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Purpose: Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides 

imaging biomarkers of terminal airspace enlargement including ADC and mean lin-

ear intercept (Lm), but clinical translation has been limited because image acquisi-

tion requires relatively long or multiple breath-holds that are not well-tolerated by 

patients. Therefore, we aimed to accelerate single breath-hold 3D multi-b diffusion-

weighted 129Xe MRI, using k-space undersampling in imaging direction using a 

different undersampling pattern for different b-values combined with the stretched 

exponential model to generate maps of ventilation, apparent transverse relaxation 

time constant (T∗

2
), ADC, and Lm values in a single, short breath-hold; accelerated 

and non-accelerated measurements were directly compared.

Methods: We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm2) diffusion-weighted 
129Xe T∗

2
/ADC/morphometry estimates using acceleration factor (AF = 1 and 7) and 

multi-breath sampling in 3 volunteers (HV), and 6 participants with alpha-1 antit-

rypsin deficiency (AATD).

Results: For the HV subgroup, mean differences of 5%, 2%, and 8% were ob-

served between fully sampled and undersampled k-space for ADC, Lm, and 

T
∗

2
 values, respectively. For the AATD subgroup, mean differences were 9%, 6%, and 

12% between fully sampled and undersampled k-space for ADC, Lm and T∗

2
 values, 

respectively. Although mean differences of 1% and 4.5% were observed between ac-

celerated and multi-breath sampled ADC and Lm values, respectively, mean ADC/Lm 

estimates were not significantly different from corresponding mean ADCM/Lm
M or 

mean ADCA/Lm
A estimates (all P > 0.60 , A = undersampled and M = multi-breath 

sampled).
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1 |  INTRODUCTION

Hyperpolarized inhaled noble gas pulmonary MRI1,2 pro-

vides physiologically relevant biomarkers of obstructive lung 

disease including emphysema, bronchopulmonary dysplasia 

(BPD), congenital lobar emphysema, and alpha-1 antitrypsin 

deficiency (AATD).3-5 The ability to non-invasively charac-

terize alveolar destruction without ionizing radiation makes 

hyperpolarized gas MRI a unique tool for frequent evalua-

tion of lung disease progression and treatment outcomes 

in BPD6 and AATD,7 which commonly manifest in young 

or middle-age adulthood. A number of preliminary multi-b 

diffusion-weighted 3He MRI studies in patients with BPD8 

and AATD9 have provided strong evidence for the feasibility 

of lung morphometry measurements in patients with exten-

sive disease. Moreover, 129Xe ADCs were consistent with 

histologic measurements in chronic obstructive pulmonary 

disease (COPD) patients.10 Static ventilation mapping with 

relatively inexpensive, naturally abundant hyperpolarized 
129Xe is also feasible in patients.11 The physical properties 

of 129Xe nuclei (e.g., low gyromagnetic ratio) require the use 

of rapid MRI acquisition strategies12-14 considering that the 

gradient strengths for clinical scanners is typically around 

5 G/cm. This is especially true in the case of multi-b dif-

fusion-weighted MRI because currently, a full 3D data set 

cannot be acquired during the relatively short 10–16-s breath-

holds15 that patients can tolerate.

Recently, a stretched exponential model (SEM)16 com-

bined with k-space undersampling in the imaging direction, 

using a different undersampling pattern for different b-values 

and diffusion directions17 was used for the generation of 
3He static-ventilation, T

∗

2
 and multiple b-value diffusion- 

weighted MRI-based ADC and morphometry maps.18 The 

major advantage of this method is the possibility for decreased 

data acquisition times using acceleration factors (AF) between 

718 and 10.17 Because of the increasing scarcity and cost of 3He, 

most of the field is moving toward the use of 129Xe.1,3,4 However, 

the low diffusivity of 129Xe (or low xenon free diffusion coef-

ficient [D0]) requires a longer diffusion-observation time (∆) 

to sufficiently sensitize spins when using b-values up to 

45 s/cm2 as typical clinical gradient strengths are 5 G/cm. 

In turn, a longer ∆ leads to increased TE and consequently 

the TR, which ultimately increases the total scan time for 
129Xe MRI (>16 s, ethics-based breath-hold duration). 

Therefore, they require that rapid acquisition strategies need 

to be developed to facilitate clinical uptake of 129Xe diffusion- 

weighted imaging. We hypothesize that the 3He method17,18 

can be modified to provide whole lung 129Xe MRI-based 

emphysema biomarkers including static-ventilation, T
∗

2
,19-21 

ADC and morphometry maps. Therefore, in this proof- 

of-concept evaluation, our objective was to demonstrate the 

feasibility of this approach in a small group of patients with 

lung disease and in volunteers by conducting a back-to-back 

comparison of the single breath hold undersampled k-space 

(UKS) data set with the single breath-hold fully sampled 

k-space (FKS) data set and with the multiple-breath k-space 

(MKS) data set. To our knowledge, this is the first demonstra-

tion in patients of simultaneous 129Xe lung morphometry, gas 

density distribution, and T∗

2
 mapping, resulting in physiologi-

cally relevant measurements, accomplished using a stretched 

exponential method with image acceleration.

