
All rights are reserved and copyright of this manuscript belongs to the authors.
This manuscript has been published without reviewing and editing as received
from the authors: posting the manuscript to SCIS 2007 does not prevent future
submissions to any journals or conferences with proceedings.

SCIS 2007 The 2007 Symposium on
Cryptography and Information Security

Sasebo, Japan, Jan. 23-26, 2007
The Institute of Electronics,

Information and Communication Engineers

A Certificateless Signature Scheme based on Bilinear Pairing
Functions

Routo Terada ∗ Denise H. Goya†

Abstract– We construct a Certificateless Public Key Signature scheme - CL-PKS, i.e., a crypto-
graphic signature scheme which does not require any Digital Certificate to verify a signature generated
by a private key, based on asymmetric bilinear pairing functions. Our scheme does not allow the
so-called key escrow. We analyze both its efficiency and security: it is more efficient than previously
published CL-PKS schemes, with shorter signatures and public keys; we prove it is strong against adap-
tively chosen message attacks, based on the computational difficulty of the Diffie-Hellman Problems.

1. Introduction

The concept of Identity Based Encryption — IBE —
system was proposed by [13] for which the public key
can be the user’s identity itself, such as the user’s e-mail
address.
[5] presented an IBE system based on bilinear pairing

functions, that requires a Public Key Generator — PKG.
The PKG needs to be trusted in the sense that it can
generate any of the private keys, i.e., it can exercise
the so-called key escrow, which is undesirable in many
applications. On the other hand this system does not
require the so-called Public Key Infrastructure — PKI
— with its complex and costly management of Digital
Certificates. Recently [3] proposed an Identity Based
Signature - IBS - scheme based on asymmetric bilinear
pairing functions.
[1] proposed a Certificateless Public Key Encryption

— CL-PKE — scheme, i.e., a cryptographic scheme which
does not require either a Digital Certificate to certify
the public key or a PKI. It is also based on bilinear
pairing functions. In CL-PKE there is a trusted third
party - TTP - who owns a master-key, but it is used
only partially to generate a user’s private key so that
this key cannot be generated by the TTP alone, which
is possible in IBE. In [1] the TTP is called Key Gen-
erator Center - KGC - and the notion of CL-PKE is
formalized, and a security analysis is presented.
Informally, the KGC uses its master− key and pub-

licly known system parameters to build a partial pri-
vate key DA associated to a user’s identity IDA; as in
IBE, this private key DA must be delivered securely to
the user. Then this user composes DA with another
random secret data to generate its own private key tA
and publishes the corresponding public key NA; hence,
the KGC does not have access to the user’s private key.
The public key NA is bound to the identity IDA and

∗ rt@ime.usp.br, University of Sao Paulo, supported by Japan
Soc. for the Promotion of Science Fellowship S06207

† University of Sao Paulo

thus it does not need to be authenticated. Due to this
last fact, it is relevant to consider an adversary may re-
place the public key NA by a fake one [1]. But since the
KGC knows the master− key and the partial private
key DA, it is able to mount a public key replacement
attack, so in the CL-PKE security analysis a necessary
assumption is that the KGC is trusted not to do such
replacement. This trust is equivalent to the trust in a
Certificate Authority of a PKI. As in [1], we consider
two types of adversaries: (1) Type I Adversary: it does
not have access to the KGC’s master− key but can re-
place any public key NA (corresponding to the private
key tA) of its choice. (2) Type II adversary: it does
have access to the master− key but cannot replace
any public key NA.
Besides CL-PKE, a certificateless signature scheme

- CL-PKS - is presented in [1], but there is no secu-
rity analysis. In the case of message signing, the public
key NA must be sent with the message. Recently [10]
showed this CL-PKS is insecure, and a fix is proposed
based on symmetric bilinear pairing functions, as de-
fined in Section 2.
Our contribution
We construct a CL-PKS scheme which: (1) is based

on asymmetric bilinear pairing functions; (2) does not
allow key escrow by the KGC; and does not require
Digital Certificates; (3) is more efficient on computa-
tion than previously published CL-PKS ([1], [2], [10],
[3], [17]); (4) and is secure in the sense that no adver-
sary may forge a signature unless the q-Strong Diffie-
Hellman Problem (q-SDH), and the Bilinear Pairing
Inversion Problem (BPI), defined in Section 2, are poly-
nomial time solvable.
Since our CL-PKS is based on asymmetric bilinear

pairing functions e : G1 × G2 → GT (as opposed to
the symmetric pairing in [10] and [17]), ordinary ellip-
tic curves such as MNT curves [11] or BN curves [4]
should be used as long as a publicly computable but
not necessarily invertible isomorphism ψ : G2 → G1 is
available.



Preliminary concepts are defined in Section 2. Our
CL-PKS scheme is in Section 3. In Section 4 we analyze
the complexity. Security analyses are in Sections 5.
Conclusions are in Section 6.

