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On abundance theorem for semi log canonical threefolds
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Abstract: Let (X, ∆) be a proper semi log canonical threefold with KX + ∆ nef. Then
KX + ∆ is semi-ample.
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1. Introduction. The main purpose of this
paper is to announce the abundance theorem for semi
log canonical threefolds (for the proof, see [3]). The
abundance conjecture is a very important problem
in the birational classification of algebraic varieties.

By our method we can reduce the abundance
conjecture for semi log canonical pairs to the ir-
reducible case and the finiteness of some groups.
This shows that if the log Minimal Model Program
(log MMP, for short), the log abundance conjecture,
and the finiteness of B-pluricanonical representations
(see Section 4) hold for n-folds, then the log abun-
dance conjecture for semi log canonical n-folds is true
almost automatically (see Theorem 5.10). But un-
fortunately the log MMP and the log abundance con-
jecture are only conjectures for n-folds with n ≥ 4.
So we prove

Theorem 1.1 (Abundance theorem for slc 3-
folds). Let (X, ∆) be a proper semi log canonical
threefold with KX + ∆ nef. Then KX + ∆ is semi-
ample.

This theorem is a generalization of the log abun-
dance theorem for 3-folds proved by S. Keel, K. Mat-
suki and J. McKernan (see [12]). According to them,
the log abundance theorem for threefolds is consid-
ered to be the first step towards a proof of the abun-
dance conjecture in dimension four. We believe that
the abundance theorem for semi log canonical three-
folds is the second step.

Notation.
(1) The word scheme is used for schemes which

are separated and of finite type over C and
the word variety stands for a reduced and
irreducible scheme. When we say a normal
scheme, we mean the disjoint union of irre-
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ducible normal schemes.
(2) We use the notation that (X, ∆) being Kawa-

mata log terminal, divisorial log terminal, and
log canonical (frequently abbreviated as klt,
dlt, and lc), as in [15] (see also [20]). In the
definition in [15, Section 2.3] ∆ is not neces-
sarily effective, but in this paper we assume
∆ is an effective Q-divisor.

(3) The log MMP means the log MMP for Q-
factorial dlt pairs.

2. Definitions and preliminaries. In this
section, we make some basic definitions.

Definition 2.1. Let X be a reduced S2

scheme. We assume that it is pure n-dimensional
and normal crossing in codimension 1. Let ∆ be an
effective Q-Weil divisor on X (cf. [14, 16.2]) such
that KX + ∆ is Q-Cartier.

Let X = ∪Xi be a decomposition into irre-
ducible components, and µ : X ′ :=

∐
X ′i → X =

∪Xi the normalization. A Q-divisor Θ on X ′ is de-
fined by KX′ + Θ := µ∗(KX + ∆) and a Q-divisor
Θi on X ′i by Θi := Θ|X′

i
.

We say that (X, ∆) is a semi log canonical n-fold
(an slc n-fold, for short) if (X ′i,Θi) is lc for every i.

We say that (X, ∆) is a semi divisorial log termi-
nal n-fold (an sdlt n-fold, for short) if Xi is normal,
that is, X ′i is isomorphic to Xi, and (Xi,Θi) is dlt
for every i.

The notion of semi log canonical pairs was first
introduced in [16] for the problem of compactifying
the moduli of surfaces. For the further development
of this direction, we recommend the readers to see
[7].

Remark 2.2.
(1) The slc in Definition 2.1 is equivalent to the

slc in [14, Chapter 12] (see [13, 4.2]).
(2) If (X, ∆) is an slc n-fold, then X is seminor-
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mal (see [14, 12.2.1.(8)] and [1, Remark 4.7]).
(3) If (X, ∆) is a dlt n-fold, then (x∆y,Diff(∆−

x∆y)) is an sdlt (n−1)-fold (see [14, 17.5] and
[15, 5.52]).

(4) Let (X, ∆) be lc. Then (x∆y,Diff(∆− x∆y))
is not necessarily slc (see [14, 17.5.2 Exam-
ple]). Note that [14, (16.9.1)] is not true.

Definition 2.3. Let pairs (X, ∆) =∐n
i=1(Xi,∆i) and (X ′,∆′) =

∐n
i=1(X

′
i,∆

′
i) be

normal schemes with Q-divisors such that KX + ∆
and KX′ + ∆′ are Q-Cartier Q-divisors.

