AC-RESISTANCE-MEASURING INSTRUMENT
P. J. Hoff

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any wautanty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

CONTRACTUAL ORIGIN OF THE INVENTION

The United States Government has rights in this invention pursuant to Contract No. EY-76-C-06-1830 between the U.S. Department of Energy and Battelle Pacific Northwest Laboratories.

BACKGROUND OF THE INVENTION
This invention relates to measuring instruments and more particularly to an instrument for remote measuring of AC resistance over long lines.

The control and study of large irrigation systems involves monitoring changes in moisture content of soil in a field under test. This is generally accomplished by using soil moisture test cells which are located at different points in the field under test. *The test cells behave as varying resitance in series with varying capacitance with a change in soil moisture, and variations in soil moisture content is monitored by periodically measuring the impedance, or AC resistance, of each test cell. The test cells are comprised of two stainless steel grid cylinders, one centered inside the other, forming plates to which an AC excitation signal is applied for measuring the impedance. The cost of manually connecting an instru-
ment to individual moisture cells at each test location is prohibitive when surveying large areas. Moreover, measuring the resistance of the test cells on an individual basis requires that a technician walk through the field under test, and it is possible that other test arrangements may be disturbed, adversely affecting the reliability of the test results.

Measuring instruments have been proposed for the purpose of remote measuring of the $A C$ resistance of soil isfactury.

Therefore a need exists for a portable instrument capable of measuring AC resistance over long lines, typically hundreds of feet in length, and providing reliable readings of the resistance measured.

SUMMARY OF THE INVENTION
The present invention provides an auto-ranging $A C$: resistance measuring instrument with line capacitance compensation for measuring the impedance, or AC resis-
tance, of a device, or circuit, over long lines, which may be hundreds of feet in length, and providing a numerical display of the impedance measured. The instrument is a battery-operated, portable unit, suitable for field use.

The measuring instrument comprises a signal generating means for generating an $A C$ excitation signal which is applied to the device through the line which connects the device to the instrument. A monitoring circuit means provides an output signal corresponding to the voltage across the load, including the line and the device, and a signal processing means samples and averages this output over a period of time to provide an output which is indicative of the impedance, or AC resistance, of the device and causes the value of the resistance measured to be displayed on a numerical display.

In accordance with the invention, which is described with reference to measurement of the impedance of soil test moisture cells, during each measurement cycle, the signal processing means provides an auto-ranging function by controlling a range resistance network to connect resistance in series with the load as a function of the load voltage measured, The value of the series range resistance is selected, automatically, to maintain the amplitude of the load voltage within a desired range. The signal processing means also controls a capacitance compensating network to connect capacitance in parallel with the series range resistance to enable the line capacitance to be "pre-charged" so as to minimize distortion of the excitation signal. A symmetrical square wave excitation
signal is used to reduce the accuracy requirements of the compensating capacitance.

In providing the auto-compensating function, the signal processing means, by way of the monitoring circuit means, monitors the wave shape of the load voltage and causes binary weighted capacitors to be added incrementally, in parallel with the range resistance until the slope of the load voltage wave form becomes zero or slightly negative, indicative that line compensation has been achieved, One advantage of this technique is that only compensating capacitance need be inserted in parallel with the series range resistance, a technique that is simpler than standard brìdge "null" techniques and makes auto ranging and auto-compensating more economically feasible.

In accordance with a feature of the invention, the signal processing means comprises a microprocessor operating under program control to enable the signal generating means to generate its excitation signal, to analyze the signal output of the monitoring circuit means and to control the range resistance and compensating capacitance networks to achịeve the desired compensation.

During each measurement operation, the first of five ranges is selected and an excitation signal is applied to the moisture cell under test. The values of a plurality of samples are averaged, and the last value is compared with an upper limit established for range one, If the measured value is below this limit, the averaged data are displayed. However, if the measured value is above
this limit, then, the next higher range, range two, is selected by increasing the range resistance and another measurement cycle is initiated.

If the measured value exceeds a second, higher limit established for range two, range three is selected, the range resistance is increased, and a further measurement cycle is initiated, and so on, until the measured impedance is below the upper limit for the selected range.

Ranges one and two are used for relatively low impedances, 50 K ohms or less, where line capacitance is not a factor in measuring the impedance of the soil moisture cell under test. For higher impedances, i.e. when ranges three through five are used, line capacitance becomes a factor in the measured reading, causing distortion of the square wave signal applied to the load. Capacitance is added in parallel with the range resistance, a few microfarads at a time, until the load voltage waveform once again approximates the waveform of the square wave excitation signal, indicating compensation has been achieved. The load voltage is sampled near its leading and trailing edges in both positive and negative half cycles, thereby offsetting any errors that may be introduced by the electronic circuitry or moisture cell polarization.

In accordance with a further feature of the invention, the battery voltage is automatically tested at the start of each measurement cycle. If the battery voltage becomes less than, or greater than, selected high and low limits, the measurement cycle is terminated, and a
suitable indication is displayed on the display unit. BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view of the AC resistance measuring instrument provided by the present invention;

FIG. 2 is a block diagram of the measuring instrument shown in FIG. l_{i}

FIG. 3 is a partial schematic circuit and block diagram of the circuits of the measuring instrument;

FIG. 4 illustrates typical output voltage levels
for various levels of compensation;
FIG: 5 is a control firmwave hierachy block diagram; and

FIGS. 6-8 are a flow chart illustrating the operation of the instrument,

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. l; the impedance or AC resistance measuring instrument is a portable, self-contained, battery operated unit. The instrument includes a housing 10 which encloses the circuits of the instrument as well as a rechargable battery pack which energizes the circuits. A front panel 11 of the instrument mounts a pair of terminals 12 by which a device or circuit, the impedance of which is to be measured, is connected to the instrument. A push-button switch 14 , when operated, enables the circuits of the instrument to measure the impedance of the device or circuit connected to terminals 12, and display the measured value on a digital display 16 located on the panel 14. A run indicator 28 flashes periodically while the readout 16 is blanked during a
pending measurement.
For purposes of illustration, the measuring instrument is described with reference to an application for measuring the impedance or AC resistance of soil moisture cells which serve as moisture sensors in the control and/ or study of a large irrigation system. The moisture test cells are commerịcally available, or easịly constructed and accordingly are not shown in detail. One example of a moisture test cell suitable for this purpose comprises two stainless steel grid cylinders, one centered inside the other. The moisture cell has two terminals each connected to a different one of the grid cylinders. The moisture cells are set in the ground at various depths from six inches to a few feet down, with soil filling the space between the walls of the concentric cylinders. Each soil moisture cell behaves primarily as a resistance in series with a capacitance, both of which vary in accordance with changes in the amount of moisture in the soil.

To simplify the description, the instrument is described with reference to an application for measuring the impedance of a single moisture cell represented by block 32 in FIG. 2, In use, however, the instrument measures the impedances of a large number of such test cells each of which is located at a different location in the irrigation system. The test cells are individually connectable to the measuring instrument which is located at a control location; by way of a switching arrangement (not shown), enabling the impedance of each test cell to
be measured.
Referring to FIG. 2 a moisture test cell, represented by block 32 , is shown with its terminals $G 1$ and $G 2$ connected to the input terminals $12 a$ and $12 b$ by way of a suitable transmission line 31 which may be several hundred feet in length.

