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Abstract. Ac electrokinetics is concerned with the study of the movement and
behaviour of particles in suspension when they are subjected to ac electrical fields.
The development of new microfabricated electrode structures has meant that
particles down to the size of macromolecules have been manipulated, but on this
scale forces other than electrokinetic affect particles behaviour. The high electrical
fields, which are required to produce sufficient force to move a particle, result in
heat dissipation in the medium. This in turn produces thermal gradients, which may
give rise to fluid motion through buoyancy, and electrothermal forces. In this paper,
the frequency dependency and magnitude of electrothermally induced fluid flow are
discussed. A new type of fluid flow is identified for low frequencies (up to 500 kHz).
Our preliminary observations indicate that it has its origin in the action of a
tangential electrical field on the diffuse double layer of the microfabricated
electrodes. The effects of Brownian motion, diffusion and the buoyancy force are
discussed in the context of the controlled manipulation of sub-micrometre particles.
The orders of magnitude of the various forces experienced by a sub-micrometre
latex particle in a model electrode structure are calculated. The results are
compared with experiment and the relative influence of each type of force on the
overall behaviour of particles is described.

1. Introduction

The potential for using ac electrokinetic techniques to
manipulate and separate bioparticles is now undoubtedly
proven. The rapid development of this field into a new
technology has been achieved through the application of
microelectronic methods used to fabricate small electrode
structures that can generate high electrical fields from
relatively small applied ac potentials.

The controlled manipulation of cells and micro-
organisms has been a topic of research for a number of
years. Pohl [1] showed how the application of non-uniform
ac fields could induce movement of polarizable particles
and termed the force responsible the dielectrophoretic force.
It was shown that dielectrophoresis (DEP) could be used
to manipulate particles and also to separate different types
of bacteria [1]. Recent work has shown the versatility of
DEP in areas such as the separation of cancer cells from
blood [2] and the separation of bacteria using conductivity
or permittivity gradients as a means of controlling the
dielectrophoretic forces [3]. A recent review of the subject
is given in [4]. The time-averaged DEP force is given by
[1, 5]

〈F̄DEP 〉 = 1
2vα∇Ē2

rms (1)

where α is the effective polarizability of the particle,
v is the volume of the particle and∇Ē2

rms is the
gradient of the energy density of the electrical field.
In order to move particles of the order of 1–10µm
in diameter, a field of 104–105 V m−1 is required.
Early studies of DEP effects were undertaken using
large electrode structures (for example a coaxial wire
suspended in a tube) and high voltages [1]. However,
the application of new micro-fabrication methods has
meant that the dielectrophoretic manipulation of particles
can be performed using lithographically manufactured
micro-electrodes with sufficient field generated using
commercially available low-voltage (up to 10 V) frequency
synthesizers.

Recent work [6–11] has demonstrated that DEP can be
used to manipulate particles smaller than 1µm in diameter.
It was believed that the effect of Brownian motion was
such that the deterministic movement of such small particles
could not be achieved using DEP. The force on a particle
due to Brownian motion increases as the particle’s volume
is reduced and Pohl [1] showed that excessively large
electrical field gradients would be required to move a
particle of, for example, 500 nm diameter. However,
through the use of electrode structures of a suitable size the
electrical field gradient can be increased to a level sufficient
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(a)

(b)

Figure 1. Diagrams of the electrode geometries used in
this work. The polynomial electrode is shown in (a) and the
castellated one in (b). Dimensions are typically from 2 µm
to tens of micrometres. (c) Shows a parallel finger
electrode used for observation of EHD movement of latex
spheres. In this case the electrodes are 2 mm long and
100 µm wide, with a 25 µm gap.

to move particles of most sizes and types, as recent work
has shown. Particles such as plant and animal viruses,
latex beads, DNA and macromolecules can be moved by
DEP [6–10]. We have also shown that it is possible to

(c)

Figure 1. (Continued)

separate heterogeneous populations of latex particles into
sub-populations [11].

Although polarizable particles can be moved using
non-uniform electrical fields, the dielectrophoretic force
is not the sole force acting on a particle. The total
force on any particle is given by the sum of many forces
including sedimentation, Brownian, dielectrophoretic and
hydrodynamic forces; the latter arising from viscous drag
on the particle. An electrical field can also induce fluid
motion that will drag the particle and the motive forces
are electrohydrodynamic in origin, namely electro-osmosis
and electrothermal. The magnitudes of these forces can
be of the same order as, or in certain circumstances
much larger than, the force exerted on the particle by
dielectrophoresis. For example, the movement of particles
in micro-electrode arrays is strongly influenced by fluid
motion and we [10] together with other workers in the
field [6] have noted this fact. At certain combinations of
frequency, medium conductivity and applied voltage, the
hydrodynamic forces can dominate over the DEP force.
Under other experimental conditions these forces are too
small to be seen and as a result quite subtle changes in
the DEP properties of the particles can be detected and
measured [10, 11]. Although these different forces have
been observed and noted in the literature, little work has
been done to categorize and determine the ranges of sizes
of forces and their influences on particles.

Consequently we have undertaken observations of the
forces on particles in micro-electrode arrays when they are
energized with ac voltages over a wide frequency range
and have performed order-of-magnitude calculations of the
various forces and their effects on the ac electrokinetic
behaviour of particles. We begin by showing how
sub-micrometre particles, such as latex spheres, can be
manipulated using non-uniform ac electrical fields. The
various forces acting on the particles are then analysed
and the order of magnitude of the force exerted on a
latex particle of 282 nm diameter is calculated for various
frequency and force regimes.
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(a)

(b)

(c)

Figure 2. A two-dimensional plot of the electrical field distribution across the parallel finger electrode of figure 1(c) is shown
in (a). (b) Shows the variation of |∇Ē2| in a cross section of the electrode, indicating the magnitude and direction of the DEP
force on a particle. The magnitudes of the vectors are drawn on a logarithmic scale. Note the minimum in the electrical field
and force at a point equidistant between the two fingers, with a secondary minimum on top of the electrodes. The maximum
in field gradient is at the edge of the electrodes where particles collect under positive DEP. (c) Is a plot of |∇Ē2| as a
function of the distance in the x direction at three heights above the plane of the electrode, 1, 2 and 10 µm.
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2. Experimental details

2.1. Electrodes

Electrodes for manipulation and trapping of particles were
fabricated using either photolithography or electron beam
lithography. Electrodes of the polynomial and castellated
geometries were used, details of the design of which
have been published elsewhere [10–13]. The polynomial
electrode is shown schematically in figure 1(a) and the
castellated electrode in figure 1(b). In addition, simple
electrodes consisting of two parallel fingers were fabricated,
as shown in figure 1(c).

For large particles, such as cells and micro-
organisms, electrodes with a spacing of 50–100µm
have been used by other workers. However, the
dielectrophoretic manipulation of sub-micrometre latex
spheres was performed using inter-electrode spacings in
the range 2–25µm for all of the three electrode designs.
Electrodes were manufactured on glass microscope slides
with an array covering an area of typically 10 mm×10 mm.
Fluorescently loaded latex spheres were obtained from
Molecular Probes, Inc and were suspended in a buffer of
an appropriate conductivity. The spheres were pipetted
onto the electrode array and covered with a glass cover
slip. Particle motion was observed with a Nikon Microphot
fluorescence microscope and data were recorded with a
colour CCD camera and S-VHS video followed by analysis
on computer.