2 |  METHODS

2.1 | Study participants

Three never-smokers (young healthy volunteers [HV]) and 

6 AATD patients provided written informed consent to the 

research ethics board, compliant with the Health Insurance 

Portability and Accountability Act (HIPAA, USA). Subject 

demographics are summarized in Table 1 and in Supporting 

Information Table S1. Each AATD subject had 2 hyperpolar-

ized gas MRI scans within 4 y: a 3He MRI scan in 20149 and 
129Xe MRI scan in 2018 (this study). The HV subjects did 

not have any 3He MRI scans in 2014 or 2018, they had only 

a 129Xe MRI scan in 2018 (this study).

2.2 | Pulmonary function tests

Spirometry, plethysmography, and the diffusing capacity of 

the lung for carbon monoxide (DLCO) were performed accord-

ing to American Thoracic Society (ATS) guidelines22 using 

a plethysmograph and attached gas analyzer (MedGraphics, 

St. Paul, USA). Table 1 and Supporting Information Table S1 

summarize spirometry, plethysmography, and DLCO for all 

subjects.

Conclusions: Accelerated multi-b diffusion-weighted 129Xe MRI is feasible at 

AF = 7 for generating pulmonary ADC and Lm in AATD and normal lung.

K E Y W O R D S

acceleration, alpha-1 antitrypsin deficiency, compressed sensing, emphysema, hyperpolarized, lung, 

morphometry, xenon



   | 3OURIADOV ET AL.OURIADOV ET AL.

2.3 | 129Xe MRI

129Xe MRI was performed at 3.0T (MR750, GEHC, 

Waukesha, USA) using whole-body gradients (5 G/cm 

maximum) and a commercial, xenon quadrature flex human 

RF coil12 (Clinical MR Solutions, Brookfield,  USA). The 

diffusion-sensitization gradient pulse ramp up/down time = 

500 μs, constant time = 2 ms, ΔXe = 5.2 ms, providing 

5 b-values 0, 12.0, 20.0, 30.0, and 45.5 s/cm2. For fully sam-

pled acquisitions (single breath-hold), a multi-slice centric 

2D fast gradient recalled echo (FGRE) diffusion-weighted 

sequence (Figure 1A) was used with 5 b-values, sequentially 

acquired for each k-space line and slice. Additional sequence 

parameters include 2 30-mm central coronal slices, TE = 

10 ms, TR = 13 ms, reconstructed matrix size = 128 × 128, 

and FOV = 40 × 40 cm2, constant-flip-angle = 4°, and 14-s 

single breath-hold. For an accelerated acquisition (AF = 7), 

multi-slice centric 2D FGRE diffusion-weighted sequence 

(Figure 1A) was acquired with 5 b-values, sequentially ac-

quired for each k-space line and slice, using undersampling 

in the imaging direction with different undersampling pat-

terns for different b-value as shown in Figure 1C (bottom 

panel). Additional sequence parameters were similar to the 

fully sampled case except the matrix size was 128 × 20. In 

both accelerated and unaccelerated cases an extra sequential 

image (for each slice) with no diffusion-weighting (b = 0) 

and significantly reduced TE (2 ms) was used to generate a 

short-TE static-ventilation (SV) image (Figure 1B). A 7.4° 

constant flip angle (120 [20 per b-value] RF pulses-per-slice, 

7 30 mm coronal slices) was used for AF = 7 (all partici-

pants, 12-s single breath-hold). In both cases, a diffusion-

sensitizing scheme initiating at the maximum b-value was 

used to ensure that maximum MR signal was acquired for 

diffusion-weighted images at greater b-values as previously 

T A B L E  1  Pulmonary function measurements, demographic, and 129Xe MRI parenchyma measurements

Parameter median/mean 

(SD) HV-1 HV-2 HV-3

HV Median/Mean (SD) 

N = 3

AATD Median/

Mean
a
 (SD) N = 6

Female sex N (%) 1 1 1 1 5 (83)

Age (y) 25 26 22 24.3 (2.1) 64 (4.3)

BMI (kg/m2) 20.7 21.5 19.2 20.4 (1.2) 23.9 (4.6)

FVC (%pred) 107 82 127 105.3 (22.5) 76.3 (30)