The circuits of the measuring instrument basically comprise a microcomputer 40 including a microprocessor, and associated input/output circuits 41, a program memory 42 and a data memory 44. The program memory 42 stores operating instructions for the microcomputer as well as table look-up data which is used in converting measured data to engineering units. The data memory 44 stores measured data. When the measure push-button 14 is operated to initiate a measurement cycle, the microprocessor is enabled and causes an excitation signal generator 46, embodied as a dịgital/analog converter, to generate a square wave excitation signal which is applied to the load connected to input terminals 12 , including the soil test cell 32 and the transmission line 31 . A monitoring circuit 52, embodied as an analog/digital converter, monitors the voltage across the load and provides to the microcomputer, a digital signal corresponding to the value of the load voltage. The rinicrocomputer uses this signal to determine the amplitude and wave shape of the load voltage, and controls a line compensation network 48, which is interposed between the output of the digital/analog converter 46 and the load, to compensate as necessary for the effects of the transmission line 31.

The compensation network 49 includes a series range resistance section 49 and a shunt compensating capacitance section 50. The microcomputer, under program control, automatically selects the values of series resitance and shunt capacitance as a function of the load voltage measured.

The instrument has five ranges which are selected by auto-incrementing under microprocessor control. The ranges are defined as follows:

Range	Load Resistance
1	10 ohms to 5 K ohms
2	5 K ohms to 50 K ohms
3	50 K ohms to 500 K ohms
4	500 K ohms to 2 M ohms
5	2 M ohms to 10 M ohms

The series compensating resistance is selected to maintain the peak load voltage within 50% to 90% of the value of the signal generated by the digital/analog converter 46: In each measuring operation, range 1 is selected first, and if the load voltage is not within 50% to 90% of the value of the excitation signal, the next range is selected, and then the next range until the load voltage is within 50% to 90% of the excitation signal. Shunt compensating capacitance is added under microprocessor control whenever ranges 3,4 or 5 are selected, The composition of the compensation network 48, as well as the auto-ranging and auto-compensation functions, are described in detail hereinafter.

When the auto-ranging and the auto-compensation
functions have been completed, the microcomputer, via the analog/digital converter 52 , samples the load voltage and averages the samples to provide an output corresponding to the impedance of the load, i.e. the transmission line and the test cell. The impedance of the moisture cell alone can be determined on the basis of previous knowledge of the transmission line impedance.

The microprocessor controls the digital display 16 via associated display drivers 54 to provide a four digit numerical display of the measured impedance.

In one measuring instrument which was constructed, the microprocessor 41 comprised the Type c8085A 8-bit microcomputer and suitable input/output circuits. The program memory 42 comprised a 2 K x 8-bit Type 2716 programmable read only memory, serving as instruction store, and a lK x 8-bit Type 2758 programmable read only memory, providing storage for table look-up data. The data storage memory 44 comprised two 256 x 4-bit Type 8561 CMOS random access memories. The digital display comprised a Type 7547 four-digit liquid crystal display unit which provides three digit resolution (except under 100 ohms) and one multiplier digit for readout of AC resistance. The display driver circuits 54 comprised four Type 4056BE LCD drivers. A comparator circuit 36 , used for battery test operalions, comprised a Type 311 H operational amplifier connected for operation as a differential amplifier. The compensating network 48, the digital/analog converter 46 and the analog/digital converter are shown in more detail in FIG. 3 and discussed hereinbelow.

The circuits of the measuring instrument are energized by a 12 volt rechargable battery source 33 which via DC/DC converter circuits 55 provide voltages at levels of ± 15 VDC and ± 5 VDC for the circuits. A power switch 22 , which is mounted on the control panel (FIG. 1) is operable to connect the DC/DC converter 55 to the battery source 33. A fuse 31 (FIG. 1), which is connected between the positive terminal of the battery and the power switch 22 , affords overload protection for the circuits of the instrument,

The power circuits include a battery charger 34, which is connectable to an AC source via charge switch 24 and a connector 25 , mounted on the control panel. The battery charger 34 enables the battery pack to be recharged when the instrument is not in use. An indicator 26 illuminates while the power pack is being charged.

Each time a measurement is requested, the comparator circuit. 36 compares the battery voltage with a reference voltage and provịdes a signal at its output 36a indicative of the battery voltage. If the battery voltage is too low, the microprocessor causes the letters LLL to be displayed. Similarly, if the battery voltage is too high, the letters HHH are displayed. In either case, the measurement cycle is denied, : The battery voltage may be checked at any time by operating the battery pushbutton 18, located on the panel ll, prior to and concurrently with the measure push-button 14.

After each measurement operation, the microprocessor circuits and display are deenergized, and the program
memory 42 is switched to a standy mode, i.e. powered down, in order to conserve power. The circuits are reactivated during an initialization operation which occurs each time the measure push-button 14 is operated. Compensation Network

Referring to FIG, 3, which illustrates the compensation network 48 in detail, the microprocessor, the memories and associated input/output circuits are represented by a block 40 which is labelled microcomputer control. The microcomputer communicates with the D/A converter circuit 46 and the A / D converter circuit 52 by way of a data bus 58. The measure switch 14 ìs connected to an input of the microprocessor over an associated anti-bounce circuit (not shownl, A timer circuit 57, which operates asynchronously of the microprocessor clock, generates timing signals whïch serve as interrupts to the microprocessor to establish excitation frequency and data sampling rates. The function of this timer circuit 57 is described in more detail hereinbelow in connection with the discussion of the manner in which the output waveform is analyzed during the auto-compensation operation.

The digital/analog converter 46 comprises a commercially available type AD561K digital/analog converter circuit $46 a$ and an associated output driver circuit $46 b$ which is a Type 301AN operational amplifier. The microcomputer control provides a multi-bit control word to the digital/analog converter circuit 46 a over a data bus 58. However, since only two of the bits are required to
enable the digital/analog converter to provide a symmetrical square wave signal at a 15 VDC peak level, only the least significant bit LSB and the most significant bit MSB are extended to the signal inputs of the digital/. analog converter, the unused signal inputs being commonly connected to the LSB input, for example,

The range network 49 comprises five resistors R1-R5 which are connectable in series with the output of the D/A converter 46 by way of associated switches SRI-SR5 which are operated under the control of the microcomputer. The switches SRI-SR4 are reed relays which present a substantially open impedance to the output of the D / A converter 46 when all of the switches are unoperated. Each reed switch has an associated driver (not shown) which receives an enabling signal from the microcomputer by way of associated I/O latches (not shown). Switch SR5 may be a solid state switch such as one section of the commericially available Type AD-1510 DI quad MOS analog switch: A solid state switch may be used because resistor $R 5$, its value of 4 megohms together with the off-resistance of the analog switch, normally present a virtually open circuit. In one circuit, resistors RIR5 had values of $1 \mathrm{~K}, 9 \mathrm{~K}, 99 \mathrm{~K}, 1 \mathrm{M}$, and 4 M ohms, respectively,

