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Abstract

The prevalence of the use of mathematical software has dramatically influenced the

evolution of differential equations. The use of these useful tools leads to faster

advances in the presentation of numerical and analytical methods. This paper

retrieves several soliton solutions to the fractional perturbed Schrödinger’s equation

with Kerr and parabolic law nonlinearity, and local conformable derivative. The

method used in this article, called the generalized exponential rational function

method, also relies heavily on the use of symbolic software such as Maple. The

considered model has prominent applications in water optical metamaterials. The

method retrieves several exponential, hyperbolic, and trigonometric function

solutions to the model. The numerical evolution of the obtained solutions is also

exhibited. The resulted wide range of solutions derived from the method proves its

effectiveness in solving the model under investigation. It is also recommended to use

the technique used in this article to solve similar problems.

Keywords: GERFM; Wave solutions to PDEs; Fractional operators; Perturbed

nonlinear Schrödinger’s equation; Symbolic manipulation; Nonlinearity laws

1 Introduction

In general, it is complicated to find an analytical solution tomany partial differential equa-

tions. Nowadays, almost all methods of solving differential equations, either numerically

or analytically, rely on the use of computer software. In some cases, analytical solutions

to such equations may not be found. Along with the astonishing advances in computer

science and the reinforcement of mathematical software, there have also been fundamen-

tal changes in analytical methods [1, 3, 4, 7, 10, 11, 18–20, 22, 25, 26, 28–30, 32, 33]. The

essence of many of these methods is to perform complicated calculations that would not

be possible without the use of computer equipment. In this paper, we study the perturbed
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nonlinear Schrödinger’s equation given by [5, 6, 8, 9, 31]:

iUt + aUxx +
(

b1|U| + b2|U|2
)

U

= i
{

σUx + β
(

|U|2U
)

x
+ γ

(

|U|2
)

U
}

+ θ1
(

|U|2U
)

xx

+ θ2|U|2Uxx + θ3U
2U∗

xx. i
2 = –1 (1)

In this model, the complex-valued dependent variable is U(x, t), and U∗(x, t) is its com-

plex conjugate; a is the group velocity dispersion, while b1 and b2 together comprise

the quadratic–cubic nonlinearity. On the right-hand side, σ is the intermodal dispersion,

while β and γ respectively represent the self-steepening and nonlinear dispersion. Finally,

the terms with θi for i = 1, 2, 3 appear in the context of metamaterials. The readers who are

interested in getting more information about the model and its applications can refer to

the references [5, 6, 8, 9, 31]. Due to the very high importance of this equation, many re-

searchers have been interested in finding analytical solutions to the equation, and several

integration tools have been adopted to obtain its wave solutions. In [6], two integration

methods, including the ansatz and the simplest equation approaches, have been applied

to derive several singular 1-soliton solutions to Eq. (1). They have also introduced sev-

eral topological soliton, rational, and singular periodic solutions obtained mainly from

the simplest equation method. The mapping method has been utilized to achieve sev-

eral soliton solutions to the model via Kerr and parabolic law nonlinearity in [31]. The

authors in [8] have investigated the model and got a W -shaped soliton solution and a

bright soliton solution to the model. They have also presented the numerical evolution

of the obtained solutions. The main difference between the present work and those men-

tioned above is the use of a newly-defined derivative, called conformable derivative. Two

efficient algorithms, including the exp(–φ(η))-expansionmethod and extended Jacobi’s el-

liptic function expansion method have been utilized in [9] to examine the mathematical

analysis of the considered equation (1). The result of this study was the determination

of analytical dark soliton, singular soliton, and periodic solutions. Taking specific limit

values, achieved elliptic solutions are turned into solitary, shock, and singular wave soli-

tons. The elliptic waves acquired by the extended Jacobi’s elliptic function expansion tech-

nique are reduced to solitary waves, shock waves, and singular solitons in some specific

limiting situations. Besides, several waves, such as plane waves as well as bright and sin-

gular solitons of periodic type, have been retrieved via the extended trial equation [9].

In [5], several 1-soliton solutions varieties of the bright and dark soliton solutions to the

governing model were extracted through implementations of the ansatz integration tech-

nique.

The main difference between the present work and those mentioned above is the use of

a new definition for the derivative in the equation, the so-called conformable derivative.

