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Abstract—We propose the use of a new algorithm to solve
multiobjective optimization problems. Our proposal adapts the
well-known scatter search template for single-objective opti-
mization to the multiobjective domain. The result is a hybrid
metaheuristic algorithm called Archive-Based hYbrid Scatter
Search (AbYSS), which follows the scatter search structure
but uses mutation and crossover operators from evolutionary
algorithms. AbYSS incorporates typical concepts from the mul-
tiobjective field, such as Pareto dominance, density estimation,
and an external archive to store the nondominated solutions.
We evaluate AbYSS with a standard benchmark including both
unconstrained and constrained problems, and it is compared
with two state-of-the-art multiobjective optimizers, NSGA-II
and SPEA2. The results obtained indicate that, according to the
benchmark and parameter settings used, AbYSS outperforms the
other two algorithms as regards the diversity of the solutions, and
it obtains very competitive results according to the convergence to
the true Pareto fronts and the hypervolume metric.

Index Terms—Hybrid metaheuristics, multiobjective optimiza-
tion, scatter search.

I. INTRODUCTION

I
N THE LAST few years, much attention has been paid to the
optimization of problems whose formulation involves opti-

mizing more than one objective function. This interest is mainly
motivated by the multiobjective nature of most real-world prob-
lems [1], [2]. Generally speaking, multiobjective optimization
is not restricted to finding a single solution to a given multiob-
jective optimization problem (MOP), but rather it finds a set of
solutions called nondominated solutions. Each one in this set
is said to be a Pareto optimum, and when they are plotted in
the objective space they are collectively known as the Pareto

front. Obtaining the Pareto front of a given MOP is the main goal
of multiobjective optimization. This means that multiobjective
optimizers need to explore larger portions of the search space
because they search for the Pareto front, i.e., not a single op-
timum but a set of Pareto optima. Additionally, many real-world
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MOPs typically need computationally expensive methods for
computing the objective functions and constraints.

In this context, deterministic techniques are generally not ap-
plicable, which leads us therefore to using stochastic methods
[3]. Among these, metaheuristics appear as a family of approx-
imate techniques that are widely used in many fields to solve
optimization problems; in particular, the use of evolutionary al-
gorithms (EAs) for solving MOPs has significantly grown in re-
cent years, giving rise to a wide variety of algorithms, such as
NSGA-II [4], SPEA2 [5], PAES [6], and many others [1], [2].

Scatter search [7]–[9] is a metaheuristic algorithm that can be
considered an EA in the sense that it incorporates the concept of
population. However, scatter search usually avoids using many
random components, and typical evolutionary operators such as
mutation or crossover operators do not fit, theoretically, with the
philosophy of this algorithm. The method is based on using a
small population, known as the reference set, whose individuals
are combined to construct new solutions which are generated
systematically. Furthermore, these new individuals can be im-
proved by applying a local search method. The reference set is
initialized from an initial population composed of diverse so-
lutions, and it is updated with the solutions resulting from the
local search improvement. Scatter search has been found to be
successful in a wide variety of optimization problems [8], but
until recently it had not been extended to deal with MOPs.

Our interest here is to adapt the well-known scatter search
template [7] to multiobjective optimization. This template char-
acterizes scatter search algorithms according to five methods
that must be defined: diversification generation, improvement,
reference set update, subset generation, and solution combina-
tion. Compared with EAs, scatter search is attractive because it
is a structured strategy, in which is clearly stated where local
searches can be applied (in the improvement method), and the
diversification/intensification balance can be tuned in several
ways: adjusting the size of the reference set, defining how the
reference set is updated (reference set update method), and de-
termining how to create new solutions (in the subset generation
method).

Our goal is to design a competitive algorithm capable of
beating the results produced by state-of-the-art multiobjective
optimizers, such as NSGA-II and SPEA2. With this objec-
tive in mind, we have explored not only using a pure scatter
search algorithm but also the possibility of using mutation
and crossover operators if they enhance the search capabilities
of the algorithm. As a result, our approach, called AbYSS
(Archive-Based hYbrid Scatter Search), cannot be considered
strictly as scatter search but a hybridization of this algorithm
with randomized operators typically used in EAs.

1089-778X/$25.00 © 2008 IEEE
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AbYSS combines ideas from three state-of-the-art EAs for
solving MOPs. On the one hand, an external archive is used to
store the nondominated solutions found during the search, fol-
lowing the scheme applied by PAES, but using the crowding
distance of NSGA-II as a niching measure instead of the adap-
tive grid [6]; on the other hand, the selection of solutions from
the initial set used to build the reference set applies the SPEA2
density estimation.

The contributions of our work are summarized in the
following.

• We propose a hybrid algorithm based on scatter search for
solving constrained, as well as unconstrained MOPs. The
algorithm incorporates the concepts of Pareto dominance,
external archiving, and two different density estimators.

• Several possible configurations for AbYSS are studied in
order to get a better understanding of the behavior of the
algorithm.

• We analyze the performance of AbYSS by comparing it
to NSGA-II and SPEA2, using several test functions and
metrics taken from the specialized literature.

The rest of this paper is organized as follows. In Section II,
we discuss related works concerning multiobjective optimiza-
tion and scatter search. Section III is devoted to the descrip-
tion of our proposal. Experimental results, comparing AbYSS
with other EAs for solving MOPs, are presented and analyzed
in Section IV. Finally, we conclude the paper and give some
lines of future work in Section V.

II. RELATED WORK

The application of scatter search to multiobjective opti-

mization has received little attention until recently. In fact,

straightforward approaches and early studies were based on

solving MOPs with the standard, single-objective scatter search

algorithm.

Martí et al. [10] study the problem of assigning proctors to

exams, which is formulated as a biobjective problem. However,

the authors combine the objective functions to create a single,

weighted function and the problem is solved as a mono-objec-

tive problem with the standard scatter search scheme. They do

not seek to obtain a set of nondominated solutions.

The problem of routing school buses in a rural area is ad-

dressed by Corberán et al. [11]. This is a biobjective MOP aimed

at minimizing, on the one hand, the number of buses required

to transport students and, on the other hand, the time a given

student spends on route. Although the authors develop a solu-

tion procedure that searches for a set of efficient solutions in-

stead of a single optimum one, the approach uses neither Pareto

optimality for comparing the solution quality, nor specialized

mechanisms for dealing with the set of efficient solutions: the

reference set in scatter search is used as a common repository

for efficient and nonefficient solutions.