The microcomputer generates outputs which are stored in its output latch circuits and are applied to inputs of the reed switch drivers for operating reed switches SRlSR4, or to analog switch $S R 5$, to select the desired range at the start of each measurement cycle. Range 1 is
always selected first, and switch SRl is operated to connect resistor Rl in series with the load. If the output voltage is not within a range of $50-90 \%$ of the square wave signal generated by the D/A converter 46 , then switch SR2 is operated, connecting resistor R2 in series with resistor RI and the load, thereby selecting range 2. Resistor Rl is connected in circuit for all five ranges to isolate the capacitors Cl-C7 from the D/A converter output to assure that a non-capacitive load is presented to the D / A converter 46, To select range 3 , switch SR2 is disabled, and switch SR3 is enabled. Similarly, switch SR4 (or SR5) is operated to select range 4 (or 5). The range resistance network together with the load operate as a voltage divider with the series range resistance being increased to "match" higher values of load impedance thereby lowering the voltage at the mounting point i.e, the junction of the series range resistance and the load.

The compensation network 50 comprises seven binary weighted capacitors $\mathrm{Cl}-\mathrm{C7}$ each having an associated switching device SCl-SC7 represented by switch contacts. Each of the switches is operated under microcomputer control by computer generated outputs, provided over inputs L2-L8, to connect selected ones of the capacitors in parallel with the range resistance selected. Solid state switch devices, such as the commercially available type AD 7510 DI Quad MOS analog switches, are used to minimize power requirements and afford faster switching speeds than provided by the reed switches used in the
range network. The slower speed reed switches can be used for range selection because during range selection the range is changed infrequently, i.e. typically two or three times. In one circuit which was constructed, capacitors Cl-C7 had values of 500 pfd , . 001 ufd, . 002 ufd, . 004 ufd, . 008 ufd, . 016 ufd and , 032 ufd, respectively,

A switch SC8, which may be a reed switch operated under computer control, normally connects one terminal of capacitors $C 1$ and $C 2$ to the output circuit, thereby enabling capacitors $C 1$ and $C 2$ to be connected in circuit with the range resitance whenever switches $S C l$ and SCR are operated. The switch SC8 is operable to connect one terminal of capacitors C5-C7 to the output circuit, and disconnect the capacitors C1 and C2 from the output circuit, thereby enabling capacitors $\mathrm{C} 5-\mathrm{C} 7$ to be connected in circuit with the range resistance. This switching arrangement minimizes the number of capacitors which are connected in the output circuit of the D / A converter circuit to prevent loading of the D / A converter circuit 46.

Auto-range/Auto-compensation
The manner in which the microcomputer controls the selection of capacitors during an auto-compensation operation is described with reference to FIG. 4. At impedances over 100 K ohms over several hundred feet of transmission line, the uncompensated output signal would look similar to curve 64 shown in FIG. 4. The addition of binary weighted capacitors Cl-C7 in series with resis-
tor Rl, which together are in parallel with selected ones of the range resistors $R 2-R 5$ pre-charge the transmission line at a rate to provide correct compensalion.

Generally, the compensated output voltage will not reach the form of the square wave excitation signal, represented by dashed line 61. Over-compensation results in, a final voltage, waveform 62, which is too high, whereas under-compensation results in reaching a final voltage waveform 63; which is too low.

The microprocessor determines when the best compensation has been achieved by looking at points $A-B$, of the positive half cycle of the square wave output, and points $A^{\prime}-B^{\prime}$ of the negative half cycle, and adding an increasing amount of compensating capacitance during each measurement cycle, When the voltage levels at points A and B (and A^{\prime} and $\left.B!\right)$ are equal, i.e, zero slope, then correct compensation has been achieved. It is pointed out that in some instances, zero slope may not be realized in which case a slightly negative slope is indicative of adequate compensation.

Output Voltage Sampling

Referring again to FIG. 3, the monitoring circuit 52 monitors the output voltage and provides to the microprocessor, via data bus 58, a ten bit digital signal representing the output voltage waveform. The monitoring circuit 52 comprises a high impedance buffer amplifier 52a, such as the Type LM 302 H , operating as a voltage follower, and a high speed (25u sec.) A/D converter 52 b , such as the commercially available Type

AD 571k converter circuit, which digitizes and stores the measured data. The eight lower order bits are supplied to the microprocessor by way of a first I/O latch (not shown) and the two most significant bits are supplied to the microprocessor via a further I/O latch, The junction of buffer amplifier output and the A / D converter input is extended as a monitor point to a BNC connector 29 mounted on the control panel 11 (FIG. l).

The timer circuit. 57 comprises a clock tick oscillator, which operates asynchronously with respect to the microprocessor clock to generate interrupt signals for the microprocessor at a $1,6 \mathrm{KHZ}$ rate: These interrupt signals provide reference for timing in generating the period of the square wave excitation signal and establish data sampling rates which enable the microprocessor to sample the load voltage near the leading and trailing edges of the positive and negative half cycles of the square wave signal.

The output voltage is sampled synchronously with the samples per half cycle during a measurement cycle. For ranges one and two, the frequency of the excitation signal is 100 Hz , and for ranges three through five, a 50 Hz excitation signal is used, Samples are taken at the leading and trailing edges of each half cycle under microprocessor control,

The output voltage samples are used to determine the total impedance, including the impedance of the line and the moisture cell under test, by the equation:

(1) $Z \mathrm{~m}=\frac{\mathrm{EO} \cdot \mathrm{Rs}}{\mathrm{Ea}-\mathrm{EO}}$

where:
Eo is the final output voltage (points B, B')
Rs is the series range resistance
Ea is the peak output voltage applied, and
Zm is the measured impedance
This relationship ìs implemented using a look-up table stored in the read only memory 42 ,

The impedance of the moisture cell alone can only be determined by previous knowledge of the transmission line impedance, This is calculated at time of installation of the system, The equation for moisture cell impedance becomes
(2) $Z 1=\frac{Z m Z 2}{Z 2-Z m}$
where:
21 is the moisture cell impedance
Z2 is the transmission line impedance
Zm is the measured impedance (Z1 22)
The effects of moisture cell polarization and hardware offset voltages are minimized by sampling both the positive and negative slopes of the output waveform. Subprogram Hierachy

Referring to FIG, 5, the control firmwave subprogram hierachy is illustrated to provide an overview of the system program, a program listing for which is provided in appendix I. The subroutines include initialization (BEGIN) 71 starting at line 68; battery voltage scanner (BYSCAN) 72 beginning at line 984; auto-ranging resis-
tance measurement (MEASUR) 73 beginning at line 156; and display scanner (DISPLY) 74 beginning at line 890. A mode and status scanner (STSCAN) 75, beginning at line 848, scans the status of panel mounted switches as well as the battery test flag, and a time keeping subroutine (IENTR) 76 generates the interrupt signals, at a rate of 0.625 milliseconds, for the microprocessor,

