
ACAS: Automated Construction of Application Signatures

Patrick Haffner, Subhabrata Sen, Oliver Spatscheck, Dongmei Wang

AT&T Labs-Research, Florham Park, NJ 07932
fhaffner,sen,spatsch,meig@research.att.com

ABSTRACT
An accurate mapping of traffic to applications is important for a
broad range of network management and measurement tasks. Inter-
net applications have traditionally been identified using well-known
default server network-port numbers in the TCP or UDP headers.
However this approach has become increasingly inaccurate. An al-
ternate, more accurate technique is to use specific application-level
features in the protocol exchange to guide the identification. Un-
fortunately deriving the signatures manually is very time consuming
and difficult.

In this paper, we explore automatically extracting application sig-
natures from IP traffic payload content. In particular we apply three
statistical machine learning algorithms to automatically identify sig-
natures for a range of applications. The results indicate that this
approach is highly accurate and scales to allow online application
identification on high speed links. We also discovered that content
signatures still work in the presence of encryption. In these cases we
were able to derive content signature for unencrypted handshakes
negotiating the encryption parameters of a particular connection.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—Applica-
tions

General Terms
Algorithms, measurement

Keywords
Application signatures, application-level filter, machine learning

1. INTRODUCTION
A range of network operations and management activities ben-

efit from the ability to gather per-application measurements in the
middle of the network. These include traffic engineering, capacity
planning, provisioning, service differentiation, performance/failure
monitoring and root-cause analysis, and security. For example, en-
terprises would like to provide a degraded service (via rate-limiting,
service differentiation, blocking) to P2P and extranet web traffic to
ensure good performance for business critical applications, and/or to
enforce corporate rules regarding access to certain types of applica-
tions and content; broadband ISPs would like to limit the P2P traffic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05 Workshops, August 22–26, 2005, Philadelphia, PA, USA.
Copyright 2005 ACM 1-59593-026-4/05/0008 ...$5.00.

to limit the cost they are charged by upstream ISPs; network engi-
neers need to develop workload characterizations and traffic models
for emerging applications, for network capacity planning and provi-
sioning. All this requires the ability to accurately identify the net-
work traffic associated with different applications. Some uses of
application identification such as performance monitoring and ser-
vice differentiation require online classification early in the connec-
tion. This paper explores the potential of automating the construc-
tion of signatures for accurate real-time application traffic identifi-
cation early in the connection. We first outline the key issues and
challenges and then present our contributions.

1.1 Application identification
Application identification in IP networks, in general, can be diffi-

cult. Ideally, a network system administrator would possess precise
information on the applications running inside the network, with un-
ambiguous mappings between each application and its network traf-
fic (e.g., port numbers used, IP addresses sourcing, and receiving the
particular application data) etc. However, such information is rarely
available, up-to-date or complete, and identifying the application-
to-traffic associations is a challenging proposition. The traditional
ad-hoc growth of IP networks, the continuing rapid proliferation of
applications of different kinds, and the relative ease with which al-
most any user can add a new application to the traffic mix in the
network with no centralized registration, are some factors contribut-
ing to this “knowledge gap”. For instance, in the Virtual Private
Network (VPN) world, it is not uncommon that while an operator is
aware that a certain application (e.g., Lotus Notes) is being used in
the enterprise, she possesses only partial information about the hosts
and servers generating traffic for this application.

A traditional approach to traffic identification has been to use the
TCP or UDP server port number to identify the higher layer applica-
tion, by simply identifying which port is the server port and mapping
this port to an application using the IANA (Internet Assigned Num-
bers Authority) list of registered1 or well known ports. However
port-based application classification has been shown to be unreli-
able for a variety of reasons. There is substantial empirical evidence
that an increasing number of applications use random port numbers
to communicate. A recent study [11] reports that the default port ac-
counted for only 30% of the total traffic for the popular Kazaa P2P
protocol, the rest being transmitted on non-standard ports. It also ex-
plains in detail what causes this trend. To summarize those findings
(i) applications use non-standard ports mainly to traverse firewalls,
circumvent operating system restrictions or hide from detection. (ii)
In some cases server ports are dynamically allocated as needed; For
example, FTP allows the dynamic negotiation of the server port used
for the data transfer, (iii) port numbers can have limited fidelity - the
same standard port can be used to transmit multiple applications. For

1http://www.iana.org/assignments/port-numbers

example, Lotus Notes transmits both email and database transaction
traffic over the same ports, and scp (secure copy), a file transfer pro-
tocol, runs over ssh (secure shell), which is also used interactively
on the same port (TCP port 22).