Rao and Arvind [12] attempt laminate ply sequence optimiza-

tion of hybrid composite panels in order to simultaneously opti-

mize both the weight of the panel and its cost. The weighted sum

approach is used to solve the multiobjective problem where the

two objectives are combined into one overall objective function.

The scatter search method used does not incorporate specialized

mechanisms for supporting multiobjective functions. Tradeoff

results are provided by using different values of the weights.

Krishna and Rao [13] address optimization of the grinding

parameters of wheel speed, work piece speed, depth of dressing,

and lead of dressing for the surface grinding process with a

scatter search approach. This is a minimization problem in

which objectives are normalized before the weighted function

is computed.

Next, we analyze related works in which multiobjective ver-

sions of the scatter search technique are proposed as new algo-

rithmic approaches.

A scatter search algorithm for solving the bicriteria multidi-

mensional knapsack problem is presented by da Silva et al. in

[14]. Even though the algorithm aims at finding a set of nondom-

inated solutions, it is tightly tailored to solve a specific problem,

and the scatter search methods differ significantly from those

used in this work.

MOSS [15] is an algorithm that proposes a tabu/scatter search

hybrid method for solving nonlinear MOPs. Tabu search is used

in the diversification generation method to obtain a diverse ap-

proximation to the Pareto-optimal set of solutions; it is also

applied to rebuild the reference set after each iteration of the

scatter search algorithm. To measure the quality of the solu-

tions, MOSS uses a weighted sum approach. This algorithm is

compared with NSGA-II, SPEA2, and PESA on a set of uncon-

strained test functions.

Like MOSS, SSPMO [16] is a scatter search algorithm which

includes tabu search, each uses different tabu search algorithms.

SSPMO obtains part of the reference set by selecting the best

solutions from the initial set for each objective function. The

rest of the reference set is obtained using the usual approach

of selecting the remaining solutions from the initial set which

maximize the distance to the solutions already in the reference

set. In contrast to MOSS, the initial set is updated with solutions

obtained in the scatter search main loop. SSPMO is evaluated

using a benchmark of unconstrained test functions.

SSMO [17] is a scatter search-based algorithm for solving

MOPs. It is characterized by using a nondominating sorting pro-

cedure to build the reference set from the initial set, and a local

search based on a mutation operator is used to improve the so-

lutions obtained from the reference set. A key feature of SSMO

is the use of the initial set as a population where all the non-

dominated solutions found in the scatter search loop are stored.

This algorithm is evaluated with a set of both unconstrained and

constrained test functions.

A multiobjective scatter search algorithm, called M-scatter

search, is presented by Vasconcelos et al. in [18]. The authors

use the nondominated sorting technique and the niched-type

penalty method of NSGA [19] to extend the scatter search al-

gorithm to multiobjective optimization. M-scatter search also

uses an offline set which stores nondominated solutions found

during the computation. The NSGA niching method is applied

in the updating procedure of the offline set, to keep nondomi-

nated solutions uniformly distributed along the Pareto front.

AbYSS is also applied to solve MOPs with continuous

bounded variables. It follows the steps of the scatter search

algorithm, but using mutation and crossover operators. Another
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Fig. 1. Outline of the standard scatter search algorithm.

difference is that AbYSS uses two different density estimations

in the algorithm.

III. DESCRIPTION OF THE PROPOSED ALGORITHM

AbYSS is based on the scatter search template proposed in

[7] and its usage to solve bounded continuous single-objective

optimization problems [9]. The template defines five methods,

as depicted in Fig. 1. The methods are: diversification genera-

tion, improvement, reference set update, subset generation, and

solution combination.

At this point, we should point out that scatter search is a

generic strategy, and many decisions have to be made to design

a specific scatter search algorithm. In particular, the balance be-

tween diversification and intensification must be carefully ad-

justed; otherwise, the algorithm may require a higher number

of iterations to converge to reach accurate solutions. In this sec-

tion, we give a generic description of AbYSS and consider that

it is possible to combine different methods and parameters in

the algorithm. These issues are studied in Section IV-C.

In Sections III-A–D, first we discuss the scatter search

method in relation to the template; then we describe the five

methods used in our approach, mainly focusing on the improve-

ment and reference set update procedures, which constitute the

basis of our proposal. We then look at how the external archive

is managed. Finally, we present the overall algorithm.

A. The Scatter Search Template

The scatter search method starts by creating an initial set of

diverse solutions in the initialization phase. This phase consists

of iteratively generating new solutions by invoking the diversi-

fication generation method; each solution is passed to the im-

provement method, which usually applies a local search, and

the resulting individual is added to the initial set. After the ini-

tial phase, the scatter search main loop starts.

The main loop begins by building the reference set from the

initial set using the reference set update method. Then, solutions

in the reference set are systematically grouped into subsets of

two or more individuals using the subset generation method. In

the next step, solutions in each subset are combined somehow

to produce new individuals. This combination is defined by the

solution combination method. The improvement method is ap-

plied to each newly generated solution, and the final step is to

decide whether the resulting solution is inserted or not into the

reference set. This loop is executed until a stopping condition

is fulfilled (for example, a given number of iterations have been

performed, or the subset generation method produces no more

subsets).

Optionally, there is a restart process. The idea is to create a

new initial set, containing the individuals currently in the refer-

ence set, and the remaining individuals are generated using the

diversification generation and improvement methods, as in the

initial phase.

B. Scatter Search Methods

In order to describe the algorithm, the initial set and the refer-

ence set are, respectively, named and RefSet in the following.

1) Diversification Generation Method: The method is basi-

cally the same as that proposed in [9]. The goal is to generate

an initial set of diverse solutions. This is a simple method

based on dividing the range of each variable into a number

of subranges of equal size; then, the value for each decision

variable of every solution is generated in two steps. First, a

subrange of the variable is randomly chosen. The probability of

selecting a subrange is inversely proportional to its frequency

count (the number of times the subrange has already been

selected). Second, a value is randomly generated within the

selected range. This is repeated for all the solution decision

variables.
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2) Improvement Method: The idea behind this method is to

use a local search algorithm to improve new solutions obtained

from the diversification generation and solution combination

methods (see Fig. 1). In [9], the simplex method is used; here

we evaluate using this method (Section IV-C), but we also an-

alyze an improvement strategy which is a simple EA.