The auto-ranging resistance measurement subroutine includes resistance range routine (MAGAEIN) 77 , starting
resistance range, and a compensating capacitance controller (CAPINR) 78, beginning at line 719, which controls the connection of the compensating capacitance into the circuit, A stabilization routine (STABLS) 79, beginning at line 494, provides the delays during the measurement cycle to permit stabilization of the measured voltage before data is used, An outside limit check routine 80 , starting at line 1024 , determines when the measured voltage is out of range, and a binary to BCD conversion routine (BNBCT) 81, beqinning at line 1046, controls the conversion of the binary data output of the A/D converter to decimal. The voltage/resistance lookup table is provided beginning at line 1096, and the ADC voltage to battery voltage table begins at line 1191. Program Flow Chart

FIGS. 67 , and 8 illustrate a flow chart for the program. The program consists of four basic operations namely: initialization; battery voltage check; autoranging measurement, including range selection, line
compensation, and resistance calculation, and display.
Referring first to FIG. 6, the program functions are initiated in block 91 in response to the operation of the measure push-button 14. The initialization includes activating the circuits which are normally powered down between measurements. The program at block 92. causes the display to be blanked, and then at block 93, the program pauses for 300 milliseconds, allowing the circuits to stabilize after application of power.

At decision block 94, the status of the battery voltage comparator circuitt 36 (FIG. 2l is read, and if the battery voltage is too low, the program advances to block 95 to cause the letters LLL to be displayed on display 16 and at block 96, halts the program, terminating the measurement cycle. If the battery voltage is above the minimum level, then at block 97-99, the status of the battery voltage push-button 18 is read to determine if this is a measurement cycle of a battery check operation. If the switch 18 is operated, then the battery voltage is read and displayed at block 99. If the battery voltage is too high, the program advances lo Llock 100 (FIG. 8), and causes the letters HI to be displayed. This operation is provided both for battery test and during resistance measurement cycles.

Assuming that battery test switch 18 has not been operated, then after the battery voltage check operation, the program proceeds to the auto-ranging measurement operations. The first aspect of the auto-ranging operation is the selection of the range, and at block lol,
range 1 is selecțed automatically at the beginning of each measurement operation. This causes resistor Rl to be connected in series with the load for the first measurement cycle, and for subsequent cycles, resistors R2, R3, etc. are connected in series with load until the correct resistance is found, At decision block 102, it is determined whether ranges $3 ; 4$ or 5 have been selected and at blocks 103 and 104, the appropriate excitation signal frequency is selected as a function of the range presently selected. A 100 Hz signal is used for ranges 1 and 2, and a 50 Hz frequency signal is used for ranges 3-5.

Referring to FIG. 7, for all ranges, the program waits for four stabilization cycles at block 105 and then advances to block 106 to read eight samples during each half cycle, (a total of sixteen samples) during the final ninth cycle.

The program advances to block 107 where a test is made to determine if range 1 is selected. Also, the sixteen samples are averaged and the last value read is compared with the upper limit 5 K ohms for range 1 to determine whether on nut the signal is over range. Assuming that range 1 is selected and that the signal is not over range, then a block 108, the sixteen samples are averaged and displayed, If the upper limit for range 1 is exceeded, that the program returns to block 101 (FIG, 6) and the resistance range is incremented by one. The microcomputer causes switch SW2 (FIG. 3) to be operated, connecting resistor R 2 in series with the load and resistor RI.

The program proceeds through blocks 102-107 as before, and since range 2 is now selected, the program advances to block 109. Assuming that the last value read is less than 50 K ohms, the upper limit for range 2 , then the program advances to block 110 where the last four readings of each half cycle are used for averaging and display, If, on the other hand, the last value read is greater than 50 K ohms, then at block 109 the program returns to block 101 and selects range 3 by disabling switch SW2 and enabling switch SW3 to connect resistor R3 in series with the load in place of resistor R2.

When range 3 . (or ranges 4 or 5) is selected, then at block l02, the program proceeds to block 104 to cause the frequency of the excitation signal to be changed from 100 Hz to 50 Hz . The program proceeds through blocks 105-109 and at block 111 the program determínes that range 3 has been presently selected and uses the data read to determine whether or not the reading exceeds 500 K ohms, the upper limit for range. 3. Assuming that the value read is less than the upper limit for range 3 , than at blocks lll113, the program provides the auto-compensation function, adding an increasing amount of line compensation capacitance across the series limiting range resistor R 3 until the positive waveform slope is compensated to a point where it becomes zero or a slightly negative slope. As described above with reference to FIG. 4, the slope of the excitation signal waveform is determined by looking at samples of the output voltage waveform near its leading and trailing edges in both positive and negative
half cycles. The slope of the waveform is determined by averaging the absolute value of all sixteen samples. The average must be greater than or equal to the average of the last set of samples. If at any point along the way to compensating for line capacitance, the final reading exceeds 500 K ohms, then the program returns to block 101 to select the next hirgher range, During the outer compensation operation, the microcomputer operates switches SCl-SC7 to initially increase line compensating capacitance in increments of 500 pf . If proper compensation is not achieved by the time capacitors Cl-C4 are all connected in parallel across the range resistance, then switch SC8 is operated, disconnected capacitors Cl and C2 from the circuit, and enabling capacitors C5-C7 to be connected in parallel with the range resistance when their associated switches SC5-SC7 are operated under microcomputer control.

At block ll2, the program determines when proper compensation has been achieved and then advances to block 110 where the last four samples for each half cycle, (eight samples) are averaged and displayed. It at block $l l l$ the program determines that the final reading exceeds 500 K ohms, then program returns to block 101 and selects range 4, causing resistor R 4 to be connected in series with the load.

When range 4 is selected, the program operates in a manner identical to that when range 3 is selected, providing auto-compensation by way of blocks ll4-116. If the final reading in any measurement cycle exceeds 2 M
ohms, the fifth range is selected at block 101. Referring now to FIG. 8, the program operates for range five in a manner identical to that for ranges 3 and 4, with blocks ll7-119 providing auto-compensation except that if the final reading in any measurement cycle is equal to or greater than 10 M ohms, then block 120 terminates the measurement cycle and block 100 causes the message "HI" to be displayed to inform the user that either the $A C$ resistance is to high or line capacitance 10° is to great, or both. When proper compensation is achieved, then at block 121 , the program averages the last four samples each half cycle and displays the averaged data,

Al

APPENDIX - PROGRAM LISTING

TARLE OF CONTENTS FUR PROGRAM ACRM

		LINE	PAGE
$\triangle C$	HESISTANCE MEASIJHEMENT		
	- MAIN PROGRAM		
	MEASURE RESISTANCE	6	4
	AIU CONVERT AND HEAT ROUIINF.	469	10
	S!ARILJZATION RQUTINES	494	11
	TwUS CUMPLEMENT	59.7	13
	AVEPAGE SAMPLFS	613	14
	CAPACIIANCE COMPENSATION ROUTI	719	10
	COHRECI COMPENSATIUN CHECK	7ヶ3	17
	CALIHRATE MOIF PAUSE ROJTINE	801	18
	VOLTAGE/RESISTANCE CUNVERSION	817	18
	STATUS SWITCH SCAN	818	18
	Hatiery low message	H69	19
	OISPLAY DQIVER	R90	20
	HATTERY VOLIATE READ/DISPLAY	9, ${ }^{\text {a }}$	22
	OUT UF CONGE 'HI' MESSAGE	1024	22
	16 RIT RINAPY TO RCO CONVERSIO	1040	30
	LUUK-11P TAHLES	1090	25
	VAHIARLES	1217	25 30
	CONSIANTS	1243	31

