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Abstract. Graphics processing units (GPUs) in recent years have evolved to 
become powerful, programmable vector processing units. Furthermore, the 
maximum processing power of current generation GPUs is roughly four times 
that of current generation CPUs (central processing units), and that power is 
doubling approximately every nine months, about twice the rate of Moore’s 
law. This research examines the GPU's advantage at performing convolution-
based image processing tasks compared to the CPU. Straight-forward 2D 
convolutions show up to a 130:1 speedup on the GPU over the CPU, with an 
average speedup in our tests of 59:1. Over convolutions performed with the 
highly optimized FFTW routines on the CPU, the GPU showed an average 
speedup of 18:1 for filter kernel sizes from 3x3 to 29x29.  

1   Introduction 

Programmable graphics processing units (GPUs) are commonly included as hardware 
components in new computer workstations. Furthermore, the current generation of 
GPU is technically superior in terms of GFLOPs of processing power [7] to that of 
current CPUs [2], but that power is rarely used to its full capabilities. Numerous 
advances have been made recently in applying the GPU to parallel matrix processing 
tasks, such as the Fast Fourier Transform [6]. This research applies the vector 
processing power of the GPU to 2D image processing convolution filters.  

Section 2 briefly covers recent GPU advances, and discusses why the GPU is well 
suited for digital image processing applications. Section 3 explains how convolution 
on images can be achieved with a GPU, while section 4 compares the frames-per-
second processing rates of an NVIDIA GeForce FX6800 to a dual 2.8 GHz Intel 
Pentium 4. Section 5 notes our conclusion of an average 18:1 speedup of the GPU 
over a CPU running optimized code on convolution filter mask sizes 29x29 and 
smaller, and a speedup of 59:1 over a CPU without optimized code. 

2   Background 

The first programmable consumer GPUs became available less than four years ago. 
The first generation of programmable GPUs was not well-suited to general-purpose 
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computation for several reasons. First, they allowed access to only selected portions 
of the graphics pipeline and had no easily accessible off-screen rendering capabilities. 
Second, they had to be programmed in GPU-specific assembly code, with no 
standardization across manufacturers. Third, their limited accuracy of 8 bits-per-pixel 
combined with their slower clock speeds and memory accesses, as well as smaller 
memory sizes, compared to CPUs made them unattractive to general-purpose 
computing researchers who needed fast 32-bit floating point operations as a minimum 
point of entry.  

2.1   Computation on GPUs 

By late 2002, a C-like programming language for the GPU, named Cg [5], had been 
developed for cross-platform GPU programming. Cg contained constructs for looping 
and conditional branching, required for most general-purpose computing, but GPU 
hardware took another two years to catch up to the capabilities provided for in the Cg 
language. Only in the NVIDIA GeForce FX6800 series GPU, released in late 2004, 
was it first possible to take advantage of true conditional branching on the GPU, as 
well as handle loops or programs that consisted of more than 1024 total instructions 
per pixel [7]. These advances enabled the research in this paper, and the previous 
work [8] upon which it is based.  

Researchers at Stanford developed Brook for GPUs [1], a stream processing 
language abstraction for GPU programming. Unfortunately, stream processing is not 
especially well-suited to the limitations of current GPU hardware. Even the simple 
merge sort, a typical example of stream processing computation, is not possible in a 
single pass on current GPU hardware due to the inability to both read and write the 
same texture at the same time. This factor, along with others, caused Brook to show 
only a limited speedup on a number of test applications across platforms and 
manufacturers.  

2.2   Digital Image Processing 

Digital image processing (DIP) appears to be especially well-suited to current GPU 
hardware and APIs (application programming interfaces), due to the graphical nature 
of the GPU's processing power. Digital image processing is a field of computing that 
involves manipulating images that have been converted into digital form. Typical 
examples of DIP operations include smoothing or blurring an image, sharpening an 
image, edge detection, noise removal, and various effects such as embossing or 
beveling.  

