

AC-DIMM: Associative Computing with STT-MRAM

Qing Guo, Xiaochen Guo, Ravi Patel Engin Ipek, Eby G. Friedman University of Rochester

Published In: ISCA-2013

Motivation

Prevalent Trends in Modern Computing:

- 1. Technology Scaling > Creates Power and Bandwidth Challenges
 - Transistor density doubles every two years, but power efficiency does not scale proportionally
 - Number of pins grows approximately at 16% / year only
- 2. Data-Intensive Work Load

Resultant Bottlenecks:

- On-Chip Power Dissipation
- Off-Chip Memory Bandwidth

One Promising Solution:

Associative Computing Using Content-Addressable Memories (CAM)

Content Addressable Memory

- Simultaneously compares all stored keys against a search key
- Energy- and bandwidth-efficient on an important subset of dataintensive applications

Current Challenges With CAMs

CMOS-based CAMs are large, costly, and power-hungry

mW / MB

- Commercial uses of CAMs are limited
 - Highly associative caches, TLBs
 - Microarchitectural queues
 - Networking routers

Resistive CAMs

- Resistive memories (e.g., PCM and STT-MRAM) offer high density and very low leakage power
- Previously proposed PCM-based TCAM accelerator [MICRO'11]
 - A gigabyte, DDR3-compatible DIMM
 - TCAM caters to a wide range of search-intensive applications

Associative Computing Paradigm

- Broadens the use of CAMs to a more general programming framework
- Data organized by key-value pairs
 - Linked list, array, stack, queue
 - Matrix, tree, graph

Key (row, col)	Value
(0,0)	а
(0,1)	b
(1,0)	С
(1,1)	d

L. Potter, "ASC: an associative-computing paradigm", 1994

AC-DIMM

Mustafa Shihab: 02/28/2014

UT DALLAS

System Interface

• AC-DIMM is a DDR3 compatible module

Programming Model

• Program accesses AC-DIMM via a user-level library

Programming Model

• Program accesses AC-DIMM via a user-level library

Array Organization

- Memory row can be searched, read, and written
- Co-locate key-value pairs in the same row

- Progressively searches column-by-column across the array
- Improves power efficiency and simplifies cell structure

Example: search for 011

- Progressively searches column-by-column across the array
- Improves power efficiency and simplifies cell structure

- Progressively searches column-by-column across the array
- Improves power efficiency and simplifies cell structure

- Progressively searches column-by-column across the array
- Improves power efficiency and simplifies cell structure

Microcontroller

• Microcontroller runs user-defined kernel on the matching rows

AC-DIMM Cell Structure

- -- 2T1R CAM Cell Using STT-MRAM
 - Data is stored in a magnetic tunnel junction (MTJ)

Reading

• Stored data is read by bitline sense amps

Writing

• Programming an MTJ requires a bi-directional write current

Writing

- Resetting an AC-DIMM cell
- Setting an AC-DIMM cell

Searching

 Accomplished by reading a column of bits, and comparing against the search key

• Outputs a 1 on a match, a 0 otherwise

Experimental Setup

- System configuration
 - Processor: 8 cores, 4GHz
 - Memory bus: DDR3-1066
- Simulation tools
 - Cadence (Spectre), Encounter RTL Compiler with FreePDK
 - SESC simulator
- Applications
 - NuMineBench
 - MiBench
 - Phoenix
 - SPEC INT 2000

System Performance

 AC-DIMM outperforms the previous TCAM-DIMM when search key is short (<32 bits)

System Performance

• AC-DIMM caters to a broader range of applications

UT DALLAS

System Energy

TCAM-DIMM AC-DIMM

- Dynamic energy saved by eliminating data movement
- Leakage energy saved by reducing execution time

Summary

- AC-DIMM is an STT-MRAM based compute engine
 - DDR3 compatible module
 - Applicable to other RAM-based technologies
 - Integrates programmable microcontrollers
 - Co-locates key-value pairs
- Improves energy and bandwidth efficiency
 - Eliminates unnecessary data movement
 - Reduces instruction and address processing overheads

Thank you

Mustafa Shihab: 02/28/2014