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ACBM: An Integrated Agent 
and Constraint Based Modeling 
Framework for Simulation of 
Microbial Communities
Emadoddin Karimian1,2 & Ehsan Motamedian  1,2 ✉

The development of new methods capable of more realistic modeling of microbial communities 

necessitates that their results be quantitatively comparable with experimental findings. In this 
research, a new integrated agent and constraint based modeling framework abbreviated ACBM has 
been proposed that integrates agent-based and constraint-based modeling approaches. ACBM models 
the cell population in three-dimensional space to predict spatial and temporal dynamics and metabolic 

interactions. When used to simulate the batch growth of C. beijerinckii and two-species communities 

of F. prausnitzii and B. adolescent., ACBM improved on predictions made by two previous models. 
Furthermore, when transcriptomic data were integrated with a metabolic model of E. coli to consider 

intracellular constraints in the metabolism, ACBM accurately predicted growth rate, half-rate constant, 
and concentration of biomass, glucose, and acidic products over time. The results also show that the 
framework was able to predict the metabolism changes in the early stationary compared to the log 

phase. Finally, ACBM was implemented to estimate starved cells under heterogeneous feeding and 
it was concluded that a percentage of cells are always subject to starvation in a bioreactor with high 

volume.

A computer model is a simpli�ed representation of a complex system (e.g. bio-populations) that provides a basis 
for testing and evaluation of hypotheses. Microbial cell models can be either structured or unstructured depend-
ing on whether they take into account the details of intracellular reactions and processes or not. �e unstruc-
tured models such as Monod-type equations consider the cell as a black box and relate input changes to output 
responses using empirical data. However, they lack any information on the intracellular state and the narrow 
applicability range of these models makes it di�cult to extrapolate the performance of biosystems, especially 
under perturbed conditions1. �e structured models consider the microbial cells as multi-component systems 
and they contain certain details of the intracellular processes. �e kinetic models including detailed metabolic 
reaction kinetics are a well-known category of the structured models. However, kinetic modeling requires a large 
number of kinetic parameters which are mostly undetermined and they comprise non-linear equations that o�en 
require more complicated solution procedures1. Metabolic models are widely used structured models that can be 
constructed using reaction stoichiometry without considering enzyme kinetics. Assuming steady-state condition, 
the metabolite mass balances are applied to construct metabolic models including linear algebraic equations. 
Flux balance analysis (FBA) as a constraint-based metabolic modeling approach (CBM)2 calculates the �uxes of 
all reactions in a metabolic model while considering an objective function (e.g. maximization of growth rate). 
FBA does not generally apply any intracellular constraint and only extracellular constraints including uptake 
and secretion rates limit the predicted rates. Instead of incorporating the intracellular enzyme kinetics, an upper 
bound is determined for uptake rates of substrates commonly based on empirical data or if any, the substrate 
kinetics are used to calculate the extracellular rates using the substrate concentration. �e limited understanding 
of intracellular constraints such as regulatory and signaling events and enzymatic kinetics does not allow for the 
accurate prediction using these models to expand model reliability over a wide range of environmental condi-
tions. Over the past decade, the integration of omics data with metabolic models has been an important e�ort 
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to incorporate the intracellular constraints within the metabolic models. In particular, several FBA-driven algo-
rithms have been developed to integrate transcriptomics data into metabolic models3.

�e cell models can also be categorized to segregated or unsegregated, referring to whether they consider 
heterogeneity in the cell population or not. �e metabolic models have mostly been applied within the unseg-
regated modeling framework, however, some approaches have been developed to model metabolic interactions 
within microbial communities. �e �rst approach constructed a generalized metabolic model by combining the 
reconstructions of single microbes and considered community growth as the objective function of FBA, e.g.4. 
Subsequent approaches included temporal dynamics using dynamic FBA (dFBA) to simulate microbial growth5. 
�en, COMETS was introduced6 that incorporates spatial dynamics by integrating dFBA with di�usion on a 
lattice. Physical space in 2D was discretized into boxes that contained di�erent microbial species and extracellu-
lar metabolites. �e biomass and extracellular metabolite levels were updated in each time step using dFBA for 
each box based on the nutrients available in the environment and on the capacity of the metabolism. COMETS 
estimated the upper bounds of substrate uptake rates using a kinetic equation. �is method is an equation-based 
model that describes biological processes by formulating interactions of individual biological components using 
a system of equations for variables in time and space. Indeed, by simulating colony growth as a two-dimensional 
di�usion, COMETS represents the space of the boxes continuously by assigning each box for a population of 
multiple cells. So it can not model each individual cell to investigate metabolic heterogeneity within a population 
of cells.

