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AC Power Flow Data in MATPOWER and QCQP

format: iTesla, RTE Snapshots, and PEGASE
Cédric Josz, Stéphane Fliscounakis, Jean Maeght, and Patrick Panciatici

Abstract—In this paper, we publish nine new test cases in
MATPOWER format. Four test cases are French very high-voltage
grid generated by the offline plateform of iTesla: part of the data
was sampled. Four test cases are RTE snapshots of the full French
very high-voltage and high-voltage grid that come from French
SCADAs via the Convergence software. The ninth and largest test
case is a pan-European ficticious data set that stems from the
PEGASE project. It complements the four PEGASE test cases
that we previously published in MATPOWER version 5.1 in March
2015. We also provide a MATLAB code to transform the data
into standard mathematical optimization format. Computational
results confirming the validity of the data are presented in this
paper.

Index Terms—Static grid model, MATPOWER, grid data, AC
optimal power flow, quadratically-constrained quadratic pro-
gramming.

I. INTRODUCTION

THE purpose of our grid data publications is to con-

tribute to the progress of the power systems scientific

community. As power systems practitioners, we definitely

need improved power flow computation methods. By sharing

data sets that we use on a daily basis, we hope to help the

community develop faster and more reliable optimal power

flow methods.

In arXiv, in the download table (other format), source code

for the article is delivered as a gzipped tar (.tar.gz) file. It

contains the nine test cases as MATLAB .m files.

A lot of European public grid data are already available

in various formats [1], [2]. The advantage of the data we

are providing is that we have written them in the format of

MATPOWER [20]. It also worth to mention the major work

made in [10] to document all of the AC power transmission

system data that is publicly available.

II. ORIGIN OF THE DATA

A. iTesla

iTesla stands for: Innovative Tools for Electrical System

Security within Large Areas; it is a large collaborative R&D

project co-funded by the EC 7th Framework Programme.

Detailed information may be found on the web site of the

project [3] and was presented during dissemination events [4],

[5]. In the offline platform of iTesla, a monte-carlo process

is run. Loads and uncontrollable generation (mainly solar and

wind power) are sampled. From these sampled values, and

for each monte-carlo run, a full AC network state is built to
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serve as a starting point for time domain simulations (e.g. with

Eurostag simulation software). Thousands of such processes

were run during iTesla project, using High Performance Com-

puting facilities (10,000 cores). Only 4 are published here. 2 of

them contain French VHV grid, and 2 of them contain French

VHV grid and HV grid of the area of Marseille-Nice (French

Riviera).

B. Convergence

Convergence is the main network analysis tool used in RTE.

It is fully developped and maintained by RTE’s R&D teams.

Convergence is used for several time horizon usages: real time

advance computations (state estimation, N-1 security analysis),

operational planning and grid development. It embeds in a

single platform (and single Graphical User Interface) many

computation models: Load Flow computation model (named

HADES), slow dynamics (ASTRE, to simulate voltage sta-

bility with online tap changers transformers actions), short

circuit computation (COURCIRC), flow-based market cou-

pling parameters, HVDC set point optimization (TOPAZE),

several OPFs, and some others... Convergence is also used

in Coreso (European coordination center based in Brussels,

Belgium) thanks to its coordination facilities: merging and

analysis of European network files coming from D2CF (two

days ahead capacity forecast), DACF (day ahead congestion

forecast), IDCF (intra-day congestion forecast) processes. It is

also used in real time in Coreso to merge and perform security

analysis for European Snapshot files. Concerning network

data, Convergence is directly connected to the French national

SCADA and the 7 regional SCADAs. Convergence gets every

5 minutes a full static network data from these 8 SCADAs,

including equipment description, topology and state variables.

Convergence performs merging of these 8 views of the French

network (one national for Very High Voltage: 400kV and

225kV; 7 regional for High Voltage: 63kV to 150kV) to get

a full consistent VHV+HV (63kV to 400kV) view of French

transmission and sub-transmission Grid. Step-up transformers

(20kV to 225kV or 400kV) are also included in grid data. As

already mentioned, in France Convergence is used with data

coming directly from SCADAs. But it is also able to import

and export grid data in UCTE and CIM [1] formats. Eurostag

format is also supported (import and export). In this paper, 4

VHV+HV snapshot cases are published: they have more than

6000 nodes, more than 50% are 63kV nodes.