2.2. Electrical field calculations

Commercial finite element software (Ansoftr, Maxwell
3-D) was used to generate plots of the electrical field
distribution in the electrodes and details of the software
have been published elsewhere [10]. Electrical field
plots for the polynomial and castellated arrays have been
published previously [9–12]. A two-dimensional plot of
the field distribution across the parallel finger electrode of
figure 1(c) is shown in figure 2(a) at an applied potential
of 10 V peak to peak. Figure 2(b) is a vector plot of∇Ē2,
which indicates the magnitude and direction of the DEP
force on a particle. The sizes of the vectors are drawn
on a logarithmic scale. Also shown, in figure 2(c), is a
plot of the magnitude of∇Ē2 in a line parallel to the
surface at three different heights (corresponding to 1, 2
and 10µm). In figure 2(c) the mid-point between the
two electrodes is at 0µm and the electrode edge is at
+12.5 µm. It is clear from these figures that a minimum
in electrical field and force exists at a point equidistant
between the two fingers, with a secondary minimum on top
of the electrodes. The maximum in field strength is at the
edge of the electrodes and particles would be expected to
collect here under positive DEP.

2.3. Experimental observations

It has been shown that sub-micrometre latex spheres exhibit
a frequency-dependent dielectrophoretic force [10, 11]. At
high frequencies the particles are less polarizable than the
medium and experience negative dielectrophoresis. At low

Figure 3. Fluorescence photographs of 282 nm latex
particles undergoing dielectrophoresis in micro-electrode
arrays. The inter-electrode gap was 4 µm and the medium
conductivity was 11 mS m−1. (a) Shows spheres collecting
under positive DEP at the tips of castellated electrodes.
The frequency of the applied field was 1 MHz and the
applied voltage was 10 V peak to peak. In this photograph
the electrodes appear brighter than the surround. At high
frequencies, 10 MHz, the spheres undergo negative DEP
and are trapped in a triangle formation in the bays, as
shown in (b). In (b) the electrode array is illuminated from
beneath so that the electrodes appear dark.

frequencies the particle is always more polarizable than
the medium and undergoes positive DEP. The transition
from positive to negative DEP is characterized by the
frequency at which the polarizability of the particle is
zero. For 282 nm spheres suspended in a 1 mM
potassium phosphate buffer (σm = 18.5 mS m−1) this
occurs at a frequency of approximately 5 MHz [10],
with a relaxation corresponding to the Maxwell–Wagner
interfacial polarization of the bead and the medium. At
lower frequencies the polarizability of a latex bead increases
due to the presence of the ionic double layer, resulting in
an increase in the dielectrophoretic force on the particle.
For the 282 nm spheres the effect of the double layer in
the DEP spectrum becomes apparent for higher medium
conductivities and for 10 mM potassium phosphate buffer
(σm = 0.17 S m−1) the cross over from negative to positive
DEP occurs at a frequency in the range 70–200 kHz [10].

Figure 3(a) shows a fluorescence photograph of 282 nm
spheres collecting under positive DEP at the tips of a
castellated electrode array. The electrode spacing was
4 µm, the applied voltage was 10 V peak to peak and the
medium conductivity wasσm = 11 mS m−1. The frequency
of the applied field was 1 MHz and at this frequency the
spheres can be clearly seen collecting in the regions of high
electrical field strength at the tips of the electrodes. This is
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Figure 4. A photograph showing the pattern of spheres
collecting on top of the electrodes as a result of
hydrodynamic effects. At a frequency below 0.1 MHz the
282 nm spheres collect as diamond-shaped aggregates on
top of the electrodes. This photograph was taken at an
applied potential of 10 V peak to peak. In this photograph
the electrodes are lighter than the background.

in agreement with literature results for larger particles such
as cells and micro-organisms [4, 14]. At high frequencies
the spheres experience negative DEP and collect in the
bays between the electrode tips, as shown in figure 3(b).
Figure 3(b) was taken at an applied frequency of 10 MHz,
10 V peak to peak. This image was taken with the
electrodes back illuminated to increase the contrast, so that
the electrodes appear black in the photograph, whereas in
figure 3(a) the electrodes are lighter than the background.

At frequencies below 200 kHz, the spheres remain at
the electrode tips under positive DEP but also experience
a force moving them into the central region of the
electrode. The magnitude of this force increases both with
increasing field strength and with decreasing frequency.
At a sufficiently low frequency (<0.1 MHz) and at a
suitable field strength all the spheres can be collected in
the central region of the electrode, as shown in figure 4.
This figure shows diamond-shaped aggregates of spheres
sitting on top of the electrodes. The effect is reversible:
increasing the frequency of the applied voltage results in
spheres moving back to the electrode tips. This has been
observed for a range of sizes of spheres from 93 to 557 nm
diameter, for which the trend is the same but the voltage and
frequency at which the effect occurs are different for each
size of bead. The larger particles require a larger applied
voltage or a lower frequency to move them into the centre.
The flow of particles into this region is observed to be from
the electrode edge into the centre of the electrode. These
observations are general for a range of electrode geometries
and particle sizes. Other workers [15] have made similar
observations of the movement of yeast cells into the central
region of a castellated electrode array. We have repeated
these experimental observations both with live yeast and
with latex particles and find the trends to be the same.
The effects are inconsistent with the predicted movement
of particles solely by DEP.

Figure 5. A sequence of fluorescence photographs of
282 nm spheres collecting in a parallel finger electrode of
the type shown in figure 1(c). For clarity only one of the
two fingers is shown. The inter-electrode gap is on the
right-hand side of the photograph and the medium
conductivity σm = 2 mS m−1. In (i) the applied frequency is
90 kHz with the applied voltage 10 V peak to peak. The
fluid movement is very small; the spheres experience
positive DEP only and collect at the electrode edge. In (ii)
the frequency is reduced to 60 kHz and the spheres move
away from the electrode edge to an equilibrium position
10 µm in from the electrode edge, as shown in the
photograph. Here the DEP force and the force on the
particle due to fluid movement are balanced. (iii) and (iv)
are time sequences showing how the spheres move in
from the edge when the frequency is reduced further to
5 kHz (10 V). 1 s after applying the field the spheres move
in by approximately 20 µm from the edge to form a band.
After 5 s, more spheres have collected from both edges,
forming two bands, as shown in (iv). Finally the two bands
merge into one band in the steady state. This is illustrated
in (v), except that here the voltage has been increased to
16 V peak to peak with the same frequency of 5 kHz. A
well defined band of particles appears at the minimum in
electrical field at a point two thirds of the way in from the
inter-electrode gap. Increasing the voltage also increases
the DEP force (by a ratio of 2.5) so that in addition particles
are again trapped at the electrode edge.
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Figure 5 shows a sequence of photographs of 282 nm
spheres on top of a parallel finger electrode of the design
shown in figure 1(c) taken as a function of the frequency.
For clarity only one half of the array is shown. The inter-
electrode gap was 25µm and the suspending medium was
KCl of conductivity σm = 2 mS m−1. The photograph
of figure 5(i) clearly shows the spheres being attracted to
the electrode edge under positive DEP at a frequency of
90 kHz and voltage of 10 V peak to peak. The remaining
sequence shows the effect of decreasing the frequency.
At a frequency of 60 kHz, fluid flow occurs, causing
particles to move away from the edge of the electrode
into an equilibrium position on top of the electrodes. In
figure 5(ii) this equilibrium represents a balance between
positive DEP forces attracting particles to the electrode
edge and a drag force exerted on the particle by field-
induced fluid movement moving into the electrode centre.
The sequence (iii)–(v) is a time sequence showing how the
spheres move in towards a point which is the minimum in
electrical field at a distance two thirds of the way in from
the inter-electrode gap (see also the field plot of figure 2(b)).
Figures 5(iii) and (v) show that, at a potential of 10 V peak
to peak and a frequency of 5 kHz, the spheres form two
lines either side of the field minimum as particles are driven
by fluid flow from both edges of the electrodes. These two
lines eventually merge into one continuous ribbon as shown
in figure 5(v). This photograph was taken at an applied
potential of 16 V peak to peak and a frequency of 5 kHz.
The particles form a continuous band at the electrical
potential minimum, but also some particles are attracted
by positive DEP to the electrode edge. This sequence of
photographs illustrates that the movement of particles onto
the top of an electrode is not a dielectrophoretic effect as
had been reported in the literature.

