr 2015	169/1055	16.0	295/1031	28.6	464/2086	22.2

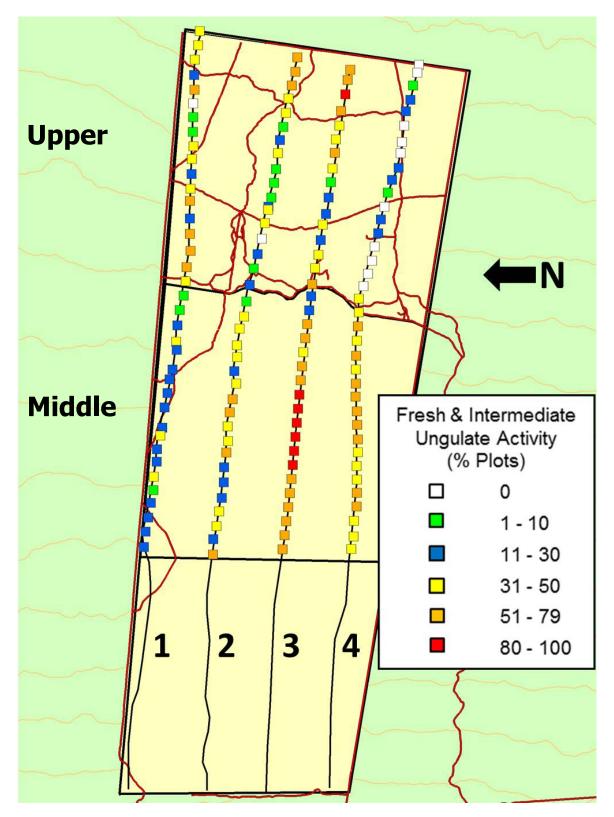


Figure 5. Maximum values of feral ungulate sign from two enclosed management units at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during January and April of 2015.

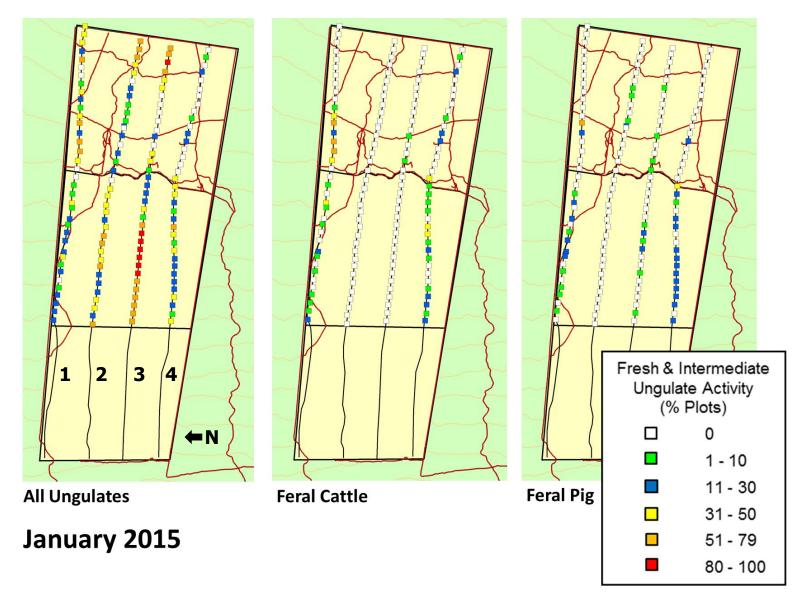


Figure 6. Feral ungulate sign from two enclosed management units at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during January of 2015. Ungulate sign was not adequately differentiated by species during some surveys.

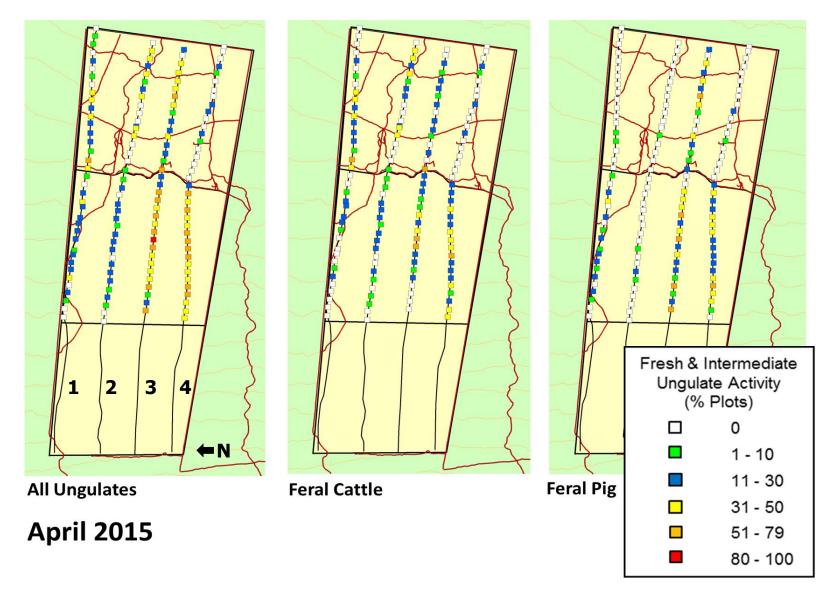


Figure 7. Feral ungulate sign from two enclosed management units at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during April of 2015.

Weeds

Florida blackberry and banana poka were the two most widely distributed weeds at HFU. Florida blackberry was consistently detected throughout all of the management units at HFU (Figures 8 & 9) at more than 34% of stations during surveys from 2010–2015 (Table 7). Banana poka was detected with moderate—high density coverage throughout unit 4, and was also found consistently in units 1 and 5 (Figures 8 & 9). It was detected at 10.3–37.3% of all stations during surveys from 2010–2015 (Table 8). Three other weed species were less widely distributed. *Photinia davidiana* was found almost exclusively in units 1 and 5 since 2011 (Table 9; Figures 8 & 9). English holly detections were limited to 4 transects in units 2 and 8, with low density coverage at all detections. Gorse was detected at higher elevations throughout units 2, 5, and 8 in low densities.

Koster's curse and strawberry guava were consistently detected in the lower portions of the middle unit and fireweed was detected primarily in the upper unit at KFU (Figures 10 & 11; Table 10). Florida blackberry was recorded three times during the 2012 survey, but could have been confused with *Rubus parviflorus*, which was recorded nine times in the upper unit and two times in the middle unit during 2015 surveys. Christmasberry (*Schinus terebinthifolius*) and palm grass (*Setaria palmifolia*) were not observed in the enclosed management units at KFU although they were widely distributed at lower elevations.

Canopy Cover at KFU

Canopy cover estimates made visually from the ground were an average of 11.5% less than those from Pictometry® imagery (Table 11); however, generally corresponded with estimates using aerial imagery from Pictometry ($R^2 = 0.50$; Figure 12). Differences between Pictometry and visual estimates ranged between -40.0% and 48.24%.