The is based on using a mutation operator as pertur-

bation and a Pareto dominance test. This way, we do not follow

the scatter search guidelines on avoiding the use of stochastic

operators. This approach has been chosen because of the sim-

plicity of the final improvement method and also because of the

benefits provided by using operators which have been proven

to perform well in EAs. An outline of the method is shown in

Fig. 2.

The improvement method takes an individual as a parameter,

which is repeatedly mutated with the aim of obtaining a better

individual. The term “better” is defined here in a similar way

to the constrained-dominance approach used in NSGA-II [4].

A constraint violation test checks whether two individuals are

feasible or not (line 6). If one of them is and the other is not,

or both are infeasible but one has a smaller overall constraint

violation, then the test returns the winner (line 7). Otherwise, a

dominance test is used to decide whether one of the individuals

dominates the other. If the original individual wins, the mutated

one is discarded; if the mutated individual wins, it replaces the

original one; finally, if they are both nondominated and the mu-

tated individual is not dominated by the external archive, the

original individual is moved into the external archive and the

mutated individual becomes the new original one. This way we

avoid getting worse solutions with respect to the archive as the

improvement progresses.

Several features of the proposed improvement method should

be noted. First, no nondominated solution is lost since in the

case where several nondominated solutions are found in the pro-

cedure, they are inserted into the external archive. Second, by

tuning the parameter iter, we can easily adjust the improvement

effort and, therefore, the intensification capabilities of the opti-

mizer as well.

We should point out here that the improvement method is

based on a generic , not on evolution strategy

(ES), since neither the use of a Gaussian mutation nor evolving

the mutation strength are considered in AbYSS. This is because

applying the self adaptation scheme typical of ES would require

too many evaluations in the improvement method. We use a

polynomial mutation operator, which is typically used by mul-

tiobjective genetic algorithms, such as NSGA-II and SPEA2.

3) Reference Set Update Method: The reference set is a col-

lection of both high-quality and diverse solutions that are used

to generate new individuals. The set itself is composed of two

subsets, and , of size and , respectively. The

first subset contains the best quality solutions in , while the

second subset should be filled with solutions promoting diver-

sity. In [16], the set is built by selecting those individ-

uals from whose minimum Euclidean distance to is

the highest. We use the same strategy to build , but, as

is usual in the multiobjective optimization domain, we have to

define the concept of “best individual” to build . The

reference set update method is also used to update the reference

Fig. 2. Pseudocode describing the improvement method.

set with the new solutions obtained in the scatter search main

loop (see Fig. 1). An outline of this method is included in Fig. 3.

To select the best individuals of (line 3), we use the ap-

proach used in SPEA2, i.e., the individuals are assigned a fitness
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Fig. 3. Pseudocode describing the reference set update method.

value which is the sum of their strength raw fitness and a den-

sity estimation [5]. The strength of an individual is the number

of solutions it dominates in a population, and its strength raw

fitness is the sum of the strengths of its dominator individuals.

The density estimation is based on computing the distance to

the th nearest neighbor (see [5] for further details).

Once the reference set is filled, its solutions are combined

to obtain new solutions, which are then improved. Afterwards,

they are tested for inclusion in the reference set (line 8 in Fig. 3).

According to the scatter search template, a new solution can be-

come a member of the reference set if either one of the following

conditions is satisfied.

• The new individual has a better objective function value

than the individual with the worst objective value in

.

• The new individual has a better distance value to the refer-

ence set than the individual with the worst distance value

in .

While the second condition holds in the case of multiobjective

optimization, we have again to decide about the concept of best

individual concerning the first condition. To determine whether

a new solution is better than another one in (i.e., the test

to insert a new individual in , as it appears in line 10

of Fig. 3) we cannot use a ranking procedure because the size of

this population is usually small (typically, the size of the whole

reference set is 20 or less). Our approach is to compare each

Fig. 4. Pseudocode describing the test to add new individuals to ������ .

new solution to the individuals in using a dominance

test. This test is included in Fig. 4. (For the sake of simplicity,

we do not consider here constraints in the MOP. The procedure

for dealing with constraints is as explained in the improvement

method in Fig. 2.)

Note that when a new individual is not dominated by the

, it is inserted into this set only if it is not full. This

means that the new individual has to dominate at least one indi-

vidual in . If this condition does not hold, the individual

is inserted into the external archive.

4) Subset Generation Method: According to the scatter

search template, this method generates subsets of individuals,

which will be used to create new solutions with the solution

combination method. Several kinds of subsets are possible [9].

The most usual strategy considers all pairwise combinations of

solutions in the reference set. Furthermore, this method should

avoid producing repeated subsets of individuals, i.e., subsets

previously generated.

In AbYSS, this method produces, on the one hand, pairwise

combinations of individuals from and, on the other,

pairwise combinations of individuals from . Our pre-

liminary experiments (see Section IV-C) revealed that gener-

ating combinations of individuals from the two subsets makes

the algorithm converge poorly. The reason is related to the fact

that the combination of individuals from the two RefSets in-

creases the exploration capabilities of the search, thus producing

an imbalance between intensification and diversification. As as

result, the algorithm requires a larger number of iterations for

converging to an accurate Pareto front.
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5) Solution Combination Method: The idea of this method

in the scatter search strategy is to find linear combinations of

reference solutions. After studying this issue in our preliminary

tests, we realized that the results were very competitive for many

problems, but the algorithm failed when trying to solve some

difficult problems. In Section IV-C we analyze the use of a sim-

ulated binary crossover operator (SBX) [20] instead, concluding

that this crossover operator makes AbYSS more robust.

C. Managing the External Archive

The main objective of the external archive (or repository) is

to store a record of the nondominated individuals found during

the search process, in order to keep those individuals producing

a well-distributed Pareto front. The key issue in archive man-

agement is to decide whether a new solution should be added to

it or not.

