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AC OPF for Smart Distribution Networks:
An Efficient and Robust Quadratic Approach
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Abstract—Smart grid schemes in which multiple network
elements and participants are managed for the benefit of the dis-
tribution network (e.g., energy loss reduction, restoration, etc.)
require sophisticated algorithms to control them in the most
suitable manner while catering for network constraints. Such
a complex decision making process can be solved by tailoring
the ac optimal power flow (OPF) problem to the corresponding
smart grid scheme. Non-linear programming ac OPF formula-
tions, however, can suffer from scalability and robustness issues
which in turn might limit their adoption. Here, a novel quadratic
programming formulation is proposed and compared against the
non-linear, quadratically constrained, and linearized approaches.
Two cases are carried out to assess their performance: 1) man-
agement of distributed generation units to maximize renewable
energy harvesting (continuous control variables) and 2) control of
capacitors to minimize energy losses (discrete control variables).
The results demonstrate that the proposed quadratic approach
significantly outperforms the more conventional formulations in
both computational efficiency and robustness. This makes it
a suitable alternative to be at the heart of the decision mak-
ing of complex, real-time schemes to be adopted by future smart
distribution networks.

Index Terms—Distribution networks, non-linear programming,
optimal power flow, quadratically constrained programming,
quadratic programming, smart grids.

I. INTRODUCTION

T
HE INCREASING need for more reliable power supply,
higher energy efficiency, the connection of small-to-

medium scale renewable generation, and the electrification
of transport pose significant challenges to the operation of
distribution networks originally designed to only cope with
a well understood demand. This new scenario where customers
can consume and/or generate electricity requires the intelli-
gent operation of all network elements and participants in
order to effectively manage technical issues and, thus, avoid or
defer otherwise required network reinforcements. These future
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Smart Distribution Networks, however, will require sophisti-
cated, scalable, and robust control algorithms designed to deal
with the different challenges faced by utilities (e.g., energy
loss reduction, voltage control, restoration, etc.) [1].

Although rule-based, coordinated control is traditionally
adopted by utilities (e.g., localized control of on-load tap
changing transformers), the increased complexity brought
by a large number of network elements and participants
can reduce its effectiveness. In this context, optimization
approaches can potentially unlock the benefits from the holis-
tic, centralized management of the distribution network. One
of these approaches is the well-known AC Optimal Power
Flow (OPF), which can be tailored for smart distribution
networks [2]–[4].

The solution of a conventional power flow problem makes
it possible to know the steady-state operation of a distribu-
tion network, i.e., voltages, power flows, and other variables
of interest can be calculated. However, if some variables are
controllable, such as the injection of generation units or the
tap position of transformers, the operation of the network
can be optimized according to the objectives of the utility
(e.g., energy loss minimization, renewable generation harvest-
ing maximization, etc.). The best set of control actions are
determined by solving the AC OPF problem [5], [6].

In the context of smart distribution networks, different
AC OPF-based methods have been proposed to achieve dif-
ferent objectives from both the planning [7]–[9] and con-
trol [2], [10]–[20] perspectives. For the former, this includes
the maximization of renewable distributed generation (DG)
capacity considering thermal and voltage limits [7], [8], as
well as fault levels [9], and the minimization of power or
energy losses by optimally allocating DG plants [10], [11].
More recently, the optimal (real-time or short-term) operation
of smart distribution networks have been investigated consid-
ering the control of network elements (e.g., voltage regula-
tion devices, capacitors, switches) and participants (e.g., DG
plants) to cater for different objectives. The minimization of
DG curtailment to deal with thermal and voltage constraints,
in some cases in combination with the control of network
elements, has been the main objective in [2], [12], and [13].
The minimization of losses have also been studied considering
volt-var control [14]–[16] and reconfiguration [17]–[20]. The
post-fault restoration problem, which looks for the best config-
uration that minimizes the affected customers, was investigated
in [21].

AC OPF formulations adopted in the literature range
from non-linear to linear. Most of the above studies
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considered non-linear formulations [3], [7]–[15], [17]
which can be developed in a straightforward manner.
Nonetheless, in an attempt to improve scalability and com-
putational time, alternative convex formulations have also
been explored. This includes linear programming [16], [22],
quadratically constrained [2], [18], [19], and semi-definite
programming [4].

Since the seminal work of Carpentier [5], different OPF
formulations have been investigated to increase their abil-
ity to cater for larger and more complex problems [23].
Such improvements are crucial for the optimal operation
of future smart distribution networks due to their size and
the number of controllable elements but also due to the
presence of discrete variables (e.g., tap changers, status
of switches, etc.). In this context, novel convex formula-
tions allow to significantly improve scalability and guar-
antee finding the optimal solution of the problem (unlike
conventional non-linear and non-convex formulations). In
recent years, convex (although non-linear) formulations have
been proposed for the AC OPF problem including relaxed
conic [24], [25], convex semi-definite [26], [27], and quadrat-
ically constrained [2], [18], [19], [28] programming models.

Although quadratic programming (QP) formulations
have been investigated for the AC OPF in transmission
networks [29]–[31], these approaches require a sequential
solution, which increases the complexity of the formulation.
In [32], a QP formulation was proposed for distribution net-
works. However, non-linear terms related to power losses were
neglected, thus resulting in errors in the voltage calculation.