2. Preliminaries

2.1. Bilinear maps

Let k be a security parameter and G1be an addi-
tive group of prime order p > 2k and G2 and GT be
multiplicative groups of the same order. Let P and
Q be generators of G1 and G2, respectively, and let
e :G1×G2 →GT (possibly G1 = G2) be a mapping
with the following properties: (1) Bilinearity: e() is bi-
linear iff ∀(R,S) ∈ G1 × G2,∀a, b ∈ Fp : e(aR, bS) =
e(R,S)ab, where Fp is a finite field of order p; (2)
Non-degeneracy: e() is non-degenerate if ∀R ∈ G1:
e(R,S) = 1GT ∀S ∈ G2 iff R = O, the identity
element of G1; (3) Efficient computability: e() is effi-
ciently computable if ∀(R,S) ∈ G1 ×G2 : e(R,S) can
be computed in polynomial-time; (4) There exists an ef-
ficient and publicly computable (not necessarily invert-
ible) homomorphism ψ : G2 → G1 such that ψ(Q) = P .
When G1 6= G2 e() is said to be asymmetric and

ordinary elliptic curves such as MNT curves [11] or BN
curves [4] can be used and the trace map can be used as
the isomorphism ψ : G2 → G1 if G2 is properly chosen
[14]. When G1 = G2 e() is said to be symmetric and
supersingular curves can be used and ψ() is the identity.
For a group G of prime order, we denote G∗ = G\O,

where O is the identity element of G.

2.2. Computational problems

For security analysis a computationally hard prob-
lem was formalized in [6] and is recalled in the follow-
ing.

Definition 1. ([6]) Let (G1,G2,GT ) be groups of pri-
me order p and let P and Q be generators of G1 and
G2, respectively. The q-Strong Diffie-Hellman Problem
(q-SDH) in the groups G1,G2 takes as input a (q+2)-
tuple (P,Q,αQ,α2Q, ...αqQ) and aims to find a pair
(c, 1

c+αP ) with c ∈ Z∗p .
A second computationally hard problem is defined

next. Its computational hardness is proved in [16].

Definition 2. ([16]) Let (G1,G2,GT ) be groups of pri-
me order p and let P and Q be generators of G1 and
G2, respectively. Let e :G1×G2 →GT with the prop-
erties described before. The Bilinear Pairing Inversion
Problem (BPI) takes as input (Q ∈ G2, e(P,Q) ∈ GT )
and aims to compute P ∈ G1.
2.3. Formal model of Certificateless Public Key

Signature - CL-PKS

The formal structure we use for Certificateless Public
Key Signature consists of seven algorithms as follows.

Definition 3. ([1][10]) A CL-PKS (Certificateless Pub-
lic Key Signature) scheme consists of the following poly-
nomial-time algorithms:

(1) Setup: This is a probabilistic algorithm. It takes as
input a security parameter 1k and returns params, a list
of system parameters, and a master-key. (2) Partial-
Private-Key-Extract: This is a deterministic algorithm
that accepts as input IDA, the identity for the user A,
params and master-key, to produce the partial private
key DA. (3) Set-Secret-Value: This probabilistic al-
gorithm outputs a secret information tA for IDA. (4)
Set-Private-Key: This is a deterministic algorithm that
accepts as input IDA, the partial private key DA, the
secret information tA and params, to produce the pri-
vate signing key (DA, tA). (5) Set-Public-Key: This is
a deterministic algorithm that accepts as input IDA,
the secret information tA and params, to produce the
public key NA. (6) CL-Sign: This is a probabilistic al-
gorithm. It takes as input IDA, the private signing key
(DA, tA), params and a message M , to produce a sig-
nature σ. (7) CL-Verify: This deterministic algorithm
takes as input IDA, the public key NA, params, a mes-
sage M and a signature σ. It returns a bit b; b = 1
means that the signature is accepted, whereas b = 0
means rejected.

3. Proposed CL-PKS scheme

Our concrete CL-PKS scheme is defined as the fol-
lowing set of algorithms.
Setup Given a security parameter k ∈ Z the Key
Generation Center - KGC: (1) Generates two cyclic
groups G1,G2, G1 6= G2, and GT of prime order p > 2k
and a bilinear pairing e : G1 × G2 → GT . Chooses
randomly two generators P ∈ G∗1, Q ∈ G∗2 such that
P = ψ(Q) where ψ() is an isomorphism (not neces-
sarily invertible) between G∗1 and G∗2. (2) Computes
g = e(P,Q) ∈ GT , which is public. (3) Chooses ran-
domly the master-key s ∈ Z∗p and compute Qpub = sQ.
(4) Chooses two hash functions: H1 : {0, 1}∗ → Z∗p
H2 : {0, 1}∗ × {0.1}∗ ×GT ×GT → Z∗p .
The message/plaintext space is M = {0, 1}∗. The

signature space is S = G1 × Z∗p . The system secret
master-key is s. The system public parameters are

params= hp,G1,G2,GT , e(),ψ,
P,Q,Qpub, g,H1,H2i

Partial-Private-Key-Extract Given an identifier
IDA ∈ {0, 1}∗, params and the master-key s the KGC:
(1) computes DA = 1