Instead of port-numbers, one possibility is to use specific features
present in the application traffic to guide the identification. In partic-
ular this signature-based application classification approach parses
packets for application-level information and tries to match the con-
tent of a TCP/UDP connection against common signatures found in
the target application.

Following are some key challenges in developing the application
signatures. First is the lack of openly available reliable, complete,
up-to-date and standard protocol specifications for many applica-
tions. This is partly due to developmental history and partly a result
of whether the protocols are open or proprietary. For some protocols
(e.g., Gnutella), there exists some documentation, but it is not com-
plete, or up-to-date. In addition, there are various implementations,
such as Gnutella clients which do not comply fully with the specifi-
cations in the available documentation. For an application classifier
to be accurate, it is important to identify signatures that span all
the variants or at least the dominantly used ones. At the other end
of the spectrum is an application like SONY’s popular Everquest
gaming protocol, which is developed by a single organization and
therefore exhibits a more homogeneous protocol deployment, but
is a proprietary protocol with no authoritative protocol description
openly available. Finally, note that the application signatures are not
fixed, but may change with time as the corresponding applications
and their protocols evolve. The signature construction process has
to be applied repeatedly to keep up with the change dynamics.

Existing approaches to application signature identification (e.g.,
[11, 4, 7]) involved a labor-intensive process combining information
from available documentation with information gleaned from anal-
ysis of packet-level traces to develop potential signatures, and using
multiple iterations to improve the accuracy and computation over-
head. Such a painstaking manual approach will not scale if it has to
be applied individually to the growing range and number of diverse
Internet applications.

1.2 Contributions
In this paper, we explore the feasibility of automatically devel-

oping accurate signatures for individual applications. We use the
term signature to refer to a set of conditions defined over a set of
features in the application traffic. A classifier is used to classify net-
work traffic using such a signature – it marks all traffic matching the
conditions in the signature as belonging to the corresponding appli-
cation.

Among key requirements for a signature composition algorithm,
the resultant signatures (i) must be accurate, i.e., have low misclas-
sification error rates, (ii) have low evaluation overheads to make it
practicable to use the corresponding classifier for online real-time
classification on high speed links, (iii) allow the classifier to iden-
tify the application early in the connection, (iv) be robust to asym-
metric routing effects, and (v) must have good accuracy properties
over an extended period of time. Finally, the algorithm should have
wide applicability and be capable of developing accurate, efficient
signatures for a range of different applications. The motivation for
requirements (i) and (ii) are obvious considering the goal of identify-
ing applications in real time on high speed links. Requirement (iii) is
motivated by the fact that in some cases these types of signatures will
be used to react quickly. For example, in a QoS enabled VPN this
signature might be used to change the class of service (CoS) for the
flow. Therefore, if the flow is classified late the benefits of such an
approach would be small. This requirement does have one drawback
in that a connection for which the initial part was not captured might

not be classified correctly. We believe that in practice this will be a
rare case in an ongoing measurement setup and, therefore, the bene-
fits of early classification outweigh this drawback. Requirement (iv)
stems from the fact, that a measurement point may capture only one
direction of a bidirectional communication due to the prevalence of
asymmetric routing in the Internet; therefore it is important that the
derived signature is able to identify the application with high accu-
racy, irrespective of which direction it sees. Requirement (v) is very
important, because the network traffic mix (and relative proportions)
even at a given link changes with time, even if the target applica-
tion itself is unchanged. To be practicable, the developed signature
should be robust to these effects, and remain accurate over extended
time periods.

Machine learning has been widely used in data analysis. It has
been demonstrated to be an efficient technique for classifying texts,
including filtering spam messages and classifying documents based
on a list of feature words inside them (e.g. [1, 12]). Although ma-
chine learning has been used for network traffic classification, exist-
ing studies mostly considered statistical network flow attributes (e.g. [14,
13, 9]) such as packet size distributions. To our knowledge, this is
the first work that explores the applicability of statistical machine
learning techniques for identifying signatures based on application-
level content. Specifically, we select three popular learning algo-
rithms – Naive Bayes [8], AdaBoost [10] and Maximum Entropy [5],
and use them to develop the application signatures.