A QP formulation for the AC OPF in smart distribution
networks is proposed in this work. This novel approach uses
linear constraints to represent power losses and, hence, results
in a compromise between accuracy, performance, and robust-
ness. In order to demonstrate and quantify the benefits of this
novel model, formulations for the AC OPF problem are com-
pared: non-linear programing (NLP), quadratically constrained
programming (QCP), linearized models, and the novel QP for-
mulation. Two cases are carried out to assess quality of the
solution and computational time: (1) management of DG units
to maximize renewable energy harvesting (continuous control
variables); and, (2) control of capacitors to minimize energy
losses (discrete control variables). Four tests were considered
to assess scalability.

II. FORMULATIONS FOR THE

AC OPTIMAL POWER FLOW

The AC OPF problem can be defined as a mathematical
problem in which an objective function is minimized over a set
of control variables (X), subject to a set of constraints (1).

min f (X)

subject to: h(X) = 0; g(X) ≤ 0 (1)

The objective function f (X) can be the minimization of
energy losses, DG curtailment, etc., while the constraints are
typically the active and reactive power balances (constraints
h(X)), the voltage and thermal limits as well as the limits of
the control variables (constraints g(X)).

In this section, non-linear, quadratically constrained and
quadratic formulations are presented adopting similar struc-
tures and variables to emphasize their differences. To illustrate
this, the same objective function is considered: the minimiza-
tion of energy losses by dispatching DG units.

For simplicity, the distribution network is assumed to have
a balanced operation (an extension for unbalanced networks
is presented in the Appendix). In addition, the latter two
formulations exploit the fact that most networks operate radi-
ally and, therefore, it is not necessary to consider explicitly
the phase angle. Meshed networks, however, can also be
catered for by incorporating additional constraints that rep-
resent the second Kirchhoff’s law in terms of the voltage
phase angle.

A. Non-Linear Programming Formulation

The AC OPF can be modeled as a non-linear optimization
model defined by (2)-(11) in which the state variables are the
voltage magnitude (Vn,t) and the voltage phase angle (θn,t) [6].
In that model, L, N, DG, and T are the sets of lines, nodes,
DG units, and time periods, respectively. Gmn and Bmn are
the real and imaginary parts of the impedance of line mn.
I

sqr
mn,t, Pmn,t, and Qmn,t are the square of the current magnitude,

and the active and reactive powers through line mn (leaving
node m) in time period t. Rmn and I

2
mn are the resistance and

the current limit of line mn. P
g
m,t and Q

g
m,t are the active and

reactive powers generated at node m, while Pd
m,t and Qd

m,t are
the active and reactive powers demanded also at node m. The
upper and lower voltage limits are represented by V and V .
P

g
m, Q

g

m and pf
g

m, are the limits for the generation and the
power factor of the DG unit at node m. The duration of the
time period t is given by �t.

The objective function minimizes energy losses in the lines
over a time horizon (2), and the control variables are the power
injections of the DG units, i.e., it is assumed they are dis-
patchable. The operational constraints are the limits for the
voltage magnitude, the current capacity of the lines, and the
power limits of the DG units. In this particular formulation,
the active and reactive power balances in a node are given
by (3) and (4), respectively; the power flows through the
lines are defined by (5) and (6). The square of the current
through line mn is defined by (7) and its limit is repre-
sented by (8). Constraints (9) and (10) correspond to the
limits of the DG units (additional constraints such as ther-
mal limits can also be incorporated). Shunt susceptance of
the lines are not considered in this formulation but can also
be incorporated.

min
∑

t∈T

∑

mn∈L

�tRmnI
sqr
mn,t (2)

subject to:
∑

n∈N

Pmn,t = P
g
m,t − Pd

m,t ∀t ∈ T, m ∈ N (3)

∑

n∈N

Qmn,t = Q
g
m,t − Qd

m,t ∀t ∈ T, m ∈ N (4)

Pmn,t = V2
n,tGmn − Vm,tVn,t

(

Gmncos θmn,t + Bmnsin θmn,t

)

∀t ∈ T, m ∧ n ∈ N (5)
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Fig. 1. Illustrative example of the state variables for the QCP formulation.

Qmn,t = −V2
n,tBmn + Vm,tVn,t

(

Gmnsin θmn,t − Bmncos θmn,t

)

∀t ∈ T, m ∧ n ∈ N (6)

I
sqr
mn,t =

(

Pmn,t
2 + Qmn,t

2
)

/V2
m,t ∀t ∈ T, mn ∈ L

(7)

I
sqr
mn,t ≤ I

2
mn ∀t ∈ T, mn ∈ L (8)

0 ≤ P
g
m,t ≤ P

g
m ∀t ∈ T, m ∈ DG (9)

∣

∣Q
g
m,t

∣

∣ ≤ min
(

Q
g

m, P
g
m,ttan

(

arccos
(

pf
g

m

))

,

∀t ∈ T, m ∈ DG (10)

V ≤ Vm,t ≤ V ∀t ∈ T, m ∈ N (11)

The above formulation is a NLP model due to the product of
variables and non-linear functions (sine and cosine). Although
some of the constraints can be defined in different ways, the
adopted formulation helps understanding the transition towards
the convex approaches later presented.

