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Accelerated Addition in Resistive RAM Array

Using Parallel-Friendly Majority Gates
John Reuben, Member, IEEE, Stefan Pechmann, Graduate Student Member, IEEE

Abstract—To overcome the ‘von Neumann bottleneck’, meth-
ods to compute in memory are being researched in many emerg-
ing memory technologies including Resistive RAMs (ReRAMs).
Majority logic is efficient for synthesizing arithmetic circuits
when compared to NAND/NOR/IMPLY logic. In this work, we
propose a method to implement a majority gate in a transistor-
accessed ReRAM array during READ operation. Together with
NOT gate, which is also implemented in-memory, the proposed
gate forms a functionally complete Boolean logic, capable of
implementing any digital logic. Computing is simplified to a
sequence of READ and WRITE operations and does not require
any major modifications to the peripheral circuitry of the
array. While many methods have been proposed recently to
implement Boolean logic in memory, the latency of in-memory
adders implemented as a sequence of such Boolean operations is
exorbitant (O(n)). Parallel-prefix adders use prefix computation
to accelerate addition in conventional CMOS-based adders. By
exploiting the parallel-friendly nature of the proposed majority
gate and the regular structure of the memory array, it is
demonstrated how parallel-prefix adders can be implemented in
memory in O(log(n)) latency. The proposed in-memory addition
technique incurs a latency of 4·log(n)+6 for n-bit addition and is
energy-efficient due to absence of sneak-currents in 1Transistor–
1Resistor configuration.

Index Terms—Resistive RAM (ReRAM), Non-volatile Memory
(NVM), majority logic, majority gate, memristor, 1Transistor-
1Resistor (1T–1R), von Neumann bottleneck, in-memory comput-
ing, sense amplifier, processing-in-memory, parallel-prefix adder,
logic-in-memory, compute-in-memory, read-out circuit

I. INTRODUCTION

THE movement of data between processing and memory

units is the major cause for the degraded performance

(both energy and latency-wise) of contemporary computing

systems, often referred to as the ‘von Neumann bottleneck’ or

‘memory wall’. ‘Computation energy’ is dominated by ‘data

movement energy’ since the energy for memory access grows

exponentially along the memory hierarchy (from cache to off-

chip DRAM) [2]. As a quantitative example, [3] points out
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that the energy for DRAM access is 3556× the energy for

16-bit addition in 45 nm CMOS technology. Similarly, DRAM

access latency is ≈ 100 ns [4], while latency of 32-bit adder is

4 ns in CMOS technology [5], implying that data movement

latency forms a significant portion of computation latency in

conventional von-Neumann computing model. Consequently,

there had been many efforts in the last 10-15 years to combat

the memory wall by bringing the processor and memory unit

closer together. For example, 3D stacking of DRAM dies

over logic die (enabled by Through-Silicon-Via technology)

was used to reduce the energy and latency of data movement

between processor and memory, in what was called near-

memory computing. Going a step further, there have been

efforts to move computing not just near memory, but to the

memory itself i.e. the memory array.

ReRAMs are two terminal devices (usually a Metal-

Insulator-Metal structure) capable of storing data as resistance.

When subject to voltage stress, the resistance can be switched

between a Low Resistance State (LRS) and a High Resistance

State (HRS). The change of resistance is due to the formation

or rupture of a conductive filament, depending on the direction

of the current flow through the structure. The word ‘memristor’

is also used by researchers to denote such a device, because

it is essentially a resistor with memory. However, it must be

noted that the word memristor can refer to a broader class of

devices which have the capability to change their resistance in

response to voltage/current stress (e.g. Phase Change Memory

(PCM), Spin Transfer Torque-Magnetic RAM (STT-MRAM)).

Connecting such ReRAM devices in a certain manner, or

by applying certain voltage patterns, or by modifying the

sensing circuitry, basic Boolean gates (NOR, NAND, XOR,

IMPLY logic) have been demonstrated in ReRAM arrays [6]–

[13]. The motivation for such efforts is to perform Boolean

operations on data stored in the memory array, without moving

them out to a separate processing circuit, thus mitigating the

von Neumann bottleneck. Although such Boolean operations

are being explored in DRAM [14], [15] and SRAM [16],

[17], emerging NVMs like ReRAM bring high density on-

chip, which SRAM lacks. Reviews of in-memory computing

approaches in emerging NVMs are presented in [18], [19].

To construct a memory array using such devices, two con-

figurations are common: 1Transistor–1Resistor (1T–1R) and

1Selector–1Resistor (1S–1R). The 1T–1R configuration uses

a transistor as an access device for each cell, isolating the

accessed cell from its neighbours in the array. The 1S–1R

configuration uses a two-terminal device called a ‘selector’

which is fabricated in series with the memristive device.

The 1S–1R is area-efficient, but suffers from current leakage

(sneak–path problem) due to the inability to access a particular
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cell without interfering with its neighbours [20].

Majority logic, a type of Boolean logic, is defined to be

true if more than half of the n inputs are true, where n is

odd. Hence, a majority gate is a democratic gate and can be

expressed in terms of Boolean AND/OR as MAJ(a, b, c) =
a ·b+b ·c+a ·c, where a, b, c are Boolean variables. Although

majority logic was known since 1960, there has been a revival

in using it for computation in many emerging nanotechnolo-

gies (spin waves, magnetic Quantum-Dot cellular automata,

nano magnetic logic, Single Electron Tunneling [21]–[23]).

Recent research [22]–[25] has confirmed that majority logic is

to be preferred not only because a particular nanotechnology

can realize it, but also because of its ability to implement

arithmetic-intensive circuits with less gates. In this paper,

we propose a majority gate whose structure is conducive for

parallel-processing in the memory array. When three rows of a

1T–1R array are activated simultaneously, the resistance of the

ReRAM cells in a column will be in parallel during the READ

operation. A Sense Amplifier (SA) which can accurately sense

the effective resistance implements an ‘in-memory’ majority

gate. Then, a method to implement a NOT gate in memory

is proposed. MAJORITY together with NOT is functionally

complete and any Boolean logic can be expressed in terms of

them.

The peripheral circuitry around the array facilitates in-

memory computing. Therefore, we design the peripheral cir-

cuitry and the modification required in it to accommodate

the execution of MAJORITY and NOT gates. Latency of

in-memory adders is a compelling problem i.e. numerous

cycles of Boolean operations are required to implement any

arithmetic circuit in memory. If the latency of in-memory

arithmetic is not optimized carefully, it may take longer to

compute in memory than the combined time to fetch data from

memory and compute in a CMOS-based processor. Adders are

the fundamental unit of any computing system. While many

works have been reported to implement adders in memory, the

issue of latency has not been carefully studied and optimized.