We compare the performance of the different algorithms through
extensive experiments. The key metrics for accuracy comparison are
error rate, precision and recall. They are defined in Section 2.

To demonstrate the wide applicability, we use the three algorithms
to develop signatures for a variety of network applications: ftp con-
trol, smtp, pop3, imap, https, http and ssh. Our evaluations of the
resulting signatures, using real traffic traces from a tier-1 ISP, show
that across the applications, the automatically constructed signatures
exhibit (i) good accuracy properties (low error rate as well as high
precision, and recall) based on inspecting only a modest initial por-
tion of a communication, (ii) low evaluation overheads, and (iii)
maintain good accuracy across several months.

The remainder of the paper is organized as follows. Section 2 de-
scribes how we model the application identification problem and its
requirements (described above), and transform it to a statistical clas-
sification problem. Section 3 provides a high level description of the
three machine learning algorithms that we apply to this classification
problem. We present the experimental results in Section 4. Finally,
Section 5 concludes the paper.

2. THE CLASSIFICATION PROBLEM
Before we introduce our approach let us define the problem we

want to solve first:
Goal: Determine which application a flow belongs to by inspect-

ing application layer information only (above the TCP/UDP header),
where a IP flow is defined by a (protocol ,srcIP,destIP,srcPort,destPort)
tuple.

Using this definition it is clear that our classification approach is
resilient to: (i)The use of random port numbers; (ii)Changes in the
network characteristics of an application such as average packet size,
packet timing etc; (iii) Changes in the communication patterns of a
client.

The only persistence this approach requires to correctly identify
an application is the persistence in the applications signature itself.
As we will show (Section 4) we found such persistent signatures
for a range of applications. While in theory encryption techniques
can be used to prevent or thwart content-signatures, in practice we
were able to extract signatures for encrypted communication pro-
tocols such as ssh and https since both protocols perform an initial

handshake in the clear. Still, more generally, we expect that future
identification techniques will rely on a composite approach combin-
ing different information such as statistical characteristics, content,
and communication patterns etc. In this paper we explore the poten-
tial of one source of information- the application content.

As outlined in the introduction we use well-known machine learn-
ing algorithms to automatically derive the application signature. These
algorithms require a training phase during which a set of pre-classified
feature vectors (training set) is processed by the algorithm. At the
end of this phase a classifier is returned which can be used to de-
termine a probability that a feature vector for which the class as-
signment is not known belongs to a particular class. We map this
functionality onto our classification goal as follows:
� Single Application Signature: We derive application signatures

to decide if a particular flow belongs to an application or not. There-
fore, we have two classes (application, non-application). If multiple
applications need to be classified we will treat them as individual
classification problems, with the classification of one application
versus all other applications. Defining multicategory classification
as a combination of one-vs-other binary classifiers has been shown
to be attractive in terms of performance and simplicity [6].
� Raw Data: We encode the raw application level data as a fea-

ture vector. An alternate approach would be to extract features such
as ASCII words from the data stream before presenting them as a
feature vector to the learning algorithm. The drawback of a feature
extraction phase is that it selects what is presented to the learning
step, and structures which are not extracted as features are not vis-
ible to the learning algorithm. The potential drawback of the raw
data approach is that the number of raw features can grow very large.
However this is not a problem for the classifiers considered in this
paper which are large margin or regularized thus able to generalize
well with a large number of features (see next section). The raw
data approach seems more suited to our particular problem domain
where the actual useful features are unknown and can have a very
wide range of structures depending on the protocol, its encoding etc.
� Initial data only: Our algorithm only considers the first n-Bytes

of a data stream as features.There are three main motivations for this
choice: (1) We want to identify traffic as early as possible. (2) For
most application layer protocols, it is easy to identify application
layer headers at the beginning of a data exchange. (3) This allows us
to limit the amount of data the machine learning algorithms have to
process. In case of a TCP connection, if TCP reassembly is required,
we consider the first n-Bytes of the reassembled TCP data stream.
Note that since we identify flows and not connections we treat each
TCP connection as two independent reassembled TCP flows. This
per-flow identification strategy was selected to facilitate developing
a single per-application signature that is robust to asymmetric rout-
ing effects. i.e., that can identify the application with high accuracy
by monitoring just one direction of the bidirectional communication.
� Discrete byte encoding: We encode the first n-Byte of a flow

with a feature vector v with n � 256 elements. All components of v
are initialized to 0. Then for each byte in the input stream, the com-
ponent i*256+c[i] is set as 1, that is: v[i � 256 + c[i]] = 1, where
i represents the position of a byte with value c[i] in the reassembled
flow. Therefore, the feature vector v has n non-zero components.
This binary vector v is used as input by the machine learning algo-
rithms and classifiers. The reason for this choice is that classifiers
studied here are known to work well on binary vectors.