B. Quadratically Constrained Programming Formulation

The QCP formulation for the AC OPF in distribution net-
works is defined by (12)-(18) as a relaxed representation of
the AC OPF (as proposed in [33]). Considering that distribu-
tion networks are usually operated radially, the mathematical
model uses the square of the voltage magnitude (Vsqr

m,t ), as well
as the power and the current flows through the lines as the state
variables, i.e., the voltage angle is not considered explicitly in
the formulation [34].

In this QCP model, the operation of the network is repre-
sented through the variables V

sqr
n,t , I

sqr
mn,t, Pmn,t, and Qmn,t for

line mn, as illustrated in Fig. 1. Pmn,t is the active power flow
leaving node m through line mn, while the active power arriv-
ing node n is Pmn,t − RmnI

sqr
mn,t. Xmn and Zmn are the reactance

and impedance of line mn.
The objective function (12), the minimization of the energy

losses, remains as in (2). Equations (14) and (15) are the bal-
ance of active and reactive powers in node m, respectively.
The voltage drop in a line is calculated in terms of the power
flow through the line and its electrical parameters, as defined
by (16); this equation is obtained after eliminating the voltage
angle as proposed in [34]. Moreover, the voltage limits are
enforced by (17).

min
∑

t∈T

∑

mn∈L

�tRmnI
sqr
mn,t (12)

subject to: (8)−(10) (13)

∑

km∈L

(

Pkm,t − RkmI
sqr
km,t

)

−
∑

mn∈L

Pmn,t = P
g
m,t − Pd

m,t

∀t ∈ T, m ∈ N (14)
∑

km∈L

(

Qkm,t − XkmI
sqr
km,t

)

−
∑

mn∈L

Qmn,t = Q
g
m,t − Qd

m,t

∀t ∈ T, m ∈ N (15)

V
sqr
m,t − V

sqr
n,t = 2

(

RmnPmn,t + XmnQmn,t

)

− Z2
mnI

sqr

mn,t

∀t ∈ T, mn ∈ L (16)

V2 ≤ V
sqr
m,t ≤ V

2
∀t ∈ T, m ∈ N (17)

V
sqr
m,t I

sqr
mn,t ≥ P2

mn,t + Q2
mn,t ∀t ∈ T, mn ∈ L (18)

Constraint (18) is a quadratic constraint which is a relaxed
version of the relation between apparent power, current and
voltage in a line. Originally, this relation is a non-linear equa-
tion in which the apparent power is equal to the product of
the voltage and the current. Since (12)-(17) are linear con-
straints, the mathematical formulation (12)-(18) is a QCP
convex model (although non-linear) for the AC OPF. However,
as this is a relaxed model, to ensure the validity of the solu-
tion it is necessary to carry out a check to ensure the equality
in (18). As demonstrated in [35], for the QCP relaxation to be
exact it is sufficient to have a convex objective function that
is strictly increasing with I

sqr
mn,t (true for (12), losses) and no

lower bounds on power injections.

C. Quadratic Programming Formulation

The proposed QP model is an approximation for the AC
OPF which builds on the previously defined QCP. This novel
QP formulation is shown in (19)–(33). The objective func-
tion (19), the minimization the energy losses, now considers
the sum of quadratic terms related to the power through the
lines in which estimated values for the voltage are used (Ṽsqr

m,t ).
The accent “∼” indicates the term is the estimated value
of the corresponding variable. Constraints (21)-(33) can be
classified into four blocks: a) limits of DG units and bus
voltages, represented by (20); b) active and reactive power
balances, (21) and (22); c) second Kirchhoff’s law, i.e., line
voltage drops, (23); and d) line current limits, (24)-(33).

The left-hand side of (24) imposes a limit for the apparent
power flow through the lines; the square of the voltage (vari-
able) and the upper current limit (constant) are used to
transform the quadratic constraint (18) into a linear expres-
sion. The terms on the right-hand side of (24) are the linear
approximations of P2

mn,t and Q2
mn,t. This piecewise lineariza-

tion estimates the square value of a variable using auxiliary
ones that are, in turn, related to a given number of discretiza-
tion intervals (�). For instance, �P

mn,t,λ variables are used to
approximate P2

mn,t. The absolute value of the approximated
variable is calculated as the sum of two non-negative variables
(P+

mn,t and P−
mn,t) according to (25) and (27). Finally, the square

of the approximated variable is calculated as the weighted
sum of the auxiliary ones, as shown in the right-hand side
of (24). Here, the weight ρmn,λ is the slope of the line segment
that approximates the square function in the λ-th discretiza-
tion interval, while �mn is the upper limit of the auxiliary
variables in the piecewise linearization. Conditions related to
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Fig. 2. Piecewise linearization of P2
mn,t .

the non-negativity of the variables, their limits, and the defi-
nition of the parameters used in this approximation are given
by (29)-(33). This approach is illustrated in Fig. 2.

min
∑

t∈T

∑

mn∈L

�tRmn

P2
mn,t+Q2

mn,t

Ṽ2
m,t

(19)

subject to: (9), (10), (17) (20)
∑

km∈L

[

Pkm,t +
Rkm

Ṽ2
k,t

(

P̃km,tPkm,t + Q̃km,tQkm,t

)

]

−
∑

mn∈L

Pmn,t = P
g
m,t − Pd

m,t ∀t ∈ T, m ∈ N (21)

∑

km∈L

[

Qkm,t +
Xkm

Ṽ2
k,t

(

P̃km,tPkm,t + Q̃km,tQkm,t

)