We say that a map f : (X, ∆) 99K (X ′,∆′) is
a B-birational map (resp. morphism) if f : X 99K
X ′ is a proper birational map (resp. morphism) and
there exists a common resolution α : T → X, β :
T → X ′ of f : X 99K X ′ such that α∗(KX + ∆) =
β∗(KX′ + ∆′). That is, there exists a permutation
σ such that fi : Xi 99K X ′σ(i) is a proper birational
map (resp. morphism) and there exists a common
resolution αi : Ti → Xi, βi : Ti → X ′σ(i) of fi such
that α∗i (KXi + ∆i) = β∗i (KX′

σ(i)
+ ∆′σ(i)) on Ti for

every i. The last condition means that if we write

KTi
= α∗i (KXi + ∆i) + F,

KTi = β∗i (KX′
σ(i)

+ ∆′σ(i)) + E,

then F = E.
If there exists a B-birational map from (X, ∆)

to (X ′,∆′), we say that (X, ∆) is B-birational equiv-
alent to (X ′,∆′). Here the symbol B is the initial of
boundary.

3. Reduced boundaries of dlt pairs. The
following is a reformulation of [14, 12.3.2], which fits
better in our arguments. It plays essential roles in
the proof of Proposition 5.3, which is a key step of
the proof of the main theorem.

Proposition 3.1 ( cf. [19, 6.9], [14, 12.3.2] ).
Let (X, Θ) be a Q-factorial dlt n-fold with n ≤ 3.
Let f : X → R be a proper surjective morphism onto
a normal variety R with connected fibers. Assume
that KX + Θ is numerically f-trivial. Then one of
the following holds:
(0) dim R = 0.

(0.1) xΘy is connected.
(0.2) xΘy has two connected components ∆1 and

∆2 and there exists a rational map v : X 99K
(V, P ) onto a Q-factorial lc (n − 1)-fold
(V, P ) with general fiber P1. Furthermore
there exists an irreducible component D′i ⊂
∆i such that v|D′i : (D′i,Diff(Θ − D′i)) 99K

(V, P ) is a B-birational map for i = 1, 2.
(1) dim R ≥ 1.

(1.1) xΘy ∩ f−1(r) is connected for every r ∈ R.
(1.2) The number of connected components of

xΘy∩f−1(r) is at most two for every r ∈ R.
There exists a rational map v : X 99K (V, P )
onto a Q-factorial lc (n−1)-fold (V, P ) with
general fiber P1. The horizontal part Θh of
xΘy is one of the following:

(i) Θh = D′1 which is irreducible and the
mapping degree deg[D′1 : V ] = 2 and
there is a B-birational involution on
(D′1,Diff(Θ−D′1)) over V .

(ii) Θh = D′1 + D′2 such that D′i is ir-
reducible and v|D′i : (D′i,Diff(Θ −
D′i)) 99K (V, P ) is a B-birational map
for i = 1, 2.

Remark 3.2.
(1) In Proposition 3.1 the assumption KX +

Θ ≡f 0 is equivalent to KX +Θ ∼Q,f 0. It is
because the relative log abundance theorem
holds when dim X ≤ 3.

(2) If the log MMP holds for n-folds, then
Proposition 3.1 is also true for n-folds.

4. Finiteness of B-pluricanonical repre-
sentations. We consider the birational automor-
phism groups of pairs.

Definition 4.1. Let (X, ∆) be a pair of a nor-
mal scheme and a Q-divisor such that KX + ∆ is
Q-Cartier. We define

Bir(X, ∆) := {σ : X 99K X | σ is B-birational },

Aut(X, ∆) :=

σ : X → X

∣∣∣∣∣∣
The map σ is an
automorphism and
σ∗∆ = ∆

 .

Since Bir(X, ∆) acts on H0(X,OX(m(KX +∆))) for
every integer m such that m(KX +∆) is a Cartier di-
visor, we can define B-pluricanonical representation
ρm : Bir(X, ∆)→ Aut H0(X, m(KX + ∆)).

The following conjecture plays an important role
when we reduce the problem to the irreducible case.

Conjecture 4.2 (Finiteness of B-pluricanoni-
cal representations). Let (X, ∆) be an n-dimen-
sional (not necessarily connected) proper lc pair. As-
sume that KX +∆ is nef. Then there exists a positive
integer m0 such that ρm1m0(Bir(X, ∆)) is finite for
every m1 ∈ N.