Another important property of the discrete representation is that
byte values are equidistant (based on Euclidean distance). A bi-
nary classifier draws a separation hyperplane in the space where the
examples live. If some examples were to be closer in this clas-
sifier input space, they would be considered as more similar. In
other words, two examples with a smaller Euclidean distance are

not separated easily, and tend to belong to the same class. For
example, consider three byte streams c1; c2; c3 of length one with
c1[0] = [A]; c2[0] = [B]; c3[0] = [Z]. If we would encode each
byte in the Byte stream as a single integer the distance between c1
and c2 would be 1 whereas the distance between c1 and c3 would
be 25. Therefore, the classifier has a harder time separating c1 from
c2 than from c3. This is counter-productive if for example, we want
to identify all flows starting with an [A]. Using our feature vector
encoding the distance between two feature vectors of equal length
will always be identical removing this unwanted bias.

Using these mappings, we can directly apply the machine learning
algorithms to our application classification problem.

Last we provide definitions of the three metrics we shall use to
measure signature accuracy. Given a dataset of size S consisting of
application and non-application flows, if a non-application flow is
identified as an application flow according to the constructed signa-
tures, we call it false positive misclassification and denote FP as
the total number of false positive misclassifications. Similarly, if
an application flow is identified as non-application according to the
constructed signatures, we call it a false negative misclassification
and denote FN as the total number of false negative misclassifica-
tions. Define the True Positive TP to be the total number of applica-
tion flows that are correctly identified by the constructed signature.
Then, the error rate is defined as (FP + FN) � 100=S. The pre-
cision is the number of actual application flows as a fraction of the
total number of flows identified as belonging to the application, that
is, TP=(TP + FP). The recall is the the number of actual appli-
cation flows as a fraction of the total number of flows in the set, that
is, TP=(TP + FN).

3. MACHINE LEARNING ALGORITHMS

This section offers a brief overview of the linear classifiers we
use, their optimization processes, which we call learning, and their
efficient implementation. We focus on three classes of algorithms:
Naive Bayes [8], AdaBoost [10], and Maximum Entropy or Max-
ent [2]. In the case of Maxent, we use the Sequential L1-regularized
Maxent algorithm (SL1-Max) [5]. These algorithms were chosen
because of the scalability of their learning processes and the fact
that their runtime implementation can be very efficient. They give
us three ways to train a linear classifier2 using very different frame-
works. These algorithms can be interpreted as follows:
� Naive Bayes models, for each feature independently, a discrete

distribution that gives its conditional probability given the class. As-
suming these distributions are independent, the probability to ob-
serve an example given a class is the product of the probabilities to
observe each feature given the class.
� AdaBoost incrementally refines a weighted combination of

weak classifiers. In the process, the importance of examples that
are still erroneous is “adaptively boosted”.
� Regularized Maximum Entropy looks for a distribution over

training samples with maximum entropy that satisfies a set of user-
defined constraints. Regularization implies that we allow some slack
in the satisfaction of these constraints.

Naive Bayes is provided as a baseline. While it does not minimize
explicitely the training error and while the independence assumption
it relies on is very far from the truth, it often provides reasonable
performance [8]. In addition , the learning procedure is very simple
and incremental: a learning example just has to be processed once to
be learned, it does not need to be stored, and it can be used to further

2The runtime implementation of this linear classifier, which is the
dot product between the feature vector and the weight vector, is in-
dependent of which of the algorithms is used.

train an deployed system. A system based on Naive Bayes can be
continuously updated as new labeled data becomes available, this is
why it is widely used for applications such as SPAM filtering [1].

The rest of this section briefly introduces AdaBoost and SL1-Max
for Maximum Entropy, where better control over performance is ob-
tained at the expense of a more complex and non-incremental train-
ing procedure. Both algorithms have shown excellent performance
on other large scale problems [6]. In that study, which focused
on spoken language classification, these algorithms have a learning
time that scales as O(M) where M is the number of examples in the
training set. They are particularly efficient when the data is sparse,
that is, the proportion of non-zero input features is small. This is the
case in the present study, as only 1 feature out of 256 is non-zero.