When a new solution is found in the improvement or the

solution combination methods, it is compared pairwise with

the contents of the archive. If this new solution is dominated

by an individual from the archive (i.e., the solution is domi-

nated by the archive), then such solution is discarded; otherwise,

the solution is stored. If there are solutions in the archive that

are dominated by the new element, then such solutions are re-

moved. If the archive reaches its maximum allowable capacity

after adding the new solution, a decision has to be made to de-

cide which individual has to be removed. The strategy used in

other archive-based EAs when the archive is full, such as PAES

[6] and MOPSO [21], is to divide up the objective function

space using an adaptive grid, which is a space formed by hy-

percubes. Our approach is to use instead the crowding distance

of NSGA-II [4]. The crowding distance is an estimation of the

density of solutions surrounding a particular solution in a pop-

ulation (in our case, this population is the external archive), and

it is based on calculating the average distance of two points on

either side of this point along each of the objectives.

It is worth mentioning here that we could have used the den-

sity estimation of SPEA2, as we did in the reference set update

method. However, we decided to use two different density es-

timations with the aim of hopefully profiting from the combi-

nation of both in different parts of our algorithm, and thus ob-

taining a better distributed Pareto front. The rationale for this

decision is that nondominated solutions may have to pass two

filters: first, they are not in the densest region, according to the

crowding distance, and second, they are obtained from the best

individuals of the initial set according to the density estimation.

We have done some experiments comparing the use of only one

density estimator in AbYSS, but combining both yielded the

best results.

D. Outline of AbYSS

Once the five methods of the scatter search have been pro-

posed and a procedure to manage the external repository has

been defined, we are now ready to give an overall view of the

technique. The outline of AbYSS is depicted in Fig. 5.

Initially, the diversification generation method is invoked to

generate initial solutions, and each one is passed to the im-

provement method (line 1). The result is the initial set . Then,

a number of iterations is performed (the outer loop in Fig. 5).

Fig. 5. Outline of the AbYSS algorithm.

At each iteration, the reference set is built, the subset genera-

tion method is invoked, and the main loop of the scatter search

algorithm is executed until the subset generation method stops

producing new subsets of solutions (lines 4–13). Then, there is a

restart phase, which consists of three steps. First, the individuals

in are inserted into ; second, the best individuals

from the external archive, according to the crowding distance,

are also moved to ; and, third, the diversification generation

and improvement methods are used to produce new solutions

for filling up the set .

The idea of moving individuals from the archive to the ini-

tial set (line 17) is to promote the intensification capabilities of

the search towards the Pareto front already found. The inten-

sification degree can vary depending on the number of chosen

individuals. We use a value of that is the minimum of the size

of the archive and half the size of .

The stopping condition of the algorithm can be fixed, or it can

depend on other conditions; here, we have used the computation

of a predefined number of fitness evaluations (see Section IV-D).
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TABLE I
PROPERTIES OF THE MOPS CREATED USING THE WFG TOOLKIT

IV. EXPERIMENTATION

This section is devoted to presenting the experiments per-

formed in this work. We first detail the set of MOPs used as

a benchmark and the metrics applied for measuring the per-

formance of the resulting Pareto fronts. Next, our preliminary

experiments for tuning AbYSS are described and analyzed. Fi-

nally, we evaluate our proposal and compare it to NSGA-II and

SPEA2.

A. Test Problems

In this section, we describe the different sets of both con-

strained and unconstrained problems solved in this work. These

problems have been used in many studies in this area.

We have selected first the following biobjective uncon-

strained problems: Schaffer [22], Fonseca [23], and Kursawe

[24], as well as the problems ZDT1, ZDT2, ZDT3, ZDT4, and

ZDT6, which are all defined in [25]. We also include in this set

the biobjective version of the nine problems, WFG1 to WFG9,

defined in [26] using the WFG Toolkit. The properties of these

problems are detailed in Table I. The second set is composed

of the following constrained biobjective problems: Osyczka2

[27], Tanaka [28], Srinivas [19], Constr_Ex [4], and Golinski

[29]. Finally, we have included problems of more than two

objectives. The first group of problems is Viennet2, Viennet3,

Viennet4 [30], and Water [31]. The first two have three objec-

tives and zero constraints, the third one has three objectives and

three constraints, and the last one has five objectives and seven

constraints. The second group is composed of the DTLZ family

of scalable test problems [32].

B. Performance Metrics

To assess the performance of algorithms on the test problems,

two different issues are normally taken into account: the dis-

tance between the Pareto front generated by the proposed al-

gorithm to the exact Pareto front should be minimized and the

spread of solutions found should be maximized in order to ob-

tain as smooth and uniform a distribution of vectors as possible.

To determine these issues, it is necessary to know the exact loca-

tion of the true Pareto front. In most of the benchmark problems

used in this work, their Pareto fronts are known (families ZDT,

Fig. 6. The HV enclosed by the nondominated solutions.

DTLZ, and WFG); in the other problems, we have obtained their

Pareto fronts using an enumerative search strategy [33].

The performance metrics can be classified into three cate-

gories depending on whether they evaluate the closeness to the

Pareto front, the diversity in the solutions obtained, or both [2].

We have adopted one metric of each type.

• Generational Distance (GD): This metric was introduced

by Van Veldhuizen and Lamont [34] to measure how far

the elements are in the set of nondominated vectors found

from those in the Pareto optimal set and it is defined as

where is the number of vectors in the set of nondomi-

nated solutions found so far and is the Euclidean dis-

tance (measured in objective space) between each of these

solutions and the nearest member of the Pareto optimal set.

It is clear that a value of indicates that all the gen-

erated elements are in the Pareto front. In order to obtain

reliable results, nondominated sets are normalized before

calculating this distance measure.

• Spread: The original Spread metric [4] is based on cal-

culating the distance between two consecutive solutions,

which works only for two-objective problems. We extend

this metric by computing the distance from a given point

to its nearest neighbor. This modification is based on the

metric proposed in [35]

(2)

where is a set of solutions, is the set of Pareto optimal

solutions, are extreme solutions in ,

is the number of objectives, and

(3)

(4)



446 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. 4, AUGUST 2008

TABLE II
SUMMARY OF THE DIFFERENT CONFIGURATIONS USED IN ABYSS

If the achieved solutions are well distributed and include

those extreme solutions, . We apply this metric after

a normalization of the objective function values (see the

appendix for a further analysis of this issue).