In recent years, individual-based models have been applied to consider heterogeneity in the cell population. 
�ey simulate populations and communities by following individuals and their properties, and agent-based mod-
els (ABMs) are a class of computational models for individual-based modeling. ABM models space as a heter-
ogeneous environment in which individuals are represented as agents and move. Agents obey simple rules and 
ABMs consisting of dynamically interacting rule-based agents can result in di�erent sorts of complex behavior. 
By incorporating ABM and CBM, Biggs and Papin7 proposed a tool named MatNet for multiscale modeling of 
P. aeruginosa bio�lm formation. �e hybrid model was capable of modeling bio�lm formation of a single species 
and qualitatively predicted the e�ect of oxygen limitation, nitrate addition, and gene knockout. Shashkova et al.8 
used ABM and kinetic equations to model interactions between two bacterial species and between species of 
the gut. �eir model was able to observe the emergent spatial structure and its alteration, depending on various 
feedback mechanisms. BacArena9 applied ABM and FBA to simulate multispecies communities and considered 
a two-dimensional grid to model a spatial environment. Temporal dynamics were modeled by including time 
steps, and the substrate uptake rate was constrained using the Michaelis-Menten kinetic equation. In comparison 
with COMETS as an equation-based and continuous method, BacArena models additional heterogeneity of cells 
by focusing on individuals using ABM, and this rule-based method improved the predicted doubling time for 
Clostridium beijerinckii. �e predicted metabolite concentration ratio for acetate was comparable to experimental 
values for co-cultures of in vitro human intestinal microbiota while higher and lower ratios were calculated for 
butyrate and propionate, respectively.

�e proposed methods were capable of identifying the microbial community structure by considering spatial 
and temporal multi-scale modeling approaches. Furthermore, BacArena and MatNet combined individual based 
modeling with FBA to consider the metabolic heterogeneity within a population of cells. Except for MatNet, the 
methods can model multi-species communities. However, it is still necessary to develop new methods that pres-
ent results quantitatively comparable with experimental data of a bioprocess such as batch and fed-batch growth. 
In this research, a new integrated agent and constraint based modeling framework abbreviated ACBM (Fig. 1) 
has been proposed that integrates ABM and CBM similar to BacArena and MatNet but with a di�erent formu-
lation. Indeed, ACBM is a structured and segregated model that uses ABM and CBM to apply intracellular (e.g., 
the capacity of the metabolism) and extracellular (e.g., the nutrients available in the environment) constraints10 
of a cell, respectively. �us, it can properly simulate the temporal and spatial dynamics of a cell population in 
di�erent processes, such as batch and fed-batch growth. Compared to its predecessors, ACBM models microbial 
populations in three-dimensional space and makes predictions using mechanistic processes that more closely 
mimic the intra- and extracellular behaviors present in living microbes. Using substrate kinetics, ACBM was 
applied to simulate batch growth of C. beijerinckii and two-species communities of F. prausnitzii and B. adoles-
centi. Furthermore, transcriptomic data were integrated with a metabolic model of E. coli to consider intracellular 
constraints in the metabolism. Glucose concentration is a critical parameter for both productivity and quality in a 
fed-batch process of recombinant protein production. So, ACBM was used to estimate starved cells in a bioreactor 
with high cell density.