3. Force calculations

For the remainder of this paper we will estimate the order
of magnitude of the force on sub-micrometre solid latex
particles of 282 nm diameter in an electrode consisting
of two parallel fingers separated by a 25µm gap, as
shown in figure 1(c). The particles are suspended in a
500 µm KCl solution of conductivity 8 mS m−1. When
appropriate, the predicted and experimentally measured
forces are compared.

3.1. Dielectrophoresis

For a homogeneous dielectric particle suspended in an
aqueous medium the dielectrophoretic force given by
equation (1) can be rewritten in the form [5]

F̄DEP = 1
2Re[(m̄(ω) · ∇)Ē∗] (2)

whereĒ∗ is the complex conjugate of the electrical field
and m̄(ω) is the dipole moment which, for a spherical
particle, can be expressed as

m̄(ω) = 4πεma
3K(ω)Ē (3)

with ω the angular field frequency,a the particle radius and
K(ω) the Clausius–Mossotti factor given by

K(ω) = ε̃p − ε̃m
ε̃p + 2ε̃m

(4)

where ε̃p and ε̃m are the complex permittivities of the
particle and the medium respectively. For an isotropic
homogeneous dielectric, the complex permittivity is

ε̃ = ε − j
σ

ω
(5)

where j = √−1, ε is the permittivity andσ is the
conductivity of the dielectric. For real̄E, the time-average
DEP force is found by substituting equation (3) into (2) and
is

〈F̄DEP (t)〉 = 2πεma
3Re[K(ω)]∇|Ērms |2 (6)

where∇|Ērms |2 is the gradient of the square of the RMS
electrical field. The absolute value of the force on a
particle depends on∇|Ērms |2 and also on the real part of
K(ω), the in-phase component of the particle’s effective
polarizability. For a sphere the real part ofK(ω) is bounded
by the limits 1< Re[K(ω)] < − 1

2 and varies with the
frequency of the applied field and the complex permittivity
of the medium. Positive DEP occurs when Re[K(ω)] > 0,
the force is towards points of high electrical field and the
particles collect at the electrode edges. The converse of
this is negative DEP which occurs when Re[K(ω)] < 0,
the force is in the direction of decreasing field strength and
the particles are repelled from the electrode edges.

For small particles (<1 µm diameter) it can be seen
from equation (6) that large electrical field gradients are
required to produce the forces required to induce motion.
The use of micro-fabricated electrodes to generate high
fields has meant that the dielectrophoretic movement of sub-
micrometre particles has been established beyond doubt.
However, observations of the movement of sub-micrometre
particles in planar micro-electrode arrays as a function of
the frequency and applied voltage have not been undertaken
in any detail. On this scale the dielectrophoretic force can
be of the same order as other forces acting on the particle
and it is important to be able to distinguish each force.
These forces can be generally classed into those which act
indirectly on the particle through viscous drag due to fluid
movement, namely electrohydrodynamic (EHD) forces, and
those acting directly on the particle, such as sedimentation
and Brownian motion.

3.1.1. The DEP force. Given knowledge of the
frequency-dependent dielectric properties of the particle and
medium (the Clausius–Mossotti factor) and the electrical
field gradient, an order-of-magnitude estimate of the DEP
force can be made for a range of particle sizes from
equation (6). At an applied potential of 10 V peak to peak
and at a point 10µm in from the edge of the electrode
and heights of 1, 2 and 10µm the magnitudes of the
field gradient were calculated using finite element methods,
see figure 2(c). Estimating the gradient to be of the order
|∇E2

rms | = 1015 V2 m−3 and assuming Re[K(ω)] ≈ 1, then
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the limiting low-frequency DEP force (for the Maxwell–
Wagner interfacial relaxation) can be calculated asFDEP =
10−14 N. Using Stokes’ law, this gives a particle velocity
of vDEP = FDEP /(6πηa) = 5 µm s−1, whereη is the
viscosity of the suspending medium. As figure 2(c) shows,
the field gradient increases rapidly towards the electrode
edge (by up to two orders of magnitude) and the particle
velocity will increase to as much as 500µm s−1.

3.2. EHD forces

3.2.1. Electrothermal forces. The high electrical fields
used to manipulate small particles imply that there is a
large power density generated in the fluid surrounding the
electrode. The power generation per unit volume is given
by

W = σE2 (W m−3). (7)

The order of magnitude of the total power generated can be
calculated for the parallel electrodes shown in figure 1(c)
as follows. Taking a typical medium conductivity of
σm = 0.01 S m−1 and an average electrical field of
4 × 105 V m−1 (corresponding to an applied voltage
of 10 V in a gap of 25µm), then the average power
dissipation in the inter-electrode volume can be calculated
to be 1.6× 109 W m−3. The volume over which this heat
is generated is typically very small and for the parallel
finger electrodes shown in figure 1(c) can be estimated
to be approximately 50µm × 50 µm × 2 mm (long)=
5×10−12 m3, giving an average power dissipation of 8 mW.
This value can be compared with the power dissipation
measured for the electrode. The measured resistance,R, of
this electrode array in the same medium was 33 k� and,
with an applied potential of 20 V peak to peak, the total
power dissipation isV 2

rms/R = 1.5 mW. In general, for
micro-electrode structures of these typical dimensions and
at this conductivity, the power dissipation will be of the
order of 10 mW.

The generation of this amount of power in a very small
volume could conceivably give rise to a large temperature
increase in the sample. In order to estimate the temperature
rise for a given electrode array the following energy balance
equation must be solved [16]:

ρmcpv̄ · ∇T + ρmcp ∂T
∂t
= k∇2T + σE2 (8)

where v is the velocity,T the temperature,ρm the mass
density, cp the specific heat (at constant pressure),k the
thermal conductivity andσ the electrical conductivity of
the medium.

The typical diffusion time for the temperature front
can be estimated from the thermal conductivity or Fourier
equation [16]:

∂T

∂t
= k

ρmcp
∇2T . (9)

An order of magnitude analysis of this equation gives the
time, tdiff , as

tdiff = ρmcpl
2

k
(10)

where l is the characteristic length of a system. For
water, k = 0.6 J m−1 s−1 K−1 and cp = 4.18 ×
103 J kg−1 K−1 so that, forl = 20 µm (a typical inter-
electrode distance),tdiff ≈ 10−3 s, implying that thermal
equilibrium is established within 1 ms of applying the
electrical field. In an ac field the total temperature,T ,
can be written asT = T0 + 1T (t), whereT0 is the time-
average temperature and1T (t) depends on 2ω (twice the
frequency of the applied field). Thus from equation (9)
the differential temperature1T/T ≈ 1/(2ωtdiff ) and, for
fields of frequency greater than 1 kHz, the differential
temperature change is negligible, namely1T/T � 1.

In a micro-electrode array under steady-state condi-
tions, the effect of fluid motion on the temperature profile,
∇T , in equation (8) is assumed to be minimal. For this to
be true

|ρmcpv̄ · ∇T | � |k∇2T | (11)

which from dimensional analysis of equation (8)

ρmcpvl

k
� 1. (12)

Experimental observation of the movement of particles,
such as latex spheres, in micro-electrode structures at higher
frequencies shows that the velocity of the particles is in the
range 1–10µm s−1. Assuming that the fluid velocity is
of the same order of magnitude, then, withl = 20 µm,
ρmcpvl/k ≈ 10−2 � 1 so that the effect of fluid flow on
the temperature profile can be neglected even for a fluid
velocity approaching 1 mm s−1. Thus fluid flow does
not influence the temperature field and for a planar micro-
electrode system under steady-state conditions (t > 1 ms)
equation (8) can be simplified to

k∇2T + σE2 = 0. (13)

An order-of-magnitude estimate of the incremental
temperature rise can be made by substituting for the
electrical field in equation (13) to give

k1T

l2
≈ σV 2

rms

l2

or

1T ≈ σV 2
rms

k
(14)

whereVrms is the potential difference across the electrodes.
In this case the electrodes are assumed to be perfect
heat sinks (with the electrical and temperature gradients
changing over the same length scale). For an applied
potential V = 20 V (peak to peak) and withσm =
0.01 S m−1, the temperature rise can be calculated to be
1T ≈ 1 ◦C. (Detailed analysis of a parallel plate geometry
has been performed and the calculations give a smaller
temperature rise, see appendix A.)