Consequently, many in-memory adders have a O(n) latency

for n-bit addition and practical adders of 32-bit/64-bit in

memory require hundreds of cycles. In this work, we focus

on adders and tackle this exorbitant latency of in-memory

adders. We couple the strength of majority logic with the array

structure of the memory to implement fast parallel-prefix (PP)

adders in memory array.

Our main contributions can be summarized as follows:

1) We propose a method to implement a majority gate in

memory which is conducive for parallel-processing

2) We present the complete peripheral circuitry around the

array to perform in-memory arithmetic

3) We consider an 8-bit PP adder synthesized in majority

logic and implement it in the memory array using the

proposed gates in O(log(n)) latency

4) We extend the 8-bit in-memory adder to 16-bit and

thus formulate the latency, energy and area of the array

required for n-bit in-memory addition

The rest of the paper is organized as follows. In Section

II, we justify why we chose majority logic as the logic

primitive to minimize the latency of adders in memory. Section

III presents the principle of reading majority from a 1T–

1R array and the detailed sensing methodology. In Section

IV, we present the framework to compute in the memory

using the proposed majority gate by elaborating the peripheral

circuitry of the memory array. Section V briefly introduces

parallel-prefix technique and discusses how an 8-bit parallel-

prefix adder can be implemented in a 1T–1R array using the

proposed majority and NOT gates. We extend the 8–bit in-

memory adder to 16–bit adder to ascertain how our adder

performs with increasing bit-width. In this manner, the latency,

area and energy for n-bit addition are formulated as analytic

expressions in Section VI. We compare the proposed in-

memory addition technique with the state-of-the-art in Section

VII, followed by conclusions in Section VIII.

II. MOTIVATION FOR CHOOSING MAJORITY LOGIC AS THE

LOGIC PRIMITIVE FOR IN-MEMORY COMPUTING
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Fig. 1: In-memory implementation does not favor heterogeneity of
logic primitives [26]. Arithmetic circuits are synthesized in terms of
a particular logic primitive which can be implemented with minimal
modifications to the conventional memory array. In view of this,
approaches to implement MAJORITY gate and NOT (to make it
functionally complete) are to be favored for latency-optimized in-
memory computing.

In the past, different logic primitives like NAND, NOR,

IMPLY, XOR have been used by researchers to implement

Boolean logic in memory. Arithmetic circuits can be im-

plemented as a sequence of these Boolean operations. An

important requirement is that the logic primitive must be

‘functionally complete’. NOR is ‘functionally complete’ since

any Boolean logic can be expressed in terms of NOR

gates. Similarly, NAND, IMPLY+FALSE [27] and MAJOR-

ITY+NOT [24] are also functionally complete. Since a con-

ventional memory array supports only READ and WRITE op-

erations, these logic primitives necessitate some enhancements

to the conventional array. This enhancement can be some mod-

ification to the array structure, or the peripheral circuitry or a

combination of these. With these modifications, the memory

array is enhanced to be able to execute a logic primitive along

with READ and WRITE operations. Consequently, for in-

memory implementation, an arithmetic circuit is synthesized
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in terms of that particular logic primitive and mapped to the

memory array. Therefore, unlike CMOS implementation which

accommodated heterogeneity of logic gates (NAND, NOR,

XOR), in-memory implementation usually accommodates ho-

mogeneity of gates (only NOR or only NAND). A 1-bit full

adder implemented in memory using NOR [28], NAND [29]

and MAJORITY [30] are compared in Fig. 1. It is evident

that majority logic could achieve 1-bit adder functionality with

less logical depth (latency) than NAND/NOR. Furthermore,

notice that k-levels of logic gets expanded to k + x cycles

in memory (interconnections between logic levels contribute

to x additional cycles, [26]). Therefore, for latency-optimized

in-memory implementation, it is important to choose a logic

primitive which minimizes k, the number of logic levels.

Recent research in logic synthesis confirms the aforemen-

tioned trend (observed in 1-bit full adder) for other circuits

as well. In [24], the authors present Majority-Inverter Graph

(MIG), a new logic manipulation structure consisting of three-

input majority nodes and regular/inverted edges. Logic func-

tions are represented by MIGs and further optimized using

both algebraic and Boolean methods, summarized in [23], [24].

A selection of circuits from both IWLS’05 benchmarks and

HDL arithmetic benchmarks were considered and synthesis

results obtained with MIG optimization tool were compared

to And-Inverter Graphs (AIG) optimized by ABC in terms

of logical levels. For IWLS’05 benchmarks, an average 14%

reduction in logical depth and for arithmetic HDL benchmarks,

about 33% reduction in logical depth were obtained by MIG

compared to AIG [23], [24]. This motivated the authors to

pursue majority logic as the fundamental logic primitive to

minimize the latency of in-memory adders.

III. MAJORITY GATE IN 1T–1R ARRAY

A. Majority gate: Operating principle
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Fig. 2: When three rows are activated (WL1−3) simultaneously
in a 1T-1R array, the resistances of the three ReRAM devices are
in parallel. An ‘in-memory’ majority gate can be implemented by
accurately sensing the effective resistance Reff .

Consider an array of ReRAM cells arranged in a 1T-1R

configuration, as depicted in Fig. 2. Each cell can be

individually read/written to by activating the corresponding

wordline (WL) and applying appropriate voltage across the

cell (BL and SL). To read from a cell, the corresponding

WL is activated, a small current is injected into the cell and

the voltage across the cell is sensed in a voltage-mode SA

i.e. the BL voltage is sensed while the SL is grounded.

Now, if three rows are activated simultaneously during read

operation (Rows 1 to 3 in Fig. 2), the resistances in column

1 are in parallel (neglecting the parasitic resistance of BL
and SL). During read, the access transistor will be in linear

region, and hence the transistor’s resistance will be ( [31])

rt =
1

µnCox(
W
L
)(VGS − Vt)

= 544 Ω. (1)

The effective resistance between BL and SL will therefore be

Reff = (RA + rt)||(RB + rt)||(RC + rt) ≈ (RA||RB ||RC),
(2)

if the drain-to-source resistance of transistor (rt) is small

compared to LRS. Table I lists the truth table of 3-input

majority gate (M3(A,B,C)) and the effective resistance for

all the eight possibilities. To verify the proposed gate on a

real ReRAM device, we choose the 1T-1R cell from IHP1.