FEV1 (%pred) 106 89 115 103.3 (13.2) 53.0 (35)

FEV1/FVC (%) 100 109 91 100.0 (9) 64.1 (16)

DLCO (%pred) – 110 129 119.5 (13.5) 33.8 (24)

Fully sampled          

ADC (cm2/s) 0.40/0.04 (0.01) 0.04/0.03 (0.01) 0.04/0.04 (0.02) 0.04/0.04 (0.01) 0.08/0.08 (0.01)

LmD (µm) 190/200 (20) 190/190 (15) 190/190 (15) 190/190 (15) 270/270 (20)

Lm (µm) 210/220 (30) 200/210 (25) 190/210 (25) 200/210 (15) 610/620 (80)

T
∗

2
 (ms) 12/12 (6) 15/16 (7) 12/13 (9) 13/14 (4) 18/17 (9)

Undersampled (AF = 7)          

ADC (cm2/s) 0.03/0.03 (0.01) 0.03/0.03 (0.01) 0.034/0.04 (0.01) 0.03/0.03 (0.01) 0.08/0.09 (0.01)

LmD (µm) 180/190 (20) 180/190 (20) 180/190 (30) 180/190 (20) 280/280 (20)

Lm (µm) 190/210 (30) 200/210 (30) 200/210 (25) 200/210 (16) 630/650 (100)

T
∗

2
 (ms) 11/12 (7) 13/14 (8) 11/12 (7) 12/13 (5) 16/15 (9)

Fully sampled (MB)          

ADC (cm2/s)         0.09/0.09 (0.01)

LmD (µm)         280/270 (20)

Lm (µm)         620/620 (110)

P-value (ADC)b         0.61

P-value (LmD)b         0.84

P-value (Lm)b         0.84

Abbreviations: AATD, alpha-one antitrypsin deficiency; AF, acceleration factor; BMI, body mass index; DLCO, diffusing capacity of carbon monoxide; FEV1, forced 

expiratory volume in 1 s; FVC, forced-vital-capacity; HV, young healthy volunteer; Lm, mean linear intercept estimate; LmD, mean diffusion length; MB, multi-breath 

data acquisition; %pred, percent-predicted; RV, residual-volume; T∗

2
, apparent transverse relaxation time constant.

aIndicates the mean estimates from AATD group. 
bMANOVA. 
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described.9 A 5.0° constant flip angle was used in all multi-

breath measurements.

For AATD participants, fully sampled acquisitions were 

also used using 3 breath-holds, a multi-slice interleaved 

(2 interleaves), centric 2D FGRE diffusion-weighted sequence 

to acquire 7 30-mm coronal slices (additional sequence 

parameters were similar to fully sampled, 10-s single breath-

hold) using 4 b-values (0 and 12 s/cm2; 0 and 20 s/cm2; and 

0 and 30 s/cm2).

In addition to the single-breath imaging under accelerated 

and unaccelerated cases, the multi-breath approach required 

extra xenon doses, much longer MRI-idle times and person-

nel involvement, so only the AATD patients were scanned 

with this method.18

All participants were coached to perform the breath-

hold maneuvers to minimize potential for mis-registra-

tion and differences in the levels of inspiration between 

the scans.15,23 Hyperpolarized 129Xe gas (86% enriched, 

measured polarization ~40%) was provided by a com-

mercial xenon polarizer system (Model 9820,  Polarean, 

Durham,  USA).24 Subjects were positioned supine in the 

scanner for 129Xe MRI. For all participants, a single 1 L 

plastic bag (Tedlar, Jensen Inert Products, Coral Springs, 

USA) containing a 50/50 hyperpolarized 129Xe/4He gas 

mixture was inhaled 5 times (for AATD patients) or 2 times 

(for HV) from functional residual capacity (e.g., held-

breath volume of functional residual capacity plus 1 L).15,23

The scanner was occupied for up to 2 h (proton scans, 

xenon scans, and MRI-idle time) depending on the number of 

xenon doses. All participants (HV and ADDT) were only in 

the supine position for up to 20 min at a time during scanning 

and were upright between 129Xe scans. Participants were en-

couraged to sit up and walk around between acquisitions and 

polarized xenon collections (~20 min) because previous stud-

ies confirmed that lung imaging results might not be a physio-

logically relevant after spending relatively long time in supine 

position.25,26 Therefore, we had to remove the patient from the 

scanner after each xenon dose or scan and relocalize (proton 

scan) the patient for the next xenon scan. Such approach likely 

led to a slight slice mismatch and potentially slight lung vol-

ume mismatch between the different xenon scans.

