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ABSTRACT An accelerated second-order super-twisting sliding mode observer with an adaptive gain is

proposed for a typical nonlinear system. The key contribution of this algorithm is that the rate of convergence

of observation error is accelerated remarkably by introducing ‘‘system damping.’’ Chattering issue is

attenuated with a satisfactory performance compared with conventional sliding mode observer. Furthermore,

adaptive gain can vary with deviation between the trajectory and the sliding mode switching manifold

dynamically so that overshoot can be reduced. The novel observer is proven mathematically to be convergent

in a finite time. Finally, an example of nonlinear system is given to verify the performance.

INDEX TERMS Sliding mode, accelerated, super-twisting, observer.

I. INTRODUCTION

Since sliding mode controllers (SMC) have been applied

for several decades, they are regarded as effective ways

to control a wide spectrum of perturbed nonlinear systems

with good robustness [1], [2]. SMC is still considered as

one of the best choices in various engineering practices

up to now [3]–[5]. Based on the same concept, different

sorts of sliding mode observers (SMO) have been developed

to robustly estimate the system states. These are widely

used in sensorless operation conditions so that costs will

be reduced [6]–[10]. However, the main defect of sliding

mode algorithms is the chattering issue that resulted from the

existence of the discontinuous switch function. It is inherent

and cannot be eliminated absolutely but it can be attenuated.

Currently there are three typical methods to reduce chattering

as follows [11]: (i) substituting ‘‘saturation’’ or ‘‘sigmoid

function’’ or ‘‘inverse tangent function’’ for the discontinuous

sign function [12]. It is the simplest and the most widely used

way to reduce chattering, it is omitted here because of its

familiarity. In order to emphasize performance of algorithm,

sign function is kept in this article. (ii) Using high order slid-

ing mode (HOSM) observers [13], [14]. It has been applied to

practice successfully such as PEM fuel cell system [15], [16]

and estimation of tire friction [17]. However, the generaliza-

tion of r th-order (r ≥ 3) sliding mode observer is limited

by high relative degree issues, consecutive derivatives of the

variable (s, ṡ, s̈, · · · s(n−1)) must be known. It is worth noting

that, as one of the most powerful second-order sliding mode

observers, super-twisting (STW) only needs information of

the sliding variable s [18], [19], it can generate a contin-

uous function to drive the sliding variables and derivatives

of sliding variables to 0 in a finite time and it shows a

good robust performance without knowing the boundary of

disturbance exactly [20]. Based on the twisting controller,

Dvir and Levant [21] proposed a modified twisting controller

for uncertain dynamic systemswith relative degree 2, the con-

vergence rate is prescribed in advance and the twisting control

algorithm can be accelerated. (iii) Introducing an adaptive

gain [11], [22], [23]. The variable gain will vary with distance

between the trajectory and sliding mode switching manifold,

if deviation is larger than a certain range, the adaptive gain

will be increasing to force the trajectory back to sliding mode

switchingmanifold and if deviation is small, the adaptive gain

will reduce to prevent the system from overshoot. This can

attenuate chattering and compensate perturbations of which

boundaries are time-variant more accurately [24]. The adap-

tive super-twisting (ASTW) algorithm has been applied in

sensorless control for permanent magnet synchronous motor

with good performance [25].

The main objective of this article is to propose an accel-

erated adaptive second order super-twisting sliding mode

observer (AASTW) based on previous distinguished achieve-

ments of sliding mode algorithms. By introducing ‘‘system

damping’’, a concept proposed by Slotine in 1986 [26],

25232
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-8079-8934


C. Lin et al.: Accelerated Adaptive Second-Order Super-Twisting Sliding Mode Observer

the rate of convergence of observation error is further

increased in a finite time, so that performance of the sliding

mode observer is further enhanced.

II. PROBLEM STATEMENT

In this paper, the following nonlinear system with bounded

parameters and disturbance is considered:

x(n)(t) = f (t, x, u) + δ (t, x, u), x =
[

x, ẋ, ẍ, · · · x(n−1)
]T

(1)

It can be transformed into a corresponding equation of

state in (2), where y is the output of the system and x1 can

be measured directly, u (t) is the input of the observer, δ is

disturbance. Let x̂ indicate the state estimation, x̃ indicate the

estimation error, x̃ = x − x̂.






























ẋ1 = x2

ẋ2 = x3
...