]

−
∑

mn∈L

Qmn,t = Q
g
n,t − Qd

n,t ∀t ∈ T, m ∈ N (22)

V
sqr
m,t − V

sqr
n,t = 2

(

RmnPmn,t + XmnQmn,t

)

−
Z2

mn

Ṽ2
n,t

(

P̃mn,tPmn,t + Q̃mn,tQmn,t

)

∀t ∈ T, mn ∈ L (23)

V
sqr
m,t I

2
mn ≥

�
∑

λ

ρmn,λ

(

�P
mn,t,λ + �

Q
mn,t,λ

)

∀t ∈ T, mn ∈ L (24)

Pmn,t = P+
mn,t − P−

mn,t ∀t ∈ T, mn ∈ L (25)

Qmn,t = Q+
mn,t − Q−

mn,t ∀t ∈ T, mn ∈ L (26)

P+
mn,t + P−

mn,t =

�
∑

λ

�P
mn,t,λ ∀t ∈ T, mn ∈ L (27)

Q+
mn,t + Q−

mn,t =

�
∑

λ

�
Q
mn,t,λ ∀t ∈ T, mn ∈ L (28)

P+
mn,t, P−

mn,t, Q+
mn,t, Q−

mn,t ≥ 0 ∀t ∈ T, mn ∈ L (29)

0 ≤ �P
mn,t,λ ≤ �mn ∀t ∈ T, mn ∈ L, λ = 1, . . . , � (30)

0 ≤ �
Q
mn,t,λ ≤ �mn ∀t ∈ T, mn ∈ L, λ = 1, . . . , � (31)

ρmn,λ = (2λ − 1)�mn ∀mn ∈ L (32)

�mn = V Imn/� ∀mn ∈ L (33)

The key feature of this novel QP formulation, compared
to the QCP, is that it avoids the use of quadratic constraints
needed to represent the power losses; in this particular case
required to calculate I

sqr
mn,t. This could be accomplished by

using actual, historic or estimated voltage and power flow val-
ues (Ṽsqr

m,t , P̃mn,t and Q̃mn,t) to approximate the power losses,
as shown in (21)-(23); nevertheless, a cold-start can also be
used for these values. Since the line power losses are smaller
than the power flow, these approximations introduce a rela-
tively small error in the power balance equations (21)-(22).
Similarly, the approximation made in the second term of
the right-hand of (23) leads to negligible errors in the volt-
age drop calculation as it is related to losses and, there-
fore, corresponds to a much smaller value than that of the
first term.

The changes made in (21)-(23), compared to (14)-(16),
make it possible to replace the quadratic constraint (18) using
linear expressions, leading to a QP formulation instead of
a QCP one. Considering that the objective function of the QP
model for the AC OPF is quadratic (with positive coefficients)
and the constraints are linear equations, then the QP model is
a convex formulation.

The proposed QP formulation effectively approximates the
AC OPF with an objective function and power balance equa-
tions that do not explicitly depend on currents as variables
but on current limits and estimated voltages which are con-
stant. The advantage is that if there is no current violation, the
auxiliary variables (�P

mn,t,λ and �
Q
mn,t,λ) could take any value

within their limits, defined by (30) and (31), thus resulting in
less computational effort in the solution process.

Given that future distribution networks might not be fully
observable, here it is proposed a two-stage approach to esti-
mate the voltage and power flow magnitudes used to approxi-
mate the losses. In the first stage, the QP problem (19)-(33) is
solved using nominal voltages for Ṽ

sqr
m,t (i.e., a cold start) and

the sum of injected power downstream line mn for P̃mn,t and
Q̃mn,t (i.e., neglecting losses). The solution of the first stage
is then used to initialize the second stage. The QP problem
is solved again to produce the final solution. It is important
to highlight that the first stage corresponds to a solution with
a good accuracy and, therefore, if computational effort is an
issue, the actual implementation of the proposed approach
could neglect the second stage.

III. APPLICATIONS OF THE AC OPF IN DISTRIBUTION

NETWORK CONTROL PROBLEMS

The formulations for the AC OPF problem presented in
Section II are modified to cater for the following problems in
the control of distribution networks: (1) management of DG
units to maximize renewable energy harvesting; and, (2) con-
trol of capacitors to minimize energy losses. Four tests were
considered to assess scalability.
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A. Management of DG Units to Maximize

Energy Harvesting

In this problem, renewable DG units (e.g., a photovoltaic
farm) are managed to ensure the network operates without
thermal or voltage problems [11], [12]. The objective is to
maximize the corresponding renewable energy harvesting, i.e.,
curtailment is minimized. Thus, instead of minimizing the
energy losses as presented in Section II, the optimization
model considers the objective function (34) in which the con-
trol variables are the power output of the DG units. The
uncertainties of the renewable sources are represented through
a set of scenarios S (indexed by s), each of them with a given
probability πs.

max
∑

s∈S

∑

t∈T

∑

m∈DG

πs�tP
g
m,t,s (34)

The power outputs of the DG units (Pg
m,t,s) are continuous

variables and satisfy the DG capability limits (9)-(11). The
variables that represent the operation of the network in the
formulations presented in Section II (e.g., voltages, currents,
and power flows) are also adapted to include the index.