Figure 1 shows an original image with three types of filters applied. In addition to 
single 2D image filtering applications like those shown in Figure 1, DIP can be 
applied to video on a frame-by-frame basis, such as for motion detection. They can 
also be applied to 3D scenes generated on the GPU, such as when a flight simulator 
uses blurring to make a scene more realistic. 

Many image processing operations are convolution-based, which means that every 
pixel of an image is processed by multiplying the elements of a smaller matrix, called 
a mask, with the values of the surrounding pixels, known as a neighborhood. For 
example, in a 3x3 averaging filter, the values of the nine pixels that comprise a pixel 
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and its eight surrounding neighbors within a one-pixel boundary are summed together 
and the result is divided by nine for the output pixel's value. This type of filter 
smoothes or blurs rough edges in an image, like the first example given in Figure 1.  

    

Fig. 1. Examples of image processing convolutions. The original image (left) after blurring, 
sharpening, and edge detection are performed, respectively (Image courtesy of Patrick Flynn) 

Convolutions become costly as the size of the filter mask grows. While 3x3 filters are 
useful in many applications, filter sizes as large as 65x65 and beyond are used, as well. 
On a 2048x2048 image, a total of 65x65x2048x2048 (over 17 billion) array lookups, 
multiplications and additions are needed to perform the straightforward convolution 
operation. Caching and other concerns quickly drive up the cost of this computation. 
Fortunately, it is possible to optimize the convolution operation by making use of 
Fourier processing, which will be discussed in further detail in the next section.  

3   Implementation 

The first step in comparing the GPU to the CPU in performing digital image 
processing operations will be to perform simple averaging filter convolutions across 
images ranging in size from 64x64 to 2048x2048. This size range includes the small 
image sizes common in texture maps developed for 3D games as well as the large 
image sizes that include full-screen views on the best available current display 
technology and consumer-level high-resolution digital camera images. In previous 
work [8], 3x3 filters were shown to have a significant speed advantage on the GPU 
over the naïve CPU implementation. Two new items remained to be addressed: how 
the GPU's advantage scales for larger filter sizes, and how the GPU compares to FFT-
optimized CPU code. 

3.1   DIP on GPU 

Using Cg, programming a convolution filter on the GPU is a very straightforward 
process. Figure 2 shows a section of code for a simple 3x3 averaging filter in Cg. A 
texture lookup function (texRECT) makes it easy to find neighboring pixel values 
relative to the output pixel's coordinates (texCoord) by adding a vector (float2) 
to describe the relative position (up one pixel, left one pixel, etc.). Performing more 
advanced convolutions, such as edge detection, Gaussian smoothing filters, 
embossing, and more, only requires adding a multiplier to each texture lookup 
corresponding to the weight of the mask for that pixel's position. 
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The C version of a convolution, as shown in Figure 3, is more difficult for several 
reasons. First, the C version must treat each color component (red, green, and blue, or 
RGB) as separate computations, while the GPU computes all three components 
simultaneously as three-component vectors of type TTfloat3. Second, the C method 
computes array positions in a one-dimensional manner corresponding to linear 
addresses in main memory rather than the 2D relative indexing of Cg. Therefore, non-
intuitive modular arithmetic is necessary to resolve pixel values. Furthermore, the Cg 
version does not depend upon the size of the image, due to the fact that the program is 
written to operate on a per-pixel basis. The C version must know the width and height 
of the image in order to perform the needed array index lookups. 

                 float3 a[9]; 

 a[0] = texRECT(image, texCoord + float2(-1, 1)); 

 a[1] = texRECT(image, texCoord + float2(0 , 1)); 

                 … 

 a[7] = texRECT(image, texCoord + float2(0 ,-1)); 

 a[8] = texRECT(image, texCoord + float2(1 ,-1)); 

            color = (a[0]+a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8])/9.0; 