In order to confirm these order-of-magnitude calcula-
tions, measurements of the steady-state temperature incre-
ment in the finger electrode array shown in figure 1(c) were
performed. The temperature was recorded with a thermo-
couple mounted within 1 mm of the electrodes. A solution
of KCl was placed on top of the electrode to form a layer
of liquid approximately 500µm high and the assembly was
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covered with a glass microscope cover slip. For a solution
of conductivity 0.07 S m−1 and with V = 20 V peak to
peak the measured steady-state temperature rise was 2◦C,
compared with a calculated rise of 6◦C; for a conductivity
of 0.008 S m−1 the rise was 0.2 ◦C compared with a calcu-
lated value of 0.7◦C. The data were measured over a broad
range of applied frequencies from 1 kHz to 20 MHz and
the temperature change was found to be the same for all
frequencies, in accord with equation (14).

Equation (14) also shows that, for high-conductivity
solutions, the temperature rise is likely to be excessive and
for biological systems could lead to denaturation of the
material. For example, using 100 mM phosphate buffer,
with σm = 1 S m−1, the temperature rise would approach
100◦C for the same applied voltage, but this would depend
on the geometry of the system. This is in quantitative
agreement with more detailed calculations on temperature
gradients in capillary electrophoresis systems [17].

Reducing the dimensions of the system will lower the
voltage required to produce a given electrical field strength
and as a result reduce both the power dissipated in the
system and the temperature increment (see equation (14)).
Therefore, micro-electrode technology is the obvious means
to achieve low-temperature dielectrophoresis, particularly
for the DEP movement of sub-micrometre particles.

Since the electrical field is highly non-uniform the
power density is also highly non-uniform. A variation in the
temperature of a liquid such as water causes local changes
in the density, viscosity, permittivity and conductivity of the
medium and these inhomogeneities will give rise to forces
on the fluid. The most common is the buoyancy force,
which arises when a temperature gradient produces changes
in the density of a liquid giving rise to natural convection.
The other force is electro-thermal and arises from the
fact that changes in conductivity and/or permittivity with
temperature give rise to gradients in the medium. The
conductivity gradient produces free volume charge and the
Coulomb force whilst a permittivity gradient produces the
dielectric force.

3.2.2. Coulomb and dielectric forces. A general
expression for the electrical force per unit volume on a
liquid is [18]

f̄E = ρqĒ − 1

2
Ē2∇ε + 1

2
∇
(
ρm

∂ε

∂ρm
Ē2

)
(15)

where ρq is the volume charge density andε is the
permittivity of the medium. For an incompressible fluid
the last term in this equation has no effect on the dynamics
(it is the gradient of a scalar) and therefore will be ignored
in the subsequent analysis [18]. For an isothermal fluid
there is no free charge and the permittivity gradient is zero
so that the total force is zero. Localized Joule heating
gives rise to gradients in permittivity and conductivity,
which in turn cause an electrical force causing fluid motion.
For small temperature rises the gradients in permittivity
and conductivity can be written as∇ε = (∂ε/∂T )∇T
and ∇σ = (∂σ/∂T )∇T respectively, so that an order-
of-magnitude estimate of these forces can be made as

follows. Assuming that the deviations of the permittivity
and conductivity are small, the electrical field can be written
as the sum of two components, the applied field,Ē0,
and the perturbation field,̄E1, whereĒ = Ē0 + Ē1 and
|E1| � |E0|. An expression for this force can be obtained,
to a first-order approximation, by rearranging equation (15).
Given thatρq = ∇ · (εĒ), substituting for the total field
givesρq = ∇ε · Ē0 + ε∇ · Ē1, where we have taken into
account that∇ · Ē0 = 0. With f̄E = ρqĒ0 − 1

2Ē
2
0∇ε and

substituting for the free charge we can write

f̄E = (∇ε · Ē0+ ε∇ · Ē1)Ē0− 1
2Ē

2
0∇ε. (16)

The charge-conservation equation is∇ · (σ Ē+ ρq v̄)+
∂ρq/∂t = 0, whereρq v̄ is the convection of charge. This
equation can be simplified, since in our case the divergence
of the convection of charge is negligible compared with the
divergence of the ohmic current

|∇ · (ρq v̄)|
|∇ · (σ Ē)| '

ρq v̄

|σ Ē| =
|∇ · (εĒ)v̄|
|σ Ē| ' ε/σ

l/v
� 1

where l and v are the typical distance and velocity,
respectively. The ratio of the convective and ohmic currents
is of the order of the ratio of the charge relaxation time of
the liquid and the typical time taken to travel the distance
l. Taking a typical distance of 20µm and a maximum
velocity of 200µm s−1 we get a time of 0.1 s, which
is several orders of magnitude greater than typical charge
relaxation times in aqueous solutions.

Substituting for Ē in the charge-conservation equa-
tion and neglecting the convective term, we have

∇σ · Ē0+ σ∇ · Ē1+ ∂

∂t
(∇ε · Ē0+∇ε · Ē1) = 0. (17)

If the electrical field is time varying, namelȳE0(t) =
Re(Ē0 ejωt ) then the conservation of charge is

∇σ · Ē0+ jω∇ε · Ē0+ σ∇ · Ē1+ jωε∇ · Ē1 = 0. (18)

Rearranging this equation gives the divergence of the
perturbation field:

∇ · Ē1 = −(∇σ + jω∇ε) · Ē0

σ + jωε
(19)

assuming that the liquid is non-dispersive in the frequency
range of interest.

The time-averaged force per unit volume is then†

〈fE〉 = 1
2Re[(∇ε · Ē0+ ε∇ · Ē1)Ē

∗
0 − 1

2|E0|2∇ε] (20)

and substituting for the divergence of the perturbation field
gives

〈fE〉 = 1

2
Re

[(
(σ∇ε − ε∇σ) · Ē0

σ + jωε

)
Ē∗0 −

1

2
|E0|2∇ε

]
.

(21)

† This assumes that the liquid does not respond to the instantaneous value
of the force at the frequency of the applied field.
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Figure 6. A diagram showing an electrode arrangement
used for the analytical model, equation (24), for the
temperature field. It consists of two parallel plates with a
very small inter-electrode gap. The plates are covered in a
dielectric (water) and a potential of V (in volts) is applied
across the gap. The direction of the field is shown.

In our caseĒ0 is real and equation (21) can be simplified
to

〈fE〉 = −1

2

[(∇σ
σ
− ∇ε

ε

)
· Ē0

εĒ0

1+ (ωτ)2 +
1

2
|E0|2∇ε

]
(22)

where τ = ε/σ is the charge relaxation time of the
liquid. The first term on the right-hand side of the
equation represents the Coulomb force and the second term
the dielectric force.

In certain frequency ranges either the Coulomb force
or the dielectric forces dominate. The transition from
dominance by one force to dominance by the other occurs
at a frequency at which the magnitude of the Coulomb force
becomes equal to the magnitude of the dielectric force.
From equation (22) this frequency,fc, is given by

ωc = 2πfc ≈ 1

τ

(
2

∣∣ ∂σ
σ∂T

∣∣∣∣ ∂ε
ε∂T

∣∣
)1

2

. (23)

For water (1/σ)(∂σ/∂T ) = +2% per degree and
(1/ε)(∂ε/∂T ) = −0.4% per degree [19] so that
the magnitude of the square root in equation (23) is
approximately 3. The cross over frequency,fc, is then
of the order of the inverse of the charge relaxation time of
the liquid given byτc ≈ τ = ε/σ .