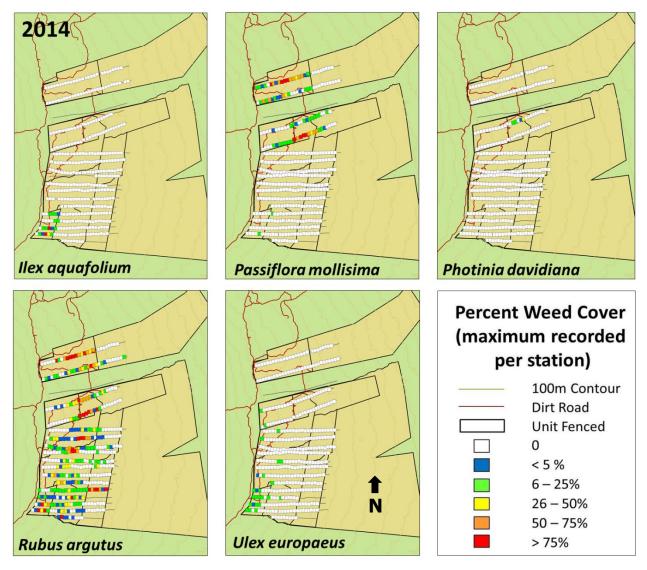


Figure 8. Percent cover of five weed species (*Ilex aquifolium, Passiflora tarminariana, Photinia davidiana, Rubus argutus,* and *Ulex europaeus*) in eight enclosed management units at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during 2014. Values presented are the maximum recorded from each sample station during 2014.

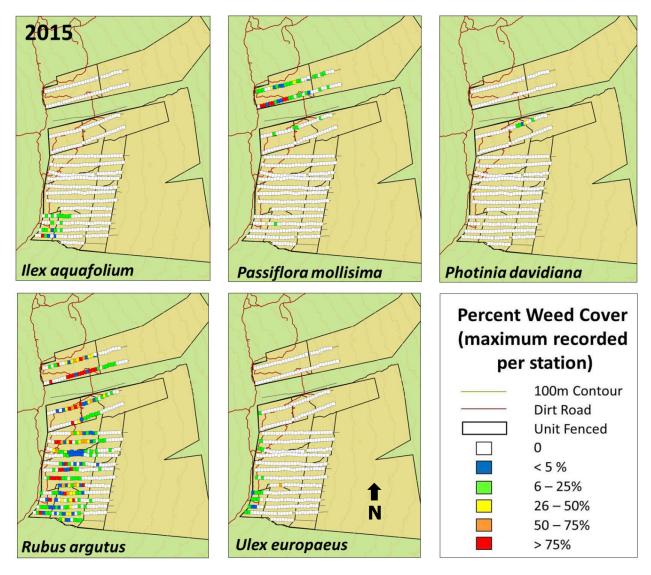


Figure 9. Percent cover of five weed species (*Ilex aquifolium, Passiflora tarminariana, Photinia davidiana, Rubus argutus,* and *Ulex europaeus*) in eight enclosed management units at the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during 2015. Values presented are the maximum recorded from each sample station during 2015.

				,	Weed Abundance					
Survey	Middle Honohina	Shipman	Lower Honohina	Upper Maulua	Upper Honohina	Middle Hakalau	Middle Papaikou	Pua Akala	Lower Maulua	Total
	2.21 km ²	22.13 km ²	7.99 km ²	8.39 km ²	4.49 km ²	5.23 km ²	7.22 km ²	2.3 km ²	Unenclosed	59.96 km ²
2010	9/13	67/162	2/14	6/30	5/23	12/30	33/55	0/0	12/21	146/348
2010	69.2	41.4	14.3	20.0	21.7	40.0	60.0		57.1	42.0
2011	13/13	0/0	0/0	24/39	6/23	0/0	0/0	0/0	0/0	43/75
2011	100.0			61.5	26.1					57.3
2012	3/11	82/179	0/8	15/39	15/23	4/34	3/65	0/0	0/0	122/359
2012	27.3	45.8	0.0	38.5	65.2	11.8	4.6			34.0
2013	12/13	120/178	4/19	26/40	12/23	10/37	5/60	0/0	5/20	194/390

Table 7. Number of stations with *Rubus argutus* detections/number of stations surveyed and percent of stations with *R. argutus* detections within eight enclosed management units and an unenclosed area of the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

	92.3	67.4	21.1	65.0	52.2	27.0	8.3		25.0	49.7
2014	13/13	117/180	4/17	30/40	10/23	9/37	21/61	20/22	3/18	224/411
2014	100	65.0	23.5	75.0	43.5	24.3	34.4	91.0	16.7	54.5
2015	12/13	115/175	5/17	27/40	10/23	6/37	4/62	13/20	5/19	197/406
2015	92.3	64.6	29.4	67.5	43.5	16.2	6.8	0.65	26.3	48.5

Table 8. Number of stations with *Passiflora tarminariana* detections/number of stations surveyed and percent of stations with *Passiflora tarminariana* detections within eight enclosed management units and an unenclosed area of the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

				١	Weed Abundance					
Survey	Middle Honohina	Shipman	Lower Honohina	Upper Maulua	Upper Honohina	Middle Hakalau	Middle Papaikou	Pua Akala	Lower Maulua	Total
	2.21 km ²	22.13 km ²	7.99 km ²	8.39 km ²	4.49 km ²	5.23 km ²	7.22 km ²	2.3 km ²	Unenclosed	59.96 km ²
2010	0/13	28/162	0/14	0/30	0/23	0/30	11/55	0/0	0/21	39/348
2010		17.3	0.0	0.0	0.0	0.0	20.0		0.0	11.2

2011	2/13	0/0	0/0	25/39	1/23	0/0	0/0	0/0	0/0	28/75
2011	15.4			64.1	4.3					37.3
2012	0/11	1/179	0/8	20/39	3/23	0/34	0/65	0/0	0/0	24/359
2012	0.0	0.6	0.0	51.3	8.7	0.0	0.0			6.7
2012	5/13	3/178	2/19	26/40	5/23	0/37	0/60	0/0	0/20	43/390
2013	38.5	1.7	10.5	65.0	21.7	0.0	0.0		0.0	11.0
2014	11/13	1/180	10/17	34/40	10/23	0/37	0/61	1/22	0/18	67/411
2014	84.6	0.6	58.8	0.85	43.5	0.0	0.0	4.5	0.0	16.3
2015	2/13	1/175	1/17	31/40	1/23	0/37	0/62	0/20	6/19	42/406
2015	15.4	0.6	5.9	77.5	4.3	0.0	0.0	0.0	31.6	10.3

Table 9. Number of stations with detections of three weed species (*Ilex aquifolium, Photinia davidiana, Ulex europaeus*) within eight enclosed management units and an unenclosed area of the Hakalau Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2010–2015.