This definition for the derivative was first proposed by Khalil et al. in [23] as a natural ex-

tension of the usual derivative. The generalized exponential rational function method has

been utilized to solve extended Zakharov–Kuzetsov equation with conformable deriva-

tive in [17]. In [21], a generalized type of conformable local fractal derivative (GCFD) is

employed to investigate some nonlinear evolution equations. The authors have also set up

a general technique to find exact solutions for their studied PDEs. In [24], the modified

Kudryashov method has been employed to construct the solutions to the conformable
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time fractional regularized long wave Burgers equation. In [2], several wave solutions for

time-fractional nonlinear dispersive PDEs in the sense of conformable fractional deriva-

tive have been obtained. The definition has many of the important features of a standard

derivative. This is the main advantage of this definition. This derivative has been widely

used in research works in the literature. For example, in [2] a fuzzy approach to con-

formable fractional differential equations has been investigated, and modern trend and

new computational algorithm in terms of analytic and approximate conformable solu-

tions have been proposed. Very recently, in [12], the authors have studied some new op-

tical wave solutions of the Gerdjikov–Ivanov equation involving conformable derivative.

We also use the generalized exponential rational function method (GERFM) [14] to solve

this fractional model. It is important to note that this method has not been elaborated

for the considered form of equation in the previous literature. This article has the fol-

lowing general structure. In Sect. 2, we will present some mathematical background and

methodologies. This chapter will include details of theGERFM, and general principles of

the fractional conformable derivative. The perturbed nonlinear Schrödinger’s equation is

defined in Sect. 3. In Sect. 4, several numerical simulations are given. Finally, conclusions

are drawn in the last section.

2 Mathematical methodologies and background

This section first provides the main structure of the GERFM. Then the basic concepts of

the conformable derivative will be expressed.

2.1 Description of GERFM

The authors in [14] have developed an integration technique called GERFM to solve the

resonance nonlinear Schrödinger equation. Following their achievement, several success-

ful works have been conducted in solving different PDEs [12, 13, 15–17, 27]. We will also

apply this technique as the main method of the article. Now, let us briefly describe the

main steps of the process:

1. Consider a typical nonlinear PDE for U =U(x, t), given by

PDE(U,Ux,Ut ,Uxx, . . .) = 0. (2)

Under the wave transformation of U(x, t) =U(R) with R = σx – lt, Eq. (2) becomes

an ordinary differential equation given by

ODE
(

U,σU′, –lU′,σ 2U′′, . . .
)

= 0, (3)

2. Now, we assume that Eq. (3) admits the exact solution given by

u(R) =A0 +

n0
∑

k=1

AkG(R)
k +

n0
∑

k=1

BkG(R)
–k , (4)

where

G(R) =
z1 exp(h1R) + z2 exp(h2R)

z3 exp(h3R) + z4 exp(h4R)
, (5)
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and zk , hk ’s andA0,Ak and Bk ’s are appropriate parameters, and also n0 is evaluated

by applying the homogeneous balance to (3).

3. Inserting Eq. (4) into (3) with Eq. (5), and then gathering all possible powers of

Ek = exp(hkR) for k = 1, . . . , 4, yields a polynomial equation P(E1,E2,E3,E4) = 0.

Equating the coefficients of P to zero, one derives a simultaneous system of

equations in zk , hk(1≤ k ≤ 4), and σ , l, A0, Ak and Bk(1≤ k ≤ n0).
4. Finally, solving the nonlinear system and substituting the obtained solutions into

Eqs. (4) and (5), the explicit form of the solutions of (2) will be determined.

2.2 Description of the conformable derivative

Definition The conformable derivative of f(t) of order α ∈ (0, 1] at t = t0, is given by [23]

Cα
t f(t0) = lim

ǫ→0

f(t0 + ǫt1–α) – f(t0)

ǫ
. (6)

It is clear that for α = 1, this definition will reduce to the standard definition for the deriva-

tive.

Theorem For any α ∈ (0, 1], and two conformable-differentiable functions f, g, we get

• Cα
t (1) = 0.

• Cα
t (c1f + c2g) = c1C

α
t (f) + c2C

α
t (g), for c1, c2 ∈R.

• Cα
t (t

c) = ctc–α , for c ∈R.

• Cα
t (fg) = fC

α
t (g) + gC

α
t (f).

• Cα
t (
f
g ) =

gCα
t (f)–fC

α
t (g)

g2 .