C. PEGASE

The Pan European Grid Advanced Simulation and State

Estimation (PEGASE) is a project of the 7th Framework

http://arxiv.org/abs/1603.01533v3
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Program of the European Union [6]. Its goal was to develop

new tools for the real-time control and operational planning of

the pan-Euporean transmission network [11]. Specifically, new

approaches were implemented for state estimation, dynamic

security analysis, and steady state optimization. A dispatcher

training simulator was also created.

The data accurately represents the size and complexity of

the European high voltage transmission network. However, the

data are fictitious and do not correspond to real world data.

They can thus be used to validate methods and tools but should

not be used for operation and planning of the European grid.

III. CONVERSION OF THE DATA

Some modifications to the original grid data were made in

order to fit them into the MATPOWER format.

Concerning the snapshots, the generating units with

pumped-storage capabilities could not be represented in

MATPOWER format. Indeed, generating units with negative

generation values are considered by MATPOWER as dispatch-

able loads. The way dispatchable loads and pumped-storage

units are operated are significantly different, since pumped-

storage units may work even if power prices are high because

the stored energy is needed in the near future if power prices

are expected to be higher. Moreover, reactive power production

is not the same for dispatchable loads and for pumped-storage

units. For these reasons, all generating units with Pmin lower

than zero in our snapshot data have been converted into

generating units with Pmin equals to zero.

Although some aspects of snapshots data might seem

strange, that’s the way they are in our network analysis

tools. The most meshed 380kV bus is really connected to

17 branches; this is not an artefact. Neighbouring countries

are approximately represented with Ward equivalents; so these

parts are not real. But they are really parts of data used

in our SCADAs and network analysis tools. Some of these

equivalent parts, as well as equivalent representation of 3-

windings transformers, may lead to (small) negative reactances

or resistances. To summarize, the data published in this article

allow to build OPF problems that we really have to solve;

iTesla data and PEGASE date share this property.

PEGASE data contains asymmetric shunt conductance and

susceptance in the PI transmission line model of branches.

However, MATPOWER format does not allow for asymmetry.

As a result, we set the total line charging susceptance of

branches to 0 per unit in the MATPOWER files. Instead,

we used the nodal representation of shunt conductance and

susceptance. This procedure leaves the power flow equations

unchanged compared with the original PEGASE data. How-

ever, line flow constraints in the optimal power flow problem

are modified.

IV. DESCRIPTION OF THE DATA

In this section we give a few figures about the network

cases.

Although pegase cases 89, 1354, 2869 and 9241 were

already published in MATPOWER in 2015, we include them

in description and result tables.

A. General figures

This first table gives for each case the number of buses,

generating units, branches and transformers.

Case Name Bus. Gen. Bran. Tran.

case89pegase 89 12 210 32

case1354pegase 1 354 260 1 991 234

case1888rte 1 888 297 2 531 405

case1951rte 1 951 391 2 596 486

case2848rte 2 848 547 3 776 558

case2868rte 2 868 599 3 808 606

case2869pegase 2 869 510 4 582 496

case6468rte 6 468 1 295 9 000 1 319

case6470rte 6 470 1 330 9 005 1 333

case6495rte 6 495 1 372 9 019 1 359

case6515rte 6 515 1 388 9 037 1 367

case9241pegase 9 241 1 445 16 049 1 319

case13659pegase 13 659 4 092 20 467 5 713

The next table gives the range of Voltage Levels that are

included in each case.

Case Name Voltage Levels (kV)

case89pegase 380 220 150

case1354pegase 380 220

case1888rte 380 225 150 90 63 & 24→3

case1951rte 380 225 150 90 63 & 24→3

case2848rte 380 225 150 63 & 45→3

case2868rte 380 225 150 63 & 45→3

case2869pegase 380 220 150 110

case6468rte 380 225 150 90 63 & 45→3

case6470rte 380 225 150 90 63 & 45→3

case6495rte 380 225 150 90 63 & 45→3

case6515rte 380 225 150 90 63 & 45→3

case9241pegase 750 400 380 330 220 154 150 120 110

case13659pegase 750 400 380 330 220 154 150 120 ...

110 & 27→0.4

The next table gives the number of buses for each main

Voltage Level category.

