
Acacia+, a Tool for LTL Synthesis�

Aaron Bohy1, Véronique Bruyère1, Emmanuel Filiot2,
Naiyong Jin3, and Jean-François Raskin2

1 Université de Mons (UMONS), Belgium
{aaron.bohy,veronique.bruyere}@umons.ac.be

2 Université Libre de Bruxelles (ULB), Belgium
{jraskin,efiliot}@ulb.ac.be

3 Synopsys Inc.
nyjin@synopsys.com

Abstract. We present Acacia+, a tool for solving the LTL realizability and syn-
thesis problems. We use recent approaches that reduce these problems to safety
games, and can be solved efficiently by symbolic incremental algorithms based
on antichains. The reduction to safety games offers very interesting properties in
practice: the construction of compact solutions (when they exist) and a composi-
tional approach for large conjunctions of LTL formulas.

Keywords: Church problem, LTL synthesis, antichains, safety games, Moore
machines.

1 Introduction

LTL realizability and synthesis are central problems when reasoning about specifica-
tions for reactive systems. In the LTL realizability problem, the uncontrollable input
signals are generated by the environment whereas the controllable output signals are
generated by the system which tries to satisfy the specification against any behav-
ior of the environment. The LTL realizability problem can be stated as a two-player
game as follows. Let φ be an LTL formula over a set P partitioned into O (output sig-
nals controlled by Player O, the system) and I (input signals controlled by Player I ,
the environment). In the first round of the play, Player O starts by giving a subset
o1 ⊆ O and Player I responds by giving a subset i1 ⊆ I . Then the second round
starts, Player O gives o2 ⊆ O and Player I responds by i2 ⊆ I , and so on for an
infinite number of rounds. The outcome of this interaction is the infinite word w =
(i1 ∪ o1)(i2 ∪ o2) . . . (ik ∪ ok) . . . Player O wins the play if w satisfies φ, otherwise
Player I wins. The realizability problem asks to decide whether Player O has a win-
ning strategy to satisfy φ. The LTL synthesis problem asks to produce such a winning
strategy when φ is realizable.

Due to their high worst-case complexities (2ExpTime-Complete), the LTL realiz-
ability and synthesis problems have been considered for a long time only of theoretical
interest. Only recently, several progresses on algorithms and efficient data structures

� This work has been partly supported by the ESF project GASICS, the ARC project Game
Theory for the Automatic Synthesis of Computer Systems and the ERC Strarting Grant inVEST.

P. Madhusudan and S.A. Seshia (Eds.): CAV 2012, LNCS 7358, pp. 652–657, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Acacia+, a Tool for LTL Synthesis 653

showed that they can also be solved in practice. It follows a renewed interest in these
problems and a need for tools solving them. We participate to this research effort by
providing a new tool, called Acacia+, that implements recent ideas that offer very
interesting properties in practice: efficient symbolic incremental algorithms based on
antichains, synthesis of small winning strategies (when they exist), compositional ap-
proach for large conjunctions of LTL formulas. This tool can be downloaded or simply
used via a web interface. While its performances are better or similar to other exist-
ing tools, its main advantage is certainly the generation of compact strategies that are
easily usable in practice. This aspect of Acacia+ is very useful in several application
scenarios, like synthesis of control code from high-level LTL specifications, debugging
of unrealizable specifications by inspecting compact counter strategies, and generation
of small deterministic automata from LTL formulas (when they exist).

2 Underlying Approach

LTL realizability and synthesis problems have been first studied in the seminal work
[2,3]. The proposed solution is based on the costly Safra’s procedure for the
determinization of Rabin automata [4]. The LTL realizability problem is 2ExpTime-
Complete and finite-memory strategies suffice to win the realizability game [5,2]. In [6],
a so-called Safraless procedure avoids the determinization step by reducing the LTL re-
alizability problem to Büchi games. It has been implemented in the tool Lily [7,8].
Another Safraless approach has been recently given in [9] for the distributed LTL syn-
thesis problem. It is based on a novel emptiness-preserving translation from LTL to
safety tree automata. In [10,11,12], a procedure for LTL synthesis problem is proposed
and implemented in the tool Unbeast, based on the approach of [9] and symbolic game
solving with BDDs.

Our tool Acacia+ is based on several work by some authors of this paper [13,14].
In [13], a construction similar to [9] is proposed for LTL realizability and synthesis by
a reduction to safety games. In this approach, the formula φ is first translated into an
equivalent universal coBüchi word automaton, and then into an equivalent universal K-
coBüchi automaton provided K is taken large enough (for which any infinite word w is
accepted iff all runs labeled by w visit at most K accepting states). The latter automaton
can be easily determinized with a variant of the classical subset construction, and the
LTL synthesis problem is then solved on the fly as a safety game G(φ,K).