• If f(t) is a differentiable function (in the standard sense), then Cα
t (f)(t) = t1–σ df

dt
holds.

Since many of the existing definitions do not have some of these features, the existence

of these features is one of the advantages of this definition.

Theorem Let f : (0, 1] → R be a function such that it is classically and conformably dif-

ferentiable.Moreover, suppose that g(t) is a differentiable function defined on the range of

f(t). Then we have

Cα
t (fog)(t) = t1–σg′(t)f′

(

g(t)
)

,

where primes stand for standard derivatives with respect to t.

3 Themain results

The main purpose of this article is to apply the derivatives defined by (6) in the main

equation (1) as follows:

iCα
t U + aC2αxxU +

(

b1|U| + b2|U|2
)

U

= i
{

σCα
xU + βCα

x

(

|U|2U
)

+ γ
(

|U|2
)

U
}

+ θ1C
2α
xx

(

|U|2U
)

+ θ2|U|2C2αxxU + θ3U
2C2αxxU

∗. (7)
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To solve the main PDE, we first need to consider the following new complex transforma-

tions:

U(x, t) =U(R)× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, R =

(

l

α

)

xα –

(

lv

α

)

tα , (8)

where l, v, q, and w are unknown values which need to be determined.

Inserting Eq. (8) into Eq. (7), after doing some cumbersome manipulations, reduces the

original PDE to two equations from the real and imaginary parts. The imaginary part yields

v = –σ – 2aq (9)

and

3β + 2γ – 2q(3θ1 + θ2 – θ3) = 0. (10)

Also, from the real part we have

al2U′′ –
(

w + aq2 + σq
)

U + b1U
2 +

(

b2 – βq + q2θ1 + q
2θ2 + q

2θ3
)

U3

– l2(3θ1 + θ2 + θ3)U
2U′′ – 6l2θ1U

(

U′)2 = 0. (11)

Then imposing the conditions θ1 = 0 and θ2 = –θ3 in (10) and (11), we get respectively [9]:

q = –
3β + 2γ

4θ3
(12)

and

al2U′′ –
(

w + aq2 + σq
)

U + b1U
2 + (b2 – qβ)U

3 = 0. (13)

Now, applying the balancing principle to Eq. (13) for U3 and U′′ suggests 3n0 = n0 + 2,

therefore n0 = 1.

Taking into account Eq. (5) along with n0 = 1 gives

U(R) =A0 +A1G(R) +B1G(R)
–1. (14)

Substituting (14) into (13) and pursuing the steps outlined for the method, the exact

closed-form solutions to the partial differential equation (7) will be determined.

Set 1. If one considers z = [–2,–3, 1, 1] and h = [1, 0, 1, 0], Eq. (5) will turn into

G(R) =
–2eR – 3

eR + 1
, (15)

which yields

Case I.

l =

√
6b1

15
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,
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w =
300aq4θ3 + ((–150a + 300θ3)σ – 300a2)q3 + (–300aσ + 225ab2 – 150α2)q2 + 225σqb2 + 2b1

2

–300θ3q2 + (300a + 150σ )q – 225b2
,

A0 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 =

2b1

–20θ3q2 + (20a + 10σ )q – 15b2
,

B1 =
12b1

–20θ3q2 + (20a + 10σ )q – 15b2
.

Taking into account these values, along with (14) and (15), gives

U(R) =
b1e
R

(–θ3q2 + (a + σ /2)q – 3
4
b2)(1 + eR)(30 + 20eR)

.

Accordingly, we will determine a wave solution for the conformable PDE (7) as

U1(x, t) =

(

b1e
R

(–θ3q2 + (a + σ /2)q – 3
4
b2)(1 + eR)(30 + 20eR)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (16)

where

R =

√
6b1

15
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
6b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 = 0,

B1 =
12b1

–4θ3q2 + (4a + 2σ )q – 3b2
.

Taking into account these values, along with (14) and (15), yields

U(R) =
6b1

(–4θ3q2 + 4qa + 2qσ – 3b2)(3 + 2eR)
.

As a result, one derives a wave solution for the conformable PDE (7) as

U2(x, t) =

(

6b1

(–4θ3q2 + 4qa + 2qσ – 3b2)(3 + 2eR)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (17)
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where

R =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case III.

l =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
4b1

4θ3q2 – (4a + 2σ )q + 3b2
, A1 = 0,

B1 =
12b1

4θ3q2 – (4a + 2σ )q + 3b2
.