ERR LINE
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
statement


```
101 SBTTL MAIN PROGRAM
```

102
103
104
105
106
107 LOOP:
108: 1 SCAN

- sCan siatus and shitches

CALL STSCAN
PUSH PSW \quad SaVE Carry flag
1-IF (BATTERY VOLTAGE LOW)
LDA CNFLAG
RAL
JNC OAIO
b-IHEN OIJPUT ILLL on oisplay
CALL VLDISP
JMP OASO
1-ELSE
le-if (Carry set from stscan) fhen read battery voltage
-AIOR POP PSW
JNC aAzp
call byscan : battery voltage into die
3 SET RANGE=1, EXCITATION=?
MVI A,2010
STA RNGSAV
LXI H,RCDAUF I RUFFER POINTER INTO HIL
JMP A PAD I CARKY SET, OUTPUT THII
b-oelse measure ac resistance
6AZA: CALL MEASUR
1-EENOIF
1-ENDIF
] DISPLAY MEASUREMENT/MESSAGE

- ASB: CALL DISPLY
jolf (CALIBRATE MODE)
LOA CNFLAG
RAL
ral
JNC eAlO.
I-THEN Pause 2 SECONOS
CALL CWAIT
RSt 0 : REPEAT imeasurfment cycley
1-ELSE GO TO SLEEP
1 RETURN RANGE AND EXCITATION TO ZERO
-A100: MVI A,OAZERO
OUT RNPORT
XRA A
OUT ENPORT
MVI A,lg6G 1 HALT INSTRUCTION
STA SLEEP \quad CMOS RAM ADDRESS
1 MaSk all interrupts and run led
MVI A,1770
SIM
JMP SLEEP \& PROM memory DEselected
i-ENDIF

ERR LINE
STATEMENT

SbTil. measure resistance

157
158
159
100
161
162
163
164
165
166
167
168
169
170
171
172 I INCREMENT RESISTANCE RANGE
173 -IF (CURRENT RANGE.EQ. O) THEN SET RANGE.FQ. 1
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198.

199
200
201
202
203
204
205
206
207
208
209
210

```
        measure ac resistance.wITH auto line
            CAPACITANCE COMPENSATION
            INPUTS:
            RATE CONTROL COUNTER (RATCON)
            RANGE,CONVERT, EXCITATION SAVE (RNGSAV)
            OUTPUTS:
            RANGE SAVE (RNGSAV)
                        RCD BUFFER POJNTER (MSA) IN,H,L
```

 LDA RNGSAV
 MOV : B, A
 1 MASK RANGE
 CPI 0
 JNZ AlO
 MOV \(\quad A, B\)
 AOI I
 STA HNGSAV
 OUP PNPORT
 JMP MAGAIN
 IOELSE SHIFT RANGE BIT LEFT 1
 191 RLC
 MOV C,A SAVE NEW RANGE RIT
 MOV
 ANI \(340 Q \quad 1\) MASK NON-RANAGE RITS
 \(\triangle A D O\) I \(C\) ODD TO RANFE GTT
 STA . RNGSAV
 OUT RNPORT
 1-ENOIF
 I WAIT FOR INTERVAL SYNC (64 COUNT BIT)
 MAGAINI LXI H,RATCON : COIJNTER POINTER (LSB)
 MVI \(\quad A, 2760, \times \times 64-2\)
 MOV M, A
 \(\triangle 308\) LOA RATCON
 QAL : BIT 6 INTO CARRY (6 OF 8)
 Ral.
 JNC
 A \(3^{\circ}\)
 1 DETERMINE RATE START POSITIVE EXCITATION
 J-IF (RANGE.GE. 3)
 LOA RNGSAV
 MOV B,A
 ANI 370 PANGE BITS
 CPI. 4 RANGE 3
 JM. \(A A_{\text {P }}\)
 MOV \(A, B\)
 B-THEN RATE IS 50 HZ
 ORI DAPLUS I PLUS EXCITAYION

ERR LINE
StATEMENT


```
    MVI B,4 'a/HALF CYCLE SAMPLFS
    LXI H,SAMPLE : BUFFER POINTER
    CALL AVEI
    JMP Aट?@
I--ELSE INGREMENT RANGE AND TRY AGAIN
AZ10: JMP MEASUR
1--ENOIF
B-PHEN CONVERT VOLTAGE TO RESISTANCE
AZPaI CALL VRCONV
& measurement complete
                            RET
1-ENDIF
I-IF (CURRENT RANGE .EQ. 3)
A3001 CPI 4
    JNz A4OD
i--IF (last positive sample not overrange)
    LHLO SAMPLE+14 : SAMPLE
    STRIP SIGN EIT
    MOV A,H
    ANI I
    MOV H,A
    LXI H,427 IR K SLIMIT
    OSUB
    JNC A310
I--THEN AVERAGE LAST 8 (4 PER HALF CYCLE)
    MVI B.4 I G/HALF CYCLE SAMPLFS
    LXI H,SAMPLE I BUFFER POINTER
    CALL AVEI
    JMP A3?O
fo-Else increment range and try again
A3IDI XRA A
    OUT CNPORT I REMOVE COMPENBATION
    STA : CAPSAV
    JMP MEASUR
1--ENDIF
8--IF (COMPENSATION CORRECT - LAST 50% LEVEL)
AB2a, CALL COMPCK
    je 4330
IO-THEN.CONVERT VOLTAGE TO RESISTANCE
    CALL VRCONV
    J MEASUREMENT COMPLETE
    RET
    :--ELSE jnCREASE COMPENSATION
A3301
lo--IF (NOT MAXIMUM COMPENSATION)
lom-thEN INCREMENT CAPACITANCE
                            CALL CAPINR
                            JC Azu0
1 and return to try again
    JMP . MAraIN
i-o-ElSE oUTSIDE CAP range, output ihit message
A340: CALL HI
            RET
        1---ENDIF
```