AdaBoost was introduced as a sequential algorithm [10]. It selects
at each iteration a feature k and computes, analytically or using line
search, the weight wk that minimizes a loss function. In the process,
the importance of examples that are still erroneous is “adaptively
boosted”, as their weight in a distribution over the training examples
that is initially uniform is increased. It was only later that this greedy
sequential optimization process was shown to be guaranteed to con-
verge and to be more efficient than other methods minimizing the
same loss function [3]. Given a training set associating a target class
yi to each input vector xi, AdaBoost sequential algorithm looks for
the weight vector w that minimizes the exponential loss (which is
shown to bound the training error):

C =

MX

i=1

exp(�yiw
T
xi) (1)

AdaBoost also allows a log-loss model (used in this paper), where
the goal is now to maximize the log-likelihood of the training data
log(
Q
i P (yijxi)). The posterior probability to observe a positive

example is P (yi = 1jx) = 1
1+exp(�wT

xi)
.

Maxent relies on probabilistic modelling. Suppose we solve our
classification problem by looking for the class which maximizes a
distribution argmaxyP (yjx). What is a reliable way to estimate
this distribution on the training data without overfitting? First, how
well this distribution matches the training data is represented by con-
straints which state that features must have the same means under
the empirical distribution (measured on the training data) and under
the expected distribution (obtained after the training process). Sec-
ond, this distribution must be as simple as possible. This can be
represented as a constrained optimization problem: find the distri-
bution over training samples with maximum entropy that satisfies
the constraints. Using convex duality, we obtain as a loss function
the Maximum Likelihood. The optimization problem is applied to a
Gibbs distribution, which is exponential in a linear combination of
the features:

P (x) =
exp(wT

x)

Z
(2)

with Z =
PM

i=1 exp(w
T
xi). A description of the derivation of

this function from the constrained optimization problem is beyond
the scope of this paper and can be found elsewhere [2]. SL1-Max
is one of the fastest and most recent algorithms to estimate Maxent
models. It offers a sequential-update algorithm which is particularly
efficient on sparse data and allows the addition of L1-regularization
to better control generalization performance.

An implementation of AdaBoost and SL1-Max that is optimized
using partial pricing strategies is provided in the LLAMA software
package [6]. AdaBoost, which is large-margin and implicitely reg-
ularized, and SL1-Max, which is explicitely regularized, have also
been shown, both in theory and experimentally, to generalize well
in the presence of a large number of features. Regularization fa-
vors simple model by penalizing large or non-zero parameters. This

Dataset Training Testing
8hr 4hr 1hr 8/2004 3/2005

ftp ctrl 6,678 3,255 824 7,152 490
smtp 343,744 172,647 43,987 363,062 208,399
pop3 100,472 49,913 13,376 103,150 43,583
imap 1,512 545 240 2,183 535
https 48,763 26,747 6,812 59,060 27,604
http 547,813 263,876 76,308 649,074 260,441
ssh 797 759 9 60 341
Total 1,242,515 614,773 165,815 1,381,533 1,065,018

Table 1: Number of training and test vectors in data sets

property allows the generalization error, i.e. the error on test data, to
be bounded by quantities which are nearly independent of the num-
ber of features, both in the case of AdaBoost [10] and SL1-Max [2].
This is why a large number of features, and consequently a large
number of classifier parameters, do not cause the type of overfitting
(i.e. learning by heart the training data) that used to be a major prob-
lem with traditional classifiers.

Because of the present focus on linear classifiers, comparisons
using non-linear Support Vector Machines, whose classification ca-
pacity is more powerful, but whose learning time can be slower
(O(M2)), will be kept for a future study.

4. EVALUATION
To evaluate the performance of our approach we focus on build-

ing application layer signatures for ftp control, smtp, pop3, imap,
https, http and ssh. We chose these applications for multiple rea-
sons: (1) They cover a wide range of application classes in today’s
Internet including interactive, large file transfer, transactional, and
encrypted communication-based applications; (2) It is easy to build
the required preclassified training and test sets for these applications
since they are mainly still using their default ports. We therefore
used default port numbers to build the training and test sets.

In practice we would expect that the training sets would be built
by other means which would allow us to include applications which
do not use default port numbers. Possible approaches in constructing
the training sets include the ones described in[7] as well as monitor-
ing of traffic on a VPN type network in which traffic can be mapped
to applications based on server IPs. In either case the resulting sig-
natures could then be utilized in other locations. We are still investi-
gating the best way for constructing such training sets.