To ensure network constraints are satisfied across scenarios,
a common DG power output limit, Plim

m,t, needs to be identi-
fied. For some scenarios, this limit will result in curtailment
(e.g., due to high generation and low demand) whilst in others
this limit might be above the available renewable resource, i.e.,
no need of curtailment. The actual DG output for each scenario
is therefore calculated as the minimum value between Plim

m,t

and the power that would result from the available renewable
source in that scenario, Pav

t,s. This is shown in (35).

P
g
m,t,s = min

(

Pav
t,s, Plim

m,t

)

∀s ∈ S, t ∈ T, m ∈ DG (35)

Consequently, the objective function maximizes the renew-
able energy harvesting over these multiple scenarios consid-
ering their corresponding probabilities and a constraint that
finds the power output limit per DG unit (at each time period
of the studied horizon) that ensures network constraints are
not violated.

B. Control of Capacitors to Minimize Energy Losses

The minimization of energy (or power) losses has been tra-
ditionally studied considering capacitor banks [2], [16]. Here,
this problem is considered from the operational perspective,
i.e., managing switchable capacitors to minimize energy losses
and maintain voltages within statutory limits. For this purpose,
the AC OPF model is modified to include the injection of
reactive power related to the capacitors. The power injection
of a capacitor is represented by the term Qc

mπm,t, in which
Qc

m is the size of the capacitor at node m and πm,t is a binary
variable related to the connection state (1 “on” and 0 “off”)
of the capacitor located at node m in time period t. Thus, the
control actions for this problem are discrete. This new term is
added to the right-hand side of (4), (15), and (22).

The incorporation of discrete variables transforms the AC
OPF model into a Mixed-Integer Programming (MIP) for-
mulation, which is harder to solve than those involving

Fig. 3. Topology of the 136-node network.

Fig. 4. Normalized load and available PV generation profiles.

only continuous variables. Thus, this problem can test the
performance of the formulations presented in Section II.

IV. CASE STUDY

The AC OPF formulations described in Section II are tested
using a real 136-node Brazilian distribution network presented
in [36]. The busbar of the primary substation has a nominal
voltage of 13.8 kV and supplies 8 feeders that are operated
radially. The current limit in all the lines is 180 A and the
peak load is 18.3 MW and 7.9 Mvar. Voltage limits V and
V are considered to be 0.90 pu and 1.10 pu. The topology of
the network is illustrated in Fig. 3. The time-varying nature of
the (mainly residential) loads is modelled using the normalized
daily profile shown in Fig. 4, which considers 24 time periods.
It also includes a maximum photovoltaic generation profile
(resulting from ideal irradiance) used in Section IV-A.

The mathematical models for the two problems presented
in Section III were written in the modeling language
AIMMS [37]. The Two-Stage Procedure, described in
Section II, was applied in the solution of the QP formula-
tion and results are shown for both stages. The well-known
solver CPLEX was used to solve the QP, QCP, MIQP, and
MIQCP problems. The convex optimization solver MOSEK
(within the MATLAB environment) was also used to solve
the QCP and MIQCP problems; however, no improvement was
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found in comparison with CPLEX. The convex formulations
are compared against the more complex NLP problems using
two different solvers (IPOPT and CONOPT) to increase the
chances of the best solution possible. Additionally, the lin-
ear approaches for the AC OPF presented in [38] (a cold-start
linear model derived from the existence of a practical solu-
tion of the nonlinear power flow equations) and [39] (based
on a polyhedral relaxation of the cosine function in the power
flow equations) were used to compare the performance of the
proposed formulation.

The mathematical models were solved in a computer with
an Intel i7-4770 processor. Eight discretization intervals (�)
were used.

A. Management of DG Units to Maximize Renewable

Energy Harvesting

The QP, QCP, and NLP formulations are adapted as
described in Section III-A to solve the DG management
problem considering the 136-node distribution network. For
this purpose, 16 medium-scale photovoltaic (PV) systems are
placed among the 8 feeders, each with a capacity of 1MW
and operating at unity power factor. Specifically, the PV sys-
tems are connected to nodes 13, 39, 53, 56, 59, 61, 63, 65,
71, 81, 128, 139, 157, 159, 204, and 217 (as shown in Fig. 3).
More PV capacity is allocated to Feeder 1 in order to stress
the utilization of the lines.

1) Single Scenario Comparison: First, the performance of
the formulations are compared in a simple fashion consid-
ering a single scenario. For this purpose, the PV generation
profile in Fig. 4 is used (maximum PV generation resulting
from ideal irradiance). Four tests are carried out considering
single and multiple time periods. For the first test, the time
period 14 (i.e., 2 pm) is considered as it corresponds to the
highest PV generation. Without the optimal management of
the PV systems, thermal problems occur in the network, par-
ticularly in Feeder 1 (the capacity of line 51-52 is exceeded
by 28.6%). In the second test, besides 2 pm, time periods 5
and 19 (corresponding to the hours of minimum, 5 am, and
maximum loading, 7 pm) are also analyzed. For the third and
fourth test, 12 (from 10 am to 9 pm) and 24 (whole day)
time periods are considered aiming to evaluate the scalability
of the formulations (i.e., their performance when the size of
the problem is increased). The current through line 51-52 and
the corresponding curtailed power are shown in Fig. 5 for the
fourth test.