Results and Discussion
Simulation of batch growth. ACBM was used to predict the growth of C. beijerinckii in a batch culture 
including 10 g/l glucose and kinetic equation proposed by Bauer et al.9 was applied to calculate glucose uptake 
rate using glucose concentration. Figure 2 shows that ACBM properly predicts the life cycle of cells and the phases 
of batch growth including accelerating, logarithmic, decelerating, stationary, and death. Given that ACBM is sto-
chastic because of the random movement of cells and metabolites, ACBM was implemented three times to eval-
uate the variation of the predicted concentrations for biomass and glucose in Fig. 2. Variations in the predicted 
values were negligible and a maximum standard deviation of 0.031 g/l was calculated. �e high concentration of 
either substrate or biomass is the reason for the low error. Indeed, the probability of �nding substrates by cells at 
each time step is always constant since the concentration of either glucose or biomass or both is high.

�e growth rate at the exponential phase equals 0.2 1/h, hence, ACBM predicts a doubling time of 3.47 h for 
C. beijerinckii. Two previous approaches BacArena and COMETS predicted a doubling time of 1.1 and 0.5 h, 
respectively, for C. beijerinckii that is much smaller than the experimental value of 4.3 h11. So, ACBM improved 
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Figure 1. Flowchart of the cell process developed for ACBM.
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Figure 2. �e predicted biomass and glucose concentrations by ACBM in a batch culture of C. beijerinckii 
including 10 g/l glucose.
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the predicted growth rate while it used a metabolic model and kinetic equation for substrate uptake the same as 
BacArena and COMETS.

However, it overpredicted the growth rate that can be because of the lack of intracellular constraints. Cells 
are always faced with two intracellular and extracellular constraints for growth10. In the stationary phase, when a 
cell is under starvation and could not �nd any substrate, the extracellular constraint of lack of substrate controls 
the growth. So, ACBM does not apply the metabolic model and the cell moves randomly. When the cell �nds 
substrate, it eats metabolites and ACBM applies the metabolic model to predict the growth and secretion rates. 
When the substrate concentration around the cell is high, over�ow can occur and by-products can be produced. 
However, FBA does not generally apply any intracellular constraint and only extracellular constraints including 
uptake and secretion rates limit the predicted growth rate10. Hence, when ACBM applies FBA, the glucose uptake 
rate is determined using the Michaelis-Menten kinetic equation. �is equation predicts the substrate uptake rate 
by using glucose concentration and considers a maximum glucose uptake, but FBA can not predict the over�ow 
metabolism and the condition that glucose is abundant. So, it linearly increases the growth rate with an increase 
in glucose uptake rate and it can be the main reason for the overprediction of growth by ACBM when FBA is used.

Simulation of cross-feeding. Cross-feeding is an important metabolic interaction mechanism especially 
between bacteria inhabiting the human intestine such as Bi�dobacterium and Faecalibacterium genera8. B. ado-
lescentis produces acetate and F. prausnitzii metabolizes this acetate to butyrate. ACBM was implemented to sim-
ulate single- and two-species communities of F. prausnitzii and B. adolescentis (Fig. 3). F. prausnitzii produced a 
little amount of butyrate (0.3 g/l) while the produced butyrate in the co-culture increased more than four times. It 
shows that in the co-culture, F. prausnitzii has been able to synthesize butyrate by consuming acetate. �e exper-
imental results of Rios-Covian et al.12 also show the enhanced formation of butyrate by F. prausnitzii (two to four 
times) in the presence of the bi�dobacteria compared to the F. prausnitzii monocultures. Simulation results reveal 
that B. adolescentis produces about 4 g/l acetate in the monocultures, which it reduces to 1.1 g/l in the co-culture.

Integration of transcriptomics data. Using the substrate kinetics or determining an upper bound for 
uptake rates of substrates does not implement the intracellular constraints and kinetic data of intracellular reac-
tions are limited. So, transcriptomics data of aerobic growth of E. coli MG1655 were integrated with the meta-
bolic model iJO1366 reconstructed for E. coli MG1655 using TRFBA to incorporate the intracellular constraints. 
Figure 4(a) indicates the predicted concentrations for biomass, glucose, and acetate in comparison with exper-
imental data13. Glucose is depleted at about 8 h that is experimentally con�rmed. �e predicted biomass is fully 
consistent with the experimental data for 6 h, but the higher concentration of biomass is observed at 8 h. �e 
discrepancy at the end of growth can be attributed to a variety of issues such as ignorance of the toxic e�ect of 
organic acid accumulation and pH change by ACBM. �e acetate concentration is negligible during 4 h of growth 
and then, it increases to 1.68 and 2 g/l at the end of the exponential phase based on the predicted and measured 
values, respectively. A 2D view of the environment during the batch cultivation is presented in supplementary �le 
4 as an MP4 format video �le. ACBM truly predicts that a small amount of lactate is produced and succinate is not 
secreted during batch growth. Production of formate, a major fermentation product of E. coli14, is also predicted.