2.4 | Data analysis

The experimental signal at particular b-value values can be 

fit with the SEM, which was derived for multi-b diffusion-

weighted 3He MRI for lung imaging9,16-18 as follows

F I G U R E  1  129Xe MRI pulse sequence schematic, sparsity pattern for AF = 7. (A) Diffusion-weighted, multi-slice 2D fast-gradient- 

recall-echo (FGRE) pulse sequence with diffusion-sensitizing along z-direction. Δ = 5.2 ms, TE = 10 ms. Five b-values, starting at the maximum 

b-value (45.5 s/cm2) were sequentially acquired for the same line of k-space for each slice. (B) An extra sequential image with no diffusion-

weighting (b = 0) and significantly reduced TE (2 ms) used to generate a short TE static-ventilation-image and T∗

2
 map by using a long TE static 

ventilation image (b = 0) from (A). (C) A short TE static ventilation image, a long TE static ventilation image, and 4 diffusion-weighted images 

(top panel) shown from left to right. The images were obtained from a young healthy volunteer and they are individually scaled. The SNR value 

varies from 60 (short TE static ventilation image) to 12 (maximum b-value image). The yellow arrow shows a region with the significant T∗

2
-based 

signal decay; k-space undersampling scheme, ensuring a variety of sparsity patterns for each b-value (AF = 7 bottom panel) used in diffusion 

direction
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where D′ is the apparent diffusivity, α is the heterogeneity index 

(0 < α ≤ 1.0) and S0 is the MR signal-intensity in the absence 

of diffusion-sensitizing gradients. D′ and α estimates can be 

used to calculate specific acinar duct mean diffusion length es-

timates27 (LmD = 
√

2ΔD, where Δ is the diffusion time and D 

is the most probable diffusion coefficient) using the probability 

density function or diffusion propagator.9,27,28 For the multi-b 

diffusion-weighted 3He MRI case, Lm is proportional to LmD
9,18

Equation 2 was obtained for the 3He case and a specific Δ. 

Generally, the mean airway length depends on both Δ and 

diffusivity, and Equation 2 cannot be directly used for calcu-

lation of 129Xe MRI Lm estimates. Note that Lm is a time–gas 

independent parameter. To extend Equation 2 to other Δ and 

to other gases, particularly to 129Xe gas the following empiri-

cal relation was proposed18,29

where DHe

0
 is the free diffusion coefficient of 3He (0.88 cm2/s), 

ΔHe = 1.46 ms,9,18 D
Xe

0
 is the free diffusion coefficient of 

129Xe (0.21  cm2s−1)3 in the human lung (1 L of 129Xe/4He 

diluted by air) and ΔXe is the diffusion time specific to the 

diffusion-weighted 129Xe MRI measurements.
129Xe undersampled data (AF = 7) were reconstructed17 

using the regularization parameters previously determined.30 

A single slice image (5 b-values and short TE) reconstruc-

tion was completed within ~2–3 min using MATLAB 2018b 

(MathWorks, Natick,  USA) on a standard PC workstation 

with a 3.0 GHz CPU using a previously developed approach.17 

Reconstructed data and fully sampled data were fitted with 

the SEM model to generate D′, α, and LmD maps on a voxel- 

by-voxel basis.17,18 For AATD patients the Lm maps were 

generated using Equation 3, for young healthy volunteers 

Lm maps were generated using the cylindrical model (CM)31-33 

as empirical Equations 2 and 3 were obtained for older subjects.9 

The ADC maps were generated for 2 b-values (0 and 12 s/cm2) 

on a voxel-by-voxel basis. The choice of the particular b-values 

for the xenon ADC calculations was previously discussed.5 T∗

2
 

maps were generated using short-TE (2 ms) static-ventilation- 

image (b = 0) and long-TE (10 ms) static-ventilation-image (b = 0) 

(Figure 1C, top panel) on a voxel-by-voxel basis for both accel-

erated and fully sampled cases. The large airways were excluded 

from the T∗

2
/ADC/morphometry analyses.

2.5 | Statistical analysis

Multivariate analysis of variance (MANOVA) and inde-

pendent t-tests were performed using SPSS Statistics, V22.0 

(1)S(b)∕S0 = exp (−D�
⋅b)� ,

(2)Lm = −562μm +4.3 ⋅LmD.

(3)Lm = −562μm +4.3 ⋅LmD ⋅

√

√

√

√

2D
He

0
ΔHe

2D
Xe

0
ΔXe

,

F I G U R E  2  Representative 
129Xe MRI maps obtained for 2 healthy 

volunteers with and without acceleration. 