Number of Nodes per Voltage Level

≥330kV 225kV ≤154kV ≤63kV ≤27k

Case Name 220kV ≥ 90kV ≥45kV

case89pegase 50 5 34 0 0

case1354pegase 241 1113 0 0 0

case1888rte 349 1174 61 8 296

case1951rte 350 1185 62 8 346

case2848rte 347 1177 59 915 350

case2868rte 351 1193 59 918 347

case2869pegase 629 1748 492 0 0

case6468rte 524 1274 1183 3151 336

case6470rte 525 1277 1183 3150 335

case6495rte 525 1277 1184 3152 357

case6515rte 525 1283 1184 3153 370

case9241pegase 1945 3185 4111 0 0

case13659pegase 1945 3185 4111 0 4418

The next table gives the number of branches with negative

resistance R and the number of branches with negative reac-

tance X. There is no branch with both negative R and X.
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Case Name Branches R<0 Branches X<0

case89pegase 0 0

case1354pegase 0 0

case1888rte 0 77

case1951rte 0 76

case2848rte 0 75

case2868rte 0 77

case2869pegase 0 0

case6468rte 0 80

case6470rte 0 80

case6495rte 0 80

case6515rte 0 80

case9241pegase 75 16

case13659pegase 78 16

B. Impedances and voltages

In this section we give an outlook on data, using illustrative

graphs. For 3 cases, a first graph shows norm of impedances of

all lines, in descending order and logarithmic scale. A second

graph shows the complex values of voltages of all buses; the

circles on these graphs are corresponding to 0.9 and 1.1 p.u.

Among the 4 iTesla cases, we show these two graphs for

case2868rte. Among the 4 RTE snapshot cases, we show these

two graphs for case6515rte. For PEGASE cases, we chose to

show the graphs for the largest case: case13659pegase.
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V. NUMERICAL RESULTS

A. Using Knitro to find feasible solutions

With Knitro [7] as interior point solver, we were able to

run MATPOWER Optimal Power Flow (’runopf’). We found

out that MATPOWER option for Knitro ’xtol’ is set to 0.0001,

which is too large. Using an option file for Knitro (file

’knitro.opt’), we could modify ’xtol’ parameter of Knitro.

Options for Knitro in knitro.opt

xtol 1e-8

feastol 5e-6 (default value of MATPOWER)

opttol 1e-4 (default value of MATPOWER)

maxit 1000

All OPF could be solved with this parameterization of

Knitro.

Using Knitro to solve a non convex problem gives a solution

which is expected to satisfy local optimality conditions. In this

paper, the fact that the result of Knitro is a local solution is

not used. Instead, we simply use the property that Knitro’s

solution is a feasible solution for OPF problem. Any other

software, any other optimization method, any other heuristic

might be used to find better feasible solution of OPF.

For instance, a method to find a better feasible solution of

OPF could be:

1) From original OPF, create a modified OPF with better

numerical properties (e.g. agregation of electrical nodes

with very small electric distances as in [16]); eventually

also add penalty terms in OPF [13], [14], [16], [18].

2) Solve to global optimality the modified OPF.

3) Use the solution of the modified OPF to build a feasible

solution for original OPF.

In any case, finding better feasible solutions for OPF will

not be enough: finding better lower bounds will also help to

achieve global optimality for OPF.

B. Basic evaluation of optimality gap

Semidefinite programming is now known to be able to give

good lower bounds for OPF problem. However, comparisons

with basic lower bounds may not be avoided.

In the next table, the first column contains result of DCOPF

with Mips (default solver of MATPOWER), without flow limits.

As our cost functions are all linear with costs equal to 1, it

means that our objective function is simply minimizing the

total sum of generation, or equivalently losses minimization.

As losses are neglected in DC modelling, optimal value of

our DCOPFs is to be equal to the sum of loads. So why

writing here the results of these DCOPF ? Because it is a trivial

lower bound of ACOPF. In case cost functions really embed

generating units different costs, results of DCOPF without flow

constraints will also be a basic lower bound of ACOPF. In the

next table, the second column shows result of ACOPF (without

flow constraints) solved with Knitro. Using the basic lower

bound computed with DCOPF, optimality may be computed

in the third column.