Figure 4(b) demonstrates that the exponential phase continues up to 7.6 h at the constant growth rate of 0.65 
1/h and so, the predicted doubling time (64 min) is comparable to the experimental value of 70 min13. Charbon 
et al.15 also reported a doubling time of 60 min for E. coli MG1655 when cells were grown in a minimal medium 
supplemented with glucose. At the late log phase, glucose is insu�cient for all cells and exponential growth can 
not be sustained. �en, cells are subject to starvation, the average growth rate of the population decreases, and 
the variation of growth rate increases. Rahman et al.13 also mentioned that the end of the log phase is correlated 
with glucose depletion.

�e proper prediction of fermentation products is because of TRFBA, which applies the intracellular con-
straints on the metabolism of the cell. When ACBM applies TRFBA and the transcriptomics data, the kinetic 
equation is not required and the extracellular constraint of the substrate concentration and the intracellular con-
straints applied by TRFBA predict glucose uptake rate and growth and product secretion rates. TRFBA limits 
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Figure 3. Comparison of the predicted acetate and butyrate concentrations in single and co-cultures of B. 
adolescentis and F. prausnitzii. Black and grey colors are for acetate and butyrate, respectively.
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the maximum rate of metabolic reactions based on the expression level of their corresponding genes so that an 
increase in substrate uptake rate can cause some reactions to reach their maximum rate and result in a compul-
sory change in metabolism10. �us, using pathways with lower growth yield wasted glucose to the fermentation 
products.

Figure 4(c) shows that the growth rate versus glucose concentration takes the form of the Monod equation 
with half-rate constant (Ks) of 2.72 µM. It demonstrates that glucose is the limiting substrate for growth. �e Ks 
value of 3 and 6 µM were reported by Bavoil et al.16 and Nikaido and Rosenberg17, respectively, for wild-type E. 
coli growing on a glucose-minimal medium that is comparable with the predicted Ks.

Average reaction �uxes predicted by ACBM for 22 enzymes of E. coli central metabolic pathways at expo-
nential (6 h) and early stationary (8 h) phases of growth were compared to speci�c activities of these enzymes 
measured by Rahman et al.13. �e results show that the framework was able to predict the metabolism changes 
in the early stationary phase compared to the log phase. Especially, ACBM properly predicted �ux reduction of 
glycolytic pathway and activation of the glyoxylate pathway enzymes Icl and MS at the early stationary phase. 
Both rates and activities of reactions catalyzed by acetate kinase and lactate dehydrogenase signi�cantly reduced 
and cells declined excretion of organic acids lactate and acetate at the late log phase.

Ratios of �uxes at the log and the early stationary were calculated and compared to the ratios for enzyme 
activities (supplementary �le 3, Table S2). �e Spearman correlation coe�cient of 0.47 demonstrates that the 
relationship between �ux and activity ratios is monotonic. �e small P-value of 0.027 indicates that the coe�cient 
is signi�cantly di�erent from zero.

Effect of substrate starvation. Lack of control in substrate starvation is always risky for the production 
process and so ACBM was applied to estimate starved cells in a bioreactor. �e fraction of starved cells overtime 
was determined under two homogeneous and heterogeneous feeding of 10 g/l glucose according to Fig. 5(a-b). 
For the simulation of fed-batch culture, heterogeneous feeding was modeled and glucose was injected from the 
middle point of microbioreactor including high cell density of E. coli (60 g/l). As observed in Fig. 5(c), for homo-
geneous distribution, all of the cells �nd glucose until depletion. However, more than 95% of cells are subject to 
starvation at the �rst minute of glucose injection and some cells are starved for up to 7 min. �e twofold increase 
in the volume of the simulated cubic microbioreactor from 0.16 to 0.32 µl enhances not only the number but also 
the fraction of starved cells. Furthermore, a percentage of the cells can not �nd the nutrient in all of the time steps. 
So the injection of glucose with more concentration or more stirring speed can be e�ective.