Fig. 2. A 3x3 averaging filter in Cg 

int a1,a2,a3,a4,a5,a6,a7,a8,a9; 
// wd and ht are the width and height dimensions of the RGB image im1 
int m = wd*ht*3; 
for (r=0; r<m;r++) 
{ 
  a1=(r-(wd+1)*3+m)%m; 
  a2=(r-(wd)*3+m)%m; 
  … 
  a8=(r+(wd)*3)%m; 
  a9=(r+(wd+1)*3)%m; 
  im2[r] = (im1[a1]+im1[a2]+im1[a3]+im1[a4]+im1[a5]+im1[a6]+im1[a7]+im1[a8]+  
            im1[a9])/9; 
} 

Fig. 3. A simple subroutine in C for computing the 3x3 Averaging Filter 

3.2   GPU Versus FFTW 

Performing a fair comparison of the power of the GPU over the CPU in performing 
2D convolutions involves more than the straightforward convolution. On the CPU, it 
is significantly faster in most cases to convert the image from the spatial domain to 
the frequency domain by means of the Fast Fourier Transform (FFT), then multiply 
the frequency representation of the image by the frequency domain version of the 
convolution filter, then take the inverse FFT, or IFFT, to acquire the filtered image.  
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The Discrete Fourier Transform (DFT) of an NxN image whose pixel values are 
stored in a matrix f(x,y) is described by the formula given in Equation 1 above. The 
Fourier Transform converts a 2D image in the spatial domain into a 2D matrix of 
frequency values. This frequency representation of the image is useful due to the fact that 
a spatial convolution of a filter mask of size MxM over an image of size NxN translates 
to a multiplication of the frequency domain representations of the two matrices. The FFT 
is simply a time-optimized approach for computing the DFT of an image.  

A spatial 2D convolution of an image matrix f of dimension NxN and a filter mask 
h of size MxM is performed according to the formula given in Equation 2 below. 
Notice that every element of the image matrix is multiplied by every element of the 
mask matrix, for O(N2M2) operations. For large filter mask sizes, this approaches 
O(N4) time. The FFT makes it possible to obtain the frequency domain representation 
of an image in O(N2log2N). Assuming a pre-computed FFT of the filter mask, the 
element-wise multiplication of the image and mask matrices in the frequency domain 
takes only N2 multiplications, followed by the IFFT, which involves the same 
computation time as the FFT, for a total of O(N2log2N) time, which can be 
significantly faster than O(N4) for realistic values of N.  

 ∑∑
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In most image manipulation and processing packages, Fourier-domain processing is 
used to perform convolutions expressly because of the acceleration factor. For example, 
in a first trial run using the naïve convolution of a 15x15 mask on a 1024x1024 image 
took 6.5 seconds, while the FFT version took 0.54 seconds to perform the same 
convolution using the frequency-domain approach, a speedup of more than 12:1.  

The steps necessary to convolve a filter over an image in the frequency domain are 
as follows. First, the mask is padded with zeros to match the size of the input image, 
and the FFT of the mask is computed. Because this only needs to be done once for 
each filter and size, this is usually precomputed and does not appear in the processing 
times given in the results. Second, the input image is converted to its frequency 
representation by performing the FFT. Note neither the mask nor the image should be 
shifted to the center, as is frequently done in Fourier analysis (if the filter mask is 
placed at the center of the zero-padded matrix, the input image must be shifted by 
multiplying every odd element by –1 before the FFT is performed). Third, an 
element-wise multiplication of the two matrices is performed. Fourth, the inverse FFT 
is performed on the resulting matrix. Fifth, the complex components of the IFFT are 
dropped, and the real values now contain the result of the image convolution. A 
highly optimized FFT package [3] will be used to test the speedup of this approach. 