T
∗

2
, apparent transverse relaxation time 

constant; ADC, apparent diffusion 

coefficient; LmD, mean diffusion length; 

Lm, mean linear intercept estimate; HV, 

young healthy volunteer; A, indicates 

undersampling with the acceleration factor 

of 7. Note that some differences in the lower 

right lobe for HV-2 compared to HVA-2 are 

likely because of the slice and lung volume 

mismatch between accelerated and full-

sampled data sets
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(SPSS Inc., Chicago, USA) and results were considered 

statistically significant when the probability of making a type 

I error was <5% (P < .05).

3 |  RESULTS

Figure 1C (bottom panel) shows a representative center slice 

reconstructed from undersampling data for a single AATD 

patient. Differences in signal intensity were visibly obvious 

because of T∗

2
 decay and diffusion attenuation. The minimum 

SNR value for all acquired data sets varied from 60 (short 

TE static ventilation image) to 10 (maximum b-value image). 

The yellow arrow indicated the lung region with ventilation 

defect-like signal void observed for the long-TE image, but 

not observed for the short-TE image.

Figure 2 (Aindicates accelerated sampling) shows repre-

sentative center slice ADC, LmD, Lm, and T∗

2
 maps for both 

unaccelerated and accelerated cases for 2 volunteers. For the 

HV subgroup, mean differences of 5%, 1%, 2%, and 8% were 

observed between fully sampled and undersampled (AF = 1 

and AF = 7) k-space for the ADC, LmD, Lm, and T∗

2
 values, 

respectively.

Figure 3 (Mindicates multi-breath fully sampled data) 

shows a representative center slice ADC, LmD, and Lm map 

for the unaccelerated and accelerated cases using a single 

F I G U R E  3  Representative 129Xe 

MRI maps obtained for 2 AATD with and 

without acceleration at a single breath-hold 

and multiple breaths (no acceleration). 

ADC, apparent diffusion coefficient; LmD, 

mean diffusion length; Lm, mean linear 

intercept estimate; AATD, alpha-one 

antitrypsin deficiency; AATD-2, ex-smoker 

AATD; A, indicates undersampling with 

the acceleration factor of 7; M, indicates 

multiple breath-holds, no acceleration. 

Note that AATD-1 and AATDA-1 maps 

(single breath-hold acquisition) are clearly 

different from the AATDM-1 map (multiple 

breath-hold acquisition) in the ventilation 

likely because of the unavoidable slice and 

lung volume mismatch, the actual parameter 

maps are fairly similar
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breath-hold, and also the unaccelerated multi-breath ap-

proach maps for 2 AATD subjects. For the AATD sub-

group, mean differences of 4%, 2%, and 4% were observed 

between fully sampled and undersampled (AF = 1 and 

AF = 7) k-space for the ADC, LmD, and Lm values, re-

spectively. In addition, mean differences of 1%, 3%, and 

5% were observed between accelerated and multi-breath 

samplings for the ADC, LmD, and Lm values, respectively. 

Mean ADC, LmD, and Lm estimates were not significantly 

different from corresponding mean ADCM, LmD
M, and Lm

M 

and mean ADCA, LmD
A, and Lm

A estimates (P > 0.60; for 

all). Supporting Information Figure S1A and B show the 

ADCA versus ADC (R = 0.67, P < .0001) and LmD
A versus 

LmD (R = 0.65, P < .0001) relations obtained for all AATD 

subjects and all pixels. Supporting Information Figure S2A 

and B show the ADC and LmD statistical plots obtained 

for AATD-1 subject (Figure 3). Supporting Information 

Figure S3A and B show the ADC and LmD statistical plots 

obtained for AATD-2 subject (Figure 3). Table 1 summa-

rizes mean, median, and SD ADC, LmD, Lm, and T∗

2
 values 

along with the pulmonary function test results obtained for 

young healthy volunteers and AATD patients. Supporting 

Information Table S1 shows mean, median, and SD esti-

mates ADC, LmD, Lm, and T∗

2
 as well as D′ and α for each 

AATD subject.

Lung heterogeneity for all study subjects can be estimated 

using the SD obtained from the ADC and morphometry re-

sults (Table 1; Supporting Information Table S1). In addition, 

Supporting Information Figure S4A and B show the ADC 

histograms (fully sampled ADC data) obtained for 2 HV and 

2 AATD subjects presented in Figures 2 and 3. The histograms 

obtained for HV showing an almost normal distribution of the 

ADC values, in contrast with the histograms obtained for the 

AATD subjects showing broad and rather the multi-peak dis-

tributions shifted to the high end of the ADC values.