The 1T–1R structure consists of a NMOS transistor having

a (W/L) of (150 nm/130 nm). The drain of the access-

transistor is connected in series to the ReRAM. The ReRAM

is a T iN/Hf1−xAlxOy/T i/T iN stack integrated between

Metal2 and Metal3 in the BEOL of the CMOS process. The

cells have a mean LRS and HRS of 10 kΩ and 133.3 kΩ,

respectively. Therefore, the Reff is ≥ 8.7 kΩ when two or

more cells are in HRS (shaded grey in Table I) and ≤ 4.8

kΩ when two or more cells are in LRS. Consequently, a

majority gate can be implemented during a READ operation

by precisely sensing Reff . This manner of computing majority

enables parallelism since multiple gates can be executed in the

columns of the array. The proposed gate is energy-efficient

(both reading and writing is energy-efficient in 1T–1R when

compared to 1S–1R arrays due to the absence of sneak paths

[32]). As can be deciphered from Table I, the crucial aspect

of the proposed gate is to be able to differentiate between

R001

eff (two LRS and one HRS) and R011

eff (two HRS and

one LRS). Let’s denote the resistance to be differentiated as

sensing window. Sensing window for majority = 8.7 kΩ – 4.8

kΩ = 3.9 kΩ for IHP’s cell (resistance window = 13.3).

B. Sensing methodology

The methodology to reliably translate Reff into a CMOS-

compatible voltage is the crucial aspect of the proposed

majority gate. R001

eff is 4.8 kΩ and R011

eff is 8.7 kΩ, and

differentiating such a resistance window (≈ 3.9 kΩ) needs

a robust SA. It must be noted that this will be exacerbated by

the variability exhibited by the ReRAM devices. To meet this

requirement, a time-based SA recently proposed in [33] was

chosen and adapted to our requirement. Different from con-

ventional sensing schemes (voltage-mode and current-mode),

1Innovations for High Performance Microelectronics– Leibniz-Institut für
innovative Mikroelektronik, Germany
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TABLE I: Precisely sensing Reff results in majority: Logic

‘0’ is LRS (10 kΩ) and logic ‘1’ is HRS (133.3 kΩ)

A B C M3(A,B,C) Reff Reff

0 0 0 0 LRS
3

3.3 kΩ

0 0 1 0 HRS·LRS
LRS+2·HRS

4.8 kΩ

0 1 0 0 HRS·LRS
LRS+2·HRS

4.8 kΩ

0 1 1 1 HRS·LRS
HRS+2·LRS

8.7 kΩ

1 0 0 0 HRS·LRS
LRS+2·HRS

4.8 kΩ

1 0 1 1 HRS·LRS
HRS+2·LRS

8.7 kΩ

1 1 0 1 HRS·LRS
HRS+2·LRS

8.7 kΩ

1 1 1 1 HRS
3

44.4 kΩ

the time-based sensing scheme converts the BL voltage (to be

sensed) into a time delay and discriminates in time-domain.

This sensing scheme was originally proposed to read data from

STT-MRAM [33], which has a resistance margin of a few kΩ.

Therefore, it is well suited for the proposed majority gate.

Furthermore, this time-based sensing achieves two to three

orders of magnitude improvement in sensing (BER) compared

to conventional schemes, in addition to being reference-less

[33]. ‘Read-Disturb’ in ReRAM refers to the perturbation of

the conductive filament during the data reading phase resulting

in an unintended change of the stored memory state [34].

Experimental works [35], [36] suggest that read-disturb is

severe only when the READ voltage across the ReRAM cell is

> 0.3 V. To avoid read-disturb, we designed the time-based SA

such that it can sense Reff correctly for an IREAD ≤ 30 µA

(IREAD > 30 µA could have provided a better sensing margin,

but would have made the SA susceptible to read-disturb).
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Fig. 3: A small current IREAD injected into the cell converts the
resistance to a voltage which is fed to the time-based SA. A current-
starved inverter transforms this voltage into a proportional delay
which is sensed as a CMOS-compatible voltage by the D-FF [33].

The time-based sensing circuit is essentially a voltage-to-

time converter followed by a time-domain comparator (D-flip

flop). Voltage-to-time conversion is achieved in three stages–

a common-drain stage, a current-starved inverter (M2−4) and

a pulse-shaping inverter (M5−8), as depicted in Fig. 3. During

READ, a current IREAD is injected into the 1T-1R cell

(corresponding three WLs are activated and SL is grounded).

Depending on the effective resistance Reff , the BL reaches

a voltage (VBL ≈ IREAD ×Reff ). Read-disturb phenomenon

[34]–[36] imposes a constraint that voltage across cell must be

≤ 0.3 V during READ. Hence a common-drain stage is used

to boost the BL voltage to a level suitable for the following

stage. After BL voltage is boosted to VBL + VSG−M1
, it

is used to modulate the gate voltage of M2 (M2−4 forms a

current-starved inverter). For best sensing results, the voltage

at the gate of M2 should be ≥ Vth−M2 for R011

eff case so

that it turns on sharply and introduces less delay in EN
signal. For R001

eff case, the voltage at the gate of M2 should be

< Vth−M2 so that it significantly limits the inverter current,

and introduces more delay in the EN signal. A high-threshold

NMOS transistor from IHP’s process2 was used as M2 to

achieve this functionality effectively. In this manner, VBL is

converted to a delay in the EN signal which is further shaped

by M7–M8 inverter to have a sharp rising edge at the input

of the D-flip flop (IFF ). At the rising edge of ENdelay , IFF

is available at the output of the SA.