Case9241pegase and case13659pegase have branches with

negative resistances; for these two cases, DCOPF result is not

a strict lower bound of OPF, since pushing a lot of power

through branches with negative resistances would create active

power. For this reason, the two last optimality values are not

sure.

Losses minimization without flow constraints

Algorithm: DCOPF OPF
Optimality

Solver: Mips Knitro

case89pegase 5 733.4 5 817.6 1.47%

case1354pegase 73 059.7 74 060.4 1.37%

case1888rte 59 110.5 59 769.9 1.12%

case1951rte 80 656.5 81 724.2 1.32%

case2848rte 52 562.3 53 020.9 0.87%

case2868rte 78 826.3 79 783.4 1.21%

case2869pegase 132 447.2 133 980.7 1.16%

case6468rte 85 296.9 86 791.8 1.75%

case6470rte 96 592.4 98 308.0 1.78%

case6495rte 103 916.1 105 943.6 1.95%

case6515rte 107 264.0 109 561.2 2.14%

case9241pegase 312 411.0 315 888.5 1.11%?

case13659pegase 381 773.4 386 107.5 1.14%?
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Although solving ACOPF with Knitro usually gives only a

local optimum, without any information whether this optimum

might be global, interestingly we can see that all Knitro (local)

solutions are 0.87% to 2.14% optimal. To our opinion, any

method that gives results with larger proven optimality bounds

can not claim to give good results. Moreover, precision of nu-

merical methods should always be compared to the precision

of the pair (DCOPF;easily obtained feasible solution).

C. OPF with or without flow constraints

We made three series of computation. First series was with

flow limits in terms of apparent power (in MVA, using option

’S’ of MATPOWER), second series was with flow limits in

terms of current (in Amperas, using option ’I’ of MATPOWER).

Third series was without any limit on flows. Results are shown

in the next table.

OPF for losses minimization with/without flow limits

Case Name Flow Lim. ’S’ Flow Lim. ’I’ No Limit

case89pegase 5 819.8 5 817.6 5 817.6

case1354pegase 74 069.4 74 064.2 74 060.4

case1888rte 59 805.1 59 808.5 59 769.9

case1951rte 81 737.7 81 737.4 81 724.2

case2848rte 53 021.8 53 021.9 53 020.9

case2868rte 79 794.7 79 794.5 79 783.4

case2869pegase 133 999.3 133 993.5 133 980.7

case6468rte 86 860.0 86 841.8 86 791.8

case6470rte 98 345.5 98 325.4 98 308.0

case6495rte 106 283.4 106 215.7 105 943.6

case6515rte 109 804.2 109 767.8 109 561.2

case9241pegase 315 912.7 315 903.3 315 888.5

case13659pegase 386 107.5 386 107.5 386 107.5

Reader will immediately notice that values with/without

flow limits are very similar, and even identical for the largest

case (case13659pegase). This is not abnormal. RTE snapshots

are real observed data, Pegase and iTesla data were constructed

to be realistic. In real life grid operation, N-1 rule implies

that almost everywhere, lines are within their limits. Moreover,

French grid was historically built to optimally serve load and

production schemes for all situations; policy for construction

of new uncontrollable renewable energy production (wind,

solar) was to encourage small units distributed throughout the

whole country, with limited impact on transmission grid so

far. This situation is evolving fast, but snapshot data are from

year 2013. Occasionnaly, some lines may be over their limits:

temporary admissible limits are used by operators, they usually

have a 20 minutes time window to take corrective actions.

D. Lower bounds with SDPOPF

In this section we tried to obtain lower bounds via semidef-

inite programming. We used SDPOPF solver provided by

Daniel K. Molzahn [17] in MATPOWER, with Sedumi [8], [19]

and Mosek [9] SDP solvers.