376 377 378 379 380
381
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
402 403 404 405 406 407 40 ? 409 410
411
412
413
414
415
416
417
418
419
420
421
प22 :-IF (CURRENT RANGE GT is)
423 - 40 P1
424
425
426
427
429
429 430

```
1--ENDIF
1-ENDIF
1-IF (CURRENT RANGE .EQ. 4)
AムO!g CPI &
    JNZ A5OD
1-=IF (LAST POSIPIVE SAMPLE NOT OVFRRANGE)
    LHLD SAMPLE+14 SAMPLE
1 STRIP SIGN BIT
    MOV \triangle,H
    ANI I
    MOV M,A
    LXI B,34? : R X PLIMIT
    DSUB
    JNC A410
1--THEN AVERAGE LAST B (U PER HALF (YCLE)
    MVI: B,U, 1 4/HALF CYCIIE SAMPLFS
    LXI H,SAMPLE BUFFER POINTER
    CALL AVEI
    JMP ALZO
1--ELSE INCREMENT RANGE ANO TRY AGAIN
AH16I XRA A REMOVE COMPENSATION
    STA CAPSAV
    OUT CNPORT
    JMP MEASUR
1-EIF (COMPENSATION CORRECT : LAST 50% LEVFL)
AL20: CALL COMPCK
    JC A430
1-0THEN CONVERT VOLTAGE TO RESISTANCE
    CALL VRCONV
| mEasuremENT COMPLETE
    RET
    B#EELSE INCREASE COMPENSATION
A4301
3=--IF (NOT MAXIMUM COMPENSATION)
1=0-THEN INCREMENT CAPACITANCE
    CALL CAPINR
    JC.A44%
1 AND RETURN TO TRY AGAIN
    JMP MAGAIN
1-O-ELSE OUTSIDE CAP RANGE, OUTPUT IHI' MFSSAGE
AU4P: CALLHI
    RET
O--ENDIF
SOEENDIF
1-ENOIF
A500%
I-~IF (LAST POSITIVE SAMPLE NDT OVFRRANGE)
                                LHLD SAMPLE+14 & SAMPLE
    STRIP SIGN BIT
    MOV A,H
    ANI 1
    MOV H,A
    LXI H,36G &R X 2.5 (1OMER OHM)
```


Alo

ERR LINE
statement

All

Al2

Statement

Al3

ERR LINE
STATEMENT

549
55n STABLS:
551 W WIT FOUR CYCLES (50HZ)
552 INCREMENT CEACH HI TO LO OF RATCONLS 日IT.
553 MVI C,D 1 RATE COUNTER
554
555
556
55.7

559
559
560
961
502
563
564
565
566
567
MOV D,C I NO OF.CYCLES
DI: LDA RATCON
RAR
JNC DIO WAITFOR HI YRANSITIONFIRST
O2ロ: LOA RATCON
RAR
JC D20 WAITFOR HI TO LO THANSITION
INR C
MOV A.C
CPI 100 I IOMSEC HALF CYCLE
JNZ DI
OITPUT NEGATIVE EXCITATION FOR SAME PERIOD
LDA RNGSAV
ANI 770 I NUN-EXCITATION DATA SAVE
AND NEGATIVE EXCITATION
569
570
571
572
573
574
575
576
577
578
579
580
581
$58 ?$
583
584
585
586
587
588 589
590
591
$59 ?$
593
594
595 596

ERr LINE		STATEMENT
597	SBTTL PWOS	COMPLEMENT
598	1-0.	
599	1 P PER	FORM z'S COMPLEMENT ON 9 RIT NEGATIVE NUMBER
600	1.	-
601	TWCOMP: MOV	A,D I NEGATIVE Number in $0, E$
602	ANI	: 1
603	RAR	
604	CMC	- COMPLEMENT MS Bit
605	Ral	
606	MOV	D, A
607	mov	A, \quad E
608	CMA	: COMPLEMENT 8 LS BItS
609	mov	E, A
610	INX	(D 1 DDD 1
611	RET	
612		

Al 5

ERR LINE
STATEMENT

STATEMENT
668
669
670
671
672
673
674
675
676
677
678
679
680
681
68 ?
683
084
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714 1
715
716
717
718

719 SETTL CAPACITANCE COMPENSATION ROUTINE
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
7.39

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756 : ALREADY IN HIGH RANGE - INCREMENT RY ADDING A
757 OEGP: $10 I$ UO
758
759
760
701
$76 ?$

Al8

Al9

ERR LINE
STATEMLNT
SBTTL CALIGRATE MODE PAUSE ROUTINE

A22

```
ERR LINE
Statement
```


ERR LINE

 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 10171018 1019 1020 1021 1022 1023
1026 I LOAD IHI' INTU DISPLAY HUFFER1027

SBTTL BATTERY VOLTAGE READIDISPLAY
READ AND DISPLAY BATTERY VOLTAGE
BVSCAN: NUP
: STORE IN D,E TF.MP

- Caleulafe table address where base voltare
LXI B,320
XRA A CLEAR CARRY
SURTRACT TABLE BASE (3フO) FROM ADO
: VOLTAGE READING
MULTIPLY GY 2 SINCE ? AYTES PER WORO
ANI 1770 :CLEARMSB
RLC
CPI 150
JM PAGIO
CALL HI
STC
RET
1-ENDIF
: $A D D$ CALCULATED OFFSET TO START OF TABLE
- AGIO: MDV E,A OFFSET IND,E
XRA A
MOV D,A
LXI H,gVTBL I TABLE POINTER
INX $\quad H$
MOV D,M
- CONVERT BATTERY VOLTAGE FROM BINARY TO RCD
LXI H,RCDAUF
CALL BNBCD
XRA A I CLEAR CARRY
RET
1
SATTL OUT OF RANGE IHI' MESSAGE
HII $L X I \quad H, B C D B U F$
$\begin{array}{ll}\text { MVI } & \text { MOIO } \\ \text { MOV } & \text { M, } \\ \text { MO }\end{array}$
[INX
H, BCDBUF
A, 3770
MVI A,3770; BLANK
OAHIO: MOV M M
DCK $\quad \mathrm{B}$
JNZ •คAHIO
MVI $A, 130$, H
MOV M,A
$\begin{array}{ll}\text { INX } & H \\ \text { MVI } & \Delta,\end{array}$
$A, 130 \quad$ H
MVI $\triangle, 1 \quad 1$

CALL CONVRD ; READ BATTERY VLTAGE/35
IS 3.125V x 3.5E10.94V (ADC READS D3?0)
MOV A,E BATTERY VOLTAGE, B LSB
SHB C BASE OF INTEREST IN C
1-IF (OFFSET PAST END.OF TABLE) THEN OUTPUT IHII MESS
DAD D I ACTUAL BATTERY VOLTAGE ADDR POINTER
MOV E,M GATTERY VLTAGE INTO D, E

```
ERR LINE STATEMENT
    In30}MOM,
    IOGN F RETURN DISPLAY ODINTERTO H,L
    Ina1 LXI H,RCDBUF
    104z RET
    1043 %
    1044
```

ERR LINE

1045
10.46

1047
1048
1049
105.0

1051
1052
1053
1054
1055
1056 .
1057
1058
1059
1060
1061
10.6 ?