4   Results and Discussion 

Straightforward algorithms for convolutions on the GPU and on the CPU were 
developed for comparison across a wide variety of matrix and image sizes (64x64 to 
2048x2048). The GPU proved to be much faster than the CPU at straightforward 
convolutions like Gaussian smoothing, averaging filters, and edge detection for filter 
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masks from 3x3 to 29x29. Optimized CPU code was developed using the FFTW 
library, version 3.0.1 [3]. In the case of a 2D 3x3 convolution filter, the GPU (an 
NVIDIA GeForce FX6800) was up to 130 times faster at high resolutions 
(2048x2048) than the CPU (a dual 2.8 GHz Intel Pentium 4). The GPU was from four 
to 139 times faster than the FFTW-optimized version at performing a 3x3 convolution 
across images from 64x64 to 2048x2048. Figure 4 shows a logarithmic scale 
comparison of the GPU and FFTW versions over the naïve CPU version. Note that at 
2048x2048 the CPU versions process less than one frame per second (fps), while the 
GPU processes over 60 fps, sufficient for real-time interactivity. Frame rate values are 
shown for the GPU and FFTW versions; naïve CPU numbers are given in Figure 5. 

Processing Speed for 3x3 Convolutions on Various Image Sizes
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Fig. 4. Logarithmic scale speed comparison of convolving a 3x3 filter mask over images of 
varying sizes on GPU vs. naïve CPU convolution and FFTW-optimized Fourier processing 

The GPU is especially well-suited to performing 2D convolutions and 
morphological masking and filtering operations. Furthermore, programming the GPU 
version of these algorithms is a straightforward process, allowing the developer to 
access pixel neighborhoods using a relative indexing paradigm rather than a 
complicated modular arithmetic scheme for referencing 2D array elements in main 
memory. The GPU provides the greatest speed advantage at smaller convolution 
kernel sizes in the 3x3 to 29x29 range, where the FFT provides the least advantage 
over the CPU. The GPU could therefore provide significant acceleration in 
applications where filter masks are small (edge detection, etc.) and where a 
compatible GPU is available.  

Figure 5 shows the results of applying averaging filters of sizes ranging from 3x3 
to 29x29 on images from 64x64 to 2048x2048. The table entries show the results for 
the GPU, followed by the naïve CPU convolution, in each cell. The bottom row 
shows the time for the FFTW-optimized filters. The FFTW version is given once for 
each image size due to the fact that the FFT approach to convolution does not vary in 
processing time by filter size, because each filter must be padded with zeros to match 
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the size of the input matrix before Fourier processing in order to multiply by the 
image matrix in the frequency domain. Therefore, it is just as fast to process an image 
with a 65x65 filter as it is to use a 3x3 filter when using Fourier domain acceleration.   

Table 1. Timing results for the convolution of various filters (3x3 to 29x29) over various image 
sizes (64x64 to 2048x2048) on GPU/CPU (in frames per second) 

Frame rates for applying convolution masks over various input image sizes (in fps) 
 

64x64 128x128 256x256 512x512 1024x1024 2048x2048 
3x3 2493 / 388 2272 / 111 1630 / 29.7 784 / 7.27 240 / 1.9 62.9 / 0.48 
5x5 2293 / 299 1877 / 85.8 1019 / 22.3 358 / 5.56 96.7 / 1.4 23.6 / 0.35 
7x7 2008 / 169 1433 / 45.6 634 / 11.5 193 / 2.93 50.1 / 0.73 12.3 / 0.18 
9x9 1739 / 108 1099 / 28.2 422 / 7.21 120 / 1.79 30.3 / 0.45 7.2 / 0.11 
15x15 1077 / 35.9 534 / 9.92 166 / 2.52 44.3 / 0.62 11 / 0.15 2.59 / 0.038 
17x17 929 / 30.5 437 / 7.73 131 / 1.95 34.1 / 0.48 9.6 / 0.12 2.06 / 0.029 
19x19 796 / 24.3 360 / 6.18 100 / 1.55 27.5 / 0.38 6.8 / 0.095 1.65 / 0.024 
29x29 415 / 10 168 / 2.53 46.6 / 0.63 11.9 / 0.16 2.98 / 0.039 0.72 / 0.009 
FFT 667 143 33 8.2 1.9 0.45 