The time-based sensing circuit of Fig. 3 was designed in

IHP’s 130 nm CMOS process, and simulated to verify the

functioning of the majority gate. IREAD of 30 µA was used

resulting in a VBL of a few hundred mV (150–300 mV),

as shown in Fig. 3. M1 biased by IBIAS of 1 µA works

as a common-drain stage and shifts the BL voltage by the

necessary source-gate voltage of M1 to conduct IBIAS . The

amount of voltage by which VBL is shifted can be tuned by

tuning IBIAS and the W/L-ratio of M1 and it was tuned

to be 0.45 V i.e. V
′

BL = VBL+ 0.45 V in Fig. 3. When

EN goes high, the current-starved inverter introduces a delay

proportional to V
′

BL i.e. a higher V
′

BL incurs less delay. In

this manner, a VBL of 300 mV and 170 mV (V
′

BL = 0.75

V and 0.62 V) results in the IFF rising high at THRS and

TLRS , respectively. tdelay is a chain of inverters designed to

delay the EN signal such that TDM (Decision Moment) is

between THRS and TLRS . When ENdelay goes high at TDM ,

it latches the signal at IFF and hence the Dout is high for high

resistance (R011

eff = 8.7 kΩ) and low for low resistance (R001

eff =

4.8 kΩ). It must be noted that for R111

eff = 44.4 kΩ, IFF goes

high before THRS and, for R000

eff = 3.3 kΩ, IFF goes high

after TLRS . Therefore, once designed to differentiate between

R011

eff and R001

eff , the time-based SA will output M3(A,B,C)
correctly for all the eight cases. Furthermore, the same SA can

be used to read a single bit by using a smaller IREAD (and

activating a single WL during normal read operation). Hence

the proposed gate does not necessitate any modification to the

read-out circuit of the regular memory array.

2The high-threshold NM0S variant of IHP 130 nm process has a Vth of
0.7 V as opposed to the regular NMOS from the same process which has
a Vth of 0.45 V. Since M2 is the crucial factor in deciding the delay (and
consequently the SA’s output), using a high-threshold transistor additionally
achieves better immunity against CMOS process variations.
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C. Robustness of the majority gate against ReRAM variations

ReRAM cells exhibit variability in their programmed re-

sistive states cycle-to-cycle and device-to-device [37] and the

majority gate needs to be evaluated in the presence of these

variations. The variability in resistance states is normalized by

the mean and expressed by co-efficient of variation σ
µ

, where

σ is the standard deviation from µ, the mean resistance of the

state. Furthermore, many experimental works have revealed

that variability is larger at HRS than at LRS [38]–[40] due

to stochastic nature of the filament rupture3. Since the ReRAM

is not switched while computing majority, the 1T–1R cell was

modeled as a transistor in series with a resistor4 and ReRAM

variability was incorporated as a Gaussian distribution in

that resistor. Since exact variability of IHP’s devices were

not available, we considered a variability, (σLRS/µLRS) of

12.6 % and (σHRS/µHRS) of 20.9 %, which is the statis-

tically reported variability for a similar HfOx device [38].

50000 Monte Carlo simulations were performed where the

resistances RA, RB , RC were Gaussian distributed to reflect

the ReRAM variability i.e. R001

eff = LRS||LRS||HRS and

R011

eff = LRS||HRS||HRS are calculated from the Gaussian

distributed LRS/HRS with aforementioned µ and σ. The

impact of process variations was analysed using the statistical

model files for the CMOS transistors provided by the foundry.

With combined effects of ReRAM variability and process vari-

ability (in transistors of SA and access-transistor of ReRAM),

the Bit Error Rate (BER) was found to be 5×10−4. Sample

wave-forms at the input of the D-flip flop are plotted in Fig.

4-(a). The time-based SA achieves clear distinction between

R001

eff and R011

eff in the presence of ReRAM variations and

CMOS process variations. Fig. 4-(b) depicts the probability

density function (PDF) of R011

eff and R001

eff during MC runs.

It can be observed that, although σLRS and σHRS are 1.26

kΩ and 28 kΩ respectively, σR001

eff
and σR011

eff
are reduced to

0.4 kΩ and 0.96 kΩ, respectively. This is because Reff is

dominated by LRS (equivalent resistance of three resistance in

parallel is lower than the least of the three resistance). Hence,

Reff is affected more by variation at LRS than at HRS.

LRS variation is well controlled by the compliance current

in 1T–1R configuration [31]. Therefore, our majority gate has

reasonably good immunity to ReRAM variations.

IV. FRAMEWORK TO COMPUTE IN 1T–1R ARRAY

A. Functional completeness

As shown in Fig. 5-(a), NOT operation can be implemented

in a 1T–1R array by activating a single row and latching Q
from the output of the time-based SA during READ (D-Flip

flop of Fig. 3 outputs Q and Q). This is accomplished by using

a control signal INV which is low during READ and majority

operation (Q is latched) and goes high only during NOT

operation (Q is latched). During majority operation, the SA has

3Few studies have compared the actual variation in HRS and LRS. For
e.g, in a HfOx device, the reported variation is 16% at LRS and 36% at
HRS. For T iOx device, it is 14% at LRS and 26% at HRS [40]

4The ReRAM cell was modelled as a resistor to verify the functioning of a
single majority gate, it was later modelled by Stanford-PKU model to verify
8-bit addition in memory, Section V-C
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Fig. 4: (a) Sample MC simulation wave-forms of the time-based SA.
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the output. MC simulations include both CMOS process variations (in
the SA and the access-transistor of ReRAM) and ReRAM variations.
(b) PDF of R011

eff and R001
eff over 50000 random runs indicates a tight

distribution.

to distinguish between 4.8 kΩ and 8.7 kΩ, while during READ

and NOT operations, the SA has to distinguish between 10 kΩ
(LRS) and 133 kΩ (HRS). Hence IREAD is scaled down to

2.5 µA to maintain low BL voltages while reading a single

bit. Majority together with NOT is functionally complete i.e.
any Boolean logic can be expressed in terms of majority and

NOT gates [24]. As stated in Section II, MIG is a new logic

manipulation structure consisting of three-input majority nodes

and regular/inverted edges. Fig. 5-(b) is the MIG of a 1-bit

full adder obtained by MIGhty (MIG synthesis tool) and, any

Boolean logic can be synthesised in terms of majority and

NOT gates in a similar manner. Since both majority and NOT

gates are implemented as READ, multiple levels of gates can

be cascaded by writing the read data back to the array. In

essence, ‘computing’ is simplified to a sequence of READ and

WRITE operations, orchestrated by the memory controller, as

depicted in Fig. 5-(c). A memristive logic family formulates a

functionally complete Boolean logic using a memristive device

(ReRAM/PCM/STT-MRAM) as the computing device. The

proposed method of implementing a majority and NOT gate

in a 1T–1R array forms a new memristive logic family.