ẋn = f (t, x, u) + δ (t, x, u)

y = x1

(2)

Assumption 1: The system f (t, x, u) in (2) is a continuous

function that is not known with high accuracy, but its uncer-

tainty ξ (t, x, u) is bounded by 4, 4 ≥ 0, it can be expressed

with model function f̂ (t, x, u) as f (t, x, u) = f̂ (t, x, u) +

ξ (t, x, u), where |ξ (t, x, u)| ≤ 4.

Assumption 2: The disturbance δ is bounded, |δ| ≤ 1,

1 ≥ 0.

Remark 1: The essence of applying accelerated adaptive

super-twisting sliding observer to system (1) is forcing the

observed vector x̂ to track the expected vector x faster, so that

it drives estimation errors x̃ → 0.

III. OBSERVER DESIGN

A second order nonlinear system is taken into consideration,

this can be generalized to the systems containing more ele-

ments in vectors x1 and x2 based on the same principle. The

proposed accelerated adaptive super-twisting sliding mode

observer has the form shown in (3).
{

˙̂x1 = α1

(

x1 − x̂1
)

+ x̂2 + k1
∣

∣x1 − x̂1
∣

∣

1/2
sgn

(

x1 − x̂1
)

˙̂x2 = α2

(

x1 − x̂1
)

+ f̂
(

t, x1, x̂2, u
)

+ k2 sgn
(

x1 − x̂1
) (3)

and its corresponding estimation errors equations of state

in (4)










˙̃x1 = −α1x̃1 + x̃2 − k1 |x̃1|
1/2 sgn (x̃1)

˙̃x2 = −α2x̃1 + f
(

t, x1, x̂2, u
)

− f̂
(

t, x1, x̂2, u
)

+ δ (t, x1, x2, u) − k2 sgn (x̃1)

(4)

where α1,2 is positive constant value, and the αx̃ is so called

‘‘system damping’’, the k1 and k2 are adaptive gains defined

as

k̇1,2 =

{

λ1,2sgn
(∣

∣x1 − x̂1
∣

∣ − µ1,2

)

if k1,2 > κ1,2

0 if k1,2 ≤ κ1,2
(5)

where λ1,2, µ1,2, κ are constant values, but κ cannot be a

small arbitrarily value and it should be selected according to

the limit of k1,2 which will be discussed in the following text.

Remark 2: µ in (5) plays a role as a detector, when the esti-

mation error x̃1 comes through the limit |x̃1| ≤ µ, the adaptive

gains will reduce dynamically and start a fine tuning phase,

so that overshoot of the trajectory can be further weakened

until it leaves this domain as illustrated in Fig. 1.

FIGURE 1. Sketch map of adaptive gain effect.

Lemma: The adaptive gains k1 and k2 in (5) are bounded.

Proof: (i) If k1,2 comes into the interval k1,2 ≤ κ1,2,

it is a constant value. (ii) If k1,2 is in the interval k1,2 > κ1,2,

integrate both sides of (5) and obtain the solution of the

differential equation

k1,2 = k (t0) ± λ1,2 · t, t ∈
[

t0, tf
]

(6)

Therefore, in a finite time domain k1,2 is bounded, the

Lemma is proven.

Theorem 1: Based on Assumption 1 and Assumption 2, the

proposed observer in (3) and (4) for nonlinear systems in (1)

can drive the estimation errors (x̃1, x̃2) → (0, 0).

Proof: All kinds of observers are always affected by

noise or disturbance in engineering practice, so robustness

plays a critical role in the performance of the observer,

this proof is based on Davila et al.’s proof method [27]

and noise or disturbance is taken into consideration.

Let F
(

x1, x2, x̂2
)

= f (t, x1, x2, u) − f̂
(

t, x1, x̂2, u
)

+

δ (t, x1, x2, u).

It is bounded according to Assumption 1 and

Assumption 2, there exists a constant F0, F0 ≥ 0, such that
∣

∣F
(

x1, x2, x̂2
)
∣

∣ ≤ F0, (4) can be transformed into

{

˙̃x1 = −α1x̃1 + x̃2 − k1 |x̃1|
1/2 sgn (x̃1)

˙̃x2 = −α2x̃1 + F
(

x1, x2, x̂2
)

− k2 sgn (x̃1)
(7)

k1,2 is adaptive as shown in (5) on the premise that it satisfies

the following inequalities.

{

k1 > [2/(k2 − F0)]
(1/2) (k2 + F0 + 3) (1 + p)/(1 − p)

k2 > F0

(8)
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where p is a constant value, p ∈ (0, 1), 3 ≥ α2x̃
2
1max

.