• Hypervolume (HV): This metric calculates the volume (in

the objective space) covered by members of a nondomi-

nated set of solutions (the region enclosed within the

discontinuous line in Fig. 6, ) for problems

where all objectives are to be minimized [36]. Mathemati-

cally, for each solution , a hypercube is constructed

with a reference point and the solution as the diagonal

corners of the hypercube. The reference point can be found

simply by constructing a vector of worst objective function

values. Thereafter, a union of all hypercubes is found and

its hypervolume is calculated

(5)

Algorithms with larger values are desirable. Since this

metric is not free from arbitrary scaling of objectives, we

have evaluated the metric by using normalized objective

function values.

C. Study of Different Parameter Configurations

As commented before, several issues should be studied in

order to make decisions relating to parameters defining the be-

havior of AbYSS. Although an extensive analysis of the param-

eters of AbYSS is outside the scope of this paper, we study a

number of them. In particular, we focus on the following issues.

• The use of the simplex method against the EA in

the improvement phase.

• The application of linear combination versus the SBX

crossover operator in the solution combination method.

• The size of the set .

• The generation of all pairwise combinations of individuals

in the reference set in the subset generation method.

• The number of iterations in the improvement method.

We have performed six experiments with the aim of clari-

fying the influence of these issues on the search capabilities of

AbYSS. For this purpose, the problems ZDT1 (convex), ZDT2

(nonconvex), ZDT3 (nonconvex, disconnected), ZDT4 (convex,

multimodal), and ZDT6 (nonconvex, nonuniformly spaced)

[25] have been chosen from our benchmark (Section IV-A).

We consider that the features of these problems make them

meaningful enough for this preliminary study.

Fig. 7. Statistical analysis performed in this work.

Prior to describing the experiments, we detail the simplex

method we have used. Taking the Nelder–Mead simplex algo-

rithm [37] as starting point, we have had to adapt it to the mul-

tiobjective optimization domain. The original method is a non-

linear optimization algorithm commonly used to minimize an

objective function in a many-dimensional space. It can be seen

as a geometric method since it works on a shape (the simplex)

of points (being the number of dimensions of the

problem) which is iteratively transformed by means of a set of

rules (reflection, expansion, and contraction) so that the sim-

plex is moved within the search space until convergence criteria

are met. This method works as follows. The initial simplex is

built by using nondominated solutions from the archive. (This

is aimed at reducing the number of evaluations required.) Next,

the vertexes are sorted using a nonweighted aggregative func-

tion (the simplest and fastest approach in this scenario with such

a small number of nondominated solutions). The best vertex is

then transformed with the standard Nelder–Mead operations so

that the newly generated vertex is compared with the original

untransformed one using a dominance test. If the former either

dominates the later or both are nondominated, the new vertex is

inserted into the simplex, it is discarded otherwise. This algo-

rithms iterates only five times.

The following experiments were carried out (Table II includes

a summary of all the configurations).

1) Experiment 1: We configure AbYSS with a typical config-

uration for a scatter search algorithm: we use the simplex

algorithm in the improvement method, linear combinations

to create new trial solutions are applied in the solution com-

bination method, the size of is 100, the subset generation

method generates all pairwise combinations of individuals

belonging to both and , and the size of

both and is 10.
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TABLE III
RESULTS OF EXECUTING DIFFERENT CONFIGURATIONS OF ABYSS

2) Experiment 2: We replace the simplex method by the

EA in the improvement phase, using a distribu-

tion index of 20 in the polynomial mutation. We start by

using a number of iterations equal to one.

3) Experiment 3: We keep the same parameter settings as in

the previous experiment, but the size of is reduced to

20 individuals. As the restart strategy works, this means

that ten solutions come from and the other ten

are copied from the external archive, so no newly random

solution is included when restarting and the intensification

of AbYSS around the current nondominated solutions is

stressed.

4) Experiment 4: AbYSS is configured as in Experiment 3,

but the subset generation method produces pairs of indi-

viduals belonging only to or . The aim

is to intensify the search in two ways. Explicitly, by re-

ducing the number of combinations with diverse solutions

coming from , and also implicitly, since the lower

the number of combinations the shorter the inner loop of

AbYSS and, therefore, the higher the number of restarts

promoting feedback of nondominated solutions from the

external archive.

5) Experiment 5: Using stochastic procedures instead of

linear combinations in the solution combination method

has produced improved results due to their enhanced

exploration capabilities in single-objective scatter search

[38]. For this reason, we repeat Experiment 4, but using

the SBX operator in the solution combination method,

with a distribution index of 20.

6) Experiment 6: In the last experiment, we repeat Exper-

iment 5, but apply three iterations in the improvement

method. The idea is to enhance the intensification of the

search in AbYSS at a low cost.

The algorithm stops when 25 000 function evaluations have

been computed. We have made 100 independent runs of each ex-

periment, and the results obtained are shown in Table III. Since
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TABLE IV
MEDIAN AND INTERQUARTILE RANGE OF THE GENERATIONAL DISTANCE ����

METRIC (25 000 FUNCTION EVALUATIONS)

we are dealing with stochastic algorithms and we want to pro-

vide the results with confidence, the following statistical anal-

ysis has been performed throughout this work [39], [40]. First,

a Kolmogorov–Smirnov test was performed in order to check

TABLE V
MEDIAN AND INTERQUARTILE RANGE OF THE SPREAD ��� METRIC

(25 000 FUNCTION EVALUATIONS)

whether the values of the results follow a normal (Gaussian)

distribution or not. If the distribution is normal, the Levene test

checks for the homogeneity of the variances. If samples have

equal variance (positive Levene test), an ANOVA test is done;
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Fig. 8. AbYSS finds a better spread of solutions than SPEA2 and NSGA-II in the Kursawe problem.

otherwise, a Welch test is performed. For non-Gaussian distribu-

tions, the nonparametric Kruskal–Wallis test is used to compare

the medians of the algorithms. Fig. 7 summarizes the statistical

analysis. We always consider in this work a confidence level of

95% (i.e., significance level of 5% or -value under 0.05) in the

statistical tests, which means that the differences are unlikely to

have occurred by chance with a probability of 95%. Successful

tests are marked with “ ” symbols in the last column in all the

tables; conversely, “ ” means that no statistical confidence was

found ( -value ). Looking for homogeneity in the pre-

sentation of the results, Table III, respectively, includes the me-

dian, , and interquartile range (IRQ), as measures of location

(or central tendency) and statistical dispersion, because, on the

one hand, some samples follow a Gaussian distribution while

others do not, and, on the other hand, mean and median are the-

oretically the same for Gaussian distributions. Indeed, whereas

the median is a feasible measure of central tendency in both

Gaussian and non-Gaussian distributions, using the mean only

makes sense for Gaussian ones. The same holds for the standard

deviation and the IRQ. The best result for each problem has a

gray colored background. We now analyze each experiment in

detail.