Taking into account these values, along with (14) and (15), one obtains

U(R) =
4b1e
R

(–4θ3q2 + 4qa + 2qσ – 3b2)(3 + 2eR)
.

Hence, a new soliton solution for the conformable PDE (7) is constructed as

U3(x, t) =

(

4b1e
R

(–4θ3q2 + 4qa + 2qσ – 3b2)(3 + 2eR)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (18)

where

R =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

(

x + (2qa + σ )t
)

.

Case IV.

l = –
(5

√
217 – 121)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(144
√
217 – 720)

,

w =
365b21

√
217 + 27648[2aq4θ3 + ((–a + 2θ3)σ – 2a2)q3 + (–2aσ + 3

2
ab2 – σ 2)q2 + 3

2
σqb2] + 4991b21

–55,296θ3q2 + 27,648(2a + σ )q – 41472b2
,

A0 =
–5

√
217b1 + 121b1

–384θ3q2 + (384a + 192σ )q – 288b2
,

A1 = –
(
√
217 – 5)b1

–192θ3q2 + (192a + 96σ )q – 144b2
,

B1 = –
(
√
217 – 5)b1

–32θ3q2 + (32a + 16σ )q – 24b2
.
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Taking into account these values, along with (14) and (15), one achieves

U(R) =
b1(10e

2R√
217 + 142e2R + 23

√
217eR + 365eR + 15

√
217 + 213)

(–768θ3q2 + 768(a + σ /2)q – 576b2)(1 + eR)( 3
2
+ eR)

.

Consequently, a wave solution for the conformable PDE (7) is resulted as

U4(x, t)

=

(

b1(10e
2R√

217 + 142e2R + 23
√
217eR + 365eR + 15

√
217 + 213)

(–768θ3q2 + 768(a + σ /2)q – 576b2)(1 + eR)( 3
2
+ eR)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (19)

where

R = –
(5

√
217 – 121)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(144
√
217 – 720)

(

x + (2qa + σ )t
)

.

Set 2. If one considers z = [1– i, –1– i, –1, 1] and h = [i, –i, i, –i], then Eq. (5) will turn into

G(R) =
cos(R) – sin(R)

sin(R)
. (20)

Case I.

l = –
(5

√
217 – 121)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(144
√
217 – 720)

,

w =
(20,064[2aq4θ3 + ((–a + 2θ3)σ – 2a2)q3 + (–2aσ + 3

2
ab2 – α2)q2 + 3

2
σqb2] + 2627b1

2)
√
17 +w1

48(209
√
17 + 1081)(–4θ3q2 + 4qa + 2qσ – 3b2)

,

w1 = 207,552aq4θ3 + 103,776
(

(–a + 2θ3)σ – 2a2
)

q3

+ 103,776

(

–2aσ +
3

2
ab2 – σ 2

)

q2 + 155,664σqb2 + 18,683b21,

A0 =
(13 + 5

√
17)b1

4(1 +
√
17)(–4θ3q2 + 4qa + 2qσ – 3b2)

,

A1 =
(1 +

√
17)b1

–32θ3q2 + (32a + 16σ )q – 24b2
,

B1 =
(309 + 109

√
17)b1

2(25
√
17 + 193)(–4θ3q2 + 4qa + 2qσ – 3b2)

.

Taking into account these values, along with (14) and (20), yields the following

result:

U(R) =
b1(227

√
17 cos2(R) + 227

√
17 cos(R) sin(R) + 155(cos(R))2 + 155 cos(R) sin(R) – 18

√
17 + 926)

(200 + 200
√
17)(–θ3q2 + (a + σ /2)q – 3

4
b2) sin(R)(cos(R) – sin(R))(

√
17 + 193

25
)

.
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Thus, we will determine a wave solution for the conformable PDE (7) as

U5(x, t) = U

(

–
(5

√
217 – 121)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(144
√
217 – 720)

×
[(

1

α

)

xα +

(

2qa + σ

α

)

tα
])

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

.

Case II.

l =
b1√

6a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 – 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
,

A1 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
,

B1 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
.

Taking into account these values, along with (14) and (20), yields

U(R) =
b1

4(–θ3q2 + (a + σ /2)q – 3
4
b2)(cos(R) – sin(R)) sin(R)

.