An order-of-magnitude estimate of the force on the
liquid can be made for a simple analytical system. Consider
two thin parallel metal plates, with a very small inter-
electrode gap mounted on an insulator with liquid above the
plates. The plates are subjected to a potential difference,V

that sets up an electrical field̄E(r, θ) as shown in figure 6.
Neglecting end effects, an analytical expression for the
electrical field is given by [20]

Ē(r) = V

π

1

r
n̂θ (24)

and the power dissipated per unit volume is

W(r) = σE2 = σV 2

π2

1

r2
.

Substituting for this explicit expression for power in the
temperature balance equation (13) gives

k

r

∂

∂r

(
r
∂T

∂r

)
+ k

r2

∂2T

∂θ2
= −σV

2

π2

1

r2
. (25)

A particular solution to this equation is

Tp = −σV
2θ2

2π2k
.

Assuming that the electrodes behave as thermal baths, the
boundary conditions atθ = 0 and θ = π are T = 0
(the reference temperature is chosen to be zero). The
boundary conditions at the electrodes together with the
particular solution of equation (25) lead to solutions ofT

that are functions ofθ only and independent of the radial
co-ordinater. Then, the solution for the temperature of
equation (25) that also satisfies the boundary conditions at
θ = 0 andθ = π is simply

T (θ) = −σV
2θ2

2π2k
+ σV

2θ

2πk
(26)

with

Tmax = T
(π

2

)
= σV 2

8k
.

For the time-averaged ac case the temperature field depends
on the RMS voltage. The gradient of temperature is

∇T = σV 2

2πk

(
1− 2θ

π

)
1

r
n̂θ . (27)

Given the temperature field, the force on the liquid can
be computed exactly from equation (15). Substituting
for the temperature gradient into equation (22), where
∇σ = (∂σ/∂T )∇T and∇ε = (∂ε/∂T )∇T , then the time-
averaged force with an applied alternating potential is

〈fE〉 = −M(ω, T )
(
εσV 4

rms

2kπ3r3T

)(
1− 2θ

π

)
n̂θ (28)

where

M(ω, T ) =
( T
σ
∂σ
∂T
− T

ε
∂ε
∂T

1+ (ωτ)2 +
1

2

T

ε

∂ε

∂T

)
(29)

is a dimensionless factor which gives the variation of
the force as a function of the frequency. A plot of the
magnitude ofM against frequency atT = 300 K is shown
in figure 7. It can be seen thatM is positive for low
frequencies and negative for high frequencies, with the
cross over frequency approximately equal tofc. The force
on the fluid depends on the angle,θ , with the maximum at
θ = 0 or π . The force per unit volume can be calculated
and, for σm = 0.01 S m−1, V = 10 V (peak to peak),
r = 20 µm andT = 300 K, then|f̄E|/M = 12 N m−3,
which in the low-frequency limit gives a maximum force
of |f̄E| ≈ 80 N m−3. For low frequencies the force is
dominated by the space charge and is in the direction shown
by the arrows in figure 8, moving fluid across the electrodes
from the inter-electrode gap to the centre of the metal. At
frequencies greater thanfc, the flow direction is reversed
and the liquid streams up in the centre of the gap. These
flow patterns are representative of the analytical expression
for an electrode array with an infinitely narrow gap; for
a finite gap the flow patterns may well be different and
numerical solutions of the equations would be required.
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Figure 7. A plot of the magnitude of the factor M (ω,T )
(see the text), as a function of the frequency.

Figure 8. A diagram showing the motion of fluid at
frequencies below the charge relaxation time of the liquid
(given by equation (23)) for the electrode geometry of
figure 6. Fluid moves down into the inter-electrode gap and
out across the electrode. The direction of the arrows would
be reversed at high frequencies above the charge
relaxation time.

The velocity field,v̄, of the fluid can be obtained from
the Navier–Stokes equation that, for low Reynolds number,
is written [16]

η∇2v̄ −∇p + f̄ = 0 (30)

together with the mass-conservation equation, which for an
incompressible fluid is

∇ · v̄ = 0 (31)

whereη is the viscosity,p the pressure and̄f a general
volumetric force. For flow in micro-electrode structures the
Reynolds number,Re, is very small and can be calculated
from Re = ρmvl/η, where l is again the characteristic
length. From our observations of the velocity of a range
of sub-micrometre latex spheres the maximum velocity was
vmax ≈ 200µm s−1 and, withl = 10µm,Re = 2×10−3�
1 so that equation (30) is applicable.

In our case the velocity can be obtained by solving
equations (30) and (31), with the appropriate boundary
conditions and with the expression for the electrical force.
The case of a local solution is detailed in appendix B.
To a first approximation, the velocity can be obtained
by comparing the viscous force component with the

electrothermal force,̄fE to get vf luid ≈ |f̄E|l2/η. Again
using a characteristic length ofl = 20µm, the flow velocity
can be calculated to be in the rangev ≈ 4–40µm s−1 in the
high- and low-frequency limits respectively. The detailed
analysis outlined in appendix B shows that the velocity is
smaller by a factor of 0.13 than this simple calculation
shows, ranging from 0.7 to 5µm s−1 at r = 20 µm
with 10 V (peak to peak). It is instructive to compare
the fluid velocity with typical velocities for sub-micrometre
particles in a DEP force field. As an example, for a 282 nm
latex bead we can use equations (6) and (24) to estimate
the force on the particle in the planar electrode geometry
shown in figure 6. For this structure the electrical field
gradient can be written as∇E2 = −[2V 2/(π2r3)]n̂r , so
that the DEP force atr = 20 µm with V = 10 V peak
to peak isFDEP = 4× 10−15 N (assuming that the real
part of the Clausius–Mossotti factor is+1). Using Stokes’
equation, the particle velocity isvDEP = 1.8 µm s−1. It
can be seen that this is of the same order of magnitude
as the fluid flow, particularly for frequencies belowfc and
therefore electrothermally induced fluid flow could have
marked effects on the observations of the DEP force for
this size of particle.

An explicit expression relating the magnitudes of the
DEP and electrothermal velocity for any particle of radius
a, in an electrode of a geometry shown in figure 6, with
applied potentialV can be derived from equations (6) and
(28):

vf luid

vDEP
= 0.13

3

4π

M(ω, T )

Re[K(ω)]

σV 2
rms

kT

r2

a2
(32)

where the numerical factor (0.13) accounts for the geometry
of the particular system shown in figure 6, see appendix B.
This equation can be rearranged to give the proportionality
between the fluid and DEP velocities:

vf luid

vDEP
∝ σV 2 r

2

a2
(33)

which shows that fluid flow increases directly with the
medium conductivity. Also this equation shows that
the DEP force dominates close to the electrode edges
(as expected) and that the influence of fluid flow gets
progressively bigger for smaller particles.

For polynomial electrode arrays, it has been observed
[6, 21] that fluid flow causes particles to be trapped in
the centre of the electrode by a combination of DEP
forces and hydrodynamic forces. This effect takes place
at high frequencies at which the particles undergo negative
DEP and the fluid-flow pattern is dominated by the
permittivity term. At high frequencies the force on the
fluid is given by 〈f̄E〉 → − 1

4|Ē0|2∇ε. Muller et al
[6] interpreted the observations as negative DEP of the
particle together with negative DEP of the fluid causing
it to move across the electrodes into the centre of the
array. However, the negative dielectrophoretic force
depends on the gradient of the square of the electrical
field and this force would be unable to move fluid from
outside the electrode area up the potential energy barrier
to the inside. In contrast the dielectric force component
of the electrothermal force on the fluid depends on∇ε
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and Ē2 only. As a consequence fluid will flow from
regions of high permittivity (low temperature) to regions
of low permittivity (high temperature), which can be seen
as movement from outside the electrode along the inter-
electrode regions (where the field is maximum) and up and
out through the central part.

In our experimental observations we have noted
anomalous fluid movement at low frequencies which cannot
be explained by this theory. These effects will be discussed
in section 3.2.4.