4.1 Experimental Setup
To build the training and test sets we collect more than 100GByte

of packet traces on a high speed access network serving more than
500 residential customers. The training data was collected in August
2004, the test data was collected in August 2004 and March 2005.
For training we use training sets covering a total of 1,4, and 8 hours
of traffic. Each set consists of 4 partitions which are equally spaced
within a 24 hour period to account for variations in the applications
and traffic mix during a daily cycle (for example each 8 hour set
consists of four 2-hour long data partitions spaced 6 hours apart).

After compiling these data sets we processed them as follows:
(i) Reassemble every TCP connection into two unidirectional flow
records; (ii) Determine the server port of each flow by analyzing the
TCP handshake; (iii) Generate a feature vector using the algorithm
described in Section 2 while only considering at most the first 64
and 256 Bytes of a reassembled TCP flow (less if the connection did
not have that many bytes in a particular direction); (iv) Build a class
file for each application. A feature vector for a flow is classified
as belonging to the class if the server port of the flow matches the
default server port for the application to be classified.

Application Training set Training User Time Algorithm Error Rate in % Precision Recall jwj

ftp control 8hr 4h53m17.86s AdaBoost 0.016 0.996 0.971 612
smtp 8hr 7h33m58.07s AdaBoost 0.031 0.998 0.999 480
pop3 8hr 5h44m36.53s AdaBoost 0.039 0.995 0.999 356
imap 8hr 12m2.16s AdaBoost 0.000 1.000 0.999 189
https 8hr 7h28m39.37s AdaBoost 0.258 0.992 0.946 271
http 8hr 1h0m17.06s Maxent 0.508 0.990 0.999 5666
ssh 8hr 20m54.00s AdaBoost 0.001 1.000 0.866 74

Table 2: Best classification results for each application considering the 8/2004 test set.

ftpcontrol smtp pop3 imap http ssh https
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Application

C
la

ss
ifi

ca
tio

n
E

rr
or

1hr
4hr
8hr

Figure 1: Application Error Rate for different training set sizes.

ftpcontrol smtp pop3 imap http ssh https
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Application

C
la

ss
ifi

ca
tio

n
E

rr
or

64 Bytes
256 Bytes

Figure 2: Application Error Rate for different vector lengths.
Table 1 shows the summary statistics of the resulting data sets.

4.2 Accuracy Results
In our first experiment we trained one classifier for each applica-

tion using all three algorithms and all three training sets. The feature
vectors in the training sets represent the first 64 Bytes of each TCP
flow. We then evaluated which algorithm and training set resulted
in the best error rate for a particular application in the 8/2004 test
set. After that, we apply the resulting classifier for each application
to classify the flows in the test set. For each flow, the classifier re-
turns a probability value to indicate whether the flow belongs to an
application. We classify a flow belonging to the application if the
probability for the flow is at least 0.5 3.

As shown in Table 2 for all applications the longest training set
yielded the best result and for all applications but one AdaBoost per-
formed the best. Maxent performed slightly better for http (less than
an improvement of 0.005% in the Error Rate). An explanation for
this good performance of AdaBoost is that the data is clean and con-
tains very few outliers (because of the way it was generated: this is

3Naive Bayes, AdaBoost and Maximum Entropy outputs correspond
to estimates of the conditional probability P (y = 1jx) where y 2
f�1;+1g is the class to be recognized. Class +1 is recognized if
P (y = +1jx) � P (y = �1jx), that is P (y = 1jx) � 0:5.

confirmed by the very low error rate). AdaBoost may not perform so
well if the data is noisier [6]. Overall our error rate is below 0.51%
for all applications we considered, that is, we correctly classify more
than 99% of all flows using our approach. In addition the precision
is above 0.99 for all applications, indicating very low levels of clas-
sification noise. The Recall which indicates how many connections
we would have found in the test set is above 0.94 for all applica-
tion with the exception of ssh. The poor performance of ssh is most
likely caused by the fact that we only had 797 ssh training vectors in
our training set with more than 1.2 million training vectors.