This approach offers very interesting properties in practice. (1) Checking the exis-
tence of a winning strategy for PlayerO in the gameG(φ,K) can be done incrementally
in the games G(φ, k), with k = 0, 1, 2, . . . (when φ is realizable, k ≤ 5 is often enough
in practice). (2) When φ is unrealizable, by the determinacy of ω-regular games [15],
Player I has a winning strategy for ¬φ. Therefore checking the existence of a winning
strategy for Player O is done incrementally in both games G(φ, k) and G(¬φ, k), with
k = 0, 1, 2, . . . (3) The structure of G(φ, k) presents a partial-order on its states that can
be used to represent compactly, with antichains, the set of all winning strategies. These
three observations lead to an efficient antichain-based symbolic algorithm for the LTL
realizability and synthesis problems, such that the antichain of the winning strategies
for each player is obtained by a backward fixpoint computation from the safe configura-
tions of G(φ, k) [13]. Moreover when φ is realizable, the computed antichain allows the



654 A. Bohy et al.

construction of a compact Moore machine representing a winning strategy for Player O
(for Player I when φ is unrealizable). This algorithm is called monolithic in this paper.

In [13], the authors also propose two compositional algorithms for LTL formulas of
the form φ = φ1 ∧ · · · ∧ φn. The LTL realizability and synthesis problems are solved
by first solving them separately for each conjunct φi, and then by composing the solu-
tions according to the parenthesizing of φ. The first algorithm follows a compositional
backward approach such that at each stage of the parenthesizing, the antichains Wi of
the subformulae φi are computed backward and the antichain of the formula φ itself
is also computed backward from the Wi’s. In this approach, all the winning strategies
for φ (for a fixed k) are computed and compactly represented by the final antichain. This
backward approach is optimized by considering relevant input signals only, called criti-
cal signals [14]. The second algorithm follows a compositional forward approach such
that at each stage of parenthesizing, antichains are computed backward as explained be-
fore, except at the last stage where a forward algorithm seeks for one winning strategy
by exploring the game arena on the fly in a forward fashion.

While the approaches detailed above ([13,14]) have been first implemented in a Perl
prototype [16], we have reimplemented them from scratch in a new tool, Acacia+,
now made available to the research community. This tool has been developed in Python
and C, with emphasis on modularity, code efficiency, and usability. We hope that this
will motivate other researchers to take up the available code and extend it. This new
tool is detailed in Sect. 3 and typical scenarios of usage are presented in Sect. 4.

3 Tool Description

Programming Choices. Acacia+ is written in Python and C. The C language is used for
all the low level operations, while the orchestration is done with Python. The binding
between these two languages is realized by the ctypes library of Python.

This separation presents two main advantages. (1) Due to the reduction to k-coBüchi
automata and their determinization, we need to manipulate counting functions Q →
{−1, 0, . . . , k, k + 1} in a way to know if a state q ∈ Q of the k-coBüchi automaton is
reached or not (value −1), and to know the maximal number of visits to an accepting
state of runs that end up in q [13]. These counting functions are implemented as bit
arrays, together with specific efficient operations implemented in C. Indeed, our algo-
rithms manipulate antichains of counting functions, and operations like membership or
intersection are not standard and cannot be implemented using existing libraries on bit
arrays. (2) The simplicity of Python increases scalability and modularity and it reduces
the risk of errors. Unfortunately, using Python also presents some drawbacks. Indeed,
interfacing Python and C leads to light performance overhead. Nevertheless, we believe
that the overhead is a small price to pay in comparison with the gain of simplicity.

Our implementation does not use BDDs, as they do not seem to be well adapted
in this context, and might be outperformed by the use of antichains [17,18]. We have
instead developed a library with a generic implementation of antichains that can easily
be reused in another context.

Tool Download and User Interface. Acacia+ can be downloaded at http://lit2.
ulb.ac.be/acaciaplus . It can be installed under a single command-line version

http://lit2.ulb.ac.be/acaciaplus/
http://lit2.ulb.ac.be/acaciaplus/


Acacia+, a Tool for LTL Synthesis 655

working both on Linux and MacOsX, or used directly via a web interface. The source
is licensed under the GNU General Public License. The code is open and can be used,
extended and adapted by the research community. For convenience, a number of exam-
ples and benchmarks have been pre-loaded in the web interface.

Execution Parameters. Acacia+ offers many execution parameters, fully detailed in the
web interface helper.