3.2.3. Natural convection. A temperature gradient gives
rise to a change in fluid density and thus natural convection
is to be expected. The magnitude of this effect can be
estimated by comparing the electrothermal force and the
buoyancy force.

The buoyancy force is given by

f̄g = 1ρmḡ = ∂ρm

∂T
1T ḡ (34)

whereḡ is the acceleration due to gravity. Substituting for
the temperature rise from equation (26), the buoyancy force
is

f̄g =
(
−σV

2θ2

2π2k
+ σV

2θ

2πk

)
∂ρm

∂T
ḡ. (35)

The maximum temperature rise and force occur when
θ = π/2, so thatTmax = T (π/2) = σV 2/(8k). For
the same parameters as those used above, namelyσm =
0.01 S m−1 and V = 10 V (peak to peak), with
(1/ρm)(∂ρm/∂T ) = 10−4 per degree andg = 9.81 m s−2,
then |fg| = 0.026 N m−3. It is clear that this value
is considerably smaller than the value calculated for the
volume force due to the electrothermal effect. Even for
a characteristic length of 100µm the electrothermal force
is in the range 0.1–0.7 N m−3 which is still much bigger
than the buoyancy force. Again dimensional analysis over
a characteristic length ofl = 20 µm gives∣∣∣∣ 1ρmḡ1

2E
2∇ε

∣∣∣∣ ≈ ∣∣∣∣1ρmḡl1
2E

2ε

∣∣∣∣� 1

and thus, for all situations involving micro-electrode
structures, the effects of natural convection are negligible
compared with those of the electrical forces.

3.2.4. Other EHD forces. Both literature data [15]
and our observations of thelow-frequency behaviour of
biological particles in non-uniform ac electrical fields show
that the motion of the particles does not follow that expected
for conventional dielectrophoresis. For example it has
been reported [15] that yeast cells form diamond-shaped
aggregates on top of the electrode in castellated micro-
electrode arrays; patterns were observed for frequencies
below 500 Hz. This was interpreted as low-frequency
negative DEP coupled with electrophoretic effects acting
on the cells. We have observed similar patterns using latex
spheres across a wide range of sizes, applied frequencies
and medium conductivities. For example figure 3(a)
shows a pattern of latex spheres experiencing positive DEP

Figure 9. A diagrammatic representation of the motion of
282 nm diameter latex particles and, by implication, of fluid
flow for applied frequencies of 50 kHz and below. Spheres
move from the bulk liquid into the inter-electrode gap and
then out across the electrode surface, finally collecting in
the centre.

collecting on the electrode tips. At lower frequencies the
spheres also formed patterns on top of the electrodes, as
shown in figure 4. For frequencies above 5 MHz the
spheres experience only negative DEP and collect as small
triangles in the electrode bays where the field gradient is
minimum (figure 3(b)), in accord with other observations on
cells and micro-organisms [4, 15]. Although the diamond
patterns on top of the electrode have been interpreted as
dielectrophoretic in origin [15], our observations lead us
to believe that the patterns are caused by fluid movement.
The collection of particles on top of the electrodes occurs
below a threshold frequency. Increasing the applied field
increases the collection rate. In all cases the aggregations
were observed for a range of particle types and sizes from
93 nm to 10µm in diameter, but the effect occurred at
different threshold frequencies for each particle size. Using
25µm gap finger electrodes and 93 nm spheres in a medium
of conductivity 8 mS m−1 the threshold frequency was
0.5 MHz, but for yeast cells in 8 mS m−1 buffer the effect
occurred at frequencies below 1 kHz. This leads us to
believe that fluid flow, rather than DEP, dominates the
effect.

In order to record fluid-flow patterns under these
circumstances we used mixtures of spheres of different
sizes. The smaller particles experience a DEP force (which
is proportional to their volume) smaller than the drag force
(which is proportional to their radius) and thus, for a given
applied field, respond to fluid flow, whilst the larger spheres
remain trapped under a DEP force. Spheres of 93 nm
diameter were mixed with 282 nm diameter spheres and
the mixture was suspended in a 50µM KCl buffer and
placed on an interdigitated electrode. At a frequency of
500 kHz and an applied potential of 10 V peak to peak
all the spheres became trapped under positive DEP at the
electrode edges. When the applied frequency was reduced
to 100 kHz the 93 nm spheres jumped into the centre and
on top of the electrode, forming a long continuous band,
leaving the 282 nm spheres trapped at the electrode edges.
Below 50 kHz the 282 nm spheres were also trapped in the
centre of the electrode. A diagrammatic representation of
the steady-state flow pattern of particle movement is shown
in figure 9, in which it can be seen that the particles are
drawn down by fluid motion onto the electrode edge and
then into the centre, where they collect. Some of them
were also observed to describe continuous loops close to
the edge of the electrode.
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Figure 10. An outline of the electrostatic situation on a
parallel plate electrode array showing how the radial field
can be resolved into normal and tangential components.
The tangential component of the field gives rise to a
Coulomb force on the fluid, namely electro-osmosis, which
causes fluid to move out across the electrode from the
edge to the centre.

This flow pattern is similar to that expected from
electrical forces induced by Joule heating of the liquid
(see section 3.2.1 above) at frequencies below the cross
over frequency,fc, given by equation (23). However, we
have noted that the velocity of the flow pattern increases
with decreasing frequency and also with increasing applied
voltage, approximately proportional toV 2. It has been
shown above that electrothermal effects are independent
of frequency, except aroundfc. Also for electrothermal
effects the fluid velocity is proportional toV 4, rather than
to V 2. Since EHD forces cannot be invoked to explain the
flow patterns, we are led to believe that the origin of this
force is other than electrothermal. We will consider the
influence of the electrical double layer on fluid flow, in a
process analogous to electro-osmotic fluid flow under a dc
potential.

For a parallel planar micro-electrode configuration a
schematic representation of the electrical field configuration
close to and above the electrodes is shown in figure 10.
Application of a voltage to the electrode causes charge to
appear at the electrode–electrolyte interface, which changes
the charge density in the electrical double layer as shown
in figure 10. The time for the establishment of this charge
distribution is of the order of the charge relaxation time,
τ [22]. If the applied potential is alternating then, for
any frequency belowf = 1/(2πτ), the charge on the
electrode and in the double layer will alternate in each half
cycle of the applied potential. In the case of dc electro-
osmosis, this charge will experience a force tangential to
the electrode surface, given byF = QEt , whereEt is
the tangential electrical field andQ is the charge in the
double layer. This force will act on the double layer and
cause fluid movement, which we call ac electro-osmosis by
analogy with dc electro-osmosis. As shown in figure 10, the
direction of the force on the charge and thus the fluid-flow
pattern are independent of the sign of the applied voltage
since the sign of the excess charge in the double layer is
always opposite to that of the charge on the electrode. Both
the sign ofQ and that ofEt change with each half cycle, so
that the direction of the forceF is constant. The magnitude
of the forceF is obviously a function of the magnitudes of
Q andEt and will vary from a maximum at the electrode

edge, where bothQ andEt are maximum, to a minimum
near the centre of the electrode, whereEt is zero.