1063
1064
1005
1006
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
10.77

1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
$109 ?$
1093
1094 1095

STATEMENT

SRTTL 10 BIT BINARY TO RCD CONVERSION

ANBCD: PIUSH PSW \quad SAVE VARIARLES
PUSH $\quad B$
PUSH D
DUSH H
XCHG BINARY NO IN.HL, $\triangle D O R$ IN DE
LXI $\quad 8,-10000$
CALL IIO IGETMSD.
LXI B,-100n
CALL IIO
LXI $\quad B,-100$
CALL IIO
LXI B,-10
CALL IIO
MOV A,L GETLSD
STAX O. 1 STORE IT
POP H
POP D
POP B
POP PSW
RET
1 BCD NUMRER
IIO XRA A A O USE 3OH.FOR ASCII.
I2ゅ: MOV
D SAVE ADORESS
E,L SAVE BINARY
PUSH - D
MOV D.H
INR A INCREMENT DIGIT
OAD B I SUBTRACT
JC I20 I RESULT NEGATIVE?
DCR A YES, RESTORE DIGIT COUNT
MOV L,E LI INARY NUMBER TO H.L
MUV $\quad H, D$
POP D GET $\triangle O D R E S S$
STAX D STORE DIGIT
INX D : INCREMENT POINTER
RET

ERR LINE
Statement

1128	DW	306,309,313,316,320
1129	DW	323,226,330,333,337
1130	OW	340,344,347, 351,355
1131	Ow	358,367,365,369, 373
1132	Ow	376,380,384,388,391
1133	DW	395,399,403,407,410
1134	Ow	414,418,433,426,430
1135	Ow	434,438,442,446,450
1136	DW	454,459,463,467,471
1137	Ow	475,480,484,488,493
1138	DW	497,501,505,510,515
1139	Ow	519,524,528,533,538
1140	Ow	542,547,552,556,561
1141	OW	566,571,575,580,585
.. 1142	OW	590,595,600,605,610
1143	Ow	615,620,625,630,635
1144	DW	641,646,652,657,662
1145	Dw	668,673,679,684,690
1146	Ow	695,701.707,712.718
1147	Ow	724,730,736,742,747
1148	OW	753,760,706,772,778
1149	OW	784,790,797,803,809
1150	Ow	816,822,829,835,84?
1151	OH	848, 255,801, 869,876
1152	Ow	882,889,896,903,911
1153	D. ${ }_{\text {W }}$	918,925,932,939,947
1154	nW	954,962,969,977,985

HR LINE
1155 1156 1157 $115 月$ 1159 1100 1161 1162 1163 1164 1165 1106 1167 110 . 1169 1170

1171 117?. 1173 1174

1175
1176
1177
1178
1179
1180
1181
118 ?

StATEMfNT

Ow

 992,1000,1010,1020,1024 1032,1040,1050,1060,1065 1073,1081,1090,1100,1110 1120,1125,1133,1142,1151 $1160,1170,1180,1190,1200$ DWDW
DW
OW
nw
BW
DW
DW
DW
DW DW OW DW OW OW Ow DW

DW
DW
Ow DW OW OW $1210,1220,1230,1240,1250$ 1260,1280,1280,129n,13no $1310,1320,1330,1340,1350$ 1360.1371.1382.1393.1404 1415,143n,1440,1450,1462 $1474,1490,1500,1510,15 ? 2$ $1535,1550,1560,1573,1590$ $1600,1612,1625,1640,1693$ 1070,1681,1095,1710,1724 1740,1753,1770,1783,1800 18.13.1830,1845.1861,1880 1893,1910,1926.1943,1960 1980.1994,2012.2030,2090. ? $070,2084,2103,2122,2141$ 2161,2180,2200,2220,2241 2261,2282,2304,2325,2350 2370,2391,2414,2440,2460 2483.2510,2531,2555,2581 2610.2632,2060,2684,2711 2740.2765,2793.2821,2850 2880,2910,2940,2670,3001. 3032,3064,3100,3130,3163 $3200,3230,3270,3307,3340$.

ERR LINE

STATEMENT

1183	DW	$3380.3414 .3453 .3492,3532$
1184	DW	$3572.3613,3660.3700,3742$
1185	Ow	3790,3831,3880,3924;8972
1186	DW	$4020,4070,4121.4173,4230$
1187	DW	$4280,4330,4300,4450,4510$
1189	DW	$4570,4630,4690,4754,48 ? 0$
1189	Dw	$4890,4955,5025,5100,5170$

1190

ERR LINE
1191 1192 1193 1194 1195 1196 1197 1198 1199 BVIBL: 1200 1201 1202 1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
VIBL:

ADC VOLTAGE TO BATTERY VOLTAGE CONVERSION TABLE
RANGE INCLUDES $10.9 V$ IO $13.5 V$ DE
OUTSIDE THIS BOUNDARY RESULTS IN ERROR MFSSAGE

OW 109,110,110,110,111
OW 111,111.112,112,112
Dw $\quad \therefore 113,113,113,114,114$
DW 114.115,115,116,116
Dw 116.117.117.117.118
Dw $\quad 118,118,119,119,119$
Ow 120,120,120,121,121
DW $\quad 121,122,122,122,123$
OW 123.123.124,124.124
Ow 125,125,125,126,126
OW: 126,127,127,127,128
OW 128,129,129,129,130
OW: $130,130,131,131,131$
OW 132,132,132,133,133
OW
$133,134,134,134,135$

ERA LINE statement

```
1217. SETTL VARIABLES
1218 |
1219 ORG 10100Q
1220 RAMSTART : EQU &
1221 1
1222 / RATE CONTROL COUNTER (INTERRUPT DRIVEN)
1223 RATCON: OS 2
```



```
1225 RNGSAV: OS I
1226 I DISPLAY BUFFER (MSO FIRST)
1227 BCOBUF:DS 5
122a J CALIRRATE/NORMAL SW & LOW VOLTAGE.FLAG
1229 CNFLAG: DS : CAL& 2ND MS8E1
1230 : ' VLOW& MSBE!
1231 ; PaCKED bCD voltage/resistance data
123? PBCDVR:DS ?
1233 1 50/100 HZ INDICATOR (2 LS BITS)
1234 INCR12: OS 1 , 50HZ=2, 100HZF%
1235 , COMPENSATION SAVE
l23S CAPSAV: DS 1
1237 : SAMPLE SAVE AREA (16 &AMPLES X 2 EyTES/SAMPLE)
1238 SAMPLE: OS 4OQ
1239 PHUCESSOR SLEEP STAYE ADDRESS
1240 SLEEP: DS . 1.
L241 RAMENO EOII S
1242
```

```
FRR LINE
STATEMENT
    1243 SATTL CUNSTANTS
    1244 1
    1?45 , HLANK CONVERT
    I?4% \triangleOCONV EOII UOOCOMMAND (AOC) PORT RIT
    I?47 PLUS EXCITATION VOLTAGE (UQOOV)
    IアมA OAPLUS EOUN 3000
    12u9 I ZEKU EXCITATION VOLTAGE
    1?50 DATERO EOU: ?OOG
    I2S1. SYQOHE HANGE, A/D CONVERT CMD, EXCIIATION PORT
    IPS2 HNPIRT EOII AUO
    125% \ STPORE CAPACITANCE COMPENSTATION PORT
    1254 CNPURT ENU U5O
    1259 % STQOAE ADC INPU! PORT (8-LSB)
    1?5゙ AOCLS ENII पOO
    125T I STROVE ADC (2.MS EITS). STATUS INPUT FORT
    1?SQ AOSIAT E|!! U1O
    1259. \STROQE DISPLAY (MULYIPLJER DIGIT)
    12ヵO DISPM ED!J UIOR
    1P61 : STRORE OISPLAY (MSO)
|?? NISU{ ETU. 430
1263 &SIROBE DISPLAY (?ND DIGIT)
J?bU DISPP ETU पZO
1205. STPORE DISPLAY (LSD)
1266 DISPL EOU UIO
l267 I STRORE RATTERY CHECK INPUT PUKT
IThS AATCK EQU 420
126? :
1270 END
```