1) Experiment 1: The results show that the configuration

used in this experiment reaches the third best values in and

for ZDT1, but it obtains the worst values for ZDT2. Indeed,

the HV metric gets a value of zero in ZDT2, which means that

all the solutions are outside the limits of the true Pareto front;

when applying this metric, these solutions are not considered

because, otherwise, the obtained value would be unreliable. A

major issue emerges when solving ZDT4 with this configura-

tion: AbYSS converges to one single solution which is one of

the extreme solutions of the optimal Pareto front. This there-

fore means that GD values are perfect (zero distance), but no

volume is covered by these solutions, so . Since ob-

taining a Pareto front composed of only one point is not a sat-

isfactory solution to the problem, we have considered the GD

value over ZDT4 as the worst of all the compared algorithms in

order to avoid wrong conclusions when examining the values in

Table III.

2) Experiment 2: In this experiment (see Table III, second

column), the simplex algorithm is replaced by the .

Compared with the previous experiment, it improves upon the

values in ZDT2, ZDT4, and ZDT6. Concerning the Spread

metric, this configuration reaches an acceptable result for ZDT2,

while keeping the same behavior for the remaining ones. How-

ever, the zero values in all the MOPs but ZDT6 shows that

here AbYSS hardly converges to the true Pareto front. The met-

rics indicate that ZDT4 is not satisfactorily solved.

3) Experiment 3: As stated before, the goal is to enhance

the intensification capabilities of AbYSS by reducing the size

of the initial set. We consider this reduction because prelimi-

nary experiments seemed to indicate that using large sizes for

had a negative influence on the convergence of the algorithm

when solving some problems. The results of this experiment

(Table III, third column) show that reducing the size of the ini-

tial set to 20 individuals produces similar metric values as in

Experiments 1 and 2 (the exception is GD for ZDT1 in Experi-

ment 1). Again, HV shows that the algorithm converges poorly

to the optimal Pareto front.

4) Experiment 4: With the idea in mind of investigating

whether the diversification/intensification balance of AbYSS

is penalized if the subset generation method produces pairs of
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Fig. 9. Pareto fronts obtained with the three algorithms on problem ZDT1.

individuals belonging to and , in this experi-

ment, we only allow combinations of individuals belonging to

the same subset. The results (Table III, fourth column) show

that this configuration, although it does not yield the best

absolute value in any case, produces general improvements in

the metric values for all the problems. These improvements are

specially captured by the HV metric, which indicates that the

algorithm is now able to converge to the optimal Pareto fronts

because nonzero values are reached. ZDT4 is the exception yet.

5) Experiment 5: This experiment keeps the previous con-

figuration in all the parameter settings (see Table II) except in

the solution combination method, where the SBX crossover op-

erator is used instead of linear combinations. This operator is

commonly applied in the algorithms NSGA-II and SPEA2, so

it is of interest to study its application in AbYSS. The results

(Table III, fifth column) show that this configuration is clearly

the best out of the six experiments and with statistical confi-

dence (see the “ ” symbols in the last column of the table).

Indeed, this parameter setting makes AbYSS reach, on the one

hand, the lowest GD and values and, on the other hand, the

highest HV values for the five MOPs considered.

6) Experiment 6: In Experiment 5, we achieved a config-

uration that successfully solved the problems considered. We

now perform three steps in the improvement method to study

whether intensifying the search is capable of improving AbYSS.

The obtained results (Table III, last column) are satisfactory, but

this configuration does not improve the results of Experiment 5.

Increasing the number of steps in this method has two contra-

dictory effects on AbYSS. On the one hand, more accurate so-

lutions are hopefully computed because of the higher number

of trials explored but, on the other hand, more improvement

steps mean more function evaluations and, therefore, the scatter

search iterates fewer times. As learned from Experiments 3 and

4 with the current configurations, this leads to less search in-

tensification since the number of restarts, and thus the feedback

of nondominated solutions from the external archive is reduced.

Further experiments, which are not presented here in the interest

of clarity, point out that using no improvement does not work be-

cause no alterations on a single solution are induced and, there-

fore, the search gets stuck easily (just combining solutions is not

enough in our context).

Therefore, we can conclude from these experiments that ap-

plying stochastic operators in AbYSS leads the algorithm to be

more robust and accurate. However, it is worth mentioning that

many other configurations are possible, so there is still room

for improvement. To finish this section, we can state that the

parameter settings of Experiment 5 are the most promising of

the ones tested for AbYSS. Now that we have decided the set

of parameters characterizing AbYSS, we are ready to make a

more in-depth evaluation of our proposal, including a compar-

ison with other well-known metaheuristic algorithms for solving

MOPs.

D. Results

In order to know how competitive AbYSS is, we decided to

compare it to two algorithms which represent the state-of-the-

art. These algorithms are NSGA-II and SPEA2. Next, we briefly
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TABLE VI
MEDIAN AND INTERQUARTILE RANGE OF THE HYPERVOLUME ���� METRIC

(25 000 FUNCTION EVALUATIONS)

describe these algorithms, and the parameter settings used in the

subsequent experiments.

• Nondominated Sorting Genetic Algorithm II: The

NSGA-II algorithm was proposed by Deb et al. [4]. It is

based on obtaining a new population from the original

one by applying the typical genetic operators (selection,

crossover, and mutation); then, the individuals in the two

populations are sorted according to their rank, and the best

solutions are chosen to create a new population. In the case

of having to select some individuals with the same rank,

a density estimation based on measuring the crowding

distance to the surrounding individuals belonging to the

same rank is used to get the most promising solutions.

We have used Deb’s NSGA-II implementation.1 We have

used the real-coded version and the parameter settings used

in [4]. The operators for crossover and mutation are SBX

and polynomial mutation, with distribution indexes of

and , respectively. A crossover probability of

and a mutation probability (where is

the number of decision variables) are used. The population

size is 100 individuals.