The values of the objective function, i.e., the total harvested
PV generation, for each of the four tests are shown in Table I.
Both NLP solvers, IPOPT and CONOPT, obtained the same
solution, although the former required less time. The solver
MOSEK found the same solution as CPLEX for the QCP prob-
lem, although requiring more time. It can also be noted that
due to its relaxations, the solutions of the QCP formulation are
upper bounds of the optimal one (more than 1% difference in
all four tests). On the other hand, due to the adopted approx-
imations (linearizations), the solutions of the QP formulation
can lead to positive or negative errors. From the mathemat-
ical perspective, the formulations result in feasible solutions.

Fig. 5. Current through line 51-52 and curtailed power for the solutions of
the DG management problem.

TABLE I
HARVESTED PV GENERATION (MWh) OBJECTIVE FUNCTION

OF THE DG MANAGEMENT PROBLEM

However, due to the relaxations used by the QCP formulation,
the resulting control variables are not technically feasible (as
verified using a conventional power flow) given that do not sat-
isfy the equality in (18), thus resulting in PV injections that
lead to thermal problems in Feeder 1. Indeed, the harvested
energy from the QCP formulation is larger than the one from
the NLP solution (Table I).

It is important to highlight that in the investigated tests, the
QCP formulation leads to technically infeasible solutions. This
is because its relaxation allows the current in some lines, and
hence the power losses, to be larger than that using an exact
formulation. This means that the QCP formulation might con-
sider possible to have more DG injections (and corresponding
reverse power flows) than what some of the lines can actually
handle. This issue does not affect the QP formulation because
the current limits are decoupled from the other constraints. An
equivalent objective function for the QCP formulation could
be used to obtain a feasible solution; that function might con-
sider the minimization of the injected power at the substation,
which implicitly minimizes the energy losses thus satisfying
the condition for the QCP to be exact.

On the other hand, the QP formulation reaches a very close
agreement with the values found by the NLP (the benchmark)
whilst also avoiding thermal problems by effectively reducing
the output of PV systems. For instance, as shown in Fig. 5,
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TABLE II
PROCESSING TIME (S) - DG MANAGEMENT PROBLEM

in order to keep current through line 51-52 within its limit, the
total curtailed energy in the NLP and QP solutions are almost
the same, although the curtailment applied to individual PV
systems is different in each solution.

The solution found by the first stage of the QP formula-
tion has a harvested energy value very close to that found by
the optimal solution (difference of 0.02% caused by the error
in the calculation of the current). This indicates that a sim-
ple initialization such as the cold start is good enough for
the QP formulation. On the other hand, the alternative lin-
ear approaches, [38] and [39], result in solutions with larger
differences caused by the corresponding approximations. For
instance, disregarding the effect of the voltage in the active
power flow, as assumed by [39], leads to an infeasible solution
(difference of up to 8.72%).

In this case, it can be concluded that the AC OPF can be
solved using either the NLP or the QP formulations. More
importantly, the solutions found with the QP formulation,
which have negligible errors (smaller than 0.1%) in compar-
ison to the solutions found with the NLP, were achieved in
a fraction of the time (see Table II). Furthermore, the first stage
of the QP formulation provides very good quality solutions
with a smaller time.

The errors in the calculation of the state variables due to the
approximations made by the QP formulation were also found
to be negligible. A comparison of the calculated voltages with
those obtained using a conventional AC power flow shows
maximum errors of 0.000225 pu and 0.000037 pu for the first
stage and the two-stage QP, corresponding to node 71 at 1 pm
(actual value of 1.019974 pu). An additional test carried out in
a larger Brazilian distribution network (1,000+ nodes) showed
that the error in the calculation of voltages remain small given
that losses will still be just a fraction of the power flows and
voltages will be kept close to nominal values (e.g., ±10%).

2) QP Formulation With Multiple Scenarios: The proposed
QP formulation was applied considering 24 time periods and
four different scenarios for the PV generation, each of them
with the same probability (πs = 0.25). The first scenario,
shown in Fig. 6, has the same PV profile used in the pre-
vious tests (maximum PV generation), while the remaining
scenarios represent high, medium, and low PV generation
(produced using the tool in [40]). Considering these four sce-
narios, the expected harvested PV generation without PV
management is 89.52 MWh (less than the 151.2 MWh with
only scenario 1, Table I).

To avoid thermal problems in Feeder 1, as discussed in
Section IV-A1, the proposed QP formulation defines the most
suitable power output limits (Plim

m,t) for the PV systems so as

Fig. 6. PV generation profile for each scenario.

Fig. 7. Total hourly PV generation in Feeder 1 for each scenario.

to maximize energy harvesting across scenarios. This resulted
in an expected harvested PV generation of 87.5 MWh, i.e.,
a curtailment of only 2.3%. The corresponding total hourly
PV generation in Feeder 1 is illustrated in Fig. 7 for each sce-
nario. It can be observed that the defined limits lead to PV
curtailment in scenarios 1 and 2 in which the available renew-
able resource is high. Moreover, no curtailment is needed in
scenarios 3 and 4 as the renewable resource is low and does
not create network issues.

From the computational perspective, the time required
to process multiple scenarios, as expected, increases.
The investigated four scenarios required 4.3 s, i.e., 4.8 times
that of only one scenario (see Table I, Test 4). Although the
computational time is increased, by catering for multiple sce-
narios the QP formulation is able to find the most suitable
settings across them whilst ensuring network constraints are
not violated. Therefore, in the context of renewables and future
loads, similar formulations are likely to bring advantages over
deterministic approaches that are limited to a single scenario
(using average or worst-case values).