Accordingly, we will determine a wave solution for the conformable PDE (7) as

U6(x, t) =

(

b1

4(–θ3q2 + (a + σ /2)q – 3
4
b2)(cos(R) – sin(R)) sin(R)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (21)

where

R =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Set 3. If one considers z = [–2– i, 2– i, –1, 1] and h = [i, –i, i, –i], then Eq. (5) will turn into

G(R) =
cos(R) + 2 sin(R)

sin(R)
. (22)

Case I.

l =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
24aq4θ3 + ((–12a + 24θ3)σ – 24a2)q3 + (–24aσ + 18ab2 – 12α2)q2 + 18σqb2 – b1

2

–24θ3q2 + (24a + 12σ )q – 18b2
,



Ghanbari et al. Advances in Difference Equations        ( 2020)  2020:328 Page 10 of 25

A0 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
,

A1 =
b1

8θ3q2 – (8a + 4σ )q + 6b2
,

B1 =
5b1

8θ3q2 – (8a + 4σ )q + 6b2
.

Taking into account these values, along with (14) and (22) yields

U(R) = –
b1

8(cos(R) + 2 sin(R)) sin(R)(–θ3q2 + (a + σ /2)q – 3/4b2)
.

Consequently, we will determine a wave solution for the conformable PDE (7) as

U7(x, t) =

(

–
b1

8(cos(R) + 2 sin(R)) sin(R)(–θ3q2 + (a + σ /2)q – 3/4b2)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (23)

where

R =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =
(
√
11 + 6)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(30 + 30
√
11)

,

w =
107,850[(2aq4θ3 + ((–a + 2θ3)σ – 2a2)q3 + (–2aσ + 3

2ab2 – α2)q2 + 3
2σqb2)]

√
11 +w1

(53,925
√
11 + 207,300)(–4θ3q2 + 4qa + 2qσ – 3b2)

,

w1 = 4379b21
√
11 + 414,600

[

2aq4θ3 +
(

(–a + 2θ3)σ – 2a2
)

q3

+

(

–2aσ +
3

2
ab2 – α2

)

q2 +
3

2
σqb2

]

+ 35,849b21,

A0 =
(17 + 7

√
11)b1

5(1 +
√
11)(–4θ3q2 + 4qa + 2qσ – 3b2)

,

A1 = –
(1 +

√
11)b1

–40θ3q2 + (40a + 20σ )q – 30b2
,

B1 = –
(1029 + 409

√
11)b1

2(62
√
11 + 347)(–4θ3q2 + 4qa + 2qσ – 3b2)

.

Taking into account these values, along with (14) and (22), one gets

U(R) = –
b1(1214

√
11 cos2(R) – 607

√
11 cos(R) sin(R) – 766 cos2(R) + 383 cos(R) sin(R) – 495

√
11 + 3530)

(1240 + 1240
√
11)(–θ3q2 + (a + σ /2)q – 3

4
b2)(

√
11 + 347

62
) sin(R)(cos(R) + 2 sin(R))

.
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Consequently, a novel soliton solution for the conformable PDE (7) is constructed

as

U8(x, t)

=

(

–
b1(1214

√
11 cos2(R) – 607

√
11 cos(R) sin(R) – 766 cos2(R)) + 383 cos(R) sin(R) – 495

√
11 + 3530)

(1240 + 1240
√
11)(–θ3q2 + (a + σ /2)q – 3

4 b2)(
√
11 + 347

62
) sin(R)(cos(R) + 2 sin(R))

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

,

where

R =
(
√
11 + 6)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(30 + 30
√
11)

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Set 4. If one considers z = [1,–3,–1, 1] and h = [1,–1, 1,–1], then Eq. (5) will turn into

G(R) =
cosh(R) – 2 sinh(R)

sinh(R)
. (24)

Case I.

l =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
24aq4θ3 + ((–12a + 24θ3)σ – 24a2)q3 + (–24aσ + 18ab2 – 12α2)q2 + 18σqb2 + b1

2

–24θ3q2 + (24a + 12σ )q – 18b2
,

A0 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 =

b1

–8θ3q2 + (8a + 4σ )q – 6b2
,

B1 =
3b1

–8θ3q2 + (8a + 4σ )q – 6b2
.

Taking into account these values, along with (14) and (24), yields

U(R) =
b1

8(–θ3q2 + (a + σ /2)q – 3
4
b2) sinh(R)(cosh(R) – 2 sinh(R))

.