Figure S1 indicates the e�ect of stirring speed under heterogeneous feeding on the percentage of starved 
cells over time. Increasing the speed from 8000 to 12000 µm/h signi�cantly reduces the fraction of starved cells. 
However, Figure S1 demonstrates that the further increase in stirring speed does not result in the reduction of 
starved cells. Figure S2 demonstrates the e�ect of an increase in glucose concentration from 10 to 20 g/l. ACBM 
predicts that a two-fold increase in glucose concentration resulted in a slight reduction of the starved cells.
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Figure 4. (a) concentrations of biomass, glucose, and acetate predicted by ACBM and measured by Rahman 
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https://doi.org/10.1038/s41598-020-65659-w


6SCIENTIFIC REPORTS |         (2020) 10:8695  | https://doi.org/10.1038/s41598-020-65659-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Discussion. In this research, a segregated and structured model was introduced to simulate microbial growth. 
�e agent-based modeling approach was used to provide a segregated model at the multicellular level and the life 
cycle of cells was simulated. Glucose concentration spatially and temporally di�erentiates the population into 
separate phenotypes. In the log phase, glucose is su�cient for all cells and a homogeneous growth is observed. 
But at the end of this phase, the spatial concentration gradient and di�erential substrate availability lead to the 
distribution of phenotypes. Some of the microbial cells are metabolically active with di�erent glucose uptake 
rates and some of them are metabolically inactive and under starvation. ACBM is also a structured model with 
incorporating the constraint-based modeling approach and the genome-scale metabolic models. Furthermore, 
transcriptomic data were integrated with a metabolic model to consider the intracellular metabolic constraints in 
addition to the extracellular glucose availability constraint.

�e improvement of predictions by the ACBM framework compared to the previous approaches can be attrib-
uted to the di�erent formulation of ACBM. For example, the process of searching nutrients is analogous to a real 
biological system and using physical and morphological properties of cells for simulation improves the predic-
tions. BacArena and COMETS model growth as a 2D di�usion while using ACBM, cells search for nutrients in 
a three-dimensional x, y, z environment. �e appropriate prediction of concentrations for biomass, glucose and 
acidic products in batch culture of E. coli demonstrates that by combining an individual-based model with a 
metabolic model integrated with transcriptomic data, ACBM is capable of correlating the predicted �uxes with 
concentrations within a cell population.

Starvation is one of the main sources of stress that induces cell death via apoptosis and necrosis in the cell18. 
�e level of substrate limitation is crucial, especially for the fed-batch process of recombinant protein production, 
since it may cause undesired glucose starvation and leads to reduced cell growth and productivity and altered 
N-glycosylation quality19. Lack of control in substrate starvation is always risky for the production process and so 
ACBM was applied to estimate starved cells in a bioreactor. �e results demonstrate that ACBM is a reliable tool 
for studying the starvation periods in sequential substrate injections of a fed-batch culture. Considering that a 
proper feeding strategy prevents glucose starvation, ACBM can be used to evaluate glucose concentration, peri-
ods of substrate injection, and stirring speed for di�erent strategies. Starvation rates of high-volume bioreactor 
batch cultures have been neither computationally nor experimentally observed, so our predictions present an 
opportunity for future experimental validation.