B. Control of Capacitors to Minimize Energy Losses

The minimization of energy losses is now solved for
the 136-node network considering five 600 kvar switchable
capacitors located at nodes 29, 51, 73, 129, and 218. Four
tests are carried out with the MIP formulations presented in
Section III-B using the same time periods considered in the
previous case. The stopping criteria for the solution of the
MIP models were a time limit of 1,000 s and a relative gap
(relative difference between the best integer solution and the
best relaxed one) of 0.01%. This small value is chosen to allow
the solver to perform a thorough search without significantly
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TABLE III
ENERGY LOSSES (kWh)-OBJECTIVE FUNCTION

OF THE CAPACITOR CONTROL PROBLEM

TABLE IV
PROCESSING TIME (S) - CAPACITOR CONTROL PROBLEM

compromising solution time. It must be noted that, in this case
(minimization of losses), the solution of the MIQCP formula-
tion is a lower bound of the optimal one. On the other hand,
due to the linearizations adopted by the MIQP formulation,
the corresponding solution is an approximation.

The Mixed-Integer NLP (MINLP) problem was solved
using the AIMMS Outer Approximation (AOA) algorithm [41]
(available in AIMMS), along with the NLP solvers IPOPT and
CONOPT. A stopping criterion of 10 iterations (larger values
did not lead to improvements).

In this case, all formulations found technically feasible solu-
tions, i.e., there are no violations of voltage and current limits.
The results for the four tests are shown in Table III and
Table IV. Additionally, the hourly connection state of the
capacitors in the MIQP solution is presented in Table V.

In Table III, the values in parentheses correspond to the
difference with the solution for the MINLP formulation using
AOA+IPOPT (the benchmark). The use of AOA+CONOPT
led to slightly worse solutions for tests 3 and 4 and required
more time. For the MIQP and the linearized models, besides
the Objective Function (OF), the Actual Energy Losses (AEL),
calculated using a conventional power flow, are also shown.
The difference between the OF and AEL is caused by the
approximations made in the MIQP formulation (about 0.2%
for the tests in Table III). The MIQCP and the MIQP convex
models found the same solution for the state of the capacitors

TABLE V
HOURLY CONNECTION STATE OF THE CAPACITORS

IN THE MIQP SOLUTION (� IS “ON”)

in the first three tests. However, for the more demanding
test 4 the MIQP model found a slightly better solution (both
MIQCP solvers CPLEX and MOSEK reached the time limit).
This suggests that the proposed MIQP model is likely to out-
perform the MIQCP formulation in applications where time is
of critical importance.

Furthermore, as verified using a conventional power flow,
the solutions found by these convex models result in slightly
less losses (between 0.39% and 1.35%, larger than the relative
gap) than the ones provided by the MINLP formulation; illus-
trating their effectiveness. Moreover, the MIQP formulation
provides better solutions than the linearized models.

The formulations used all capacitors during peak hours.
However, the convex models were able to provide a flexi-
ble operation of the capacitors particularly outside peak hours
within which their disconnection resulted in lower losses. This,
in turn, resulted in 10 and 13 capacitor switching actions
for the MIQCP and the MIQP models, respectively; higher
than the 2 actions required by the MINLP. Such effect can be
catered for by constraining the switching actions.

In terms of computational performance, the significant
advantage of the MIQP formulation is much more evident.
Indeed, for the daily analysis (test four) the MIQP requires
about 5% of the time required by the MINLP. On the other
hand, the QCP reaches the time limit. Although, QP and QCP
models can be solved using Interior Point methods, which
have a polynomial time complexity (considering the mathe-
matical worst case), the results show that the proposed QP
model offers better performance in practical scenarios.

For test 4, the MIQP formulation found a better solu-
tion than the MIQCP model (within the time limit). Given
that, in theory, the latter can provide at least the same solu-
tion, an additional attempt was carried out disregarding the
time limit criterion. After 36 hours of the solution process
(stopped due to storage limitations), a better objective func-
tion was obtained (2592.01 kWh). However, not only this value
is slightly worse than the solution provided by the MIQP
formulation (2591.99 kWh) but the required time makes it
inadequate for real-time applications.

The errors for the voltage at node 203 (lowest voltage),
considering the connection state of the capacitors in Table V,
are shown for time periods 5, 14, and 19 in Table VI. These
errors are calculated using as benchmark the values obtained
with the MINLP model. Since no errors were found with the
MIQCP formulation, the corresponding results are not shown.
From Table VI, it can be seen that the error of the MIQP for-
mulation is very small. Moreover, the first stage of the MIQP
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TABLE VI
ERROR FOR VOLTAGE CALCULATED AT NODE 203

(pu) -CAPACITOR CONTROL PROBLEM

formulation presents relatively small errors when compared
with the methods in [38] and [39]. These results not only
demonstrate the accuracy of the proposed method but also that
the second stage could indeed be neglected to further reduce
the computational efforts.