Therefore, such relations can be obtained as follows:
{

˙̃x1 = −α1x̃1 + x̃2 − k1 |x̃1|
1/2 sgn (x̃1)

˙̃x2 ∈ [−F0,F0] − α2x̃1 − k2 sgn (x̃1)
(9)

¨̃x1 = −α1
˙̃x1 + ˙̃x2 −

1

2
k1 ˙̃x1/|x̃1|

1/2 (10)

and further

¨̃x1 ∈ [−F0,F0] − α2x̃1

−

(

α1
˙̃x1 +

1

2
k1 ˙̃x1/|x̃1|

1/2 + k2sgn (x̃1)

)

(11)

A graph of (11) can be drawn partially for the region
[

0, x̃1M
]

as in Fig. 2 shows. Set the initial conditions, x̃1 =

0, x2 = ˙̃x1, x̂2 = 0, thus x̃2 = x2. If the initial value of

x2 is positive, the trajectory will enter into right half-plane.

Otherwise it will enter into the left half-plane, and in this

article the former condition is discussed. When the trajectory

goes in the first quadrant it is confined between x̃1 = 0,
˙̃x1 = 0 and curve I ¨̃x1max = − (k2 − F0), let

(

x1M , 0
)

indicate

intersection point of ˙̃x1 = 0 and ¨̃x1max = − (k2 − F0),
(

0, ˙̃x10

)

indicate intersection point of x̃1 = 0 and ¨̃x1max =

− (k2 − F0), it is easy to get ˙̃x
2
10

= 2 (k2 − F0) x̃1M by integral

calculation. Therefore, the following inequality can be seen.

¨̃x1 ≤ F0 − α2x̃1 − k2sgn (x̃1) − α1
˙̃x1 −

1

2
k1 ˙̃x1/|x̃1|

1/2 < 0

(12)

FIGURE 2. Sketch map of majorant trajectory for the observer.

When the trajectory moves toward ˙̃x1 = 0 it can be

described by the following equation.

˙̃x21 = 2 (k2 − F0)
(

x̃1M − x̃1
)

(13)

Then it transits through ˙̃x1 = 0, and enters the forth quadrant

and moves towards x̃1 = 0. If ¨̃x1 = 0, ˙̃x1 reaches the

minimum value as (15) by solving (14).

¨̃x1 = F
(

x1, x2, x̂2
)

− α2x̃1

−

(

α1
˙̃x1 +

1

2
k1 ˙̃x1/|x̃1|

1/2 + k2

)

= 0 (14)

˙̃x1min
= 2 |x̃1|

1/2/
(

2α1 |x̃1|
1/2 + k1

)

×
[

F
(

x1, x2, x̂2
)

− k2 − α2x̃1
]

> −2/k1x̃
1/2
1M

(

F0 + k2 + α2x̃1M
)

(15)

Therefore, the trajectory in the fourth quadrant is con-

fined between x̃1 = 0, ˙̃x1 = 0, x̃1 = x̃1M (line II) and

˙̃x1 = −
(

2x̃
1/2
1M

/k1

)

(

F0 + k2 + α2x̃1M
)

(line III). Given the

condition (8) and ˙̃x210 = 2 (k2 − F0) x̃1M , it is easy to derive

the conclusion as (16).
∣

∣

∣

˙̃x1M

∣

∣

∣

/∣

∣

∣

˙̃x10

∣

∣

∣

<
2

k1
x̃
1/2
1M

(

F0 + k2 + α2x̃1M
)

/

[

2 (k2 − F0) x̃1M
]1/2

< (1 − p)
(

F0 + k2 + α2x̃1M
)/

(k2 + F0 + 3) (1 + p)

≤ (1 − p)
/

(1 + p) < 1 (16)

It can be observed that the point of intersection between

the trajectory and x̃1 = 0 is getting closer and closer to x̃1 =
˙̃x1 = x̃2 = 0. The theorem 1 is proven.

Theorem 2: The estimation errors (x̃1, x̃2) can be driven to

(0, 0) in a finite time.

Proof: Consider the dynamics of x̃2 to prove the conver-

gence in a finite time. From the (4), it is easy to get x̃2 = ˙̃x1
at the moment x̃1 = 0 and (17).