SYMSOL	valije	IYPE	SEGHENT
\$	0000	$\triangle D \cap R$	MAIN
-OG100	0491	$\triangle D O R$	$M \Delta I N$
-OCI50	0498	$\triangle O D R$	MAIN
POGIN	0459	ADOR	MAIN
-0¢20	045 E	$\triangle D D R$	MAIN
00 G 30	0460	\triangle DDR	$M \triangle 1 N$
-0.90	0476	$\triangle D O R$	MAIN
00 G 5	0480	\triangle UDR	$M \Delta J N$
-OGOO	0488	$\triangle D D R$	MAJN
- A100 0	OOAF	AOUR	MAIN
- Δ^{10}	008 A	ADOR	MA\N
- $\triangle 2^{\circ}$	$00^{\circ} \mathrm{C}$	\triangle OUR	MAJN
- 450	0095	\triangle OOR	MAIN
- \triangle G10	0480	$\triangle D O R$	MAIH
- AHIO	() 100	$\triangle D D R$	$M \triangle \mid N$
- E10	$03 \mathrm{H}_{6}$	\triangle COH	$M \triangle I N$
- E J	OJHE	$\triangle D O H$	$M \triangle I N$
-ETO	03 C 6	ADOR	$M \triangle J N$
-ECO	$\bigcirc 3 \mathrm{CH}$	\triangle Una	$M \triangle 1 N$
-G1。	0439	$\triangle D D R$	$M \triangle I N$
Δ	0007	KEG	$M \triangle I N$
A10	0124	\triangle OOM	$M \triangle 1 N$
A110	0120	\triangle ODA	MAIN
412%	0159	ADOR	MAIN
A136	0167	ADUR	MAIN
1140	0164	$\triangle D O R$	$M \triangle 1 N$
A150	0195	$\triangle D D R$.	$M \Delta I N$.
4160	0142	ADUR	MAIN
4170	0190	$\triangle D O R$	MAIN
A10	0006	ADOR	$M \Delta \perp N$
120\%	0146	a DOR	$M \triangle \mid N$
A210	0164	$\triangle D D R$	M \triangle IN

[^0]| SYMBOL | value | TYPE | SEGMENT | SYMBDL | VALUE | TYPE | SEGMENT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | nonl | PFG | MAIN | F1． | OTEE | ADOR | MAIN |
| 010 | n29a | ADDa | MAIN | G100 | 0414 | $\triangle D D R$ | MAIN |
| C2＊ | nこaa | 1DDR | MAIN | G10 | 0359 | ADDR | MAIN |
| ¢30 | 02 C | AnDa | MAIN | H | 0004 | REf | MAIN |
| C40 | n2c4 | anda | MaIN | HI | OucF | \triangle ODR | MAIN |
| CADINH | O3AC | andor | MAIN | 110 | O50R | \triangle DOR | MATN |
| CADSAV | 100C | anor | MAIN | 120 | 0500 | $\triangle D D R$ | MAIN |
| CAFLAG | 10188 | AMDR | main | INCRI2 | 104A． | $\triangle D \cap R$ | Main |
| CNPORT | $00>5$ | CNSt | MAIN | L． | 0005 | REG | MAIN |
| COMPCX | 0303 | \triangle ADR | Maln | LOOP | 0079 | ADCR | MAIN |
| convad | ¢278 | AnDO | MaIN | LT100 | 0073 | \triangle OOR | MAIN |
| CWAJT | 0350 | andor | MAIN | LTI． | 005 ？ | $\triangle D O D R$ | MAIN |
| 0 | クロロ2 | Off | MAIN | M | $0 \cap 06$ | REG | main |
| 010 | 0259 | \triangle NOR | MAIN | magain | OnEl | \triangle DIR | MAIN |
| 020 | n2F口 | \triangle IUR | MAIN | measur | OOCO | ADOR | MaIN |
| 030. | n3＾A | AnOR | MAIN | PRCDVR | 1040 | ADDA | main |
| 040 | 0311 | 1 1ndo | MaIN | PSW | 0006 | RES | main |
| DAPLISS | noco | cngit | majn | ramend | 1068 | CNST | maln |
| OAZERU | OORO | chst | MAIN | ramgta | inun． | CNST | MAIN |
| D15P？ | no 2 ？ | chst | MAIN | patcon | 104n | $\triangle D C R$ | MAIN |
| 01503 | ก023 | CNST | MSIN | hngsav | 1na？ | $\triangle D O R$ | MAIN |
| DISPL | 0021 | CHST | MAIN | RNPORT | onca | CNST | MATN |
| DISPLY | ก4．13 | － 0 DR | Main | SAMPLE | 10an | admr | Matn |
| DISPM | noso | CNST | MaIN | SLEEP | 1060 | $\triangle O D R$ | MaIN |
| E | nons | OFf， | Main | 50 | OnOn | －Ef． | MaIN |
| E100 | n 318 | 10no | MAIN | STABLF | 0297 | AOna | MAIN |
| E110 | 0343 | | MAIN | STARLS． | 02 Eb | \triangle dna | MAIN |
| E120 | 0315 | 4DD ${ }^{\text {a }}$ | MSIN | STSCAN | 0421 | $\triangle D D R$ | MATN |
| F10 | n 3 9F | $\triangle D 10$ O | MAIN | TwCOMP | 0333 | ADOR | MSIN |
| E20 | n3al | ADOR | MAIN | VLOISP | 042 C | $\triangle D D R$ | MAIN |
| E $3{ }^{\circ}$ | 0307 | \triangle ADO | MAIN | VRCONV | 0400 | \triangle ODR | MAIN |
| ES． | 0374 | \triangle ADS | MAIN | VRTBL | 0800 | $\triangle D O R$ ． | MAIN |

ABSTRACT OF THE DISCLOSURE

An auto-ranging $A C$ resistance measuring instrument for remote measurement of the resistance of an electrical device or circuit connected to the instrument includes a signal generator which generates an AC excitation signal for application to a load, including the device and the transmission line, a monitoring circuit which provides a digitally encoded signal representing the voltage across the load, and a microprocessor which operates under program control to provide an auto-ranging function by which range resistance is connected in circuit with the load to limit the load voltage to an acceptable range for the instrument, and an auto-compensating function by which compensating capacitance is connected in shunt with the range resistance to compensate for the effects of line capacitance. After the auto-ranging and auto-compensation functions are complete, the microprocessor calculates the resistance of the load from the selected range resistance, the excitation signal, and the load voltage signal, and displays of the measured resistance on a digital display of the instrument.

$$
\begin{aligned}
& 5-51,012 \\
& 5 H T, s_{0 \&} 7
\end{aligned}
$$

[^0]: O ERRQH(S) IN PROTARAM
 128 SYMRUIS IN PROGRAM