Formula. Two inputs are required: an LTL formula φ and a partition of the atomic
signals into the sets I and O. The formula can be given as a single specification, or as
a conjunction φ1 ∧ · · · ∧ φn of several specifications (for the compositional approach).
Acacia+ accepts both the Wring and LTL2BA input formats, whatever the tool used to
construct the automata.

Method. Formulas φ are processed in two steps: the first step constructs a universal
co-Büchi automaton from φ, the second step checks for realizability (synthesis follows
when φ is realizable). The automaton construction can be done either monolithically
(a single automaton is associated with φ), or compositionally if the formula is given
as a conjunction φ1 ∧ · · · ∧ φn (an automaton is then associated with every φi). The
realizability check can be either monolithic, or compositional (only if φ is a conjunction
of φi’s). When the automaton construction is compositional and the realizability step is
monolithic, the latter starts with the union of all automata obtained from each φi.

The user can also choose between backward or forward algorithms for solving the
underlying safety game. In the case of a compositional realizability check with forward
option enabled, each intermediate subgame is solved backward and the whole game is
solved forward. The way of parenthesizing φ is totally flexible: the user can specify his
own parenthesizing or use predefined ones. This parenthesizing enforces the order in
which the results of the subgames are combined, and may influence the performances.

Output. The output of the execution indicates if the input formula φ is realizable,
and in this case proposes a winning strategy for the system. A winning strategy for the
environment can also be returned when φ is unrealizable (only in case of a monolithic
automaton construction). The output strategies are written in Verilog. When they are
small (≤ 20 states), the corresponding Moore machines are also drawn in PNG using
PyGraphviz. Many statistics about the execution are also output.

Options. For the automaton construction, the user can choose either LTL2BA [19]
or Wring [20]1. Both tools present advantages and drawbacks: LTL2BA works faster
whereas Wring provides smaller automata. The user can also choose the starting player
for the realizability game2. We recall that the implemented algorithms are incremental;
an upper bound can be imposed on the values of k = 0, 1, 2, . . . used in the safety games
G(φ, k). The user can also choose between either realizability check, or unrealizability
check, or both in parallel. Finally Acacia+ includes several optimizations like surely
losing states detection on the automata, limitation to critical signals, aso . . .. All of them
are enabled by default, but can be turned off.

1 In the latter case, our tool uses the Wring module included in Lily.
2 In the introduction, the realizability game has been described such that Player O, the system,

plays first. A variant is to let Player I , the environment, play first.



656 A. Bohy et al.

4 Application Scenarios

In this section, we describe three typical scenarios of usage of Acacia+. More details
and examples can be found on the website of Acacia+.

Controller Synthesis from LTL Specifications. A first classical use of Acacia+ is to con-
struct finite-state controllers that enforce LTL specifications. Such specifications are
usually specified by a set of LTL assumptions on the environment, and a set of LTL
guarantees to be fulfilled by the controller. Several benchmarks of synthesis problems
are available for comparison with other tools: the test suite included in the tool Lily [7,8],
a generalized buffer controller from the IBM RuleBase tutorial [21], and the load bal-
ancing system provided with the tool Unbeast [10,12]. The performances of Acacia+
are better or similar to other tools, with the advantage of generating compact solutions.
As an example, for the load balancing system with 4 clients, Acacia+ first builds a
universal coBüchi word automaton with 187 states, and then outputs a winning strategy
as a Moore machine with 154 states. This is in contrast with the worst-case complexity
analysis announcing a size exponential in 187, and with the winning strategy extracted
by Unbeast, whose nuSMV representation is a file of 30MB. As mentioned in [11],
extracting small strategies is a challenging problem.

Debugging of LTL Specifications. Writing a correct LTL specification is error prone
[22]. Acacia+ can help to debug unrealizable LTL specifications as follows. As ex-
plained in Sect. 2, when an LTL specification φ is unrealizable for Player O, then its
negation¬φ is realizable for Player I . A winning strategy of Player I for ¬φ can then be
used to debug the specification φ. Again, Acacia+ often offers the advantage to output
readable compact (counter) strategies that help the specifier to correct his specification.

From LTL to Deterministic Büchi automata. As suggested to us by R. Ehlers, following
an idea proposed in [6], LTL synthesis tools can be used to convert LTL formulas into
an equivalent deterministic Büchi automaton (when possible). The idea is as follows.
Let ϕ be an LTL formula over a set of signals Σ and σ be a new signal not in Σ. Let
I = Σ and O = {σ}. Then the formula φ = (ϕ ↔ GFσ) is realizable iff there exists a
deterministic Büchi automaton equivalent to ϕ. Indeed if φ is realizable, then the Moore
machine M representing a winning strategy for Player O can be transformed into a
deterministic Büchi automaton equivalent to ϕ, by declaring accepting the states of M
with output σ. Conversely, if there exists a deterministic Büchi automaton equivalent to
ϕ, this automaton, outputting σ on accepting states, realizes φ.