˙̃x2 = −α2x̃1 + F
(

x1, x2, x̂2
)

− k2sgn (x̃1)

=

{

−α2x̃1 + F
(

x1, x2, x̂2
)

− k2 x̃1 > 0

−α2x̃1 + F
(

x1, x2, x̂2
)

+ k2 x̃1 < 0
(17)

In the axis x̃1 = 0 it can be observed that:

0 < k2 − F0 ≤

∣

∣

∣

˙̃x2

∣

∣

∣
≤ k2 + F0 (18)

Let ti indicate one time interval between successive inter-

section points of the trajectory and x̃1 = 0, integrate (18) over

a small neighborhood of its origin, thus

(k2 − F0) ti ≤

∣

∣

∣

˙̃x1i

∣

∣

∣
(19)

and the total convergence time is

T =

∞
∑

i=0

ti ≤

∞
∑

i=0

∣

∣

∣

˙̃x1i

∣

∣

∣
/(k2 − F) (20)

Therefore, the total convergence time is limited because

of the decreasing

∣

∣

∣

˙̃x1i

∣

∣

∣
as derived in previous text, therefore,

Theorem 2 is proven.

Theorem 3: The proposed observer is stable.

Proof: Consider the Lyapunov function

L (x̃1) =
1

2
x̃21 > 0 (21)

and of which derivative is

∂

∂t

(

1

2
x̃21

)

= eė = x̃1 ˙̃x1

= x̃1

[

−α1x̃1 + x̃2 − k1 |x̃1|
1/2 sgn (x̃1)

]

(22)
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If k1 meet the requirement of expressed as (23), L (x̃1) ·

L̇ (x̃1) < 0 can be realized and the observer is stable.

When the estimation errors (x̃1, x̃2) small neighborhood

around the origin point (0, 0), considering the (24) according

to the infinitesimals of the same order theorem, ∃k1 > r,

r ∈ R+, it makes L (x̃1) · L̇ (x̃1) < 0.

k1 >

{

−α1 |x̃1|
(1/2) + x̃2/ |x̃1|

(1/2) x̃1 > 0

−α1 |x̃1|
(1/2) − x̃2/ |x̃1|

(1/2) x̃1 < 0
(23)

lim
x̃1→0,x̃2→0

x̃2/|x̃1|
(1/2) = 0 (24)

Remark 4: By introducing the system damping, attraction

of error trajectory is enhanced.

Consider the system in (4), in the sliding patch ˙̃x1 = 0,

there exist relations as (25).

x̃2 ≤ k1 |x̃1|
1/2 + α1x̃1 if x̃1 > 0

x̃2 ≥ −k1 |x̃1|
1/2 + α1x̃1 if x̃1 < 0 (25)

As illustrated in Fig. 3, by introducing the system damp-

ing α1x̃1, region of direction attraction is extended, so that

trajectory is attracted toward (0, 0) earlier.

FIGURE 3. Effect of damping on reachability.

IV. OBSERVER PERFORMANCE

In this part, ordinary sliding mode observer, super-twisting

sliding mode observer and the proposed accelerated adaptive

super-twisting sliding mode observer are selected for com-

parison in the following figures. To test and compare perfor-

mance of the three different kinds of observers, selection of

corresponding parameters are identical. Let k1 = k2 = 1,

α1 = α2 = 1, λ1 = λ2 = 1, µ1 = µ2 = 1 and the initial

value of
(

x̃1, ˙̃x1

)

is supposed to be (10, 10), and they are

calculated for the same duration with identical sample time.

It can be observed in the following figures, the conven-

tional sliding mode observer in Fig. 4 takes the longest time

to converge the estimation errors to 0 because of the longest

spiral trajectory and when the errors are getting close to (0, 0)

chattering occurs intensely. The super-twisting sliding mode

observer in Fig. 5 performs much better, time consumed for

estimation errors convergence is reduced significantly and

much less chattering hinders the rate of convergence. The

FIGURE 4. Estimation error convergence of ordinary sliding mode
observer. (a) 3-D view. (b) Planar graph of upward view.

FIGURE 5. Estimation error convergence of super-twisting sliding mode
observer. (a) 3-D view. (b) Planar graph of upward view.

proposed accelerated adaptive super-twisting sliding mode

observer in Fig. 6 performs the best, the trajectory achieves

(0, 0) almost directly, so that the rate of estimation errors

VOLUME 7, 2019 25235
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FIGURE 6. Estimation error convergence of accelerated adaptive
super-twisting sliding mode observer. (a) 3-D view. (b) Planar graph of
upward view.

convergence is accelerated effectively. From the partially

enlarged view it can be seen that both STW and AASTW

do not bring obvious chattering when the estimation errors

get close to the origin. In fact, if the view is further enlarged,

the chattering of AASTW is less than that of STW, readers

can observe it independently.