V. DISCUSSION

The tests carried out for the DG Management and the
Capacitor Control problems allowed the evaluation of the
efficiency, robustness, and scalability of the proposed QP
formulation. The results indicate that the QP formulation is
efficient given that more demanding tests for either of the prob-
lems did not have a significant impact on the computational
effort. The QP formulation was able to provide feasible solu-
tions for either of the problems and, in some cases, even better
solutions than the conventional formulations; thus demonstrat-
ing its robustness. Finally, the QP formulation was shown to
be scalable as it was capable of finding good solutions with
relatively low computational effort when the dimensions of the
problems were increased.

While the first stage of the proposed QP formulation has
led to good quality solutions, as shown in the results for the
different cases and tests, the second stage was effective in
reducing errors. Other methods based on linearization, such
as [38] and [39], are likely to benefit from similar refinements.

Finally, although the proposed QP formulation is per se
deterministic, it was demonstrated it can be extended to
also consider multiple scenarios to cater for uncertainties
related to renewable generation. Further, more complex adap-
tations can be carried out to incorporate, for instance, demand
uncertainties and probabilistic constraints.

VI. CONCLUSION

The complex decision making processes required by Smart
Grid schemes controlling network elements and participants
can be solved tailoring optimization approaches such as the
well-known AC Optimal Power Flow (OPF). This work pro-
poses and demonstrates a novel Quadratic Programming (QP)
formulation as an efficient, scalable and robust alternative to
solve the AC OPF problem in smart distribution networks. The
approach is compared against the more established Non-Linear
Programming (NLP), linearized and Quadratically Constrained
Programming (QCP) formulations.

The performance of the models was assessed in two
cases: (1) management of distributed generation units to min-
imize energy losses (continuous control variables); and, (2)

control of capacitors to minimize energy losses (discrete con-
trol variables). Four tests were considered to assess scalability.

The results demonstrate that the proposed QP formulation
outperforms conventional formulations for the AC OPF. In all
cases and tests, the QP formulation was solved in significantly
smaller computational times than the other NLP and QCP for-
mulations. Moreover, the QP model found solutions of best
or at least equal quality for the problems, which showed the
scalability and robustness of the proposed approach.

The additional complexity due to the presence of discrete
variables was successfully dealt with by the QP formulation in
the studied cases. The QCP, although provided good solutions,
required significant computational time. Furthermore, in the
first case, the QCP formulation resulted in infeasible solutions,
i.e., network constraints were violated.

Based on the above, it can be concluded that the QP for-
mulation is an efficient and robust approach to solve the AC
OPF problem tailored to cater for diverse network control
challenges. Therefore, this formulation is a suitable alterna-
tive to be at the heart of the decision making of complex,
real-time schemes to be adopted by future Smart distribution
networks.

APPENDIX

EXTENSION OF THE QP FORMULATION

FOR UNBALANCED NETWORKS

The QP formulation introduced in Section II-C can be
extended to represent the unbalanced (three-phase) opera-
tion of distribution networks. Power losses in line mn and
phase φ are calculated as SL

mn,φ,t = �Vmn,φ,t I∗
mn,φ,t. They

can be written in terms of the power through line mn

(Smn,φ,t = Pmn,φ,t+jQmn,φ,t for phase φ), and the impedance
of line mn (Zmn,φ,ψ = Rmn,φ,ψ + jXmn,φ,ψ , between phases
φ and ψ), as shown in (36). Using actual, historic or esti-
mated values for the voltage in bus m and phase φ (Ṽm,φ,t),
as well as for the power through line mn (S̃mn,φ,t = P̃mn,φ,t +

jQ̃mn,φ,t), (36) can be re-written using the linear expression
given by (37).

SL
mn,φ,t =

⎡

⎣

∑

ψ

Zmn,φ,ψ

(

Smn,ψ,t

Vm,ψ,t∠θψ

)∗

⎤

⎦

(

Smn,φ,t

Vm,φ,t∠θφ

)

(36)

SL
mn,φ,t =

∑

ψ

Z′
mn,φ,ψ S̃∗

mn,φ,t

Ṽm,φ,tṼm,ψ,t

Smn,ψ,t (37)

in which Z′
mn,φ,ψ is an equivalent impedance defined as

Zmn,φ,ψ∠(θψ − θφ). This parameter is derived assuming that
the phase angle unbalance is small, i.e., θψ − θφ can be calcu-
lated using flat start values. The linear approximation for the
power losses in (37) can be used to represent the active and
reactive power balance, as shown in (38) and (39).

∑

km∈L

[

Pkm,φ,t + Re
{

SL
mn,φ,t

}]

−
∑

mn∈L

Pmn,φ,t = P
g
m,φ,t − Pd

m,φ,t (38)
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∑

km∈L

[

Qkm,φ,t + Im
{

SL
mn,φ,t

}]

−
∑

mn∈L

Qmn,φ,t = Q
g
m,φ,t − Qd

m,φ,t (39)

Furthermore, the voltage drop in line mn and phase φ is
written in terms of the equivalent impedance and the power
losses, as expressed in (40). Thus, the QP formulation can be
extended to represent the operation of unbalanced distribution
networks using (38)-(40) for the power balance and voltage
drop equations, instead of (21)-(23).

V
sqr
m,φ,t − V

sqr
n,φ,t = 2

∑

ψ

(

Re
{

Z′
mn,φ,ψ

}

Pmn,φ,t

+ Im
{

Z′
mn,φ,ψ

}

Qmn,φ,t

)

−
∑

ψ

∣

∣

∣
Z′

mn,φ,ψSL
mn,ψ,t

∣

∣

∣
. (40)
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