H1(IDA)+s
P ∈ G∗1. (2) gives the

partial secret key DA securely to A, the owner of IDA.
Set-Secret-Value Given params, the entity A se-
lects at random a secret information tA ∈ Z∗p for iden-
tity IDA.
Set-Private-Key Given IDA, DA, tA, and params,
the entity A keeps safely A’s signing private key pair
(DA, tA) ∈ G∗1 × Z∗p .
Set-Public-Key Given IDA, tA, and params, the
entity A computes its public key NA = gtA ∈ GT . A
publishes NA.
CL-Sign Given M ∈M = {0, 1}∗, an identity IDA,
params and the published public key NA = gtA and
A’s secret key pair (DA, tA), A signs M as follows:
(1) chooses randomly x ∈ Z∗p . (2) computes: r :=



gx ∈ GT , h := H2(M, IDA, NA, r) ∈ Z∗p , S := (x +
htA)DA ∈ G1. (3) a signature on M is σ := (S,h) ∈
G1 × Z∗p .
CL-Verify Given plaintext M , and σ = (S, h), the
signature, it outputs 1 (i.e., accepts σ as authentic)
if and only if: h = H2(M, IDA, NA, r

0) where r0 :=
e(S,H1(IDA)Q+Qpub)(NA)

−h. Otherwise it outputs
0.

3.1. Correctness of the proposed CL-Sign

To prove the CL-Sign is correct, it is enough to re-
member the pairing e( ) is bilinear, and to prove r0 = r,
as shown next:

r0 = e(S,H1(IDA)Q+Qpub)(NA)
−h

= e([(x+ htA)DA],
H1(IDA)Q+Qpub)(NA)

−h

= e([(x+ htA)
1

H1(IDA)+s
P ],

H1(IDA)Q+ sQ)(NA)
−h

= e([(x+ htA)
1

H1(IDA)+s
P ],

[H1(IDA) + s]Q)(NA)
−h

= e([(x+ htA)P ], Q)
1

H1(IDA)+s
(H1(IDA)+s)

(NA)
−h

= e([(x+ htA)P ], Q)(NA)−h

= e(P,Q)(x+htA)(gtA)−h

= g(x+htA)g−htA
= gx = r

4. Complexity of the proposed CL-PKS

[1] presents a CL-PKS scheme without security analy-
sis. Recently [10] showed this CL-PKS is insecure, and
a fix is proposed based on symmetric bilinear pairing
functions, i.e., the particular case of G1 = G2. A sum-
mary of [10] is: U = vtD+rP , v = H(M,R, e(tD, P )),
and asks v =? H(M,e(U,P )e(Qi,−N)v, e(Qi, N)), whe-
re D, t are secret, N is public, R = e(rP, P ), Qi =
H1(ID). Our CL-PKS scheme is based on more general
asymmetric bilinear pairing functions (i.e., the general
case of G1 6= G2). [17] presents a CL-PKS scheme
which is also based on symmetric bilinear pairing func-
tions. A summary of [17] is: U = rP, V = D +
rH2(M, ID,P,U)+th3, and asks e(V, P ) =? e(h1, Ppub)
e(h2, U)e(h3, N).
Recall that G1 is an additive group of prime order

p > 2k and G2 and GT are multiplicative groups of
the same order; e :G1×G2 →GT . In some of the pre-
vious papers G1 =G2, an additive group. But in this
paper G1 6=G2. Let the basic operations be denoted as
follows: (1) P: bilinear pairing e(R,S) ∈ GT , (R,S) ∈
G1×G2 (2) E: exponentiation gx ∈ GT , g ∈ GT , x ∈ Z∗p
(3) S: scalar multiplication in additive group xD ∈G1,
x ∈ Z∗p ,D ∈ G∗1 (4) M: multiplication of points in
multiplicative group QR ∈ G∗2, Q ∈ G∗2, R ∈ G∗2 (5)
A:addition of points in additive groups (Q+R) ∈ G1,
Q ∈ G1, R ∈ G1 (6) H: hash computation Hj() ∈ Z∗p
Then we have the following table of comparison with

the number of computations in each of the published
similar schemes of CL-PKS based on bilinear pairing.
This table shows that our CL-PKS is more efficient in
the number of bilinear pairing operations, which is the

relatively most expensive ones: zero in the CL-Sign,
and one in the CL-Verify (as opposed to 4 in previous
papers).