For dc electro-osmosis, the fluid velocity,v, in the
double layer is given by [17]

v = Etσq

κη
(36)

whereσq is the surface charge density andκ−1 is the Debye
length of the diffuse double layer. This equation assumes a
tangential electrical field with a magnitude that is invariant
along the length of the double layer and a surface charge
defined as

σq =
∫ ∞

0
ρq dz

whereρq is the volume charge density in the double layer
andz is the direction normal to the surface. This equation
may not be completely applicable in our case since both
ρq andEt are functions of distance in all directions. For
micro-electrode structures with strongly divergent fields the
tangential field will vary with distance, both normal to the
surface and along the surface. At a distance corresponding
to the Debye length,Et is much smaller thanEn; however,
it is of sufficient magnitude to induce a large tangential
force which could result in fluid motion. An estimate
of the electrical field for the electrode structure shown in
figure 10 has been made using finite-element field analysis
software. With an inter-electrode gap of 25µm and an
applied voltage of 10 V peak to peak, then at a distance
of 10 nm from the surface (a typical Debye length) and
10 µm in from the electrode edge,En = 3.4× 104 V m−1

and Et = 50 V m−1. Although this tangential field
is much lower than that used in dc electro-osmosis, the
surface charge density is much higher in this case. For a
Debye length of 10 nm, the average specific capacitance
of the double layer can be estimated to be of the order of
0.1 F m−2 (from C = εmκ). The voltage across the double
layer varies with the applied frequency; at low frequencies
almost the entire applied voltage will be dropped across the
double layer whereas at high frequencies the potential drop
across the double layer goes to zero due to polarization
of the electrode/solution interface [23, 24]. Assuming that
the double-layer voltage is 10% of that across the solution
then the average double-layer charge density,σq , can be
estimated to be 50 mC m−2 (for an applied voltage of 10 V
peak to peak). From equation (36) this translates into a
time-averaged fluid velocity of 21µm s−1. (If the distance
is reduced to 2µm, thenEt is ten times bigger and the
fluid velocity increases to 200µm s−1.)

Although this velocity is higher than the equivalent
DEP velocity of a 282 nm particle 10µm in from the
electrode edge, it is lower than the fluid velocity measured
using latex spheres, which is of the order of 100µm s−1

at 10 kHz. This difference is probably due to the
large variations in the field and charge density along the
electrode, which are maximum at the electrode edge where
they are likely to drive the fluid flow most strongly. The
fluid flow is also an average of the velocities and would tend
to drive a circulation pattern that brings particles in from
the edge to the centre, as shown schematically in figure 9.
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3.3. Brownian motion and diffusion

Forces other than electrical and gravitational also act to
move particles. The principal non-deterministic force
acting on an ensemble of sub-micrometre particles is that
due to diffusion. Diffusion driven by Brownian motion
was generally regarded as a ‘disrupting’ force in that it
was considered that the dielectrophoretic movement of sub-
micrometre particles could not be achieved at realizable
field strengths [1]. However, recent experimental work has
shown that the DEP force required to induce movement
of sub-micrometre scale particles is in the sub-picoNewton
range. For example, the force required to initiate observable
movement of a tobacco mosaic virus (a 300 nm× 18 nm
diameter rod) can be estimated from measurements to
be of the order of 10−15 N [25]. Our measurements
of the velocity of a Herpes simplexvirus (a 250 nm
diameter spherical particle) in a micro-electrode array gives
a slightly larger force, in the range (1–2) × 10−14 N.
These forces are much lower than the force required to
move a particle estimated from the simplistic diffusion
argument of Pohl [1]. These forces can be easily generated
using a simple point–point electrode configuration with an
electrical field of the order of 106 V m−1. The movement
of macromolecules using dielectrophoresis has also been
reported [8], showing that, even for such small objects, the
randomizing effect of Brownian motion is not significant
enough to hinder DEP collection.

Brownian motion is a stochastic process, so the time-
averaged movement of a particle undergoing Brownian
motion is zero. Irregular motion of the molecules in the
liquid imparts random forces on a particle in suspension.
The collisions are irregular and over time the distribution
of the random displacement of the particles follows a
Gaussian profile with a mean squared displacement (in one
dimension) given by [26]

|1x̄|2 = 2Dt (37)

whereD is the diffusion coefficient. For a spherical particle
of radiusa, this is given by

D = kBT

6πηa
(38)

wherekB is the Boltzmann constant.
The equation of motion of an isolated colloidal particle

can be written as the sum of three components, the
acceleration force, the friction force (equal to 6πηav̄ for a
spherical particle) and the randomizing force. On balancing
these forces one obtains the Langevin equation [27]:

m
dv̄

dt
= −f v̄ + F̄r (t) (39)

wherem is the particle’s mass,f is the friction factor and
F̄r (t) is the randomizing force due to Brownian motion.
The solution of this equation gives a Gaussian probability
distribution of the particle having a velocityv at time t .
For very short times the individual particle displacements
depend ont and the motion is uniform. For longer time
intervals the displacement depends on

√
t and is given by

equation (37), whereD = kT /f .

The transition from a directional to a random process
(from a process which varies witht to one which varies with√
t) depends on the mass of the particle and the viscosity of

the medium. The time of this transition is given by [28, 29]
t0 = m/f . For a colloidal particle of diameter 100 nm the
time is O(10−8) s. This means that the energy imparted
to a particle by a thermal impulse decays on a time scale
t0 = m/f . Clearly, observations of thermal velocities are
difficult, the time of observation being less thant0.

In terms of the dielectrophoretic movement of a
particle, it is important to note that the time-averaged
randomizing force due to Brownian motion is zero; that
is, 〈F̄r (t)〉 = 0. The problem of defining a threshold force
for DEP movement of particles then becomes a matter of
solving the Langevin equation to assign the probability of
a particle being found at a certain point after a given time.

An alternative way of viewing this process is to
consider the probability distribution of the position of a
single particle in an isolated system. Application of a
uniform force will perturb the probability distribution so
that the centre of the Gaussian profile will move in the
direction of the force field. Defining the centre of the
Gaussian to bēx, then in the presence of a deterministic
force and after a short time there will be a displacement
from x̄ to x̄+1x̄. After time1t this is given by

1x̄ = F̄

6πηa
1t. (40)

The probability of finding a particle around the new position
of x̄ + 1x̄ has a Gaussian distribution that is bounded
by equation (37). The particle has uncertainty in its
position given by this Gaussian profile. We can define an
observable deterministic forceto be a force which produces
a displacement which is greater than the uncertainty in the
position, namely|1x̄| > 3(2Dt)1/2 corresponding to three
standard deviations from the mean position. Using this
equality, then, for a 282 nm diameter bead and over an
observation time of 1 s, a force of 1.4×10−14 N will cause
an observable deterministic movement. The force required
is smaller with

√
t , so that over 10 s the force required

is 4.7× 10−15 N. These forces are of the same order of
magnitude as those measured experimentally. The longer
the time frame of observation the smaller the force required
to produce an observable movement. For example with the
application of a force 104 times smaller, the necessary time
of observation increases to 3 years!

Obviously these calculations are applicable only to the
movement of a single isolated particle and could be used
to calculate the movement of isolated particles in micro-
electrode structures. For a collection of particles a statistical
approach must be used to predict the movement and
distribution of the ensemble [30]. The particle-conservation
equation is then

∂n

∂t
+ v̄ · ∇n = −∇ · J̄T (41)

where n is the number of particle per unit volume and
J̄ is the total flux consisting of the sum of the diffusion,
sedimentation and DEP fluxes, namely

J̄T = J̄D + J̄g + J̄DEP (42)
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with

J̄D = −D∇n J̄g = nF̄g

6πηa
J̄DEP = nF̄DEP

6πηa

where the gravitational and DEP forces have been defined
previously.

A classic example of this is the balance of
sedimentation and diffusion for particles in solution.
Ignoring electrostatic particle–particle interaction, the
gravitational force acts downwards, pulling particles out of
the solution phase. The resulting increase in concentration
of particles at the bottom of a vessel creates a diffusion
force acting upwards [31]. The system either reaches
a steady state with particles suspended in the bulk in a
distribution related to the forces on the particles or complete
sedimentation takes place when diffusion is negligible
compared with gravity.

The case of the dielectrophoretic collection of particles
on a plane is similar except that the DEP force must
be added to the gravitational force. For a suspension
of particles, when the DEP force is first applied the
equilibrium is disturbed. If the DEP force is strong enough
to hold the particles at an electrode surface, there is an
immediate decrease in the concentration of the particles
above the electrodes. This induces a local concentration
gradient above the electrodes so that a diffusion flux acts
in the same direction as DEP, pushing particles towards the
electrodes. This will occur indefinitely as long as particles
are entirely removed from the solution phase (an infinite
sink). Therefore, in large devices the dielectrophoretic
collection and concentration of sub-micrometre particles
could be as efficient as for cells and micro-organisms
because the diffusion force is greater and acts in concert
with the DEP force. If the DEP force is weak and particles
are not immobilized at the surface (for example in pearl
chains) then redistribution of the bulk concentration will
occur until the system reaches a steady state and the net
flux is zero in a manner analogous to sedimentation.