Figure 4 shows an empirical relationship between mean 

LmD and T
∗

2
 estimates obtained for all study participants 

using undersampled 129Xe MRI morphometry (R = 0.93; 

y = 0.03x + 7.3 ms; P < .001). The plot clearly shows 2 

groups of subjects where smaller T
∗

2
 values (<14 ms) 

correspond to healthy lung parenchyma (LmD <190 µm) and 

longer T
∗

2
 values (>14 ms) correspond to emphysematous 

lung tissue (LmD >250 µm).

4 |  DISCUSSION

In this proof-of-concept study, we investigated the feasibil-

ity of accelerated SEM-based 129Xe MRI morphometry using 

AF = 7, allowing generation of an extended number of bio-

markers including static-ventilation, T∗

2
, ADC, and morpho-

metry. We also studied the influence of acceleration factors 

of multi-b diffusion-weighted 129Xe MRI lung on T∗

2
, ADC, 

and SEM-based morphometry estimates using 3 different 

k-space sampling approaches in 9 participants includ-

ing young healthy never-smokers and AATD patients. We 

made a number of observations including (1) accelerated 

SEM-based diffusion-weighted 129Xe MRI was feasible and 

enabled collection of whole lung 2D multi-slice data sets in 

a single breath-hold, and (2) the extended 129Xe stretched- 

exponential method provided estimates of the mean linear 

intercept in volunteers and patients with emphysema that 

were within known physiologically expected ranges.

Although AATD patients were previously studied using 
3He ADC/morphometry,9,34-37 to our knowledge, this is the 

first demonstration of the SEM-based lung morphometry 

obtained with 7× acceleration of multi-b diffusion-weighted 
129Xe MRI across a spectrum of emphysema severity.

It is also the first prospective evidence18 that an extended 
129Xe stretched exponential method, based on the cylindrical 

model,9,33 might be used for calculation of the Lm estimations 

(as part of the SEM-based image reconstruction) along with 

CM.15,38 This is important in light of the clinical translation 

of 129Xe MRI morphometry and developing new tools for ob-

servation and characterization of emphysema.

First, we observed that SEM-based CS k-space acquisi-

tion and reconstructions resulted in ADC and morphometry 

estimates similar to those obtained for single and multiple 

breath-hold (AATD case) fully sampled cases and using Fast 

Fourier transform reconstruction. For AATD subgroups, 

FKS, MKS, and UKS estimates of ADC, LmD, and Lm were 

not significantly different (P > 0.61, all cases, Table 1). The 

difference in ADC and LmD estimates obtained for FKS and 

UKS (HV: 5%/1%, ADC/LmD) was similar to that observed 

F I G U R E  4  Relationship for LmD = mean diffusion length with 

T
∗

2
 for all study participants (R = 0.93; y = 0.03x + 7.3 ms; 

P < .001). The plot suggests that alveolar destruction improves B0 

field homogeneity, so relatively slow moving xenon molecules do not 

experience a large scale B0 field inhomogeneity at TE = 10 ms and as 

a result it makes the signal life-time longer
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with accelerated (AF = 3) 3He multi-b diffusion-weighted 

MRI in healthy subjects.16 For the AATD subgroup, the dif-

ferences in ADC and LmD estimates obtained for FKS and 

UKS were 3.8% and 2.0% and 1% and 3% for FKS and MKS, 

respectively.

Second, we demonstrated that the 129Xe stretched- 

exponential method provided Lm estimates that were within 

the expected physiologically range.9 The similarity between 

the SEM-based Lm values and the Lm values calculated for all 

of the study subjects using histologically validated CM (data 

not shown here) likely confirms this.

As previously shown, 3He SEM provides morphometry 

estimates (Equation 2) similar to histology-based estimates.9 

The empirical Equation 3 was used to calculate 129Xe MRI 

base Lm estimates (Figure 3) instead of the time- and gas- 

dependent Equation 2, which was validated with 3He MRI for 

a large group of patients with a wide range of emphysema 

severity.9 The mean Lm estimates obtained for 6 AATD sub-

jects with 3He MRI (2014)9 and 129Xe MRI (this study FKS, 

UKS, and MKS) were similar (620 ± 190 µm vs. 620 ± 

80 µm/650 ± 100 µm/620 ± 110 µm, for 3He [Table S1]9 and 
129Xe [Table 1; Supporting Information Table S1], respec-

tively) taking into account a slight slice mismatch. There was 

no difference between Lm
He

D
 (2014)9 and Lm

xe

D
 estimates 

(270 ± 50 µm vs. 270 ± 20 µm/280 ± 20 µm/270 ± 20 µm, 

for 3He [Table S1]9 and 129Xe [Table 1; Supporting 

Information Table S1], respectively) generated for these 

AATD subjects. This was more likely because of the Δ/D0 

dependence of the specific airway mean diffusion length 

scale and the choice of diffusion parameters: D
He

0
 = 0.88 

cm2/s, ΔHe = 1.46 ms9 and DXe

0
 = 0.21 cm2 s−1,3 ΔXe = 5.2 

ms, therefore, 

√

2D
He

0
Δ

He
≈

√

2D
Xe

0
Δ

Xe
 ≈ 500 µm. The 

agreement of the 3He and 129Xe MRI-based maximal diffu-

sion length scales (the diffusion lengths obtained for maxi-

mum diffusion coefficients of 3He and 129Xe in lungs) 