	Weed Abundance										
Species/Year	Middle Honohina	Shipman	Lower Honohina	Upper Maulua	Upper Honohina	Middle Hakalau	Middle Papaikou	Pua Akala	Lower Maulua	Total	
	2.21 km ²	22.13 km ²	7.99 km ²	8.39 km ²	4.49 km ²	5.23 km ²	7.22 km ²	2.3 km ²	Unenclosed	59.96 km ²	
Ilex aquifolium											
2010		1				1				2	
2011										0	
2012		6								6	
2013		7								7	
2014		7								7	
2015		8						11		19	
Photinia davidiana											
2010		4	1				2			7	
2011	1									1	
2012		1			4					5	
2013	4		1	4						9	
2014	3		1							4	

	2015	3		2	 	 		 5
Ulex of	europaeus							
	2010		1		 	 		 1
	2011				 	 		 0
	2012		3		 	 		 3
	2013		8		 	 		 8
	2014		9		 1	 	14	 25
	2015		6		 1	 	12	 19

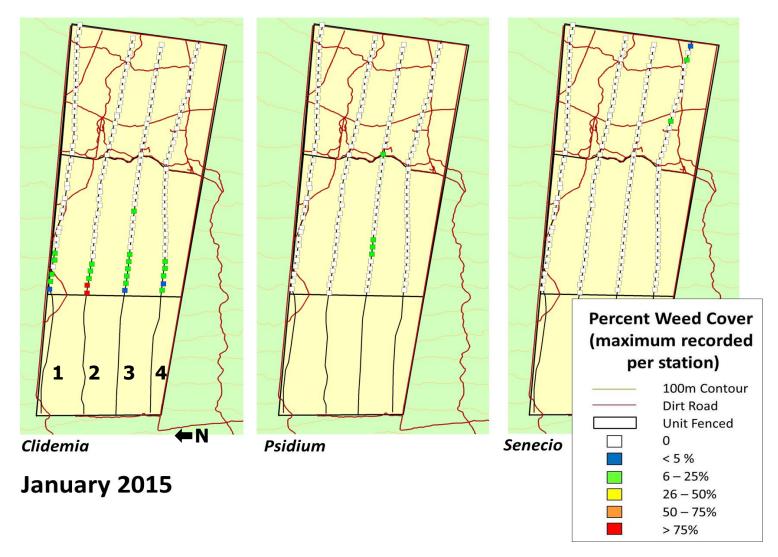


Figure 10. Percent cover of three weed species (*Clidemia hirta, Psidium cattleianum,* and *Senecio madagascariensis*) in two enclosed management units at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during January of 2015. Values presented are the maximum recorded from each sample station.

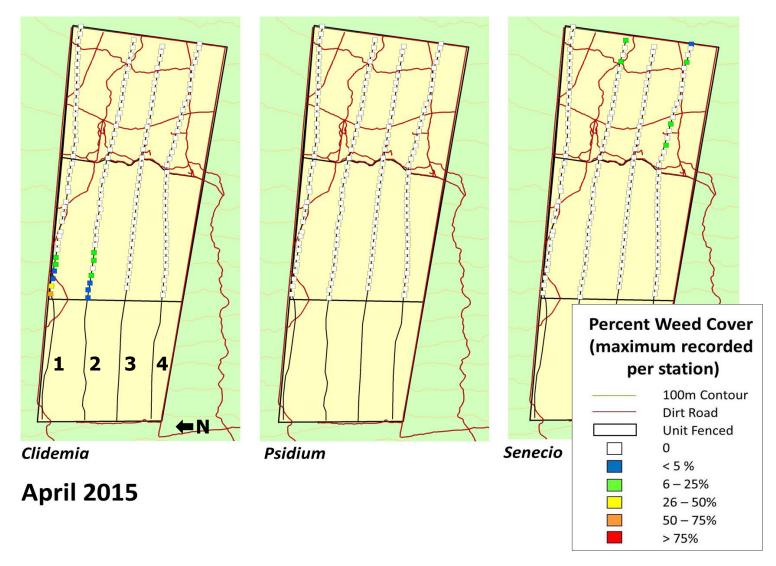


Figure 11. Percent cover of three weed species (*Clidemia hirta, Psidium cattleianum*, and *Senecio madagascariensis*) in two enclosed management units at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island during April of 2015. Values presented are the maximum recorded from each sample station.

		Management Unit	
Species/Year	Upper 7.79 km ²	Middle 7.53 km ²	Total 15.32 km ²
Clidemia hirta			
2012			0
2013		20	20
2014		20	20
2015		20	20
Psidium cattleianum			
2012		20	20
2013		16	16
2014		1	1
2015	1	3	4
Senecio madagascariensis			
2012			0
2013	16		16
2014	11		11
2015	6		6

Table 10. Number of stations with detections of three weed species (*Clidemia hirta*, *Psidium cattleianum*, and *Senecio madagascariensis*) in two enclosed management units of the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island, 2012–2015.

Table 11. Forest canopy cover estimates of 20 vegetation plots across four vegetation types at the KFU of the BINWRC, Hawai'i Island. Vegetation categories included: koa-'ōhi'a forest (KOA), mesic 'ōhi'a forest (MOHIA), subalpine woodland (SW), and wet forest (WF). Canopy cover was estimated visually at transects during 2013 and by using Pictometry aerial imagery from 2009. Values for transect estimates are averages across all transect within each plot.

Plot ID	Estimated	Canopy Cover	Differer	nce
	Pictometry	Visual	Pictometry-Visual	Percent
KOA-15	85	64	21	24.7
KOA-17	85	89	-4	-4.7
KOA-25	55	42	13	23.6
KOA-41	80	67	13	16.3
KOA-7	50	35	15	30.0
MOHIA-29	70	66	4	5.7
MOHIA-35	75	98	-23	-30.7
MOHIA-39	80	87	-7	-8.8
MOHIA-47	85	44	41	48.2
MOHIA-6	65	57	8	12.3
SW-19	40	34	6	15.0
SW-27	45	49	-4	-8.9
SW-3	30	22	8	26.7
SW-4	45	27	18	40.0
SW-49	40	56	-16	-40.0
WF-18	55	60	-5	-9.1
WF-19	70	53	17	24.3
WF-39	85	64	21	24.7
WF-43	80	63	17	21.3
WF-45	65	61	4	6.2
KOA-15	85	64	21	24.7
Mean	65.2	57.2	168	11.5

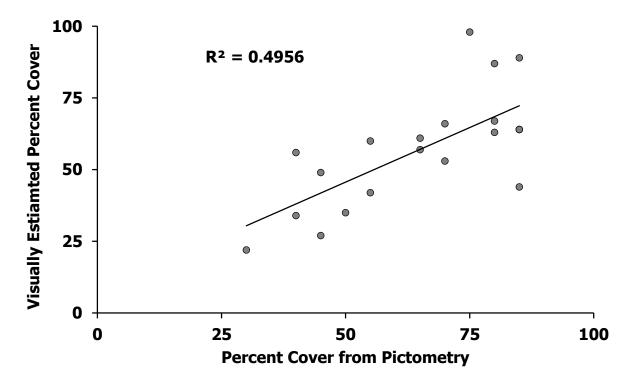


Figure 12. Relationship between two methods for estimating forest canopy cover at 20 vegetation plots in four vegetation types at the Kona Forest Unit of the Big Island National Wildlife Refuge Complex, Hawai'i Island. Canopy cover was estimated visually at vegetation plots during 2013 (Leopold et al. 2015) and by using Pictometry aerial imagery from 2009. Values for transect estimates were averaged across all transect within each plot.

DISCUSSION

Removals of feral pigs at the Hakalau Unit of the Big Island National Wildlife Refuge Complex appear to have significantly decreased pig abundance over the study period from 2010–2015. Removals approached a particularly high proportion of pigs remaining in 2013–2015. Estimates from the last two surveys conducted in 2015 were exclusively less than estimates from surveys conducted in 2010 through early 2013. The greatest numbers of remaining feral pigs were in Management Unit 2 (Shipman) which was subdivided into three smaller management units in 2013 to further facilitate population reduction. Density changes in the unenclosed and unmanaged Lower Maulua unit reflect natural fluctuations in pig abundance and measurement error.