Figure 6 shows the speedup derived from dividing the GPU frame rates by the 
naïve and FFTW-optimized CPU frame rates. Note that the GPU is from 6 to 132 
times faster than the straightforward CPU convolution, with an average speedup over 
these values of 59:1. The GPU is faster than even the FFTW implementation by an 
average of 18:1 for these filter sizes. At 29x29, however, the FFTW version begins to 
match the GPU in speed. Interestingly, this is also the largest 2D convolution filter we 
were able to implement in Cg. The code for a mask at this size must perform 29x29, 
or 841 texture lookups, multiplications, and additions per pixel, or around 2500 pixel 
operations, with 3 components per pixel (RGB). While the specifications for the 6800 
series GPU state a maximum operation count of 65,536, we were unable to 
successfully implement filters any larger than 29x29.  

Table 2. Speedup achieved in Figure 5. Figures are for GPU over naïve/FFTW-optimized CPU 
versions, rounded to the nearest whole number 

Speedup of the GPU over the naïve CPU / FFTW convolutions 
 64x64 128x128 256x256 512x512 1024x1024 2048x2048 

3x3 6 / 4 20 / 16 55 / 49 108 / 96 126 / 130 132 / 139 
5x5 8 / 3 22 / 13 46 / 31 64 / 44 69 / 52 68 / 52 
7x7 12 / 3 31 / 10 55 / 19 66 / 24 69 / 27 68 / 27 
9x9 16 / 3 39 / 8 59 / 13 67 / 15 68 / 16 66 / 16 

15x15 30 / 2 54 / 4 66 / 5 71 / 5 71 / 6 68 / 6 
17x17 30 / 1 57 / 3 67 / 4 70 / 4 80 / 5 71 / 5 
19x19 33 / 1 58 / 3 65 / 3 71 / 3 71 / 4 69 / 4 
29x29 42 / 1 66 / 1 74 / 1 76 / 1 76 / 2 73 / 2 
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It was mentioned that it was assumed that the FFT of each filter had been pre-
computed for timing purposes. If a new filter is used on each image, a processing 
penalty of 30% or more will result from adding another FFT to accommodate the new 
filters. Another important distinction between the convolution on the GPU and the 
FFT-based approach is that the FFT produces a cyclical convolution when used as 
described above. For visualization purposes, this is usually close enough to a linear 
convolution to produce acceptable results. If, however, a true linear convolution is 
required, the FFT routine must pad the image with zeros to increase the image size to 
twice its original height and width, causing a four-fold decrease in speed. 

One other hidden consideration exists when performing the FFTW-optimized 
version of these operations. The first time the FFTW package is run on a machine for 
a given image size, the library creates an optimization strategy specific to the 
machine's architecture, memory, and other attributes. For small matrix sizes, this 
planning step took only a second or two, but for the 2048x2048 case, it took over 3 ½ 
minutes. Fortunately, the FFTW library provides a mechanism for saving and 
recovering the optimal plan so that this process need only be performed once, but the 
time consideration can be significant for the first use.  

5   Conclusions and Future Work 

In convolution-based operations from digital image processing (DIP), the GPU 
showed an average speedup of 59:1 over the straightforward CPU convolution and 
18:1 over the FFTW-optimized approach for filter sizes from 3x3 to 29x29 on images 
from 64x64 to 2048x2048. Notably, the 60 fps speed of performing 3x3 convolutions 
on 2048x2048 images on the GPU could enable better and cheaper real-time high-
resolution applications for scene reconstruction, navigation, and security purposes. 
Besides speed-up, GPUs have a programming advantage in Cg over CPUs 
programmed in C. This is due to the fact that pixels can be referenced in Cg in a 
relative fashion, such as one pixel to the right and down from the current location, 
unlike the more complicated 1D memory array lookup calculations needed in C.  

Because 2D DIP is well-suited to GPU acceleration, a fruitful area for future 
research would be developing an image processing API or adding GPU acceleration 
to an existing image processing package. An API or multi-step compiler system like 
Brook [1] designed specifically for DIP operations could be a significant step toward 
general-purpose utilization of the GPU as a parallel vector processor.  
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