B. Triple-row decoder design

A conventional decoder for a 1T–1R array can select one

row at a time, while the proposed majority gate needs three
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rows to be selected simultaneously. Moreover, the row-decoder

must be versatile to switch between single-row activation and

triple-row activation seamlessly. This is because, as stated

in the previous section, one must be able to read/write a

single bit of the array (READ/WRITE/NOT) as well as read

three bits in a column (majority). To this end, we propose a

robust row decoder which is designed by interleaving multiple

single-row decoders. As depicted in Fig. 6, a 4:16 triple-row

decoder can be designed by interleaving four 2:4 dynamic

NAND decoders5. Since single-row decoding must co-exist

with triple-row decoding, an address translator circuit is used

to switch between the two modes using MAJ as a control

signal. For example, to select a single row WL5, the address

is A3A2A1A0 = ‘0101’ and MAJ = ‘0’. For these inputs,

the address translator outputs EN3EN2EN1EN0 = ‘0010’

and D7D6D5D4D3D2D1D0 = ‘XXXX01XX’ (green decoder

in Fig. 6 is enabled and it’s second row is selected, thereby

activating WL5). But, for the same row address A3A2A1A0

= ‘0101’ and MAJ = ‘1’, the address translator outputs

EN3EN2EN1EN0 = ‘1110’ and D7D6D5D4D3D2D1D0 =

‘010101XX’ (blue, red and green decoders are enabled and

second row of each of them is selected, thereby activating

WL5, WL6 and WL7). The address translator inputs MAJ
and A3A2A1A0 and generates D7D6D5D4D3D2D1D0 and

EN3EN2EN1EN0 to achieve this desired functionality for

all the 16 cases. With the address translator logic (88 tran-

sistors), the triple-row decoder requires 200 transistors, while

a regular 4:16 dynamic decoder (only single row activation)

requires 136 transistors, a 47% increase in the row-decoder

area. The address translator does not add any significant

latency to the decoding process. The decoder was designed

in 130 nm IHP process and its functionality was verified and

decoding latency was found to be 496 ps.

C. Area of time-based Sense Amplifier

25.68 um

3.25 um

Fig. 7: Layout of time-based SA.

The main drawback of ReRAM based in-memory adders is

their latency. The motivation for pioneering a parallel-friendly

gate was to exploit it to accelerate addition by executing

gates in parallel. To evaluate the number of gates that can

be executed in parallel, we evaluated the area of the time-

based SA. The time-based SA of [33] could sense the BL
voltage without an op-amp, and, this was an important reason

for adopting it for our majority gate (conventional SAs use

operational amplifiers, which consume huge silicon area and

power). The layout of the time-based SA of Fig. 3 is drawn

in Fig. 7 and occupies an area of 25.68 × 3.25 = 83.5 µm2. It

must be noted that this area estimate does not include the area

of the delay element since it is shared by all the SA in the

array (tdelay in Fig. 3 is implemented as series of inverters with

MOS capacitive load between them). From [41], the layout of

a single 1T–1R cell occupies 450 nm × 450 nm = 0.2 µm2

in 130 nm (12.4 F 2). If the SA is stacked along its height

of 3.25 µm, eight columns of the array can share a SA. This

means that the number of majority gates that can be executed

5a dynamic decoder uses a precharge signal φ, which when low, all WL
are driven to ‘0’. When φ goes high, WLi corresponding to D1D0 goes
high, provided EN is ‘1’
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in parallel in an array is the number of columns divided by a

factor of 8 i.e. 32 gates can be executed simultaneously in a

256×256 array, 8 gates in a 64×64 array etc.

D. WRITE circuit
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8
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8

V
WRITE

WRITE ‘1’
(RESET) 
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Seg.1 Seg.8

Seg.1 Seg.8

Fig. 8: Write circuit: Op-amp regulates the voltage while driving
enough current to write into the cell.

To write to the cells, an operational amplifier is used as

shown in Fig. 8. The amplifier consists of PMOS transistors

as input devices, followed by a voltage gain stage using a

symmetrical operational trans-conductance amplifier (OTA)

configuration. The output stage is a fast class-AB output

stage. It has a DC voltage gain of 61.1 dB and a phase

margin of 66°. Each cell requires ≈ 300 µA to switch and

the operational amplifier is designed to deliver the required

current to program eight 1T–1R cells simultaneously (≈ 2.4

mA). In ReRAM, SET operation (the filament is created)

is accomplished by applying a positive voltage to the BL
while SL is grounded and RESET operation (the filament is

ruptured) is accomplished by applying a positive voltage to

the SL while BL is grounded. This is because a voltage of

opposite polarity is needed across the ReRAM cell to break the

filament. As shown in Fig. 8, the op-amp must be connected

to BL for SET operation and SL for RESET operation,

which is accomplished by the SET/RESET switch (see Fig.

9). To verify the WRITE circuit, the operational amplifier was

designed in IHP’s 130 nm technology and the 1T–1R cell was

modeled by fitting the Stanford-PKU model to characteristics

of IHP’s ReRAM [31]. A voltage pulse (VWRITE = 1.2 V)

of 100 ns duration was used and simultaneous writing of 8

1T–1R cells was verified by simulation.

E. In-memory computing system

The memory controller of a regular memory (be it DRAM-

based or NVM-based) is responsible for orchestrating the

READ and WRITE operation by issuing the control signals to

the peripheral circuitry of the array. In addition, the memory

controller must be augmented with additional capability to

execute majority and NOT operation. Since both majority and

NOT operations are READ operations in this logic family, the
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Since the area occupied by the SA corresponds to 8 columns, the
array is partitioned into segments (8 columns form a segment) and
each segment has a dedicated SA. 8 segments share a WRITE circuit.

controller does not require any major alterations. To execute a

majority operation, an additional control signal called MAJ
is needed, which is set to logic ‘1’ during majority operation6

and, the address of the first row (out of three rows in which

majority is to be performed) is placed on the row decoder.

It must be noted that majority operation is executed on

three contiguous bits of data in a column and the triple row

decoder presented in section IV-B will not only select the row

corresponding to the address placed on the row decoder, but

also the next two rows if MAJ is ‘1’. The column address

is placed on the column decoder to select column(s) in which

majority is to be executed and the SA is activated (using the

EN signal) to get the output. The NOT operation is the same

as the READ operation with the only exception being the

controller issues the control signal INV , which goes high

to invert the read data at the output of the SA (Fig. 5-(a)).