V. EXAMPLE

In order to compare and demonstrate performance of the pro-

posed sliding mode observer, the example in reference [27]

is considered. It is a pendulum system with Coulomb friction

and external perturbation. It is considered a typical nonlinear

system that is often selected to test the performance of novel

control algorithms [28]. This part is focused on designing a

velocity observer for the system and the mathematical model

of pendulum is set in (26).

θ̈ = τ/J − g sin θ/L − Vsθ̇/J − Pssgn
(

θ̇
)

/J + v (26)

with the values M = 1.1, g = 9.815, L = 0.9, J = ML2,

Vs = 0.18, Ps = 0.45, v is external disturbance which is

also identical to [27], it is simulated as v = 0.5 sin (2t) +

0.5 cos (5t) and the same bounded control signal is used

as (27).

τ = −30sgn (θ − θd ) − 15sgn
(

θ̇ − θ̇d
)

(27)

where θd = sin t , θ̇d = cos t , they are the expected signals.

In the system, θ is measurable signal, θ̇ is the variable to be

estimated. Set x1 = θ , x2 = θ̇ , the system can be written in

FIGURE 7. Real and estimated velocity.

FIGURE 8. Estimation error of velocity with super-twisting sliding mode
observer. (a) 3-D view. (b) Planar graph of upward view.

the following form:
{

ẋ1 = x2

ẋ2 = τ/J − g sin x1/L − Vsx2/J − Pssgn (x2)/J + v

(28)

The velocity observer based on the proposed accelerated

adaptive super-twisting sliding mode algorithm has the form

as (29).










˙̂x1 = α1

(

x1 − x̂1
)

+ x̂2 + k1
∣

∣x1 − x̂1
∣

∣

1/2
sgn

(

x1 − x̂1
)

˙̂x2 = α2

(

x1 − x̂1
)

+ τ/J − g sin x1/L − V x̂2/J

+ k2sgn
(

x1 − x̂1
)

(29)
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FIGURE 9. Estimation error of velocity with accelerated adaptive
super-twisting sliding mode observer. (a) 3-D view. (b) Planar graph of
upward view.

θ varies in a compact set of the interval from 0 to 2π , this is a

bounded input bounded state stable system, where α1 = 500,

α2 = 500, k1 and k2 are assigned as follows:

k̇1 =

{

12sgn
(∣

∣x1 − x̂1
∣

∣ − 0.00001
)

if k1 > 6

0 if k1 ≤ 6

k̇2 =

{

66sgn
(
∣

∣x1 − x̂1
∣

∣ − 0.00001
)

if k2 > 50

0 if k2 ≤ 50

Initial values of both x1 and x̂1 are set to 0, initial values of

x2 and x̂2 are set to 1 and 0, respectively, and initial values of

k1 and k2 are set to 12 and 66, respectively. The solver type is

fixed-step with sample time 0.00001s.

Fig. 7 shows performance of the proposed observer by

comparing with some other typical sliding mode observers,

it can be observed that the estimated velocity converges

toward the real values, the super-twisting sliding mode

observer proposed by Davila et al. [27] performs quite well,

however, the main defect, overshoot still exists. It has been

reduced further after being accelerated by the proposed algo-

rithm, and with the proposed algorithm it takes the shortest

time to converge.

Fig. 8. and Fig. 9. show the trajectories of normal super-

twisting sliding mode observer and proposed accelerated

adaptive super-twisting sliding mode observer, respectively.

From the order of magnitude it is obvious that trajectory of

the proposed AASTW observer is the shortest one to achieve

(0, 0) target. Chattering is much less than that of the normal

super-twisting sliding mode observer.

VI. CONCLUSION AND FUTURE WORK

This article presents a kind of sliding mode observer

known as accelerated adaptive super-twisting sliding mode

observer. It can satisfactorily attenuate chattering issues and

accelerate the rate of convergence for estimation errors by

introducing ‘‘system damping’’. Mathematical proofs are car-

ried out to ensure the convergence of the proposed observer in

a finite time interval. Compared to some typical conventional

sliding mode observers and from the pendulum example, the

proposed observer performs better without precisely knowing

the boundary of uncertainty and disturbance.

Methods to reduce the number of parameters to be selected

subjectively or avoid experience-depend work to the largest

extent possible, so as to improve the AASTWare future work.

This will make it smarter and more accurate.
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