Therefore one can use Acacia+ to construct deterministic automata from LTL for-
mulas (if possible). In [23], the author provides an automated method (together with
a prototype) for the NP-complete problem of minimizing Büchi automata [24]. This
method is based on a reduction to the SAT problem, and it is benchmarked on several
automata obtained from a set of LTL formulas. We use those formulas to benchmark
Acacia+ on the LTL to deterministic Büchi automata problem. We obtain very short
execution times and the size of the constructed automata is very close to that of a min-
imal deterministic Büchi automata. The minimum size is indeed reached for 18 among
26 formulas. This shows again that Acacia+ is able to synthesize compact strategies.
Finally, let us mention that a similar technique can be used to convert LTL formula into
equivalent deterministic parity automata with a fixed number of priorities [6].



Acacia+, a Tool for LTL Synthesis 657

References
1. Acacia+, www.lit2.ulb.ac.be/acaciaplus/
2. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Principles of Programming

Languages, POPL, pp. 179–190. ACM (1989)
3. Abadi, M., Lamport, L., Wolper, P.: Realizable and Unrealizable Specifications of Reactive

Systems. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP
1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989)

4. Safra, S.: On the complexity of ω-automata. In: Foundations of Computer Science, FOCS,
pp. 319–327. IEEE Computer Society (1988)

5. Pnueli, A., Rosner, R.: On the Synthesis of an Asynchronous Reactive Module. In: Ronchi
Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372,
pp. 652–671. Springer, Heidelberg (1989)

6. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Foundations of Computer
Science, FOCS, pp. 531–542. IEEE Computer Society (2005)

7. Lily,
www.iaik.tugraz.at/content/research/design_verification/lily/

8. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: Formal Methods in
Computer-Aided Design, FMCAD, pp. 117–124. IEEE Computer Society (2006)

9. Schewe, S., Finkbeiner, B.: Bounded Synthesis. In: Namjoshi, K.S., Yoneda, T., Higashino,
T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488. Springer, Heidelberg
(2007)

10. Unbeast, www.react.cs.uni-sb.de/tools/unbeast/
11. Ehlers, R.: Symbolic bounded synthesis. Formal Methods in System Design 40, 232–262

(2012)
12. Ehlers, R.: Unbeast: Symbolic Bounded Synthesis. In: Abdulla, P.A., Leino, K.R.M. (eds.)

TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)
13. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL synthesis.

Journal of Formal Methods in System Design 39, 261–296 (2011)
14. Filiot, E., Jin, N., Raskin, F.: Exploiting structure in LTL synthesis. International Journal on

Software Tools for Technology Transfer, 1–21 (2012)
15. Martin, D.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
16. Acacia, www.lit2.ulb.ac.be/acacia/
17. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for

Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

18. Doyen, L., Raskin, J.-F.: Improved Algorithms for the Automata-Based Approach to Model-
Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 451–465.
Springer, Heidelberg (2007)

19. LTL2BA, www.lsv.ens-cachan.fr/˜gastin/ltl2ba/
20. Wring, www.iaik.tugraz.at/content/research/

design verification/wring/
21. IBM RuleBase Tutorial, www.haifa.ibm.com/projects/verification/

rb homepage/tutorial3
22. Könighofer, R., Hofferek, G., Bloem, R.: Debugging unrealizable specifications with model-

based diagnosis. In: Raz, O. (ed.) HVC 2010. LNCS, vol. 6504, pp. 29–45. Springer, Heidel-
berg (2010)

23. Ehlers, R.: Minimising Deterministic Büchi Automata Precisely Using SAT Solving. In:
Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332. Springer, Hei-
delberg (2010)

24. Schewe, S.: Beyond hyper-minimisation - Minimising DBAs and DPAs is NP-complete. In:
Theory and Applications of Satisfiability Testing, FSTTCS. LIPIcs, vol. 8, pp. 400–411.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

www.lit2.ulb.ac.be/acaciaplus/
www.iaik.tugraz.at/content/research/design_verification/lily/
www.react.cs.uni-sb.de/tools/unbeast/
www.lit2.ulb.ac.be/acacia/
www.lsv.ens-cachan.fr/~gastin/ltl2ba/

	Acacia+, a Tool for LTL Synthesis
	Introduction
	Underlying Approach
	Tool Description
	Application Scenarios
	References