We would like to address a special thank to Dan K. Molzahn

for helping us using his SDPOPF solver. He pointed out to us

that in order to have lower SDP bounds of our original OPF

problems, some options of SDPOPF has to be set:

Options for SDPOPF in order to compute lower bounds

mpopt.sdp_pf.eps_r = -inf

→ Do not enforce a minimum resistance

mpopt.sdp_pf.min_Pgen_diff = 0

→ Disable enforcing fixed value when small range for Pgen

mpopt.sdp_pf.min_Qgen_diff = 0

→ Disable enforcing fixed value when small range for Qgen

mpopt.sdp_pf.max_line_limit = inf

→ Disable elimination of large line limits

mpopt.sdp_pf.max_gen_limit = inf

→ Disable elimination of large generation limits

In the next table we compare the computed bounds; we

expect to have each line sorted in ascending order:

1) DCOPF value, basic lower bound of the optimal value,

2) then the value of the SDP relaxation computed by

SDPOPF, ideally the values obtained by the two different

SDP solvers would be equal,

3) and then, in the OPF column, a feasible solution of

our OPF problem, giving an upper bound to the OPF

problem.

Losses minimization without flow constraints

Algorithm: DCOPF SDPOPF SDPOPF OPF

Solver: Mips Sedumi Mosek Knitro

case89pegase 5 733.4 5 817.6 5 817.6 5 817.6

case1354pegase 73 059.7 74 052.8 74 049.5 74 060.4

case1888rte 59 110.5 59 572.0 59 557.7 59 769.9

case1951rte 80 656.5 81 718.7 81 706.4 81 724.2

case2848rte 52 562.3 53 006.6 52 986.4 53 020.9

case2868rte 78 826.3 79 782.9 79 769.1 79 783.4

case2869pegase 132 447.2 133 970.9 133 964.6 133 980.7

case6468rte 85 296.9 86 754.5 86 726.2 86 791.8

case6470rte 96 592.4 98 305.0 98 277.0 98 308.0

case6495rte 103 916.1 105 969.7 105 919.4 105 943.6

case6515rte 107 264.0 109 560.7 109 533.5 109 561.2

case9241pegase 312 411.0 310 723.5 310 697.1 315 888.5

case13659pegase 381 773.4 381 047.8 381 027.7 386 107.5

First, it is very interesting to note that extra large problems

(6 to 13 thousends of buses) could be addressed by SDPOPF

without reaching the limits of our 48GB RAM computer.

We also tried SDPT3 instead of Sedumi or Mosek, but we

encountered matlab exceptions with cases larger than 6000

buses.

Second, looking more precisely into log files, we could

see that in all cases, Sedumi ended its computation with

message Run into numerical problems and Mosek

with message Mosek error: MSK_RES_TRM_STALL().

It means that SDP solvers are not totally mature yet to solve

our problems, and we have to take care using their results. For

instance, case6494rte has its Sedumi SDP lower bound larger

than OPF/Knitro value; obviously the SDP value is not well

computed. For this reason, we think that results obtained with

Sedumi are not precise enough to claim that, e.g., case6515rte

would be solved to global optimality with an error smaller

than 0.5MW.

Third, SDP lower bounds are smaller than DCOPF values

for the two largest cases. This is certainly due to the presence

of negative resistances in these two cases: DCOPF values are
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not lower bounds of OPF and the only lower bounds we have

are the SDP ones. This point was already mentioned in [12],

when analyzing results of the Shor relaxation in Table 2 of

[12].

Last, with Mosek all results seems consistent. For the two

largest cases, global optimality is proven only to 1.7% and

1.3%, which are not very good values (order of magnitude of

the losses). case1888rte’ optimality is 0.36

Note that OPF (Knitro) results are not impacted by precision

issues: running again the OPF (Knitro) column with feastol

equals to 1e-10 gives the same results.

As a conclusion, in the next table, we compare global

optimality proofs obtained with DCOPF (Mips solver) and

SDPOPF (Mosek solver).

Global Optimality proofs

DCOPF SDPOPF

case89pegase 1.47% 0.00%

case1354pegase 1.37% 0.01%

case1888rte 1.12% 0.36%

case1951rte 1.32% 0.02%

case2848rte 0.87% 0.07%

case2868rte 1.21% 0.02%

case2869pegase 1.16% 0.01%

case6468rte 1.75% 0.08%

case6470rte 1.78% 0.03%

case6495rte 1.95% 0.02%

case6515rte 2.14% 0.03%

case9241pegase not valid 1.67%

case13659pegase not valid 1.33%

E. Global optimality quest

Our goal is to be able, in the near future, to prove global

optimality (with precision 10−5 or 10−6) for all these cases.