Signing a message CL-Sign
CL-PKS P S M E A H
[1] 1 3 0 0 1 1
[10] 2 2 0 0 1 1
[17] 0 3 0 0 2 2
Our CL-PKS 0 1 0 1 0 1

Verifying a signature CL-Verify
CL-PKS P S M E A H
[1] 4 0 1 1 0 1
[10] 4 0 1 1 0 2
[17] 4 0 2 0 0 3
Our CL-PKS 1 1 1 1 1 2

In the next table we see that a signature in our CL-PKS
is shorter than in Zhang et al. [17], since an integer in
Z∗p is shorter than a point in G1. For a given length n
a proper choice of the security parameter k is possible
so that our signature is shorter than in [1] and [10].
Compressed pairings may be used as in [15]. Huang
et al. [10] and Zhang et al. [17] use symmetric pair-
ings; if they used asymmetric pairings as we do, their
public keys must be in G2. If MNT curves [11] are
used together with compressed pairings, our CL-PKS
would have public keys as large as in [10] and [17]; if
BN curves [4] are used, our public keys can be shorter.

CL-PKS Signature Space
[1] G1 × {0, 1}n
[10] G1 × {0, 1}n
[17] G1 ×G1
Our CL-PKS G1 × Z∗p
CL-PKS Public Key Space
[1] G1
[10] G1
[17] G1
Our CL-PKS GT

5. Security Proof of Our CL-PKS

We follow the security model as defined by Al-Riyami
and Patterson in [1]; it is detailed in the Appendix.
In this model, the Type-I adversary against CL-PKS

does not know the master-key but may replace any
user’s public key. It plays the Game I against a chal-
lenger as described below. The Type-II adversary again-
st CL-PKS knows the master- key but cannot replace
any user’s public key. It plays Game II against a chal-
lenger as described below. We will prove both adver-
saries are Existentially Unforgeable against Adaptive
Chosen Message Attackers (EUF-CMA).
Informally if we let AI and AII denote Type-I and

Type-II attackers, respectively, playing Game-I and Ga-
me-II (as defined below), CL-PKS scheme is said to be
EUF-CMA of a CL-PKS if the success probability of
both AI and AII are negligible (see Definition 4 in the
Appendix).
To prove the security against an adversary AI , we

will use a variant of the Game-I: the challenger gives



an identity ID and the adversary should be able to
produce a valid signature for that ID and some mes-
sage M ; we say a CL-PKS scheme is existentially un-
forgeable against adaptive chosen message and given
identity Type-I attacks if any probabilistic polynomial
time (on k) adversary has a negligible probability in
gaining success. The Lemma 1 below constructs an at-
tacker A, challenged on a given identity, if our CL-PKS
scheme is under a Type-I attacker. Then in Lemma 2
we prove that if there is such a polynomial time (on k)
adversary A then there is a polynomial time algorithm
to solve the q-SDH Problem, which is a hard problem
(see Section 2.2).

Lemma 1. If there is an algorithm AI for an adap-
tively chosen message Type-I attack against our CL-
PKS scheme with running time t, advantage � and
making qh1 queries to random oracle H1, then there
is an algorithm A for an adaptively chosen message
and given identity Type-I attack which has advantage
�1 ≥ �

¡
1− 1

2k

¢
/qh1 , with a running time t1 ≤ t. More-

over, A asks the same number of queries as AI does.
Proof. This proof is similar to the proof of Lemma
1 in [8]. Without loss of generality, we may assume
that for any ID, AI queries H1(ID), Extract Private
Key(ID), Extract Partial Private Key(ID), Request
Public Key(ID), and Replace Public Key(ID) at most
once. The steps done by A are:
(1) Choose independently and randomly r ∈ {1, . . . ,

qh1}. Denote by IDi the input for the i-th query to
H1 asked by AI . Let ID0i be ID if i = r, and IDi
otherwise. Define H 0

1(IDi)=H1(ID
0
i), Extract Private

Key0(IDi)=Extract Private Key(ID0i), Extract Partial
Private Key0(IDi)=Extract Partial Private Key(ID0i),
Request Public Key0(IDi)=Request Public Key(ID0i),
Replace Public Key0(IDi)=Replace Public Key(ID0i)
and Sign0(IDi,M)=Sign(ID0i,M).
(2) Run AI with the given system parameters. A re-

sponds to the queries from AI to H1, H2, Extract Pri-
vate Key, Extract Partial Private Key, Request Public
Key, Replace Public Key and Sign by evaluating H 0

1,
H2, Extract Private Key0, Extract Partial Private Key0,
Request Public Key0, Replace Public Key0 and Sign0,
respectively. Let the output of AI be (IDout,M,σ).
(3) If IDout = ID, then outputs (ID,M,σ), other-

wise fails.
We can see that the number of queries is the same

for both AI and A and the running time of A is at
most t, since AI may take some extra significant time
analyzing the answers of queries.
Since the distributions produced by H 0