As a result, we will determine a wave solution for the conformable PDE (7) as

U9(x, t) =

(

b1

8(–θ3q2 + (a + σ /2)q – 3
4
b2) sinh(R)(cosh(R) – 2 sinh(R))

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (25)

where

R =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =
b1√

6a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,
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w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
b1

4θ3q2 – (4a + 2σ )q + 3b2
, A1 = 0,

B1 =
3b1

4θ3q2 – (4a + 2σ )q + 3b2
.

Taking into account these values, along with (14) and (24), yields

U(R) = –
b1(cosh(R) + sinh(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2)(cosh(R) – 2 sinh(R))
.

Accordingly, one will obtain a novel solution for the conformable problem (7) as

U10(x, t) =

(

–
b1(cosh(R) + sinh(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2)(cosh(R) – 2 sinh(R))

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (26)

where

R =
b1√

6a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case III.

l =
b1√

6a
√

–4θ3q2 + (4a + 2σ )q – //3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
3b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 = 0,

B1 =
3b1

–4θ3q2 + (4a + 2σ )q – 3b2
.

Taking into account these values, along with (14) and (24), yields

U(R) =
3b1(– sinh(R) + cosh(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2)(cosh(R) – 2 sinh(R))
.

Consequently, we will determine a wave solution for the conformable equation (7)

as

U11(x, t) =

(

3b1(– sinh(R) + cosh(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2)(cosh(R) – 2 sinh(R))

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (27)

where

R =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.
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Set 5. If one considers z = [1, 1,–1, 1] and h = [1,–1, 1,–1], then Eq. (5) will turn into

G(R) = –
cosh(R)

sinh(R)
. (28)

Case I.

l =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 = 0,

B1 =
b1

4θ3q2 – (4a + 2σ )q3b2
.

Taking into account these values, along with (14) and (28), yields

U(R) =
b1(1 + coth(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2) coth(R)
.

As a result, we will determine a wave solution for the conformable formulation (7)

as

U12(x, t) =

(

b1(1 + coth(R))

4(–θ3q2 + (a + σ /2)q – 3/4b2) coth(R)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (29)

where

R =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 = 0,

B1 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
.

Taking into account these values, along with (14) and (28), yields

U(R) =
b1(coth(R) – 1)

4(–θ3q2 + (a + σ /2)q – 3/4b2) coth(R)
.
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Accordingly, we will determine a wave solution for the conformable equation (7)

as

U13(x, t) =

(

b1(coth(R) – 1)

4(–θ3q2 + (a + σ /2)q – 3/4b2) coth(R)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (30)

where

R =

√
6b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case III.

l =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 =

b1

–8θ3q2 + (8a + 4σ )q – 6b2
,

B1 =
b1

–8θ3q2 + (8a + 4σ )q – 6b2
.

Taking into account these values, along with (14) and (28), yields

U(R) =
b1(coth(R) – 1)2

8(θ3q2 – (a + σ /2)q + 3/4b2) coth(R)
.

As a result, we will determine a wave solution for the conformable partial differ-

ential equation (7) as

U14(x, t) =

(

b1(coth(R) – 1)2

8(θ3q2 – (a + σ /2)q + 3/4b2) coth(R)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (31)

where

R =

√
6b1

12
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Set 6. If one considers z = [0,–1, 1, 1] and h = [0, 0, 1, 0], then Eq. (5) will turn into

G(R) = –
1

eR + 1
. (32)

Case I.

l =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,
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w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 = 0, A1 =
2b1

4θ3q2 – (4a + 2σ )q + 3b2
, B1 = 0.

Taking into account these values, along with (14) and (32), yields

U(R) =
b1

2(1 + eR)(–θ3q2 + (a + σ /2)q – 3/4b2)
.

Consequently, we will determine a wave solution for the conformable partial dif-

ferential equation (7) as

U15(x, t) =

(

b1

2(1 + eR)(–θ3q2 + (a + σ /2)q – 3/4b2)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (33)

where

R =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
2b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 =

2b1

–4θ3q2 + (4a + 2σ )q – 3b2
,

B1 = 0.

Taking into account these values, along with (14) and (32), yields

U(R) =
b1e
R

2(1 + eR)(–θ3q2 + (a + σ /2)q – 3/4b2)
.