suggests the agreement of the mean diffusion lengths for cho-

sen diffusion parameters. The proximity of the Lm
He

D
 and 

Lm
xe

D
 estimates was previously observed for a small group of 

COPD patients, where longer ΔXe (8.5 ms) was used for in-

haled 129Xe/N2 gas mixture.39

Third, in the HV and AATD subgroups the additional 

emphysema biomarkers such as static-ventilation and 

T
∗

2
 maps were obtained in a single breath-hold along with the 

ADC and morphometry maps. A consideration of the static- 

ventilation based ventilation-defect-percent (VDP)3 is out of 

the scope of this work, although, an example of the static- 

ventilation image or short-TE, b = 0 image is shown in 

Figure 1C. The image suggests that the achievable SNR level 

(~60) should be sufficient for the VDP estimates calculation. 

However, we should note the slice thickness (30 mm) used 

in this work was larger than normally required for accurate 

VDP calculations.40 The feasibility of the VDP calculation 

using short TE b = 0 image has been recently demonstrated 

in an accelerated 3He MRI morphometry study with a small 

number of the COPD subjects, where the slice thickness was 

15 mm.18 AF = 10 (13 k-space lines out of 128 per image) can 

be used for accelerated 129Xe MRI morphometry measure-

ments to reduce the slice thickness down to 15 mm and keep 

the breath-hold time under the 16 s. The feasibility of the AF = 

10 approach has been recently demonstrated for a single 

young healthy subject.41 The expected SNR loss of the short 

TE b = 0 image because of the smaller slice volume can be 

compensated using the larger flip angle (less gradient steps in 

the y-direction) and more sensitive RF coils, specifically the 

multi-channel phased receive arrays.42

129Xe MRI T∗

2
 values were previously estimated in volun-

teers on 3T Philips (18 ± 6 ms) MRI systems.20 Our mean T∗

2
 

values obtained for HV were in the same range (12–16 ms), 

and this suggests that the apparent transverse relaxation time 

constant estimates we used were not inappropriate. We ob-

served a linear relation between LmD and T∗

2
 values (Figure 4), 

which suggests that alveolar destruction “improves” B0 field 

homogeneity. Therefore, relatively slow-moving xenon mole-

cules do not experience a large scale B0 field inhomogeneity 

at TE = 10 ms and the signal life-time is longer. This means 

that healthy lung regions likely had shorter T
∗

2
 relaxation 

time.

The heterogeneity of the apparent transverse relaxation 

time constants of the hyperpolarized gas within the lung mi-

crostructure has been previously investigated in a number of 

studies. It has been shown that the magnetic susceptibility 

difference between gas and pulmonary tissue and the blood 

capillary system greatly contribute to the local magnetic 

field inhomogeneity.43 The referenced study suggests that the 

magnetic susceptibility effect should be larger for the lungs 

of young healthy subjects where the blood capillary system in 

the lung microstructure is normal and fully functional com-

pared to the subjects with the moderate and sever emphysema 

where blood supply of the destroyed alveolus does not exist.

The signal void observed on the b = 0 long-TE image 

(Figure 1C, yellow arrow) corresponds to a short T∗

2
 (3–5 ms) 

lung region. We have calculated the b-value corresponding 

to the readout gradient (0.26 s/cm2) following the method of 

Ouriadov et al44 to check if the induced diffusion signal atten-

uation because of the imaging gradient contributes to the sig-

nal void. This b-value can cause only a 5% signal decay for the 

case of freely diffusion xenon (0.21 cm2/s). It is unlikely that 

a 5% diffusion decay was sufficient to significantly contribute 

to the signal void. The relationship between 129Xe morphom-

etry and apparent transverse relaxation can be potentially used 

for the longitudinal observation of the emphysema patients 

having non-ventilated lung regions as a result of the disease 

progression. Clearly, such regions cannot be visualized with 

the hyperpolarized gas MRI. However, the use of 1H MRI T∗

2
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measurements can permit generation of diffusion estimates 

for such lung regions, assuming that there is also a correlation 

between T∗

2
 values obtained with hyperpolarized gas and pro-

ton MRI. Further investigations are required to determine the 

relationship between 129Xe and 1H MRI-based T∗

2
.