Materials and methods
Materials. �e basis of framework, which was designed with the agent-based method, was constructed 
by object-oriented programming in Java 1.8. MATLAB 2015b and COBRA 2.05 Toolbox20 was used for con-
straint-based modeling using GLPK as a solver for linear programming (LP) problems. MATLAB Control Java 
library 4.1.0 connects the two programming environments. To run the framework for each species, its genome-
scale metabolic model was used and biomass formation was used as the objective function to be maximized by 
solving the LP problem using FBA or TRFBA2. A list of the used metabolic models is presented in Table 1.
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ACBM representation. Framework structure. �e represented multi-scale model is agent-based in Java as 
the main platform for the implementation of ACBM, which calls MATLAB to apply a constraint-based metabolic 
model in each time step for predicting growth rate and uptake and secretion rates by each cell individual. Model 
agents are cells, metabolites and environment and each agent of the model is created as an object in Java. �e 
framework can be applied for any environment and any kind and number of microorganisms and metabolites, 
and simulation of up to hundreds of species is possible by ACBM. Each agent in the model is equivalent to an 
object in Java and so, there is an object for each cell, metabolite, and environment. A graphical user interface 
(GUI) panel according to Fig. 6 was designed to perform ACBM in a user-friendly way. �e user manual and the 
codes of ACBM are presented in supplementary �les 1 and 2, respectively.

At start time (t = 0), one environment and a speci�c number of cells and metabolites according to their con-
centration in the environment are considered and then, in each time step, the number of each type of cells and 
metabolites are updated based on the rates predicted by the metabolic model.

Environment object. An environment object contains other objects (cells and metabolites) and is considered as a 
cube with basic properties length (x), width (y) and depth (z). �e simulated environment can be part or all of an 
original environment. For example, it is not necessary to simulate the entire environment of a fully mixed biore-
actor and simulation of a small cube indicates not only the changes inside the bioreactor but also reduces the CPU 
time. In this research, a small cube with a size of 1 × 0.4 × 0.4 mm was considered for simulation of batch growth 
in a stirred bioreactor that was completely mixed in the macro-scale. It should be mentioned that the system can 
be heterogeneous in millimeter-scale because of the stochastic movement of cells and metabolites.

Cell and metabolite object. Cells and metabolites move randomly in the environment. For implementing a ran-
dom movement function, a random unit vector is �rst formed by generating two random angles (ϕ, θ) between 0 
and 2π. �us, the unit vector is d = (cos ϕ cos θ, cos ϕ sin θ, sin ϕ). �en, this vector is multiplied by speed entered 
in the panel to provide velocity vector (v cos ϕ cos θ, v cos ϕ sin θ, v sin ϕ). When agitating is not used and water 
is stagnant, di�usion is important. But a stirred bioreactor was simulated in this research and mass transfer by 
convection was dominant. So, the same speed of 8000 µm/h was considered for both objects (cell and metabolites) 
and this speed was su�ciently enough for the objects to move quickly while experimental values of speed are 
much higher. Metabolites are produced or consumed by cells and their initial number is calculated based on their 

Species
Genome-scale 
metabolic model Reference

Clostridium beijerinckii 
NCIMB 8052

iCM925 11

Bi�dobacterium adolescentis 
L2-32

iBif452 22

Faecalibacterium prausnitzii 
A2-165

iFap484 22

Escherichia coli MG1655 iJO1366 2

Table 1. Genome-scale metabolic models used in this research.

Figure 6. Designed GUI panel to perform ACBM.
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initial concentration. To reduce the number of metabolite objects as well as CPU time, a certain number of each 
metabolite (5 × 105) was considered as an object including a package of metabolites.

�e cell is the main object of this modeling and all cells spend a speci�ed time process that is presented in 
the next section. �e speci�c properties of each cell type were used in the process. (Table 2). �e information for 
some microorganisms is presented in Table S1 (supplementary �le 3). �e initial number of each cell type was 
calculated by considering its initial concentration and volume of the environment. To reduce CPU time, a speci�c 
number of cells was considered as a colony of cells that spend the cell process together. Two shapes for each cell 
type including bacilli or cocci can be selected in the panel. To consider space occupation by cells, the environ-
ment is divided into cube elements with an edge of 1 µm to generate meshing. Each cell occupies a number of the 
elements according to its size. According to the randomly generated velocity vector, a cell selects the destination 
elements for movement and checks whether the selected elements are �lled and if not, it does a movement. In the 
case of �lled elements, other velocity vectors are generated and applied to �nd an empty space.