Consequently, we will determine a wave solution for the conformable equation (7)

as

U16(x, t) =

(

b1e
R

2(1 + eR)(–θ3q2 + (a + σ /2)q – 3/4b2)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (34)

where

R =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.
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Set 7. If one considers z = [–12,–2, 1, 1] and h = [1, 0, 1, 0], then Eq. (5) will turn into

G(R) =
–eR – 2

eR + 1
. (35)

Case I.

l =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
4b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 = 0,

B1 =
4b1

–4θ3q2 + (4a + 2σ )q – 3b2
.

Taking into account these values, along with (14) and (35), yields

U(R) =
b1

(eR + 2)(–θ3q2 + (a + σ /2)q – 3/4b2)
.

Accordingly, we will derive a wave solution for the conformable problem (7) as

U17(x, t) =

(

b1

(eR + 2)(–θ3q2 + (a + σ /2)q – 3/4b2)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (36)

where

R =

√
6b1

3
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Case II.

l =
(41 + 3

√
73)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(48
√
73 + 144)

,

w =
–75b1

2
√
73 + 3072[2aq4θ3 + ((–a + 2θ3)σ – 2a2)q3 + (–2aσ + 3

2
ab2 – α2)q2 + 3

2
σqb2] + 511b1

2

–6144θ3q2 + (6144a + 3072σ )q – 4608b2
,

A0 =
(41 + 3

√
73)b1

–128θ3q2 + 128qa + 64qσ – 96b2
,

A1 =
b1(

√
73 + 3)

–64θ3q2 + (64a + 32σ )q – 48b2
,

B1 =
b1(

√
73 + 3)

–32θ3q2 + (32a + 16σ )q – 24b2
.
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Taking into account these values, along with (14) and (35), yields

U(R) = –
b1(3e

2R√
73 – 23e2R + 7

√
73eR – 75eR + 6

√
73 – 46)

(–128θ3q2 + 128(a + σ /2)q – 96b2)(eR + 2)(1 + eR)
.

As a result, we will determine a novel wave solution for the conformable PDE (7)

as

U18(x, t) =

(

–
b1(3e

2R√
73 – 23e2R + 7

√
73eR – 75eR + 6

√
73 – 46)

(–128θ3q2 + 128(a + σ /2)q – 96b2)(eR + 2)(1 + eR)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (37)

where

R =
(41 + 3

√
73)

√
6b1

√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2(48
√
73 + 144)

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.

Set 8. If one considers z = [i, –i, 1, 1] and h = [i, –i, i, –i], then Eq. (5) will turn into

G(R) = –
sin(R)

cos(R)
. (38)

Case I.

l =

√
3b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2
,

w =
12aq4θ3 + ((–6a + 12θ3)σ – 12a2)q3 + (–12aσ + 9ab2 – 6α2)q2 + 9σqb2 + 2b1

2

–12θ3q2 + (12a + 6σ )q – 9b2
,

A0 =
b1

–4θ3q2 + (4a + 2σ )q – 3b2
, A1 =

b1
√
2

–8θ3q2 + (8a + 4σ )q – 6b2
,

B1 =
b1

√
2

–8θ3q2 + (8a + 4σ )q – 6b2
.

Taking into account these values, along with (14) and (38), yields

U(R) = –
b1(–2 cos(R) sin(R) +

√
2)

8 sin(R)(–θ3q2 + (a + σ /2)q – 3/4b2) cos(R)
.

Consequently, we will obtain a wave solution for the conformable equation (7) as

U19(x, t) =

(

–
b1(–2 cos(R) sin(R) +

√
2)

8 sin(R)(–θ3q2 + (a + σ /2)q – 3/4b2) cos(R)

)

× exp

[

i

((

–q

α

)

xα +

(

w

α

)

tα
)]

, (39)

where

R =

√
3b1

6
√
a
√

–4θ3q2 + (4a + 2σ )q – 3b2

[(

1

α

)

xα +

(

2qa + σ

α

)

tα
]

.
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To the best of our knowledge, all the acquired results obtained in this article are resented

for the first time. In addition, in order to investigate the correctness of each of the so-

lutions, we have substituted them into the main equation, and found that all solutions

satisfied it.

4 Numerical simulations

In this section, we depict the obtained solutions for the perturbed nonlinear Schrödinger’s

equation. Now, we will discuss the possible physical significance for the parameters. Fig-

ure 1 depicts the dynamic behavior of U1(x, t) when a = 0.1, b1 = 0.5, b2 = 1, β = 1, γ = 1,

θ3 = 0.2, and σ = –3.47 are considered. In each row of this figure, the graphs are plotted

for a specific value for the fractional order α.