From operational point of view, it is worth to spend time

to compute a global optimum? Non global method such as

interior point methods have been sucessfully used for about

20 years to solve OPF problems, so is global optimality

necessary? Isn’t it only a game for scientists, with no industrial

consequence?

Our answer to this question is in a larger view of opti-

mization methods for grid operations and development. Once

continuous OPF will be solved to global optimality (for

losses minimization, but also with all kinds of generation

costs), we’ll start addressing global optimization of OPF with

discrete variables (e.g. on/off generating units statuses, but

also PST taps, discrete shunts, topology choices...). When

global optimality of OPF will be easily available, we’ll be

able to solve bilevel programs such as in [15], for which global

optimality of OPF is necessary as OPF are subproblems of a

wider framework.

VI. MATHEMATICAL FORMAT

In addition to the grid data, we provide a code

qcqp_opf.m that converts any MATPOWER test case data

into a standard mathematical optimization format. Its purpose

is to allow members of the applied mathematics community

to evaluated their methods on the test cases without requiring

any knowledge in power systems. Precisely, the MATPOWER

test cases are converted into large-scale sparse quadratically-

constrained quadratic programs (QCQP). Indeed, the opti-

mal power flow problem can be viewed as an instance of

quadratically-constrained quadratic programming. In order for

this to be true, we consider the objective function of the

optimal power flow problem to be a linear function of active

power. Higher degree terms are discarded from the objective

function. Moreover, current line flow constraints are enforced

instead of apparent line flow constraints in order to have

quadratic constraints only. The optimal power flow problem

remains non-convex and non-deterministic polynomial-time

hard despite the slightly simplified framework we consider.

Notice that for rte and pegase cases (minimization of the total

generation) there is no simplification: QCQP formulation is

equivalent to OPF with current line flow constraints.

The standard format we use is described below where x is

a column vector of size nVAR:

QCQP:

inf
x

x′Cx+ c (1)

subject to nEQ equality constraints

x′Akx = ak , ∀k = 1...nEQ, (2)

and subject to nINEQ inequality constraints

x′Bkx 6 bk , ∀k = 1...nINEQ, (3)

where C, Ak’s, and Bk’s are squares matrices of size nVAR,

a, b are column vectors, and the apostrophe stands for conju-

gate transpose. The code provides matrices that either com-

plex, Hermitian, or real symmetric depending on an input

parameter (see comments in code for details). Depending on

this input parameter, column vectors x, a and b are either

complex or real.

The following table shows the size of the QCQP instances in

real numbers. The right column corresponds to the percentage

of monomials that have a non-zero coefficient in the objective

or constraints compared to the total number of possible mono-

mials (in the case of a fully dense QCQP problem). It shows

that the OPF is a very sparse problem so we believe that it is

possible to solve these instances to global optimality.

Case Name nVAR nEQ nINEQ Spa. (%)

case89pegase 178 154 380 5.23

case1354pegase 2 708 2 188 6 612 0.19

case1888rte 3 776 3 222 9 036 0.13

case1951rte 3 902 3 162 9 580 0.12

case2848rte 5 696 4 904 11 742 0.08

case2868rte 5 736 4 850 12 070 0.08

case2869pegase 5 738 4 718 13 264 0.10

case6468rte 12 936 11 652 20 130 0.04

case6470rte 12 940 11 588 21 864 0.04

case6495rte 12 990 11 562 22 064 0.04

case6515rte 13 030 11 576 22 200 0.04

case9241pegase 18 482 15 592 36 852 0.03

case13659pegase 27 318 19 134 43 686 0.02
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VII. CONCLUSION

In this paper our goal is to publish very realistic data, being

used every day by a large Transmission System Operator.

Elementary description of data and their origin are included.

Preliminary OPF results are also provided.

We aim to publish new versions of this document in the

future, with additional numerical results (e.g. better upper or

lower bounds) coming either from our own research activities

or from other public academic works.

All cases mentioned in this paper are included in this arXiv

publication (in the source tar file that can be donwloaded from

arXiv), except the PEGASE cases that were already published

in MATPOWER in 2015.

A MATLAB code to transform OPF data to standard QCQP

mathematical optimization format is also included, with the

hope that it will help mathematicians address these problems

without power system skills.

Moreover, a few m-files are also included in the tar file, in

order to help scientific OPF community to uses these data and

to reproduce results.
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