The complete in-memory computing system consists of the

triple-row decoder, the read-out circuit (SA) and the WRITE

circuit, collectively forming the peripheral circuitry around

the 1T–1R array, as illustrated in Fig. 9. Since the area

occupied by the SA corresponds to 8 columns, the array is

partitioned into segments (8 columns form a segment) and

each segment has a dedicated SA. As described in Section

IV-D, the WRITE circuit can simultaneously write 8 cells and

therefore 8 segments (64 columns) share a WRITE circuit. The

BL and SL multiplexer will select one out of the 8 BL/SL
of a segment and connect it to the SA (READ, NOT, Majority

operation) or the WRITE circuit (SET, RESET operation). The

polarity of the voltage applied across the cell is positive for

SET and negative for RESET. The SET/RESET signal is

used to accomplish this change in voltage polarity using four

transmission gates (Fig. 9). The control signals are depicted

in red in Fig. 9. The control signals activated during memory

6this signal acts as an additional input to the row decoder, Fig. 6



IEEE TRANSACTIONS ON VLSI , VOL. , NO. , MONTH. 2021 8

and logic operations are summarized in Table II.

TABLE II: Control signals for memory and logic operations

Operation READ WRITE SET/RESET EN INV MAJ

READ 1 0 1 1 0 0

NOT 1 0 1 1 1 0

Majority 1 0 1 1 0 1

SET i.e.
WRITE ‘0’

0 1 1 0 0 0

RESET i.e.
WRITE ‘1’

0 1 0 0 0 0

F. Energy for in-memory operations

To assess the energy required for computation, we first

calculate the energy required for each logic operation. We

calculate the energy for a single majority operation, as

EMAJ = VDD

∫ tREAD

0

IREAD · dt+ VDD

∫ tREAD

0

ISA · dt

(3)

where IREAD is the current injected into the 1T–1R cell (see

Fig. 3), ISA is the current consumed by the time-based SA

(including IBIAS) and tREAD is the READ cycle duration. It

must be noted that in Eq. 3, tREAD was 15 ns and IREAD was

30 µA in our simulations in IHP’s 130 nm CMOS process. The

energy for a single majority operation, EMAJ = 0.63 pJ. The

energy for the NOT operation is the same as the energy to read

a single bit, and it was calculated to be ENOT = 0.13 pJ/bit.

ENOT is smaller than EMAJ because IREAD was smaller

(2.5 µA) for NOT and READ, where a single bit is read. The

energy to write a bit, EWRITE = Vcell ·
∫ tWRITE

0
IWRITE .dt,

where tWRITE was 100 ns in our simulation (although switch-

ing time is ≤ 10 ns for these devices, tWRITE was set to

100 ns to account for worst-case scenarios). EWRITE was

calculated to be 12 pJ/bit.

V. EIGHT-BIT IN-MEMORY PARALLEL-PREFIX ADDER

A. Parallel-prefix adder using majority logic

Parallel-prefix (PP) adders are a family of adders originally

proposed to overcome the latency incurred by the rippling

of carry in CMOS-based adders. The regular structure of the

memory array and the proposed parallel-friendly majority gate

can be combined to implement PP adders in the memory

array. PP adders have a ‘carry-generate block’ followed by

a ‘sum-generate block’ (Fig. 10). The ‘carry-generate block’

can generate the carry ‘ahead’ by prefix computation, and is

known to reduce the latency to O(log(n)), for n-bit adders

[25]. Kogge-Stone, Ladner-Fischer, Brent-Kung and the like,

are examples of PP adders. According to the taxonomy of PP

adders [42], these adders essentially trade-off between logical

depth, fan-out and wiring tracks. Since majority gate is the

basic building block for many emerging nanotechnologies,

prior works [22], [25] have formulated such PP adders in terms

of majority gates. For this work, we chose Ladner-Fischer

since it has optimised logical depth and minimum number of

majority gates for n-bit adder [25]. It must be noted that for in-

memory implementation, logic depth will translate to memory

cycles and number of gates will influence the area of the array

required for computing. It was important to choose Ladner-

Fischer to minimize in-memory latency and area (elaborated

in section V-B). The carry-generate and sum-generate blocks

for an eight-bit adder in majority logic are derived from [22],

[25] (Fig. 10). For an eight-bit adder, the logical depth is six

levels of majority gates and one level of NOT gates, and at

most eight gates are needed simultaneously in each level.
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Fig. 10: Eight-bit PP adder (Ladner-Fischer) expressed as 7 levels
of majority and NOT gates [22], [25]. Majority gates 1–20 constitute
carry generate block and 21–36 constitute sum generate block.

B. Mapping of the eight-bit PP adder to 1T–1R array

In this section, we map the eight-bit Ladner-Fischer adder

structure of Fig. 10 to a 1T–1R array using the proposed logic

family, and elaborate the sequence of operations. Since the

proposed gates are not stateful7, the output of the majority

gate (voltage) needs to be written to the array as inputs to

the next logic level. Furthermore, the row-decoder places a

restriction that only three consecutive rows can be selected.

Therefore, outputs of a logic level must be written such

that they are stored in consecutive rows for the subsequent

majority operation. We assume a 6×80 processing area (to

store the intermediate results of the computation), which is

initialized to logic ‘0’, i.e., all cells are in LRS. Further, we

assume that the two numbers to be added (a7a6a5a4a3a2a1a0,

b7b6b5b4b3b2b1b0 and Cin) are arranged in the processing area

as depicted in Fig. 11. To minimize latency, we map the adder

in a way such that all the majority gates in a logic level are

executed simultaneously in a READ operation. Furthermore,

in view of the limited endurance of ReRAM devices8, we

map the gates in such a way that each bit in the 6×80 array

is switched once during the entire duration of 8-bit addition

7In memristive logic, a logic family is said to be stateful if both the
input and output of a computation are represented as resistance of the
ReRAM/memristor [18]

8Endurance denotes the number of times the device can be switched
between two stable states, while maintaining enough resistance ratio between
them. Experimentally reported endurance vary from 106–1012 depending on
whether it is HfOx, SiOx, TaOx
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a7 a7 a6 a6 a5 a5 a4 a3 a3 a2 a1 a1 a0  4

b7 b7 b6 b6 b5 b5 b4 b3 b3 b2 b1 b1 b0  5
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Fig. 11: Mapping of the eight-bit LF adder of Fig. 10 to 1T–1R array. All the majority gates in a level are executed in parallel (red boxes).
mi represent the output of the ith majority gate and ci is the carry generated during parallel-prefix addition (denoted green since it is read
as a ‘voltage’ and then written into the array).