Figure 2 shows the dynamic behavior for U2(x, t). In this figure we have used a = 2.5,

b1 = 0.01, b2 = 0.05, β = 0.21, γ = 0.7, θ3 = 1.5, and σ = –6.63. It is clearly seen that by

changing the fractional order α the behavior of the solutions will also be affected. In Fig. 3

we have also plotted U6(x, t) for a = 0.01, b1 = 0.01, b2 = 0.5, β = 0.3, γ = 0.2, θ3 = 0.01, and

σ = –0.7. Taking a = 0.005, b1 = 0.1, b2 = 0.5, β = 0.5, γ = 0.2, θ3 = 0.01, and σ = –0.98 in

(7), the solution given by U9(x, t) has been plotted in Fig. 4. When α changes, the range

of solutions and the dynamic behavior of each also changes. The effects of the parameters

are evident in the diagrams. In Fig. 5, we present the numerical simulations of U10(x, t) for

a = 0.005, b1 = 0.01, b2 = 0.5, β = 0.5, γ = 1.2, θ3 = 0.07, and σ = –2.01, when α is taken 0.5,

0.75, and 0.98. The same situation has been considered in Fig. 6 where U12(x, t) is plotted

Figure 1 Dynamic behavior ofU1(x, t)
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Figure 2 Dynamic behavior ofU2(x, t)

Figure 3 Dynamic behavior ofU6(x, t)
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Figure 4 Dynamic behavior ofU9(x, t)

Figure 5 Dynamic behavior ofU10(x, t)
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Figure 6 Dynamic behavior ofU12(x, t)

Figure 7 Dynamic behavior ofU14(x, t)
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Figure 8 Dynamic behavior ofU15(x, t)

for a = 0.07, b1 = 0.07, b2 = 0.75, β = 0.03, γ = 0.75, θ3 = 0.1, and σ = –1.23. Moreover,

in Fig. 7, the behaviors of U14(x, t) are illustrated by taking a = 0.01, b1 = 0.17, b2 = 0.05,

β = 0.03, γ = 0.05, θ3 = 0.2, and σ = –1.27, for several α’s. In Fig. 8, we show the graphs for

U14(x, t), with a = 0.3, b1 = 0.13, b2 = 0.03, β = 0.2, γ = 0.01, θ3 = 0.2, and σ = –1.06. And,

finally, U19(x, t) is illustrated by several plots in Fig. 9 where we set a = 0.03, b1 = 0.015,

b2 = 0.3, β = 0.07, γ = 0.01, θ3 = 0.01, and σ = –0.26.

5 Conclusion

The introduction of new definitions in the calculus will always open new windows in the

field of science and technology. The use of these new definitions in differential equations

always requires the presentation of analytical and numerical methods related to them in

order to solve such problems. One of the new definitions presented for local derivatives

is conformable derivative. In this paper, the solved model uses this type of definition. In

this paper, a powerful analytical technique for solving partial derivative equations is used

in solving a form of fractional Schrödinger’s equation. The derivative used in this equa-

tion is the conformable fractional derivative. The functions used in these solutions are

common trigonometric, hyperbolic, and exponential functions. Hence the structure of

these solutions is quite simple and usable in practical applications. In applying the algo-

rithm, this method requires a symbolic package such as Maple and Mathematica to solve

a nonlinear algebraic system. As can be seen, a wide range of solutions to this equation

is determined using this method. As a result, some new solutions, which include the pe-

riodic kink-wave, kink, dark-singular, dark-bright, solitary, and periodic wave solutions,
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Figure 9 Dynamic behavior ofU19(x, t)

were obtained. The correctness of all of them has been investigated by directly inserting

them into the main equation, which shows that the answers are all correct. The fractional

derivative used in this paper requires new features for solutions that are not available in

the classical derivative form. This is one of the main advantages of the fractional deriva-

tive used in this equation. Also, one of the obvious advantages of the method is that it

determines the very diverse categories of solutions, all under the same procedure. An-

other very valuable advantage of the method is its ease of use. It is important to note that

many of the results obtained in this paper are completely new and cannot be obtained by

existing knownmethods. Themethod, along with derivative, used in the paper can also be

employed to solve other well-known equations in mathematical physics and engineering.
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