• Strength Pareto EA: SPEA2 was proposed by Zitler et al.

in [5]. In this algorithm, each individual has a fitness value

assigned which is the sum of its strength raw fitness and

a density estimation (see Section III-B3). The algorithm

applies the selection, crossover, and mutation operators to

fill an archive of individuals; then, the nondominated in-

dividuals of both the original population and the archive

are copied into a new population. If the number of non-

dominated individuals is greater than the population size,

a truncation operator based on calculating the distances to

the kth nearest neighbor is used. This way, the individuals

having the minimum distance to any other individual are

chosen.

We have used the authors’ implementation of SPEA2.2

The algorithm is implemented within the PISA framework

[41]. However, the implementation of SPEA2 does not

contain constraint-handling management, so we were

forced to modify the original implementation in order to

include the same constraint mechanism used in NSGA-II

and AbYSS. We have used the following values for the

parameters: both the population and the archive have a

size of 100 individuals, and the crossover and mutation

operators are the same as those used in NSGA-II, using

the same values concerning their application probabilities

and distribution indexes.

The parameters characterizing AbYSS were discussed

in the previous section. AbYSS has been implemented in

Java using jMetal, a framework aimed at facilitating the

development of metaheuristics for solving multiobjective op-

timization problems [42]. It can be freely downloaded from:

http://neo.lcc.uma.es/metal/index.html.

To evaluate each algorithm, we performed two series of ex-

periments. First, we ran all the approaches for 25 000 function

evaluations and then repeated them, this time with the execu-

tion of 50 000 function evaluations as the stopping condition.

These values have been used in previous works in the area [4].

Test MOPs (see Section IV-A) have been grouped into five cat-

1The implementation of NSGA-II is available for downloading at:
http://www.iitk.ac.in/kangal/soft.htm

2The implementation of SPEA2 is available at: http://www.tik.ee.ethz.ch/
pisa/selectors/spea2/ spea2.html
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Fig. 10. Nondominated solutions with AbYSS on problems ZDT2, ZDT3, ZDT4, and ZDT6.

egories in the tables for a better presentation of the results. The

first group is composed of the biobjective unconstrained prob-

lems Schaffer, Fonseca, and Kursawe, as well as the problems

ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. The second group in-

cludes the nine WFG problems. The third set embraces the con-

strained biobjective problems Constr_Ex, Srinivas, Osyczka2,

Golinski, and Tanaka. The fourth group comprises the problems

Viennet2, Viennet3, Viennet4, and Water. Finally, the last group

is the family of scalable problems DLTZ1-7.

For each problem, we have executed 100 independent runs.

The values included in the tables of results are the median, ,

and the interquartile range, . The best ones for each problem

have a gray background. The same statistical analysis as in the

previous section has been performed here.

Tables IV–VI show the results of the previously described

metrics using the algorithms AbYSS, NSGA-II, and SPEA2

when performing 25,000 function evaluations.

Table IV shows that AbYSS obtains the lowest (best) values

for the GD metric in 21 out of the 33 test MOPs, and with

statistical confidence in almost all the cases (see “ ” symbols

in the last column of the table). This means that the resulting

Pareto fronts from AbYSS are closer to the optimal Pareto fronts

than those computed by NSGA-II and SPEA2. We would like

to highlight the suitability of AbYSS for solving the first two

groups of MOPs (biobjective ones), in which this algorithm ob-

tains the closest fronts for 13 out of 17 problems. This is par-

ticularly relevant in the WFG family, where an advanced algo-

rithm like SPEA2 reports GD values one or two orders of mag-

nitude worse than AbYSS (WFG1 and WFG8 stand for the ex-

ceptions). In the three remaining groups of problems (biobjec-

tive constrained and more-than-two objectives), AbYSS obtains

competitive results compared with NSGA-II and SPEA2. Par-

ticular accuracy is achieved in Srinivas, DTLZ2, and DTLZ3.

Finally, we wish to point out that the differences in terms of raw

(absolute) distances are, with some exceptions, not very large

(close-to-zero values in the GD metric), thus indicating a sim-

ilar ability of the three algorithms to compute accurate Pareto

fronts. The reported results of Table IV have statistical confi-

dence for all the problems, except for Viennet2.
The results obtained from the Spread metric (see Table V)

indicate that AbYSS outperforms the other two algorithms
concerning the diversity of the obtained Pareto fronts in the
biobjective MOPs (it yields the lowest values in 21 of the 22
biobjective problems). The point here is that not only differ-
ences in the values between AbYSS and NSGA-II/SPEA2
are, in general, greater than in the GD metric, but also these
differences lead to Pareto fronts in which nondominated
solutions are much better spread. To graphically illustrate
this fact, we show in Fig. 8 typical simulation results of the
three algorithms when solving the Kursawe problem. We can
observe that, although SPEA2 and NSGA-II obtain a good
spreadout, the set of nondominated solutions generated by
AbYSS achieves an almost perfect distribution along the
Pareto front. To reinforce this claim, we also include the
fronts obtained when solving the problem ZDT1 in Fig. 9. If
we consider MOPs with more than two objectives, SPEA2
provides the best values in 6 out of the 11 analyzed problems,
while AbYSS performs best in four MOPs. Analyzing these
results in detail, we observe that AbYSS is the only algorithm
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TABLE VII
MEDIAN AND INTERQUARTILE RANGE OF THE GENERATIONAL DISTANCE ����

METRIC (50 000 FUNCTION EVALUATIONS)

reporting values in the order of in all the problems; SPEA2
performance in problems DTLZ1 and DTLZ3 is in the order of

. So, AbYSS appears to be more robust concerning these
MOPs.

TABLE VIII
MEDIAN AND INTERQUARTILE RANGE OF THE SPREAD METRIC

(50 000 FUNCTION EVALUATIONS)

As a measure of both convergence and diversity, the HV

metric should prove the results of the two other metrics. This

is true, in general, if we observe the results in the three first

groups of problems, where AbYSS obtains the best (highest)
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TABLE IX
MEDIAN AND INTERQUARTILE RANGE OF THE HYPERVOLUME ���� METRIC

(50 000 FUNCTION EVALUATIONS)

HV values in 15 out of the 22 problems comprising these groups

(Table VI). Indeed, AbYSS is always the best for the greatest

number of MOPs in each group (seven out of eight, five out

of nine, and three out of five for the first, second, and third

group, respectively). When we shift to more-than-two objec-

tive MOPs (last two groups) differences vanish and AbYSS is

competitive against SPEA2 and NSGA-II in the fourth and fifth

groups of MOPs. If we further analyze the HV values of the

DTLZ family, we observe that problems DTLZ3 and DTLZ6

yield a value of zero, which means that their fronts are outside

the limits of the true Pareto front of the problems, as we ex-

plained in Section IV-C.
With the aim of giving a complete graphical overview of the

behavior of AbYSS, we include the fronts it computes for ZDT2,
ZDT3, ZDT4, and ZDT6 in Fig. 10. The graphics show that our
proposal is particularly accurate on biobjective MOPs.