As stated above, for each classifier of a particular application we
considered each vector to be classified as belonging to the applica-
tion if the returned probability is at least 0.5. To evaluate the impact
of this choice we varied the threshold in 0.01 increments from 0 to
1 and calculated the best error rate for each application using the
optimal threshold for our test set. We know that a preclassified test
set should not be used to learn a threshold, however, using this ap-
proach we can compute an upper bound on how much improvement
we could expect if another threshold is used. For all application we
found that the improvement in error rate over the 0.5 threshold was
less than 0.03%. Therefore, it is safe to use 0.5 in practice.

Since Naive Bayes classifiers are well known and extremely sim-
ple one interesting question to ask is how much improvement do we
get from using more sophisticated machine learning algorithms on
our application layer data. Compared to the best AdaBoost classifier
on the 8/2004 test set, the error rate obtained with Naive Bayes is
4 to 12 times larger, which is a considerable difference. Note that
we used default smoothing probabilities, and that their choice could
be critical for Naive Bayes performance. However, none of the other
algorithms benefited from any task specific tuning, as we expect ma-
chine learning to avoid any form of human intervention. So clearly
a more sophisticated approach provides substantial payoffs.

4.3 Choosing the Parameters
Another aspect to examine is how large a training set is required

to achieve acceptable results. Figure 1 shows how the error rate
differs for the different applications using AdaBoost and consider-
ing the first 64Byte of each flow as the classification vector. Even
though the absolute error rate is small even for a 1 hour training set
the error does improve with longer training sets. In particular the
improvement from a one to a four hour training set is noticeable for
all applications. In practice the training set size is limited by the
memory available during the learning process (see next subsection).

A similar question to consider is how many bytes at the beginning
of each flow should be considered. To evaluate this we computed
the error rate for the different applications using AdaBoost and the
1 hour training set varying the Bytes considered from 64 to 256.
Figure 2 shows the results of this experiment. Overall the results
seem quite stable. In fact, considering more data slightly decrease
the Error Rates of http and https while increasing the Error Rate
of smtp. This indicates that for the applications considered there is
enough information in the first 64 Bytes of each flow to identify the
application. In fact more data leads to overfitting in the case of smtp.

4.4 Signature Durability
Another important question is for how long a signature can be

used. Obviously the answer to this questions depends on many fac-
tor such as the release schedule of new versions of a particular appli-
cation as well as changes in user behavior. To understand how stable
the signatures shown in Table 2 are over a longer period of time we
compute the result for the algorithms and training sets shown in the
table for 3/2005 set instead of the 8/2004 set shown. Comparing
those results to the earlier test set shows that the error rates for ftp-
control, smtp, pop3 and https actually improve slightly. Whereas the
error rates for ssh and imap increase to approximately 1% and the
http error rate reaches 2.2%. In this set Precision is above 0.94 for
all applications, whereas Recall is above 0.91 with the exception of
imap which has a recall of 0.82. Overall this indicates that our clas-
sifiers maintain quite good performance on test data 7 months newer
than the training data. An important practical implication is that the
signatures can be used for long time periods without recourse to fre-
quent retraining which can be an expensive process.

4.5 Performance Overheads
In this section we consider both the performance and memory re-

quirements of building a classifier as well as the performance and
memory requirements of executing it on a data feed which needs to
be classified. The training times for the best classifiers are shown in
Table 2. As shown the training time varies from slightly more than
one hour to less than 8 hours of user time on a single 900Mhz Ul-
traSparcIII processor using AdaBoost for all but the http application
for which we use Maxent. Generally the Maxent algorithm termi-
nates within less than 61 minutes whereas this version of AdaBoost
takes longer (an Adaboost implementation at least as fast as Maxent
is under deployment). Considering that the training phase is per-
formed infrequently off line and that we used slow processors in our
experiment the training times are acceptable for the task. The system
we used had 192GByte of main memory which in theory limited our
training data to 750M examples assuming a training vector which
is based on 64 bytes of data. Therefore, the memory is more than
enough for our experiment. In fact, all results presented in this paper
are computed with less than 4GB of memory requirements.