Cell process. Cell actions include searching metabolite, eating metabolite, biomass and metabolite production, 
division, death, and movement. In each time step, cell searches for metabolites and �nds the nearest one. If it 
could not �nd any substrate in the eat radius, moves randomly. Otherwise, it moves toward the metabolite pack-
age. �en, the cell eats metabolites and moves randomly and the consumed metabolites are eliminated.

At the end of each time step, the number of produced cells and metabolites and consumed substrates is cal-
culated by calling MATLAB and applying the metabolic model. To determine the number of produced cells and 
metabolites, the upper bound of the substrate uptake rate should �rst be calculated from the number of consumed 
metabolites as substrate. For this purpose, it is assumed that all found substrates can be consumed and the change 
in substrate concentration (∆C) is speci�ed from the number of found substrates (n) using Eq. 1.

∆ =C
n

n V (1)a

where na = 6.022 × 1023 1/mol is the Avogadro constant that indicates the number of molecules contained in one 
mole of substrate and V is the eating volume (a sphere with the eating radius determined in the panel). Substrate 
uptake rate (v) is calculated using Eq. 2.

=
∆

∆
v

C

x t (2)

where x and ∆t denote biomass concentration and time step, respectively. Considering a short time step, it can be 
assumed that the change in biomass concentration is negligible and hence, x equals the biomass concentration at 
the beginning of the time step (xi). In this research, a short time step (∆t = 1 min) was considered. To determine 
the biomass concentration, the average mass of one cell is multiplied to the number of cells and is divided by the 
eating volume. If the imported upper bound of uptake for each substrate in the GUI panel is less than the calcu-
lated rate by Eq. 2, the imported value is selected as the uptake rate. In this research, the maximum uptake rate of 
1000 was written in the panel for glucose for all of the simulations. Except for E. coli, the maximum uptake rate 
was determined using the glucose concentration (∆C) and the Michaelis–Menten kinetic equation proposed by 
Bauer et al.9 and then, FBA was applied. For E. coli, transcriptomics data of Covert et al.21 were integrated with 
the metabolic model using TRFBA3 and hence, the glucose uptake rate was automatically limited by intracellular 
constraints. �e transcriptomics data were obtained from the exponential phase of batch growth in a bioreactor 
and total RNA was isolated from exponentially growing cells.

�e calculated �uxes are sent from Java to MATLAB and the substrate uptake rate is bound in the metabolic 
model. Considering the maximization of growth rate as the objective function, the production rates of biomass 
and metabolites and uptake rates of substrates are calculated which are returned to Java. �en, the concentration 
of produced biomass and metabolites and consumed substrates is calculated in Java using Eqs. 3–5.

=+
µ∆x x e (3)i 1 i

t

Property Description Unit

Radius Average radius of one cell µm

Length Average length of one bacilli cell µm

Volume Average volume of one cell µm3

Mass Average mass of one cell pg

Search radius Searching radius µm

Eat radius Eating radius µm

Mat �le name Name of metabolic model —

speed Movement speed µm/s

Search radius Searching radius µm

Survive time
Time that a cell can survive without 
eating

min

Table 2. �e properties used to implement the time process for each cell.
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= + × × ∆+C C v x t (4)i p i p p i1, ,

= − × × ∆+C C v x t (5)i s i s s i1, ,

where indices i and i + 1 demonstrate values at the beginning and end of a time step, respectively, and indices p 
and s are abbreviations of product and substrate, respectively. µ, vp, vs are speci�c growth, product formation, and 
substrate uptake rates, respectively, predicted by FBA or TRFBA. Mass of produced biomass and products and 
consumed substrates by each cell is calculated and then, number of produced cells and metabolites and consumed 
substrates is determined and new objects are added to the environment and consumed objects are removed. 
When the total biomass of an individual reaches twice the average mass of a cell, a new cell object is born and 
placed at an empty space. �e time steps continue until all cells die. If a cell can not �nd the substrate within the 
survive time, it dies. �e �owchart of the cell process is presented in Fig. 1.

Data availability
All relevant data are within the paper.
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