We now turn to analyze the results obtained when running
50 000 function evaluations. The aim of this set of experiments
is to check whether AbYSS can also be competitive and even
outperform both NSGA-II and SPEA2 when we allow the algo-
rithms to run for longer.

Concerning GD (Table VII), the results are similar to those
reached when computing 25 000 function evaluations. Now,
AbYSS is not the best algorithm in MOPs Schaffer, ZDT2,
and Viennet2, but it outperforms the other two algorithms in
DTLZ6. In general, the three algorithms obtain slightly better
results when performing 50 000 function evaluations, but in
some cases the metric values are worse. Some examples are
ZDT3, DTLZ5, and WFG8 for AbYSS, NSGA-II, and SPEA2,
respectively. If we pay attention to the DTLZ problem family,
there are noticeable improvements; hence, ABYSS enhances
the GD values in all the problems except DTLZ4, and similar
behavior is observed in NSGA-II and SPEA2. In DTLZ prob-
lems, all the algorithms compute Pareto fronts which are closer
to the optimal Pareto front, thus profiting from the deeper ex-
ploration they are allowed to carry out. However, the important
point here is that AbYSS again outperforms both NSGA-II and
SPEA2 in most MOPs of the benchmark used.

In the Spread metric (see Table VIII), AbYSS improves the
results in all the problems, but Viennet3, and DTLZ7; how-
ever, this does not hold with NSGA-II and SPEA2, which ob-
tain worse values in many problems. It is worth mentioning
that AbYSS is the optimizer which major improvements have
reached (e.g., the problems ZDT1, ZDT2, ZDT4, and Golinski),
computing the best values of the Spread metric for 27 out of 33
benchmarking MOPs.

Finally, the HV values included in Table IX confirm that
making more function evaluations improves the obtained Pareto
fronts in most of the experiments. As in the case of 25 000
function evaluations, the HV metric does not allow to decide a
clear winner when solving the four proposed set of problems,
because, although SPEA2 obtains the best HV values in four
out of the seven DTLZ problems, it fails in DTLZ3.

A general conclusion that can be drawn from the two sets

of experiments is that AbYSS provides the best values in con-

vergence in most of the problems, and it also outperforms both

NSGA-II and SPEA2 in terms of diversity when solving biob-

jective MOPs. The quality of the fronts in these problems is re-

markable, as is pointed out by both the values of the three met-

rics and Figs. 8–10.

V. CONCLUSION AND FUTURE WORK

We have presented a proposal to adapt the scatter search

method to handle MOPs. The proposed algorithm, AbYSS, is a
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Fig. 11. Pareto fronts of the problem Constr_Ex with AbYSS and SPEA2.

hybridized scatter search which uses an external archive to store

the nondominated solutions found during the search. Salient

features of AbYSS are the feedback of individuals from the

archive to the initial set in the restart phase of the scatter search,

as well as the combination of two different density estimators

in different parts of the search. On the one hand, the crowding

distance, taken from NSGA-II, is applied to remove individuals

from the archive when it becomes full and to choose the best

individuals which are taken from the archive to feed the initial

set in the restart. On the other hand, the density estimator used

in SPEA2 obtains the best individuals from the initial set to

create the reference set.

AbYSS was validated using a standard methodology which is

currently used in the evolutionary multiobjective optimization

community. The algorithm was compared with two state-of-

the-art multiobjective optimization algorithms, NSGA-II and

SPEA2; for that purpose, 33 test problems, including uncon-

strained and constrained ones with two or more objectives, were

chosen and three metrics were used to assess the performance

of the algorithms. The results reveal that AbYSS outperforms

all the proposals on most test problems considered when using

25 000 and 50 000 function evaluations according to the Spread

metric, and it obtains very competitive fronts concerning both

GD and HV metrics. Since the operators which guide the search

in the three algorithms are the same (SBX and polynomial mu-

tation), we can state that the search engine of the scatter search

approach is responsible for the improvements on NSGA-II and

SPEA2.

An in-depth study of the parameters defining the behavior of

the algorithm, as well as its application to solve real-world prob-

lems are the focus of future work. In this sense, we intend to use

AbYSS to solve combinatorial problems in the telecommunica-

tions field.

APPENDIX

ABOUT THE SPREAD METRIC

The Spread metric measures the extent of spread achieved

among the solutions obtained by a multiobjective optimization

algorithm. However, as defined in [4], the metric can give mis-

leading results if we compare two fronts and the two objective

functions range between values of different order of magnitude.

We observe this behavior when comparing the fronts of problem

Constr_Ex produced by the algorithms AbYSS and SPEA2.

As can be seen in Fig. 11, the Pareto front computed by

AbYSS achieves a better spread that the one obtained by SPEA2

when making 25 000 function evaluations; after applying the

Spread metric, the values reported are 0.5112 for AbYSS and

0.1827 in the case of SPEA2. Thus, according to the metric,

SPEA2 is better than AbYSS on this problem.

If we observe the Pareto front of problem Constr_Ex, we can

see that it is composed of two parts. The left part ranges roughly

between 0.4 and 0.65 in the axis and 1.5 and 9 in the axis,

while the right part ranges between 0.65 and 1 ( axis) and 1

and 1.5 ( axis). A closer look to the Pareto fronts reveals that

SPEA2 produces more solutions in the left part, while the so-

lutions obtained by AbYSS are uniformly spread among the

two parts. As the two sets of solutions are composed of the

same number of points (100 solutions), the Spread metric fa-

vors SPEA2 because the distances measured in the lower front

are negligible compared with those of the upper front.

To solve this issue, we take the approach of normalizing the

values of the two objective functions between 0 and 1. This way,

the shape of the Pareto fronts is kept identical, and the results of

applying the Spread metric yield 0.16 to AbYSS and 0.5166 to

SPEA2 (see Table V).
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