Because feral pig removals represented such a large proportion of population estimates or exceeded population estimates in several management units during some years, we suspect potential biases in survey methodology or ingress may have affected results, making interpretation difficult in smaller management units. Additionally, survey periods and snare removal efforts were concentrated among different time scales, i.e. some ungulate removals in a survey period could have actually occurred in previous months. Nonetheless, the overall total number of annual removals and population estimates are highly correlated in years 2012–2015, indicating that removals are likely to be affecting the abundance of feral pigs remaining at HFU.

Feral ungulates remained abundant at Kona Forest Unit, with ungulate sign recorded at nearly 92% of stations during surveys in 2014–2015. Although these data suggest some decrease in cattle abundance, this result may be due to unreliable differentiation of cattle and pig sign, particularly in later surveys. The ability to differentiate sign of ungulate species continued to remain problematic at KFU; species that browsed vegetation, rubbed on trees, or created wallows could not be reliably distinguished. Tracks were often indistinct. The most reliable species identifications came from fresh or intermediate scat. Measures of ungulate abundance at KFU should be considered relative for purposes of spatial and temporal comparisons only. Absolute measures of abundance will not be available until a calibrated model of reconstructed feral cattle and pig abundance has been validated.

Changes in weed cover at HFU and KFU do not yet demonstrate any strong temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers' abilities to recognize less common weeds, particularly *Photinia* at HFU. The approach we used to minimize differences between observers was to present the maximum cover value at each sample station over several surveys. The identification of some weed species appears to be problematic for observers, and some inconsistencies between surveys have not yet been reconciled. More thorough training for plant species identification may be needed to ensure the reliability of observations. Several species of invasive plants currently have a limited distribution within the portions of KFU enclosed by fence: *Clidemia hirta, Psidium cattleianum,* and *Senecio madagascariensis.* Nonetheless, the distribution and cover of fireweed (*Senecio*) at KFU appears to have increased over the study period, but may have been due to seasonality (i.e., flowering) which made plants more obvious to observers.

Because the accuracy of canopy cover measurements reported in Leopold et al. (2015) seemed suspect, we wanted to determine if they corresponded to another independent method. Canopy cover estimates made visually from the ground generally agreed with estimates using aerial imagery from Pictometry; however, there were discrepancies between these two methods: 1) imagery allowed for more accurate cover estimates; 2) one observer evaluated all estimates from imagery, eliminating observer variability (as opposed to numerous observers estimating canopy cover along transects); 3) it was sometimes unclear as to whether open areas in Pictometry imagery contained understory cover \geq 3 m in height included in transect estimates; 3) Pictometry imagery was from 2009, but canopy cover may have changed over the intervening five years due to tree falls caused by tree senescence, storms, or other factors. Although visual estimates of cover may contain observer variability and unknown bias, the method may be used for rapid assessment whereas Pictometry results can only be updated when new imagery becomes available. Nonetheless, Pictometry offers a particularly convenient means to monitor long-term changes in forest canopy cover, requiring no field work.

There are several ways that improved data collection during surveys can make analyses and findings more straightforward and reliable. More rigorous training is needed for survey participants in weed identification and scat differentiation, particularly at KFU, where scat and sometimes tracks are the only reliable way to identify sign of different ungulate species. Survey participants need to be dutiful in recording their observations. Weed data in particular appears to have been recorded inconsistently. Some observers did not have opportunities to see uncommon weed species such as *Photinia* prior to surveys. Observers were often trained only at HFU where they were unable to gain experience differentiating sign of feral cattle from feral pigs. Participants also often failed to indicate plots which were surveyed but contained no sign. These data had to be discarded. Data collection should also be streamlined to expedite analyses. Data from terminal parts of transects that cross fenced management units are difficult to assign to appropriate management units. These transect "tails" represent only a relatively small amount of data that need not be recorded. Data from uninterrupted segments of transects are sufficient for analyses.

ACKNOWLEDGMENTS

This work was funded by the U.S. Fish and Wildlife Service-U.S. Geological Survey Science Support Partnership Program and Invasive Species and Terrestrial and Endangered Wildlife Resources Programs of U.S. Geological Survey in final fulfillment of obligations to the project "Vegetation change monitoring and adaptive management of non-native ungulates at the Big Island National Wildlife Refuge Complex". We thank the BINWRC staff and staff from Three Mountain Alliance, Mauna Kea Watershed Alliance, Mauna Kea Forest Restoration Program, and many other volunteers who gathered data, and two reviewers for helpful comments. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

LITERATURE CITED

- Hess, S. C., J. J. Jeffrey, D. L. Ball, and L. Babich. 2006. Efficacy of feral pig removals at Hakalau Forest National Wildlife Refuge. Hawai'i Cooperative Studies Unit Technical Report HCSU-004. University of Hawai'i at Hilo.
- Hess, S. C., C. R. Leopold, and S. J. Kendall. 2013. Abundance and distribution of feral pigs at Hakalau Forest National Wildlife Refuge, 2010–2013. Hawai'i Cooperative Studies Unit Technical Report HCSU-045.
- Leopold, C. R., S. C. Hess, and S. J. Kendall. 2015. Vegetation and non-native ungulate monitoring at the Big Island National Wildlife Refuge Complex 2010–2014. Hawai'i Cooperative Studies Unit Technical Report HCSU-062.
- RStudio Team. 2015. RStudio: integrated development for R. RStudio, Inc., Boston, MA URL <u>http://www.rstudio.com/</u>.

- Sokal, R. R., and F. J. Rohlf. 1981. Biometry, 2nd edition. W. H. Freeman and company, New York, NY, USA.
- Stone, C. P., P. K. Higashino, L. W. Cuddihy, and S. J. Anderson. 1991. Preliminary survey of feral ungulate and alien and rare plant occurrence on Hakalau Forest National Wildlife Refuge. Technical Report 81. University of Hawaii Cooperative National Park Resources Studies Unit, Honolulu. 109 pp.

APPENDIX I. DATA MANAGEMENT AND SUMMARIZATION INSTRUCTIONS

These instructions will guide users with some experience of using programs R or RStudio (preferred) for summarizing ungulate and weed data.

Appendix II: Ungulate Survey Data Sheet and Data Entry File Example

Appendix III: Hakalau Forest Unit Ungulate Survey Station UTM Coordinates

Appendix IV: Kona Forest Unit Ungulate Survey Station UTM Coordinates

Appendix V: R Script for Summarizing Ungulate Data

Appendix VI: Hakalau Forest Unit Weed Summary R Script

Appendix VII: Kona Forest Unit Weed Summary R Script

Appendix VIII. Minitab Regression File for Population Estimation

Data entry

Each station plot should receive its own row, i.e. 20 rows per station. Ensure that column headers maintain existing letter case, as R scripts are case sensitive. All records under column 'Ungulate_Sign' must be entered in capital letters. It is the column used for ungulate sign summaries and must include 'F, I, O, or X'; no blank entries.

Please see the KFU tab for entry examples of sign by multiple ungulate species. There is no script to separate cattle, pig, and donkey sign. Separating sign by species must be done manually before opening data in RStudio.