(intermediate results of addition namely mi and carry ci are

written in different locations and not overwritten on the same

location, see Fig. 11). If the endurance of the device is 108,

in principle, 108 additions can be reliably performed in the

6×80 processing area. Another constraint of ReRAMs is that

SET and RESET cannot be performed on multiple columns

simultaneously since voltage of opposite polarity is needed to

break the filament (Fig. 8). Therefore, writing multiple bits to a

row is usually done in two steps, i.e, to write ‘10101010’, first

‘ 0 0 0 0’ is written by a SET operation and then ‘1 1 1 1 ’

is written by a RESET operation. In our mapping, multiple

bits can be written to a row in a single cycle since the 6×80

processing area is initialized to ‘0’ i.e. to write 10101010, only

‘1 1 1 1 ’ is written by switching the four ReRAM cells at

the locations corresponding to ‘1’ using the op-amp as the

driver (Fig. 8). The contents of the array during the execution

of the seven logic levels are depicted in Fig. 11. The steps are

1) Majority at col. (1,9,26,33,42,49,58,65).

2) Write (m1m1m3m5m7) at col.(2,10,34,50,59) of row 4.

3) Write (m2m2m4m6m8) at col.(2,10,34,50,59) of row 5.

4) Write (m3m4m3m4) at col. (2,10,17,25) of row 6.

5) Majority at col. (2,10,17,25,59,73).

6) Write (m11m13) at col. (3,11) of row 4.

7) Write (m12m14) at col. (3,11) of row 5.

8) Write (c2c2) at col. (50,57) of row 6.

9) Majority at col. (50,57).

10) Write (c4c4c4c4) at col. (3,11,34,41) of row 6.

11) Majority at col. (3,11,34,41).

12) Write (Coutc7c6c5c4c3c2c1) at col.

(1,9,17,33,41,49,57,65) of row 2.

13) NOT at col. (1,9,17,33,41,49,57,65).

14) Write (Coutc7c6c5c4c3c2c1) at col.

(9,17,33,41,49,57,65,73) of row 3.

15) Majority at col. (9,17,33,41,49,57,65,73).

16) Write (m21m22m23m24m25m26m27m28) at col.

(9,17,33,41,49,57,65,73) of row 1.

17) Majority at col. (9,17,33,41,49,57,65,73), row 1-3.

18) Write (CoutS7S6 · ·S1S0) to the memory array.

In the above mapping, it must be noted that each bit-

wise majority operation is a READ operation and it must be

followed by WRITE to be used as an input to the next logic

level. Although WRITE operations increase latency, they can

be used to our advantage while mapping by writing the data to

the precise location in the array where it is needed in the next

logic level. For example, in the mapping of majority gates

to the array, (m1m1m3..) are written to particular columns

in row 4 (step 2) and (m2m2m4..) are written to the same

columns in row 5 (step 3) so that they are aligned for the

majority operation in step 5. As enumerated above, two eight-

bit numbers can be added by a sequence of READ and WRITE

operations, requiring a total of 18 steps (6 Majority, 1 NOT

and 11 WRITE cycles). The proposed approach is one of the
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fastest implementation of eight-bit adder in ReRAM array,

with only one other work [7] reporting a lower latency (Table

III). Therefore, reading out in itself is not a disadvantage9

as long as the total latency/energy is conserved i.e. even

by repeatedly reading and writing, majority-based adder can

achieve better latency than NAND/NOR-based adder. Finally,

from the endurance viewpoint, the number of such 8-bit

additions that can be performed can be increased by wear-

leveling techniques which distribute the WRITE operations

evenly across the array e.g. if a 30×80 processing area is

available, consecutive addition operations can be mapped to

different parts of the 30×80, thereby allowing 5×108 additions

assuming a device with 108 endurance.

C. Simulation of eight-bit PP adder in 1T–1R array

To verify in-memory addition, we choose the 1T–1R cells

from SG13S process of IHP. The IV-curve of the three-terminal

unit (Stanford-PKU ReRAM model in series with IHP’s 130

nm NMOS model) was fitted to the characteristics of IHP’s

three-terminal 1T–1R cell (TE, Gate and Source). The detailed

fitting procedure is presented in earlier works [31], [37]. In this

manner, the access transistor’s resistance (which will appear

in series with the memory cell’s resistance) is also taken into

account during simulation to faithfully reproduce the response

while reading and writing into the cells. The 1T–1R array was

simulated together with the SAs and WRITE circuit in 130 nm

CMOS technology. Following the mapping elaborated in the

previous section, the correct functioning of an 8-bit adder was

verified by performing a sequence of READ (i.e Majority,

NOT) and WRITE operations. Parameters of the ReRAM

model used in simulation are presented in the Appendix.

TABLE III: Comparison of eight-bit adders in ReRAM array

Primitive Array Latency Area Comment/Ref

IMPLY 1S-1R 58
steps

72
cells

Each step is IMPLY opera-
tion [27]

IMPLY+OR 1S-1R 54
steps

88
cells

Each step is IMPLY/OR
operation [43]

NOR 1S-1R 38
steps

19×22 Each step has one or more
NOR operations [44]

Majority 1S-1R 48∗

steps
8×3 Each step is majority (Fig.

14 (a)) or READ [44]
OR/AND 1S-1R 37

steps
64
cells

Each step has one or more
OR/AND operation [45]

ORNOR 1S-1R 31
steps

54
cells

Each step has one or more

ORNOR/IMPLY [46]
Majority+NOT 1T-1R 18

steps
6×80 Each step is majority/NOT or

WRITE (this work)

XOR∗∗ 1T-1R 16
steps

three
1×8

Each step is XOR/READ [7]

∗ Latency is calculated as 24 RM3 (Resistive Majority) instructions in [44],
where each RM3 consists of a READ followed by majority of Fig. 14 (a)
∗∗ XOR gate of [7] is not parallel-friendly and consequently multiple gates
cannot be executed in parallel in the array (to circumvent this, [7] has used
multiple arrays). Furthermore, XOR is not functionally complete and has
to be used in conjunction with other gates to implement other arithmetic
circuits. In contrast, majority+NOT is functionally complete and can be
implemented with minimal peripheral overhead in the proposed method.

9Writing the data to the exact location where it is needed in the next logic
level is necessary even in stateful logic families where the output of the gate
is not read-out in a sense amplifier. e.g. COPY operations in [28]

The proposed method naturally enables parallel-prefix ad-

dition by ‘reading’ majority simultaneously from columns of

data. Therefore, the number of steps for eight-bit addition in

a ReRAM array is shortened to 18 steps, as summarized in

Table III. For our eight-bit adder, the energy consumption,

calculated from simulations, was 708 pJ (36 majority, 8 NOT

and 57 WRITE operations). In the Table III, we have not

compared the energy for computation since they are either

not reported [7] or reported for another ReRAM technology

[44]. Depending on the ReRAM technology in which the adder

is implemented/simulated, the energy will differ (switching

energy depends on HRS, LRS and switching times which

varies from few ns to even 1 µs). Therefore, it would be

unfair to compare the energy of computation across different

ReRAM technologies. However, the latency can be a good

measure of energy comparison since, for each logic primitive,

we mention what is the operation performed in each step. It

is reasonable to expect the proposed adder to require a large

array area (6×80) since it executes multiple gates in parallel.