For Conjecture 4.2, it is obviously sufficient to
prove it under the assumption that X is irreducible.
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Theorem 4.3 (cf. [14, 12.2.11]). Let (C,∆) be
a proper lc curve. Then there exists a positive integer
m0 such that ρm1m0(Aut(C,∆)) is finite for every
m1 ∈ N.

Theorem 4.4. Let (S, ∆) be a proper klt sur-
face. Then there exists a positive integer m0 such
that ρm1m0(Bir(S, ∆)) is finite for every m1 ∈ N.

Theorem 4.5. Let (S, ∆) be a proper lc sur-
face. Assume that KS + ∆ is nef. Then there is
a positive integer m0 such that ρm1m0(Bir(S, ∆)) is
finite for every m1 ∈ N.

5. The abundance theorem for slc pairs.
We introduce the notion of preadmissible and ad-
missible sections for the inductive proof of the abun-
dance conjecture for slc n-folds.

Definition 5.1. Let (X, ∆) be a proper sdlt
n-fold and m a sufficiently large and divisible inte-
ger. We define admissible and preadmissible sections
inductively on dimension.

(1) s ∈ H0(X,OX(m(KX + ∆))) is pread-
missible if the restriction s|(‘

i xΘiy) is ad-
missible in H0(

∐
i xΘiy,O(

‘
xΘiy)(m(KX′ +

Θ)|(‘
xΘiy))).

(2) s ∈ H0(X,OX(m(KX +∆))) is admissible if s

is preadmissible and g∗(s|Xj
) = s|Xi

for every
B-birational map g : (Xi,Θi) 99K (Xj ,Θj) for
every i, j.

Note that if s ∈ H0(X,OX(m(KX + ∆))) is admis-
sible, then s|Xi

is Bir(Xi,Θi)-invariant for every i.
We define linear subspaces of

H0(X,OX(m(KX + ∆))) as follows;

PA(X, m(KX + ∆)) := {s is preadmissible},

and

A(X, m(KX + ∆)) := {s is admissible}.

When dim X = 1, the preadmissible section is a
slight generalization of the normalized section (see
[14, 12.2.9]). But in the higher dimensional case, the
admissible and preadmissible sections behave much
better in the inductive proof of the abundance con-
jecture for slc n-folds.

Lemma 5.2. Let (X, ∆) be a proper Q-
factorial dlt n-fold, and KX +∆ nef and S = x∆y 6=
0. Assume that f = Φ|k(KX+∆)| : X → R is a proper
surjective morphism onto a normal variety R with
connected fibers for a sufficiently large and divisi-
ble integer k and f(x∆y) ( R. If there exist sec-
tions {si}pi=1 ⊂ H0(S,OS(m(KX + ∆)|S)) without

common zeros, then there exist sections {ui}li=1 ⊂
H0(X,OX(rm(KX + ∆))) for some integer r such
that

(1) ui|S =
{

sr
i for 1 ≤ i ≤ p

0 for p < i ≤ l

(2) {ui}li=1 have no common zeros.
The next proposition is the main part of the

proof of the abundance theorem for slc n-folds, which
is proved by Proposition 3.1 and Lemma 5.2.

Proposition 5.3. Let (X, ∆) be a pure n-
dimensional (not necessarily connected) proper Q-
factorial dlt pair with n ≤ 3. Let m be a sufficiently
large and divisible integer. Assume that

(1) KX + ∆ is nef,
(2) Ox∆y(m(Kx∆y +Diff(∆−x∆y))) is generated

by A(x∆y,m(KX + ∆)|x∆y).
Then

PA(X, m(KX + ∆))→ A(x∆y,m(KX + ∆)|x∆y)

is surjective, and OX(m(KX + ∆)) is generated by
PA(X, m(KX + ∆)).

Remark 5.4. In Proposition 5.3 the assump-
tion n ≤ 3 is used for the log MMP and the log
abundance theorem which are used in Proposition
3.1 too.

By Lemma 5.7 and Section 4, we get the next
lemma.

Lemma 5.5. In Proposition 5.3, if dim X ≤ 2,
then we can replace PA(X, m(KX +∆)) by the linear
subspace A(X, m(KX + ∆)).