<u>R scripts</u>

Scripts are annotated for user ease. All scripts may be amended, although changes to associated files will also be necessary. Note that R language is case sensitive. File names cannot begin with numerical characters.

All files for summaries must be in one folder, i.e. quarterly survey data and UTM data. Files must be saved as .txt for input, and can be output as preferred file type in R script (.csv is current file type).

The working directory must be set using the filepath name to the proper folder.

At beginning of the script: `ungulate_raw<-read.delim(``KFU_pig_Jan2015_for analysis.txt''', insert file name of that to be summarized.

At the end of the script: 'write.csv(weed_sum, "Hakalau_weed_summary_quarterly2015-test.csv")' insert preferred file output name.

All UTM data should attach to transect and station summary data, although visually assessing data for errors in ArcGIS is prudent.

APPENDIX II. UNGULATE SURVEY DATA SHEET AND DATA ENTRY FILE EXAMPLE

All transects are marked with blue flagging. Stations are marked with pink flagging, a consecutively numbered aluminum tag and are 200 m eters		WEA	THER: CLEAR	R CLOU	DY MIST L	IGHT RAIN HE	AVY RAIN
apart Orange flagsmark 10 and 20 meters before and after each station Each animal activity plot is 10m. X.5m, continuous between each station, for a total of 20 plots	STAT	10N # WEED	DIGGING F-I-O	SCAT F-I-O	PLANTS F-I-O	TRACK/TRAIL F-I-O	NOTES
between stations. Use a new page for each station.	1						
Write the station tagram ber in the <u>station box</u> and \ddot{O} off each 10 m eter segment as they are finished. Record animal sign as F = fresh. I = interm ediate, O = old, using the Pig and Cattle criteria below.	2						
For <u>Cattle</u> activity use C at the beginning of each entry followed by F, I, or O.				<u> </u>			
For <u>Pig</u> activity use only F, I, or O . P is not needed. In the MISC box be sure to write the two of sign followed by F, I or O .	3						
Weed Cover and Abundance: Record weed species and density. Blackberry (B) Holly (H) Photinia	4						
(Ph) Gorse (G) Poka (P): 1<5% (2 5 m ³); 2=6-25% (2 6-12 5 m ²); 3=26-50%; 4=51-75%; 5>75%. PIG AND CATTLE SIGN CRITERIA	5						
FRESH: (F) UP TO 7 DAYS INTERMEDIATE: (D) 8 DAYS TO ONE MONTH	6						
OLD: (O) OVER ONE MONTH ALWAYSLOOK FOR OTHER SIGN TO HELP IN DETERMINING AGE	7						
DIGGING	8						
FRESH: Fluffy soil, anall soil chumps on rootlets, fresh dung or tracks nearby, uprooted plants areen, litter distribution uneven or different from surroundings, dug area moist (weather dependent).	9						
INTERMEDIATE: No seedlings or seedlings with cotyledons only, solatered litter, uprooted plantsvellowing or w/orown tass.	10						
OLD: Seedings en erging litter cover uniform and/or accumulating in pits, uprooted plants brown or rerooting rootlets with soil (exposed).	11						
SCAT	12						
FRE SH: Odor, steaming mucous or shiny appearance, flies, fresh sign nearby. INTERMEDIATE: Less odor, little or no insect activity, thin crust over cow pies, does not	13						
OLD: Hardened, eroded, seedlings emerging fungal or lichen growth on set, grass shoots	14						
OLD: hardened, eroded, seedungs emerging rungal or lichen growin on soat, grass shoots em erging	15						
PLANT FEEDING FRESH: Damaged/uprooted plant material green, cut tips green, visible tooth marks, odor may be	16						
evident.	17						
INTERMEDIATE: Discolored surfaces, cut tips browning/drying. OLD: Dried/dead plant parts, plants regrowing vertical plant growth from horizontal lying plants.	18						
Pigs feed on hapu'u, fruits, tender shoots, fem rhizomes, lily bulbs. Cattle feed on grasses, sedges, herbs and young woody plants, olapa bark and girdle ohia trees.	19						
TRAILS AND TRACKS FRESH: Green broken vegetation, fresh scats, tracks well defined, edges of prints not eroded, odor	20						
FREME Ureen broken vegetation, riesh seats, tracks well derined, edges of prints not eroued, odor may be apparent. INTERMEDIATE: Broken vegetation browning, trampled, tracks slightly eroded.	21						
OLD : Unitampled look, seedlings emerging vegetation regrowing tracks slightly eroded.	22						

	2	- -						2	Append	dix 2 - E	xamp	ole Data	Entry	Files Ha	ikalau and	KFU - Micro	osoft Exc	el									- 7
File	Hom				nulas Dati	a Review	View		at																	۵ 🕜 🗆	P
	K Cut		Calibri	- 11	- A A	= = =	W.	B	Vrap Te	xt	G	ieneral			1			-	*	T	Σ Auto	Sum * A	7 🕅	1			
Paste	Copy • J Forma		BIU-	111-1	3 - A -	물 좀 휑	使日	=	Aerge 8	center	- 1	\$ - %	,	0.4 0.4 00. 00.	Condition	hal Format	Cell	Insert	Delete F	ormat	Clea	Sor	rt & Find				
	Porma pboard	it Painter			_		Alle						1.0		Formatting	g * as Table *	Styles *			*		Filt	ter * Selec	t-			
Ci)				Font	6		Alig	nment			19	Num	iber		1	Styles			Cells			Editing					_
1	A1			∫ _x Tra		-	-	11		1.2					120	-								2 11			_
-	A	В	С	D	E	F	G					L			N	0	P			R	S	T		J	V	W	
			Nonth_year			gulate_Sig	n Spp	Diggin			Spp	. Plants	s Spp	. Trail			ts RUBP	PAR PSI	CAT CLI	HIR S	ENMAD						
2	3	15 16	Mar-14 Mar-14		12 I 1 F		р	F	C C	0						F-1						EJA SCH, M		ar-14			
3	3	16	Mar-14 Mar-14		20		P	F	c													SCH, M					
5	3	16	Mar-14 Mar-14		3 X				C	0												SCH, M					
6	3	16	Mar-14		4 X																	SCH, M					
7	3	16	Mar-14		5 X																	SCH, M					
8	3	16	Mar-14		6 X																	SCH, M					
9	3	16	Mar-14		70				с	0												SCH, M					
10	3	16	Mar-14		80				с	0												SCH, M					
11	3	16	Mar-14		91				с	I.												SCH, M					
12	3	16	Mar-14		10		U	1														SCH, M	C 17-M	ar-14			
13	3	17	Mar-14		10				с	0												SCH, M	C 17-M	ar-14			
14	3	17	Mar-14		2 X																	SCH, M	C 17-M	ar-14			
15	3	17	Mar-14		3 X											3 COWS						SCH, M	C 17-M	ar-14			
16	3	17	Mar-14		4 X																	SCH, M	C 17-M	ar-14			
17	3	17	Mar-14		5 O				С													SCH, M					
18	3	17	Mar-14		61				С	1												SCH, M					
19	3	17	Mar-14		71				С	L												SCH, M					
20	3	17	Mar-14		8 X				_													SCH, M					
21	3	17	Mar-14		9 0				С	0												SCH, M					
22	3	17	Mar-14		10 X																	SCH, M					
23	3	17	Mar-14		11				С	1						0.4	-					SCH, M	C 17-M	ar-14		-	
4 4 1 1	M Haka	alau KF	U / Sheet3 /	C.J												1	1		_		_		1000		0	0	-
Ready																								100%	U	0	