The memory and performance requirements for real time classifi-
cation depend on the feature vector x, the weight vector w (which
represents the classifier parameters) and the algorithm chosen to
compute the dot product of the two vectors. This algorithm depends
on whether these vectors are represented with their full list of values
(including the zeros) or a compacted list of index/values, where the
zeros have been removed. As we encode the first 64 bytes of each
TCP flow into a feature vector, the full feature vector representing a
TCP flow has 64�256 = 16384 components, but its compacted ver-
sion only requires 64 entries (see Section 2). Similarly, the classifier
weight vector w has jwj none-zero elements and can also be com-
pacted. We show the number of such elements for our classifiers in
Table 2. The largest such classifier contains 5666 non-zero elements
with the typical containing less than 1000 non-zero elements. Again
we consider those vectors to be sparse. Computing the dot prod-
uct of two sparse vectors is most easily done by storing each vector
as an ordered list (by offset) of non-zero elements. Then we can
compute the dot product by traversing both lists (similar to a merge
operation). This has an overhead of O(jwj + jxj) compare and add
operations where jxj = 64 is the number of non-zero elements in
the feature vector.

For example, if we consider the classifier with the largest w in
our experiments we need 5666 � 8 = 45; 328 Bytes of memory to
store w which is small enough to fit into first level cache of most
modern CPUs. Classifying a feature vector representing 64Bytes
of a TCP flow then requires at most 5666 + 64 = 5730 compare

and add operations with most classifiers requiring less than 600 such
operations (see Table 2). This overhead is clearly low enough to
facilitate application layer classification at high speed links.

5. CONCLUSION
In this paper we explored the feasibility of automatically identify-

ing application signatures. In particular, we applied three machine
learning algorithms to automatically identify the signatures for a
wide range of applications. We demonstrated that two sophisticated
machine learning algorithms work well, that is, the automatically
constructed signatures can be used for online application classifica-
tion with low error rate, high precision and high recall, based on
examining a modest amount of information at the beginning of the
communication. The resulting signatures remain highly accurate to
traffic variations on the time scale of several months. We also eval-
uated the computational complexity of applying the constructed sig-
natures for realtime application classification. Our results show that
the constructed signatures are suitable for online application classi-
fication on high-speed links.

6. ACKNOWLEDGMENTS
The authors would like to thank Lee Breslau, Jennifer Rexford

and Robert E. Schapire for many helpful discussions.

7. REFERENCES
[1] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, and

C. Spyropoulos. An evaluation of naive bayesian anti-spam filtering.
In Proceedings of the Workshop on Machine Learning in New
Information Age, Barcelona, Spain, 2000.

[2] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A Maximum
Entropy Approach to Natural Language Processing. Computational
Linguistics, 22(1):39–71, 1996.

[3] M. Collins, R. E. Schapire, and Y. Singer. Logistic Regression,
AdaBoost and Bregman Distances. In Proceedings of COLT’00, pages
158–169, Stanford, CA, 2000.

[4] C. Dewes, A. Wichmann, and A. Feldmann. An analysis of internet
chat systems. In Proceedings of ACM SIGCOMM Internet
Measurement Conference, October 2003.

[5] M. Dudik, S. Phillips, and R. E. Schapire. Performance Guarantees for
Regularized Maximum Entropy Density Estimation. In Proceedings of
COLT’04, Banff, Canada, 2004. Springer Verlag.

[6] P. Haffner. Scaling Large Margin Classifiers for Spoken Language
Understanding. In Accepted for Publication in Speech
Communication, 2005.

[7] A. Moore and K. Papagiannaki. Toward the accurate identification of
network applications. In Passive & Active Measurement Workshop,
Boston, USA, March 2005.

[8] I. Rish. An empirical study of the naive bayes classifier. In
Proceedings of IJCAI-01 workshop on Empirical Methods in AI”,
pages 41–46, Sicily, Italy, 2001.

[9] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-service
mapping for qos: A statistical signature-based approach to tp traffic
classification. In Proceedings of ACM SIGCOMM Internet
Measurement Conderence (IMC’04), Sicily, Italy, October 2004.

[10] R. E. Schapire. The boosting approach to machine learning: An
overview. In MSRI Workshop on Nonlinear Estimation and
Classification, 2002.

[11] S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network
identification of p2p traffic using application signatures. In
Proceedings of World Wide Web Conference, NY, USA, May 2004.

[12] S. Souafi-Bensafi, M. Parizeau, F. Lebourgeois, and H. Emptoz.
Bayesian networks classifiers applied to documents. In Proceedings of
ICPR, Québec, Canada, 2002.

[13] S. Zander, T. Nguyen, and G. Armitage. Self-learning ip traffic
classification based on statistical flow characteristics. In Passive &
Active Measurement Workshop, Boston, USA, March 2005.

[14] D. Zuev and A. Moore. Traffic classification using a statistical
approach. In Passive & Active Measurement Workshop, Boston, USA,
March 2005.