In order to prove Lemma 5.7 we need the next
definition.

Definition 5.6. Assume that X is nonsingular
and Supp∆ is a simple normal crossing divisor and
∆ =

∑
i di∆i is a Q-divisor such that di ≤ 1 for

every i. In this case we say that (X, ∆) is B-smooth.
Let (X, ∆) be dlt or B-smooth. A subvariety W

of X is said to be a center of log canonical singular-
ities if there is a proper birational morphism from a
normal variety µ : Y → X and a prime divisor E on
Y with the discrepancy a(E,X,∆) = −1 such that
µ(E) = W (cf. [10, Definition 1.3]).

Let (X, ∆) be dlt or B-smooth. We write ∆ =∑
i di∆i such that ∆i are distinct prime divisors.

Then the B-part of ∆ is defined by ∆B :=
∑

di=1 ∆i.
If (X, ∆) is dlt or B-smooth, then a center of log

canonical singularities is an irreducible component of
an intersection of some B-part divisors. (see the Di-
visorial Log Terminal Theorem of [20] and [15, Sec-
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tion 2.3].) When we consider a center of log canonical
singularities W , we always consider the pair (W,Ξ)
such that KW + Ξ = (KX + ∆)|W , where Ξ is de-
fined by using the adjunction repeatedly. Note that
if (X, ∆) is dlt (resp. B-smooth), then (W,Ξ) is dlt
(resp. B-smooth) by the adjunction.

If (X, ∆) is dlt pair or B-smooth and W is a
center of log canonical singularities, then we write
W b X.

Lemma 5.7. Let (X, ∆) be a pure n-dimen-
sional (not necessarily connected) proper dlt pair
with KX +∆ nef and let m be a sufficiently large and
divisible integer. We write G = ρm(Bir(X, ∆)). If
s ∈ PA(X, m(KX + ∆)), then g∗s ∈ PA(X, m(KX +
∆)) for every g ∈ G and g∗s|x∆y = s|x∆y.

In particular if |G| is finite, then∑
g∈G

g∗s ∈ A(X, m(KX + ∆)),

∏
g∈G

g∗s ∈ A(S, m|G|(KX + ∆)),

and ∏
g∈G

g∗s|x∆y = (s|x∆y)|G|.

For the proof of this lemma we use the next two
claims and Szabó’s resolution lemma, which is a pow-
erful tool of treating dlt pairs (see [4]).

Claim (An). Let (T,Θ) and (S, Ξ) be n-
dimensional B-smooth pairs and h : S → T a B-
birational morphism. If W b T , then there is a
W ′ b S such that W ′ → W is a B-birational mor-
phism.

Claim (Bn). Let (T,Θ) and (S, Ξ) be n-
dimensional B-smooth pairs and h : S → T a B-
birational morphism. Assume that W b S. If
W → h(W ) is not B-birational, then there is a
W ′ b W such that W ′ → h(W ) is a B-birational
morphism and that the inclusion W ′ → W in-
duces the isomorphism H0(W,OW (m(KS+Ξ)|W )) '
H0(W ′,OW ′(m(KS + Ξ)|W ′)).

By Proposition 5.3, we have the following re-
sults.

Corollary 5.8 (cf. [14, 12.1.1, 8.5]). Let (X, ∆)
be a proper slc n-fold such that KX +∆ is nef, where
n ≤ 2. Then |m(KX + ∆)| is free for a sufficiently
large and divisible integer m. In particular, if (X, ∆)
is proper sdlt, then OX(m(KX +∆)) is generated by
A(X, m(KX + ∆)).

The next corollary is the main theorem of this
paper (see Theorem 1.1).

Corollary 5.9. Let (X, ∆) be a proper slc
threefold with KX + ∆ nef. Then KX + ∆ is semi-
ample.

We can reformulate Corollaries 5.8 and 5.9 in
the following form if we list all the necessary results
(e.g. log MMP) as the assumption.

Theorem 5.10. Assume the log MMP for di-
mension n. If the abundance conjecture holds for lc
n-folds and if the finiteness of B-pluricanonical rep-
resentations (see Conjecture 4.2) is true for dimen-
sion n, then the abundance conjecture is true for sdlt
and slc n-folds, that is, Corollary 5.8 holds in dimen-
sion n.
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