The particle-conservation equation can be used to
analyse the confinement of particles in potential energy
minima such as for a particle held under negative DEP
in a polynomial electrode array [13]. In this case particles
are confined within a circle whose radius represents the
balance between electrical and thermal energies. Within
this radius the particle is free to move since its thermal
energy is always greater than the dielectrophoretic potential
energy. Beyond the boundary the DEP energy is greater
than the particle’s thermal energy and the particle remains
confined in the trap. From the diffusion equation, in the
steady state the total flux at any point is zero. In this case
the particle-conservation equation can be written as

−D∇n+ nF̄DEP
6πηa

= 0. (43)

By solving the first-order differential equation for
n we obtain the Boltzmann expression in terms
of the dielectrophoretic potential energy,UDEP =
−2πεma3Re[K(ω)]|Ērms |2, as

n = n0 exp

[
−
(
UDEP

kT

)]
. (43)

On substituting the explicit expression for the DEP energy
with K(ω) = −0.5, then for a 282 nm diameter bead the
DEP potential energy is equal and opposite to the thermal
energy,kT , whenE = 2.6×104 V m−1. In order to confine
99% of the particles inside this radius then

exp

[
−
(
UDEP

kT

)]
= 0.01

and the field must be increased toE = 5.6× 104 V m−1.
Preliminary observations confirm the order of magnitude of
these calculations.

4. Conclusion

Order-of-magnitude calculations for the force on sub-
micrometre particles in non-uniform ac electrical fields
have been computed. It has been shown that, for low-
conductivity solutions, the effect of Joule heating on the
total temperature of the system can be neglected. For
example with a medium conductivity of 0.01 S m−1 and
a maximum applied potential of 20 V peak to peak the
overall temperature rise in a micro-electrode system will be
only of the order of 1◦C, a value confirmed by experiment.
For sub-micrometre particles the electrothermal effects have
been shown to be of sufficient magnitude to compete
with DEP forces. For example, both Coulomb forces and
dielectric forces give rise to fluid motion. At a certain
cross over frequencyfc, these two forces are equal in
magnitude, but for frequencies belowfc, the Coulomb force
dominates, whereas for frequencies above this the dielectric
force is dominant. This cross over frequency is of the
order of three times the charge relaxation frequency of the
liquid and for a solution of conductivity 0.01 S m−1 is
approximately 7 MHz. For parallel finger electrodes an
analytical expression for the electrical field was used to
compute the range of fluid velocities. For a conductivity of
0.01 S m−1 and an applied voltage of 10 V peak to peak this
ranged from 0.7µm s−1 (at high frequencies) to 5µm s−1 at
frequencies belowfc. This compares with a typical DEP-
induced particle velocity of 1.8µm s−1 for the 282 nm
diameter particles at the same distance from the electrode
edge. The DEP-induced velocity varies much more rapidly
with the distance to the electrode edge than does the
electrothermally induced fluid velocity (equation (32)), and
can reach 200µm s−1 near the electrode edge, compared
with a fluid velocity of the order of 50µm s−1. In micro-
electrode structures, if there are thermal effects induced by
Joule heating, natural convection is very small compared
with the electrothermal forces and therefore this effect can
be neglected.

Over a range of frequencies, voltages and conductivi-
ties, typically below 500 kHz for a medium conductivity of
up to 0.1 S m−1, an additional driving force acting on the
fluid can be identified. The fluid motion moves particles
away from the electrode edge and into well defined regions
on top of the electrodes. In this case the fluid velocities
were up to 100–200µm s−1. Our preliminary results in-
dicate that the origin of this force can be assigned to an
electro-osmotic effect occurring in ac fields. Further work
to clarify this issue is in progress.
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Brownian motion has been shown to be less of an
impediment to the dielectrophoretic movement of nano-
scale particles than was considered by other authors. For
example, the observable deterministic force required to
move a particle of 282 nm diameter can be calculated to
be of the order 2.4× 10−14 N over a 1 stime frame of
observation, compared with an experimental value of the
order of (1–2) × 10−14 N for a Herpes simplexvirus of
250 nm diameter. Diffusion can also act in concert with
DEP forces to increase the rate at which a DEP system
collects sub-micrometre particles. For a particle confined
in a potential energy minimum, a comparison between the
DEP potential energy and the thermal energy can be used
to estimate the magnitude of the potential energy required
to confine a particle within a given boundary. In this case
the electrical field can be estimated to be of the order of
5× 104 V m−1.

In conclusion, although the DEP-induced deterministic
movement of sub-micrometre particles can be complicated
by hydrodynamic effects, it has been shown that the forces
on particles can be predicted and therefore controlled.
Consequently it can be foreseen that recent technological
advances in dielectrophoresis could be applied, together
with electrohydrodynamic fluid movement, to develop
new methods for the characterization, manipulation and
separation of sub-micrometre and nano-scale particles.
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Appendix A

Heating in a parallel plate capacitor

Taking a planar capacitor with separationd between the
plates, the equation to solve is

k
dT

dx2
= −σE2 (A1)

with boundary conditionsT = T0 at the plates (x = 0 and
x = d). The solution is

T = T0+ σE
2d

2k

(
x − x

2

d

)
. (A2)

The maximum temperature is reached in the centre of the
gap between the electrodes and, from (A2), is

T = T0+ σE
2d2

8k
. (A3)

The temperature rise is1T = σV 2
rms/(8k). For σm =

0.01 S m−1 andV = 20 V peak to peak, the temperature
rise can be calculated to be1T = 0.1 ◦C.

Appendix B

In the steady state the equation of motion is

−∇p + η∇2v̄ + f̄E = 0 (B1)

wheref̄E is given by equation (28) of the text. Taking the
curl of this equation and assuming two-dimensional flow,
the stream function9 is found from

−η∇49 + (∇ × f̄E) · n̂z = 0 (B2)

where n̂z is the unit vector in thez direction and the
velocity is obtained from the stream function,v̄ = ∇ ×
(9n̂z). Taking into account the expression for the force,
equation (28) of the text, the following expression (in polar
co-ordinates) must be solved:[

1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2

]2

9 = 2C

r4

(
1− 2θ

π

)
(B3)

where

C = M(ω, T )
(
εσV 4

rms

2kπ3T η

)
. (B4)

We assume solutions are of the form9(r, θ) = rnf (θ).
The r dependence of the right-hand side of equation (B3)
implies that9 is a function of the angleθ only. The general
solution of equation (B3) that is a function ofθ only is

9 = −C
2

(
θ2

2
− θ3

3π

)
+A1 sin(2θ)+A2 cos(2θ)+A3θ+A4

(B5)
whereAn are constants defined by boundary conditions.

The boundary condition for zero velocity atθ = 0 and
θ = π implies that:

∂9

∂θ
= 0 at θ = 0, π.

Since the stream function is defined except for a constant
then, without loss of generality, we have

9 = 0 for θ = 0, π.

The symmetry of the system implies that

∂29

∂θ2
= 0 at θ = 0, π/2.

Thus the final solution is

9 = −C
2

(
θ2

2
− θ3

3π

)
− Cπ

24
[sin(2θ)− 2θ ]. (B6)

Substituting this into the expression for the stream function,
the velocity is

vr = 1

r

∂9

∂θ
= C

r

[
−1

2

(
θ − θ

2

π

)
− π

12
[cos(2θ)− 1]

]
.

(B7)
The velocity is radial and the maximum for a given radial
distance is

vmax = π

24

C

r

which occurs atθ = π/2. The velocity is zero for
θ = 0.286π and 0.714π .
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