APPENDIX III. HAKALAU FOREST UNIT UNGULATE SURVEY STATION UTM COORDINATES

📗 Appe	ndix 3 - Hakalau_s	stations_unit_U	TM - Notepad				_ _ 7 ×
<u>File</u> <u>E</u> dit	Format View H						
File Edit Tx_St T10511 T10510 T10512 T10511 T10513 T10515 T10516 T10517 T10517 T10517 T10516 T10517 T10521 T10522 T10523 T10525 T10525 T10525 T10526 T10525 T10526 T10527 T10525 T10525 T10526 T1055 T10557 T1058 T1058 T1059 T1058 T1059 T10511 T1051 T10515	Format View H Transect 1 10 1 10 1 10 12 10 13 10 14 10 15 10 16 10 17 10 17 10 17 10 17 10 17 10 17 10 21 10 22 10 25 10 26 10 27 10 3 10 27 10 3 10 4 10 5 10 6 10 7 10 8 10 9 11 10	Help Statior 255953 257650 257849 258024 258286 258469 258286 25912 259582 259523 259723 259828 260359 260065 260035 260037 256287 256287 256287 256287 256737 256287 256737 256287 256737 256287 256737 256287 257643 257648 257648 257648 257658 257658 257648 257658 257658 257658 257658 257658 257648 257658 25768 2	1 X,UTM Y,UTM Lat 2194853 19.834512 2194532 19.83967 2195361 19.839361 2195508 19.84963 2195508 19.84963 2195581 19.841375 2195674 19.842236 2195781 19.843501 2195781 19.843502 2195819 19.843502 2196501 19.843502 2196093 19.845130 2196093 19.846155 2196093 19.846155 2196093 19.846155 2196235 19.847478 2196504 19.84549 2196504 19.84599 2196504 19.84549 2196504 19.84549 2196504 19.84549 2195521 19.836542 2195533 19.838106 2195333 19.838106 2195333 19.838106 2195333 19.838106 2195327 19.844195 2195327 19.844239	Long UNIT_NO -155.3101 -155.31208 -155.31208 -155.31043 -155.30794 -155.30629 -155.3028 -155.3028 -155.3028 -155.29917 -155.29917 -155.29917 -155.2943 -155.2943 -155.28788 -155.28788 -155.28788 -155.28788 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.28783 -155.31953 -155.3159 -155.31418	155551111111588888888855555555555555555	Unit_Name Upper Honchina Upper Honchina Upper Honchina Middle Honchina Middle Honchina Middle Honchina Middle Honchina Middle Honchina Middle Honchina Upper Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Lower Honchina Upper Honchina	
T11S11 T11S12 T11S13 T11S14 T11S15 T11S16 T11S17 T11S18 T11S19 T11S20 T11S20 T11S20 T11S22 T11S23 T11S24	11 13 11 14 11 15 11 16 11 17 11 18 11 20 11 20 11 21 20 11 21 20 11 22 11 23	257836 257990 258166 258358 258537 258713 258928 259058 259058 259058 259418 259583 259757 259885 260055	2196415 19.84885 2196545 19.850043 2196541 19.850043 2196618 19.850747 2196687 19.851392 2196756 19.852037 2196814 19.852584 2196861 9.853064 2196934 19.844706 2197010 19.854418 2197092 19.855178 21977171 19.855913 2197727 19.856389 2197287 19.856997	-155.31234 -155.31089 -155.30739 -155.30739 -155.30540 -155.30402 -155.30226 -155.30274 -155.29895 -155.29756 -155.29576 -155.29411 -155.29289 -155.29128	51111133533333	Upper Honohina Middle Honohina Middle Honohina Middle Honohina Middle Honohina Middle Honohina Lower Honohina Lower Honohina Lower Honohina Lower Honohina Lower Honohina Lower Honohina Lower Honohina	

APPENDIX IV. KONA FOREST UNIT UNGULATE SURVEY STATION UTM COORDINATES

/ Apper	ndix 4 - KFU_transect_	waypoints	- Notepad			
<u>File</u> <u>E</u> dit	Format View Help					
Elle Editt TX-S-St TIS3 TIS4 TIS5 TIS5 TIS6 TIS5 TIS6 TIS6 TIS7 TIS10 TIS12 TIS11 TIS12 TIS12 TIS13 TIS14 TIS16 TIS17 TIS22 TIS22 TIS22 TIS22 TIS23 TIS24 TIS25 TIS25 TIS26 TIS30 TIS31 TIS31 TIS32 TIS32 TIS33 TIS33 TIS34 TIS38 TIS39 TIS38 TIS39 TIS34 TIS34 TIS38 TIS39 TIS34 TIS38 TIS38 TIS39 TIS41 TIS41	Format View Help PROJECTION UTM/UPS 050 UTM/UPS 050 U	20NE 207858 207708 207557 207393 207237 207092 206946 2066791 206637 206502 206348 205868 205868 205868 205706 205524 205351 205204 204732 204474 204264 2044561 204474 204464 2044661 203466 203285 203466 203285 203466 203285 203466 203285 203285 202848 202285 203285 203285 203285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20285 20	2146281 1 2146280 1 2146291 1 2146297 1 2146297 1 2146306 1 2146306 1 2146321 1 2146321 1 2146327 1 2146327 1 2146327 1 2146321 1 2146321 1 2146321 1 2146321 1 2146321 1 2146453 1 2146453 1 2146453 1 2146543 1 2146543 1 2146543 1 2146543 1 2146543 1 2146543 1 2146543 1 2146543 1 2146574 1 2146574 1 2146774 1 2146742 1 2146742 1	3 4 1 1 4 5 6 1 1 1 6 7 7 1 1 4 5 6 7 7 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	574TION 9.3850672 9.38009833 9.38038226 9.38943154 9.38943154 9.38943154 9.38947789 9.38947789 9.3894567 9.3894567 9.3895466 9.38951623 9.38954666 9.38951623 9.38954666 9.38951623 9.3895466 9.3895102 9.3895102 9.3895429 9.3895429 9.3895428 9.3895429 9.3815549 9.3825541 9.3825541 9.3825541 9.3825541 9.3825541 9.3825541 9.3825541 9.38255541 9.38255541 9.38255541 9.3825555541 9.3825555541 9.3825555541 9.385555541 9.385555541 9.3855555541 9.385555541 9.385555541 9.3855555541 9.3855555541 9.3855555541 9.38555555555555555555555555555555555555	
T1S42 T1S43 T1S44	UTM/UPS 50 UTM/UPS 50 UTM/UPS 50	201727 201583 201427	2146763 1 2146787 1 2146791 1	43 1 44 1	9.39294795 9.39314317 9.39315606	-155.8397724 -155.8411459 -155.8426304
T1S45	UTM/UPS 5Q		2146811 1	45 1	9.39332363	-155.8434611