1, Extract Pri-
vate Key0, Extract Partial Private Key0, Request Pub-
lic Key0, Replace Public Key0 and Sign0 are indistin-
guishable from those produced by our scheme,AI learns
nothing from the query results, and hence:

Pr[(IDout,M,σ) is valid] ≥ �

Since H1 is a random oracle, the probability that
the output (IDout,M,σ) is valid, without any query to

H 0
1(IDout), is negligible, so:

Pr[IDout = IDi for some i |
(IDout,M,σ) is valid ]

≥ 1− 1
2k

Since r is independently and randomly chosen,

Pr[IDout = IDr | IDout = IDi for some i]
≥ 1

qh1

Combining these equalities, we have

�1 = Pr[IDout = IDr = ID and
(IDout,M,σ) is valid ]

≥ �
¡
1− 1

2k

¢
/qh1

and the proof is done. 2

Lemma 2. Let us assume that there is an adaptively
chosen message and given identity Type-I attacker A
that makes qhi queries to the random oracle Hi (i =
1, 2), qs queries to the signing oracle. Assume that,
within time t, A produces a forgery with probability
� ≥ 10(qs+1)(qs+ qh2)/2k. Then there exists an algo-
rithm B that is able to solve the q-SDH in (G1,G2) for
q = qh1 in expected time

t0 ≤ 120686qh2
t+O(qs(τpair + τ exp)) +O(τ exp) +O(qh2)

�(1− qs/2k)
+O(q2τmult)

where τmult is the cost of a scalar multiplication in G2,
τpair is the cost of a pairing evaluation, and τexp is the
cost of an exponentiation in GT .

Proof. This proof is similar to the proof of Lemma 2
in [3].
We will construct algorithm B which takes as in-

put (P,Q,αQ,α2Q, . . . ,αqQ) and aims to find a pair
(c, 1

c+αP ). In the Setup phase, B builds a generator
G ∈ G1 such that it knows q− 1 pairs (wi, 1

wi+α
G) for

w1, . . . , wq−1 ∈R Z∗p. To do so,
(1) It picks w1, . . . , wq−1 ←R Z∗p and expands f(z) =Qq−1
i=1 (z + wi) to obtain c0, . . . , cq−1 ∈ Z∗p such that

f(z) =
Pq−1
i=0 (ciz

i).
(2) It sets generators H =

Pq−1
i=0 ci(α

iQ) = f(α)Q ∈
G2 and G = ψ(H) = f(α)P ∈ G1. It defines the public
parameter Hpub =

Pq
i=1 ci−1(α

iQ) ∈ G2, so Hpub =
αH, although B does not know α.
(3) For 1 ≤ i ≤ q − 1 B expands fi(z) = f(z)/(z +

wi) =
Pq−2
i=0 (diz

i) andPq−2
i=0 diψ(α

iQ)

= fi(α)P =
f(α)
α+wi

P = 1
α+wi

G
(5.1)

The pairs (wi, 1
wi+α

G) are computed using the left
member of (5.1).
B chooses the challenge identity ID∗ ←R {0, 1}∗,

then returns ID∗ to A and the system
params= hp,G1,G2,GT , e(),ψ,

G,H,Hpub, g
0,H1,H2i



where H1 and H2 are random oracles controlled by B
and g0 = e(G,H).
We may assume that (1) queries to H1 are distinct,

(2) any query involving an identifier ID is preceded by
query to the random oracle H1(ID) and (3) a public
key for ID is already requested (Request Public Key)
before any queries to get a secret key (Extract Private
Key) and any queries to replace (Replace Public Key).
B initializes a counter l to 1 and generates two empty

lists L1 and L2. L1 stores tuples (ID,w,N,D, t) for the
randomly chosen w (above) and public key N , partial
keyD and secret value t for ID. With L2, B can control
his answers to the random oracleH2 queries fromA (for
verification of signatures). B responds to the queries
from A in the following way:
(1) H1-queries on an identity ID: B stores (ID,wl,

N =⊥,D =⊥, t =⊥) in the list L1, returns wl and
increments l.
(2) H2-queries on (M, ID,N, r, rN): B retrieves (M,

ID,N, r, rN, h2) from a list L2 and returns h2. If that
tuple cannot be retrieved, it aborts.
(3) Public Key Request queries on ID: B recovers

(ID,w,N,D, t) from L1. If N 6=⊥ returns N . Other-
wise chooses t ←R Z∗p, computes N = gt, updates the
tuple in L1 with N and t; returns N .
(4) Partial Key Extraction queries on ID: B re-

covers (ID,w,N,D, t) from L1, update and returns
D = (1/(α+w))G, computed previously.
(5) Secret Key Extraction queries on ID: B retrieves

(ID,w,N,D, t) from L1. If D =⊥ it makes first a
Partial Key Extraction query. Returns (D, t).
(6) Public Key Replacement queries on ID with N 0:

B recovers (ID,w,N,D, t) from L1. Updates the tuple
with N = N 0 and t =⊥ in L1.
(7) Signature queries on ID,M : B chooses S ←R G1

and h ←R Z∗p. Computes r = e(S,QID)e(G,H)t−h,
where QID = H1(ID)H + Hpub and t could be ex-
tracted from L1 (if the public key was not replaced) or
A submits a t0 corresponding to the replaced public key
N (but if ID = ID∗ or N 6= gt0 , it aborts). B defines
H2(M, ID,N, r, rN) as h, including (M, ID,N, r, rN, h)
in the list L2 (it aborts if this tuple is already defined
for h0 6= h). Returns σ = (h, S).
We have explained how B simulates an environment

for an attack of A.
If B does not abort during the simulation, then the

A’s view is the same as its view in a real attack. This
is true since the values w and h are independently and
randomly chosen (at preparation phase and signature
queries processing), and H1() and H2() are random or-
acles. Moreover, B can abort (without an earlier abor-
tion of A) only when, in a signature query, the same
value h is chosen twice. The probability of this event
is at most qs/2k, since h is randomly chosen. In other
words, Pr[B does not fail ] ≥ �(1− qs/2k).
Our purpose now is to apply the Forking Lemma

(Theorem 3 in [12]). This Lemma essentially says:
consider a scheme producing signatures of the form
(M, r, h, S), where each of r, h, S corresponds to one
of the three moves of an honest-verifier zero-knowledge
protocol. Let us assume that a chosen message attacker

F forges a signature (M, r, h, S) in expected time t with
probability � ≥ 10(qs +1)(qs + qh)/2k when making qs
signature queries and qh random oracle calls. If the
triples (r, h, S) can be simulated without knowing the
private key, then there exists a Turing machine F 0 that
uses F to produce two valid signatures (M, r, h1, S1)
and (M, r, h2, S2), with h1 6= h2, in expected time
t0 ≤ 120686qht/� [3].
In our setting, from A we build an algorithm A’ that

replays A using ID∗ and
params= hp,G1,G2,GT , e(),ψ,

G,H,Hpub, g
0,H1,H2i

until two forgeries (M∗, r, h1, S1) and (M∗, r, h2, S2),
with h1 6= h2, could be obtained.
Then B runsA’ to obtain two valid signatures (M∗, r,

h1, S1) and (M∗, r, h2, S2) for ID∗ and for the same
message M∗ and commitment r. B recovers (ID∗, w∗)
from the list L1. Since the two signatures are valid for
the same r and the public key for ID∗ was not replaced
(t∗ has never changed), we have:

e(S1, QID∗)e(G,H)
t∗−h1 = e(S2, QID∗)e(G,H)t

∗−h2

where QID∗ = H1(ID∗)H+Hpub = (w∗+α)H. Then,

e((h1 − h2)−1(S1 − S2), QID∗) = e(G,H),
and T ∗ = (h1−h2)−1(S1−S2) = (1/(α+w∗))G. From
T ∗, B can proceed as in [3][6] to extract σ∗ = (1/(α+
w∗))P :
B first obtains γ−1, γ0, . . . , γq−2 ∈ Z∗p, for which

f(z)/(z +w∗) = γ−1/(z+w∗) +
Pq−2
i=0 (γiz

i) and com-
putes

σ∗ =
1

γ−1

"
T ∗ −

q−2X
i=0

γiψ(α
iQ)

#
=

1

α+w∗
P

Then B returns (w∗,σ∗) as the result for that given
instance for q-SDH.
To compute the complexity of B’s running time, con-

sider:
(1) A forges a signature in a time t with probability

� ≥ 10(qs+1)(qs+qh)/2k (to use the Forking Lemma);
(2) Pr[B does not fail] ≥ �(1 − qs/2k) (as shown

before).
(3) the cost of the preparation phase is O(q2h1τmult),

where τmult is the cost of a scalar multiplication in G2;
(4) the cost of processing H2 queries is O(qh2) since

only the list L2 is involved;
(5) the number of queries for partial and secret ex-

tractions, replacements and requests of public keys is
O(qh1). Since those queries, as well as H2-queries, in-
volve only operations on the list L1 we conclude that
the cost of queries for partial and secret key extrac-
tions, replacements of public keys and H2-queries is
O(log(qh1));
(6) the number of queries for public key requests is

O(qh1). Since those queries involve exponentiation in
GT its complexity is O(qh1τexp) where τexp denotes
time for one exponentiation in GT ;



(7) the cost of processing signature queries isO(qs(τpair
+τexp)), where τpair is the cost of a pairing evaluation;
(8) q = qh1 .
Hence B solves q-SDH in (G1,G2) in expected time:

t0 ≤ 120686qh2
t+O(qs(τpair + τexp)) +O(qτexp) +O(qh2)

�(1− qs/2k)
+O(q2τmult)