We acknowledge a number of limitations of this proof-

of-concept study and 1 of them was that the comparisons 

were not fully performed on a pixel-by-pixel basis for the 

data sets obtained using normal sampling, accelerate acqui-

sitions, and multi-breath approach. Supporting Information 

Figure S1A and B demonstrate the relationships for ADC and 

LmD obtained for all AATD subjects and all pixels. However, 

we believe that the plots are not very conclusive because 

of the lung volume mismatch and slice mismatch present 

between acquisitions. This is because of the variability in-

herent to multi-breath scanning but mostly because of the 

requirement to have the patients resting outside of the scan-

ner between scans. The small difference in statistical plots 

visible in Supporting Information Figures S2 and S3 also 

indicates this. The slice mismatch can be seen in Figure 3, 

subject AATD-1. Therefore, we compared the global mean 

ADC and morphometry values obtained for these 3 cases be-

cause of the slice mismatch caused by breath-hold levels and 

patient-position changes between breath-holds. We think that 

the derived global mean ADC and morphometry do not in-

fluence our conclusions; a pixel-by-pixel comparison of the 

diffusion-weighted 129Xe MRI data sets was retrospectively 

conducted in a small group of COPD patients as a validation 

step of the 129Xe SEM-based morphometry with AF = 7.18 

Another limitation was the use of multi-breath data without 

co-registration to minimize a potential volume mismatch. 

Currently, we are in the process of optimizing a convex- 

optimization based deformable registration approach to 

address this issue. However, a convex optimization-based 

registration approach45 led to changes in background noise 

that meant that the SEM-based fitting could not be used. As 

a result, all ADC and morphometry values generated from 

the data sets corrected with the convex optimization-based 

registration approach were significantly underestimated. We 

used the diffusion-weighted multi-breath data in the pre-

vious studies and any significant influence on the ADC or 

morphometry estimates was not observed.15

5 |  CONCLUSION
In this study, we did not statistically compare ADC and mor-

phometry estimates acquired in the 2 subgroups because of 

their age difference and the small number of HV. As expected, 

the mean ADC and morphometry estimates calculated for the 

volunteers were smaller than the in AATD patients likely be-

cause of emphysema and age.46,47

In summary, single breath-hold multiple b-value whole 

lung accelerated (AF = 7) 129Xe MRI was demonstrated to 

be feasible in volunteers and patients. Further development 

of this method (AF = 10) will potentially permit a single 16-s 

breath-hold, whole lung 129Xe MRI acquisition delivering 

static-ventilation, T∗

2
, ADC, LmD, and Lm maps with excel-

lent spatial resolution.18
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SUPPORTING INFORMATION

Additional supporting information may be found online in 

the Supporting Information section.

FIGURE S1 Relationships for ADC and LmD obtained for 

all AATD subjects and all pixels. (A) ADCA versus ADC 

relationship (R = 0.65, P < 0.0001) and (B) LmD
A vs LmD re-

lationship (R = 0.65, P < 0.0001). A indicates undersampling 

with the acceleration factor of 7

FIGURE S2 statistical plots obtained for AATD-1 subject 

(Figure 3) for (A) ADC (ADCA) maps and (B) LmD (LmD
A) 

maps. A indicates undersampling with the acceleration factor 

of 7

FIGURE S3 statistical plots obtained for AATD-2 subject 

(Figure 3) for (A) ADC (ADCA) maps and (B) LmD (LmD
A) 

maps. A indicates undersampling with the acceleration factor 

of 7

FIGURE S4 Histograms obtained for 2 HV and 2 AATD 

subjects for ADC maps presented in Figures 2 and 3. (A) 

ADC distribution obtained for HV-1 and AATD-1. (B) ADC 

distribution obtained for HV-2 and AATD-2. Only fully sam-

pled data were used to generated the ADC maps to avoid any 

errors assisted with the compressed sampling

TABLE S1 Pulmonary function measurements, demo-

graphic, and 129Xe MRI Parenchyma Measurements in 

AATD. BMI, body mass index; FEV1, forced expiratory 

volume in 1 s; %pred, percent-predicted; FVC, forced vital 

capacity; RV, residual-volume; DLCO, diffusing capacity 

of carbon monoxide; AATD, alpha-one antitrypsin defi-

ciency; AF, acceleration factor; T
∗

2
, apparent transverse 

relaxation time constant; ADC, apparent diffusion coeffi-

cient; LmD, mean diffusion length; Lm, mean linear inter-

cept estimate. The T
∗

2
 estimates (fully sampled data) for 

subjects 1 and 2 were not calculated due the image arte-

facts (scanner’s receiver saturation) appeared on the short 

TE b = 0 image
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