APPENDIX V. R SCRIPT FOR SUMMARIZING UNGULATE DATA

Appendix 5 - Summarize_ungulate_data_R_script - Notepad	_ & ×
Elle Edit Format Yolew Help	
/Summarize ungulate data	
etwd("C:\\Users\\ccornett\\Desktop\\Veg & Ungulates\\") #sroutes to folder with data files, waypoint files, and saved summary files	
JTMdata<-read.delim("Hakalau_stations_unit_UTM.txt",as.is=T) #read-in UTM data; change for KFU summaries Ingulate_raw<-read.delim("Hakalau ungulate surveys Sep2014.txt",as.is=T) #data file for summary Ingulate_rawSHO <- pasted("T",ungulate_rawStransect,"S",ungulate_rawSStation, "X", ungulate_rawSMonth_year) #make unique station ID itations <- unique(ungulate_rawSID)	
<pre>ingulate_sum <- NUL for (i in (1:length(sti) #current is station being assessed cmp <- ungulate_raw[which(ungulate_rawSID==current),] #tmp=all plots (rows of data) from given T and ST', ' gives all columns Transect <- tmpStransect[1] MonthYear <- tmpStontol1] MonthYear <- tmpStontol1] Sign_X <- sum(tmpSungulate_Sign=="X") sign_X <- sum(tmpSungulate_Sign=="X") sign_X <- sum(tmpSungulate_Sign=="X") sign_X <- sum(tmpSungulate_Sign=="X") sign_X <- sum(tmpSungulate_Sign=="X") sign_X <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate_Sign=="T") sign_Q <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate_Sign=="T") dig_X <- sum(tmpSungulate="T") dig_X <- sum(tmpSungulate="T") dig_X <- sum(tmpSungulate="T") dig_X <- sum(tmpSungulate="T") dig_X <- sum(tmpSungulate="T") plant_G <- sum(tmpSingulate="T") plant_G <- sum(tmpSingulate="T") plant_G <- sum(tmpSingulate="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T") rtack_U <- sum(tmpSingulate=="T")</pre>	
ungulate_sum<-rbind(ungulate_sum,c(Transect, station, MonthYear, Nplots,sign_X,sign_F,sign_I,sign_0,proportion_FI,dig_F,dig_I,dig_0,scat_F,scat # #sums all plot data by station	_I,scat_O,plant_F,plant_I,p
ngulate_sum<-as.data.frame(cbind(stations,ungulate_sum))	
:olnames(ungulate_sum)<-c("stationID", "Transect","station", "MonthYear", "Nplots" "sign_L","sign_E","sign_I","sign_O","proportion_FI","dig_F","di JTMX - UTMdataSX_UTM[match(paste0("T",ungulate_sumStransect,"S",ungulate_sumStation,UTMdataSTX_St)] JTMY - UTMdataSY_UTM[match(paste0("T",ungulate_sumStransect,"S",ungulate_sumStation,UTMdataSTX_St)] #matches UTM data with unique station	ig_I","dig_O","scat_F","sca
ingulate_sumSUTMx <- UTMx ingulate_sumSUTMy <- UTMy	
write.csv(ungulate_sum,"HF_test.csv") ≇change file name accordingly for output	
٩	E
Ln 44, Col 82	

APPENDIX VI. HAKALAU FOREST UNIT WEED SUMMARY R SCRIPT

Appendix 6 - Hakalau_weed_summary_R_script - Notepad	
2 Edit Format View Help	
ummarize weed data	
wd("C:\\Users\\ccornett\\Desktop\\Veg & Ungulates\\") #Set working directory	to the folder with all files for the analysis
<pre>ddtac-read.delim("Hakalau_stations_unit_UTM.tt".as.is=T) #read-in UTM data; dc_raw-c-read.delim("Hakalau ungulate surveys Sep2014.tt".as.is=T) #insert in dc_rawSID <- pasted("T".weed_rawSTransect,"S",weed_rawSStation, "X", weed_raw Itons <- unique(wed_rawSID)</pre>	iput file name accordingly \$Month_year) #makes unique station ID
ad_raw[is.na(weed_raw)]<-0 #is.na returns a True/False matrix for anything NA centKey <- as.data.frame(cbind(rbind(0,1,2,3,4,5),rbind(0,2.5,15.5,38,63,88)	, value. Reassigned NA to value of 0 for calculations))
id_sum <- NULL (1 in (1:Tength(stations))){ in (1:Tength(stations))){ imp <- weed_nation(still #current is station being assessed imp <- weed_nation(still="constant")] #tmp=all plots (rows of data) f transect <- tmpStransect[1] intThyear <- tmpStation[1] iontThyear <- tmpStonth_year[1] iplots <- nrow(tmp)	'rom given T and ST', ' gives all columns
UBARGcount <- sum(tmp\$RUBARG>0) UBARGprop <- RUBARGcount/Nplots #proportion plots with any sign UBARGmax <- max(tmp\$RUBARG, na.rm=T) UBARGavg <- mean(percentkey[match(tmp\$RUBARG,percentKey[,1]),2]) #match matc	hes category value of RUBARG to percentKey and outputs midpoint value and returns the mean
ASMOScount <- sum(tmp\$PASMOS>0) ASMOSprop <- PASMOScount/Nplots #proportion plots with any sign ASMOSmax <- meax(tmp\$PASMOS, na.rm=T) ASMOSavg <- mean(percentkey[match(tmp\$PASMOS,percentkey[,1]),2])	
HODAVcount <- sum(tmp\$PHODAV>0) HODAVprop <- PHODAVcount/Nplots #proportion plots with any sign HODAVmax <- meax(tmp\$PHODAV, na.rm=T) HODAVavg <- mean(percentkey[match(tmp\$PHODAV,percentKey[,1]),2])	
LEAQUcount <- sum(tmpSILEAQU>O) LEAQUprop <- ILEAQUcount/Nplots #proportion plots with any sign LEAQUmax <- mmax(tmpSILEAQU, na.rm=T) LEAQUayg <- mean(percentKey[match(tmpSILEAQU,percentKey[,1]),2])	
LEEURcount <- sum(tmpSULEEUR>0) LEEURprop <- ULEEURcount/Nplots #proportion plots with any sign LEEURmax <- mmax(tmgSULEUR, na.rm=T) LEEURavg <- mean(percentKey[match(tmpSULEEUR,percentKey[,1]),2])	
eed_sum <- rbind(weed_sum,c(Transect, station, MonthYear, Nplots, RUBARGcoun #weed values summed across all plots per station	it, RUBARGprop, RUBARGmax, RUBARGavg, PASMOScount, PASMOSprop, PASMOSmax, PASMOSavg, PHODAVc