The proof is now done. 2

Lemma 3. If there is an algorithm AII for an adap-
tively chosen message and identity Type-II attack against
our CL-PKS scheme with running time t and advantage
�, then there is an algorithm B that is able to solve the
Bilinear Pairing Inversion Problem (BPI) in GT in ex-
pected time t0 ≤ t, with the same advantage �.
Proof. This proof is similar to the previous two Lem-
mas. First, as in the proof of Lemma 1, we construct an
attacker A, challenged on a given identity, if our CL-
PKS scheme is under a Type-II attacker. Second, as
in the proof of Lemma 2, we prove that if there is such
a polynomial time adversary A then there is a polyno-
mial time (on k) algorithm to solve the BPI Problem
in GT , which is a hard problem (see Section 2.2). 2

6. Conclusions

We have constructed a CL-PKS scheme that does
not allow key escrow by the KGC, based on asymmet-
ric bilinear pairing functions. We analyzed both its effi-
ciency and security. It is more efficient than previously
published CL-PKS schemes, with shorter signatures,
and we proved it is strong against adaptively chosen
message attacks.

References

[1] AL-RIYAMI, S. S.; PATERSON, K. G. Certificateless
Public Key Cryptography. 2003. Cryptology ePrint
Archive, Report 2003/126. http://eprint.iacr.org/.

[2] AL-RIYAMI, S. S.; PATERSON, K. G. C: CBE from
CL-PKS: A generic construction and efficient schemes.
In: Public Key Cryptography - PKC 2005. [S.l.: s.n.],
2005. pp. 398-415.

[3] BARRETO, P.S.L.M., B. LIBERT, N. McCUL-
LAGH, J. QUISQUATER. Efficient and Provably-
Secure Identity-Based Signatures and Signcryption
from Bilinear Maps, LNCS vol. 3788, Nov. 2005, pp
515-532.

[4] BARRETO, P.S.L.M., NAEHRIG, M. Pairing-
friendly elliptic curves of prime order. In: Proceedings
of SAC 2005, Lec. Notes in Comp. Sci., Springer, vol.
3897, pp 319-331.

[5] BONEH, D.; FRANKLIN, M. K. Identity-based en-
cryption from the Weil pairing. In: CRYPTO 01: Pro-
ceedings of the 21st Annual International Cryptology

Conference on Advances in Cryptology. London, UK:
Springer-Verlag, 2001. pp. 213-229. ISBN 3-540-42456-
3. http://eprint.iacr.org/2001/090/.

[6] BONEH, D.; BOYEN, X. Short signatures without
random oracles. In Proceedings of the Eurocrypt 2004,
Springer LNCS 3027, pp. 53-76, 2004.

[7] BONEH, D.; BOYEN, X. Efficient selective-ID secure
identity based encryption without random oracles, In
Eurocrypt 2004, volume 3027 of LNCS, pages 223-238,
Springer, 2004.

[8] CHA, J. C., CHEON, J. H. An identity-based signa-
ture from gap Diffe-Hellman groups, In PKC’03, vol-
ume 2567 of LNCS, pp18-30, Springer, 2003.

[9] CHEON, J. H.; LEE, D. H. Diffie-Hellman Problems
and Bilinear Maps. 2002. Cryptology ePrint Archive,
Report 2002/117. http://eprint.iacr.org/.

[10] HUANG, X.; SUSILO, W.; MU, Y.; ZHANG, F. On
the security of certificateless signature schemes from
Asiacrypt 2003, Proceedings of the Cryptology and
Network Security - CANS - 2005, LNCS 3810, pp 13-
25, 2005, Springer.

[11] MIYAJI, A.; NAKABAYASHI, M.; TAKANO, S. New
explicit conditions of elliptic curve traces for FR-
reduction. IEICE Transactions on Fundamentals, vol
E84-A(5):1234-1243, 2001.

[12] POINTCHEVAL, D.,STERN, J. Security arguments
for digital signatures and blind signatures, Journal of
Cryptology, 13(3):361-396, 2000.

[13] SHAMIR, A. Identity-based cryptosystems and signa-
ture schemes. In: Proceedings of CRYPTO 84 on Ad-
vances in cryptology. New York, NY, USA: Springer-
Verlag New York, Inc., 1984. pp. 47-53. ISBN 0-387-
15658-5.

[14] SMART, N. P.; VERKAUTEREN, F. On com-
putable isomorphisms in efficientl pairing based sys-
tems. Cryptology ePrint Archive Report 2005/116,
2005. http://eprint.iacr.org/2005/116.