APPENDIX VII. KONA FOREST UNIT WEED SUMMARY R SCRIPT

Appendix 7 - KFU_weed_summary_Rscript - Notepad	_ & ×
Elle Edit Format View Help	
#Sumarize weed data	
setwd("C:\\Users\\ccornett\\Desktop\\Veg & Ungulates\\") #Set working directory to the folder with all files for the analysis	
jTMdata<-read.delim("KFU_transect_waypoints.txt",as.is=T) #read-in UTM data; change for KFU summaries weed_raw<-read.delim("KFU_Jan2015_for analysis.txt",as.is=T) #insert input file name accordingly weed_rawSuch <- paste0("T",weed_rawSTDT itations <- unique(weed_rawSTD) weed_raw[is.na(weed_rawSID]	
ercentKey <- as.data.frame(cbind(rbind(0,1,2,3,4,5),rbind(0,2.5,15.5,38,63,88)))	
<pre>geed_sum <- NULL or(lingth(stations))){ current <- stations[i] #current is station being assessed current <- stations[i] #current is station being assessed tup <- weed_raw[which(weed_rawStDm=current),] #tmp=all plots (rows of data) from given T and ST', ' gives all columns Transect <- tmpStransect[i] MonthYear <- tmpSMonth_year[i] MonthYear <- tmpStransect[i]</pre>	
RUBPARcount <- sum(tmp5RUBPAR>0) RUBPARRopop <- RUBPARcount/kplots #proportion plots with any sign RUBPARmax max(tmp5RUBPAR, na.rmmT) RUBPARmaxg <- mean(percentKey[match(tmp5RUBARG,percentKey[,1]),2]) #match matches category value of RUBARG to percentKey and outputs midpoint	: value and returns the mean
SENMADcount <- sum(tmpSSENMAD>0) SENMADproy <- SENMADcount/kplots #proportion plots with any sign SENMADmax <- max(tmpSSENMAD, na.rm=T) SENMADmax <- mean(percentKey[match(tmpSSENMAD,percentKey[,1]),2])	
PSICATcount <- sum(tmp\$PSICAT>0) PSICATgrop <- PSICATcount/wplots #proportion plots with any sign PSICATmax <- max(tmp\$PSICAT, na.rm=T) PSICATmax <- mean(percentKey[match(tmp\$PSICAT,percentKey[,1]),2])	
CLIHIRcount <- sum(tmpScLIHIR>0) CLIHIRprop <- CLIHIRcount/Wplots #proportion plots with any sign CLIHIRmax <- max(tmpScLIHIR, na.rm=T) #maximum cover encountered within the station CLIHIRavg <- mean(percentkey[match(tmpScLIHIR,percentkey[,1]),2])	
weed_sum <- rbind(weed_sum,c(Transect, station, MonthYear, Nplots, RUBPARcount, RUBPARprop, RUBPARmax, RUBPARavg, PSICATcount, PSICATprop, P	SICATmax, PSICATavg, SENMADcou
#weed values summed across all plots per station	
eed_sum <- as.data.frame(cbind(stations,weed_sum))	

APPENDIX VIII. MINITAB REGRESSION FILE FOR POPULATION ESTIMATION

l é				t Graph Edit					-312-	602	副 111日												
	ssion																	-					_ [
-	obrom																						-
PE	* Comm	and canc	eled.																				
ng	file a	s: C:\Ha	kalau\An	alysis\MiniTab\P	igPopEsti	imstion.M	РJ																
-		-	No. of Concession, Name											_	_	_	_		_				-
V	orksh	eet 1 *	**																				_ [
1	C1	C2	C3	C4-T	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23
	Year	Asign	Pigdens	Management Unit	Sep 2014	Dec 2014	Mar 2015	Jun 2015	Sep 2015														
	1992	0.494938	12.1191	Middle Honohina	0.10742	0.09047	0.08554	•	0.15431														
	1993	0.519255	11.3813	Shipman	0.34336	0.42053	0.38116	0.38232	0.28702														
	1994	0.295207	11.2789	Lower Honohina	0.16325				0.00000														
				Upper Maulua			0.48128																
				Upper Honohina		0.13028			0.09400														
				Middle Hakalau		0.00000			0.15492														
				Middle Papaikou			0.24451							1									
				Pua Akala		0.23030			0.09930														
				Lower Maulua	0.64328		0.72024		0.60529														
		0.090567			0.01020		0.1202.1		0.00020														
		0.045376																					
		0.024038																					
		0.0000000																					
	2004	0.000000	0.0000																				

Open Minitab project: PigPopEstimation.MPJ

Add arcsine transformed proportion values to the next available column

Select: Stat> Regression > Regression from the dropdown menu

Make sure Response is set to 'Pigdens' and Predictors is set to 'Asign'

Regr	ession				×
C1 C2 C3 C5 C6 C7 C8 C9	Year Asign Pigdens Sep 2014 Dec 2014 Mar 2015 Jun 2015 Sep 2015	R <u>e</u> sponse: Pred <u>i</u> ctors:	Pigden		
				<u>G</u> raphs	Options
	Select			<u>R</u> esults	S <u>t</u> orage
	Help		[<u>0</u> K	Cancel

Set 'Prediction intervals for new observations:' to the name of your new data column

Set confidence level to '95'

Check boxes for Confidence limits and Prediction limits

Density values and confidence limits will be displayed as 'new obs' in the session window

Regr	ession - O	ptions			×
C1 C2 C3	Year Asign Pigdens	<u>W</u> eights:		☐ Fi <u>t</u> intercept	
C5	Sep 2014	Display		Lack of Fit Tests	
C6 C7	Dec 2014 Mar 2015	Variance inflation	n factors	Pure error	
C8	Jun 2015	Durbin-Watson st	tatistic	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
C9	Sep 2015	PRESS and predi	cted R-square	<u> </u>	
		Prediction intervals 'Sep 2015' Confidence level:	for new observati	ions:	
		Storage	🗔 Confidence I	limita	
		Eits	Confidence		
	Select	SEs of fits	✓ Prediction lin	nits	
	Help		<u>0</u> K	Cancel	

	dit Manip C	alc Stat Graph Eq	itor Window	Help							
				Terb	-110		12-1				
	sion				1.014						
es	sion										 - 0
oba		E Fit 95.0% CI	95.	0% PI							
		0.316 (2.501, 3 0.588 (4.651, 7									
	0.000	0.000 (0.000, 0	.000) (-4.990	, 4.990)							
	7.374	0.731 (5.782, 8 0.192 (1.523, 2	.966) (2.137	, 12.612)							
	3.201	0.317 (2.510, 3	.892) (-1.836	, 8.239)							
		0.094 (0.745, 1 0.203 (1.609, 2									
	12.508	1.239 (9.808, 15	.208) (6.835								
end	otes a row with	a X values away from th	e center								
• 3	of Predictors	for New Observations									
oba	s Asign										
	0.154										
	0.000										
	0.357										
	0.094 0.155										
	0.046										
	0.046										-
	0.046 0.099 0.605 2000 0.139248	0.7483 Lower Maulua	0.64328	0.72024	0.60529	9.80844 15	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567	0.1497	0.64328	* 0.72024	• 0.60529	9.80844 15	2084				
]	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376	0.1497 0.1497	0.64328	* 0.72024	* 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	* 0.72024	• 0.60529	9.80844 15.	2064				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376	0.1497 0.1497 0.1497	0.64328	* 0.72024	* 0.60529	9.80844 15.	2064				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	0.72024	• 0.60529	9.80844 15.	2064				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64329	• 0.72024	* 0.60529	9.80844 15.	2084				
]	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	* 0.72024	• 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	• 0.72024	• 0.60529	9.80844 15	2064				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64329	• 0.72024	• 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	• 0.72024	• 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	• 0.72024	• 0.60529	9.80844 15	20064				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	* 0.72024	• 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	• 0.72024	* 0.60529	9.80844 15	20084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	• 0.72024	• 0.60529	9.80844 15.	2084				
	0.046 0.099 0.605 2000 0.139248 2001 0.090567 2002 0.045376 2003 0.024038	0.1497 0.1497 0.1497	0.64328	* 0.72024	• 0.60529	9.80844 15	20084				<u>]</u>