[15] SCOTT, M.; BARRETO, P. S. L. M. Compressed
pairings. In: . Springer, 2004. (Lecture Notes in Com-
puter Science, vol.. 3152), pp. 140-156. Available as
<http://eprint.iacr.org/2004/032>

[16] YACOBI, Y., A Note on the Bi-linear Diffie-
Hellman assumption. Cryptology ePrint Archive Re-
port 2002/113, 2002, http://eprint.iacr.org/2002/113

[17] ZHANG, Z.; WONG, D. S.; XU, J.; FENG, D. Cer-
tificateless Public Key Signature: Security Model and
Efficient Construction. In: Proceedings of the 4th. In-
ternat’l Conference on Applied Cryptography and Net-
work Security, June 6-9, 2006, Singapore. Lec. Notes
in Comp. Sci. vol. number 3989, by Springer.



Appendix: The Security Model

This Appendix defines the types of adversary and
games (as defined in [1]) used in Section 5.
Game-I: This is the game in which an adversary of
Type I AI interacts with the Challenger :
Phase 1-I The Challenger runs Setup(1k) to generate
master-key and params. Challenger gives params to
AI and keeps safely the master-key.
Phase 2-I AI makes queries of the following types:
(1) Extract Partial Private Key For a given IDA,

Challenger computesDA =Partial-Private-Key-Ex-
tract (params, master− key, IDA) and returns it to
AI .
(2) Extract Private Key For a given IDA, Chal-

lenger computes firstDA =Partial-Private-Key-Ex-
tract (params, master− key, IDA) and tA = Set-Se-
cret-Value (params, IDA). Returns SA = Set-Pri-
vate-Key (params, IDA, DA, tA) to AI .
(3) Request Public Key For a given IDA, Chal-

lenger computes firstDA =Partial-Private-Key-Ex-
tract (params, master− key, IDA) and tA =Set-Se-
cret-Value(params, IDA). Returns NA =Set-Public-
Key (params, IDA, tA) to AI .
(4) Replace Public Key For a given IDA, AI may

replace a public key NA with a value chosen by him.
AI is not required to provide the corresponding secret
value.
(5) Signing Queries For a given IDA, and cho-

sen message M , if NA has not been replaced, Chal-
lenger gets SA from its “query-answer” list and re-
turns σ =CL-Sign (params, M, IDA,DA, tA). If NA
has been replaced, AI may submit the secret value tA
corresponding to the replaced public key to the signing
oracle.
Phase 3-I AI outputs a message M∗ and a signature
σ∗ for the identity ID∗ with N∗A. ID

∗ cannot be an
identity for which the private key has been extracted,
and ID∗ cannot be an identity for which both the pub-
lic key has been replaced and the partial private key
has been extracted. Moreover, M∗ should not have
been queried to the signing oracle with ID∗ and N∗A.
However, in the case N∗A is different from the original
public key of the entity with ID∗, AI should not have
submitted the corresponding secret value if it has not
made signing queries for ID∗ and N∗A.
Game-II This is the game in which an adversary of
Type II AII interacts with the Challenger :
Phase 1-II The Challenger runs Setup(1k) to generate
master− key and params, both returned to AII .
Phase 2-II AII makes queries of the following types
(1) Extract Partial Private Key For a given IDA,

AII computes DA =Partial-Private-Key-Extract
(params, master− key).
(2) Extract Private Key For a given IDA, Chal-

lenger computes firstDA =Partial-Private-Key-Ex-
tract (params, master− key, IDA) and tA = Set-Se-
cret-Value (params, IDA). Returns SA = Set-Pri-
vate-Key (params, IDA, DA, tA) to AII .
(3) Request Private Key For a given IDA, Chal-

lenger computes firstDA = Partial-Private-Key-Ex-

tract (params, master− key, IDA) and tA = Set-Se-
cret-Value (params, IDA). Returns NA = Set-Pu-
blic-Key (params, IDA, tA) to AII .
(4) Signing Queries For a given IDA, a chosen mes-

sage M , Challenger gets SA from its “query-answer”
list and returns σ =CL-Sign (params, M , IDA, SA).
Phase 3-II AII outputs a message M∗ and a signa-
ture σ∗ for the identity ID∗ with N∗A. ID∗ cannot
be an identity for which the private key has been ex-
tracted. Moreover, M∗ should not have been queried
to the signing oracle with ID∗ and N∗A.
Informally we say that an adversary A (AI or AII)

achieves success in the above games if

CL− Verify(params, ID∗,N∗A,M∗,σ∗) = 1

We say that a CL-PKS scheme is existentially unforge-
able against adaptive chosen message attacks if any
probabilistic polynomial time on k adversary A has a
negligible probability in gaining success. Formally:

Definition 4. (EUF-CMA of a CL-PKS, [17]) A CL-
PKS scheme S is Existentially Unforgeable against Type
I or II Adaptive Chosen Message Attacks if and only if
the probability of sucess of any polynomial on k time
bounded Type I (resp. II) adversary A in the Game I
(resp. II) as described above is negligible, i.e., given a
security parameter k:

∀� > 0 : Pr
A,S,k

{success} ≤ ε