VI. N-BIT IN-MEMORY PARALLEL-PREFIX ADDERS

In this section, we extend the proposed method of executing

majority gates in parallel to design n-bit PP adders in memory.

Specifically, we consider a 16-bit PP adder in majority logic

and determine the latency to execute in memory. From the

analysis of 8-bit and 16-bit adders, we formulate the latency

required to execute n-bit adder in memory. Our end goal is to

prove that the proposed majority gate will enable the execution

of n-bit PP adders in logarithmic time complexity in memory.

a
2 
b

2

 C
in 

a
3 
b

3
a

5
b

5
a

6 
b

6
a

4 
b

4
a

7 
b

7

 
C

out       
c

15      
c

14      
c

13           
c

12            
c

11      
c

10       
c

9               
c

8          
 c

7         
c

6          
c

5            
c

4           
c

3           
c

2           
c

1

      a
0
b

0

 C
in 

 S
0

   a
1
b

1  a
2
b

2

 S
2

   a
3
b

3

   
S

3  
   S

4

   a
4
b

4
  a

5
b

5

   
S

5

 a
6
b

6

   
S

6
 S

7

   a
7
b

7

1

2

3

7

8

6

a
1 
b

1
a

0
b

0

4

a
8 
b

8
a

9 
b

9
a

11
b

11
a

12
b

12
a

10 
b

10
a

13
b

13
a

14
b

14
a

15
b

15

5

 S
1

      a
8
b

8
   a

9
b

9
  a

10
b

10

 
S

10

   a
11

b
11

   S
11  

   S
12

   a
12

b
12

  a
13

b
13

   S
13

 a
14

b
14

   S
14

 S
15

   a
15

b
15

 S
9

 S
8

 C
out

Carry Generate Block

Sum Generate Block

1 2 3 4 5 6 7 8 9 10 11

20
19181716151412 13

21 22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39

40 41 42 43 44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 7069 71 72 73 74 75 76

Fig. 12: 16-bit Ladner-Fischer adder expressed in terms of majority
and NOT gates [22], [25].

Consider the 16-bit PP adder (Ladner-Fischer type) depicted

in Fig. 12. As stated, prior works [22], [25] have formulated PP

adders in majority logic, which we have adopted here for our

in-memory implementation. Comparing Fig. 10 and Fig. 12,

we can observe that from 8-bit to 16-bit, the number of logic

levels increased from 7 to 8. This is the greatest advantage

of PP computation and we will transfer this latency advantage

to in-memory implementation as well. More specifically, the

‘carry generate’ block incurs one extra level of logic to

compute the carry when we go from 8-bit to 16-bit (sum

generate block remains 3 logic levels, compare Figs. 10 and
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a15 a15  a14 a14 a13 a12 a13 a12 a11 a10 a9 a10 a9 a8 a8 a7 a6 a7 a6 a5 a4 a3 a4 a3 a2 a1 a0 4
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a14 b14 m3 a11 m4 b11 m5 a8 m6 b8 m7 a5 m8 b5 m9 a2 m10 b2 c1 Cin 6
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Fig. 13: Mapping of the 16-bit PP adder to the memory array using the proposed majority gates; L1–L8 denotes the mapping of the 8
logic levels of Fig. 12 and ci denotes the carry generated during the prefix addition. CoutS15S14 · · · S0 is the 17-bit sum after 22 steps.

12). In general, for n-bit addition, the number of logic levels,

l is given by

l = log2n+ 4 (4)

for PP adder of the type of Ladner-Fischer expressed in major-

ity logic [25]. Next, we map this 16-bit adder onto the 1T–1R

array following the same procedure used for mapping the 8-

bit adder (Section V-B). In the following steps, mi denotes

the output of the ith majority gate and ci the carry generated

during prefix computation. The steps are (corresponding to

Fig. 13):

1) Majority at row 4-6

2) Write (m1m1m3m5m5m7m9) at row 4

3) Write (m2m2m4m6m6m8m10) at row 5

4) Write (m3m4m5m6m7m8m9m10c1) at row 6

5) Majority at row 4-6

6) Write (m12m14m14m16m18) at row 4

7) Write (m13m15m15m17m19) at row 5

8) Write (m12m13m12m13m16m17m16m17m16m17c2c2c2)
at row 6

9) Majority at row 4-6

10) Write (m21m23m25m27m29) at row 4

11) Write (m22m24m26m28m30) at row 5

12) Write (c5c5c5c5c5c5) at row 6

13) Majority at row 4-6

14) Write (c11c11c11c11c11) at row 6

15) Majority at row 4-6

16) Write (Coutc15c14 · ·c2c1) at row 2

17) NOT at row 2

18) Write (Coutc15c14 · ·c2c1) at row 3

19) Majority at row 3-5

20) Write (m45m46 · ·m59m60) at row 1

21) Majority at row 1-3

22) Write (CoutS15S14 · ·S1S0) to the memory array.

For in-memory addition, the 7 logic levels of 8-bit adder

gets translated to 18 steps. As enumerated above, the 8

logic levels of 16-bit adder requires 22 steps. The number

of in-memory steps is always higher than the number of

logic levels because the interconnections between logic levels

become additional WRITE operations. A careful comparison

of the in-memory steps for 8-bit and 16-bit adder reveals that

each logic level gets translated to at least two steps, i.e. 2l
in-memory steps. In addition, the first few logic levels of the

carry-generate block require two more WRITE steps. This

phenomenon is true for (l-5) out of the l levels. Therefore,

the number of steps required for l logic levels of a n-bit

adder can be calculated as follows.

stepsin−memory = (2l) + 2(l − 5)

= 4l − 10

= 4(log2n+ 4)− 10

= 4 · log2n+ 6

(5)

The estimation of the array area required is straightforward–

only 6 rows are required independent of adder size. The

number of segments required is n+2. Since each segment has

8 columns, the size of the array required for n-bit addition is

6×(8n+16).

As stated, the energy for in-memory addition depends on

the characteristics of the memristive device (which varies in

each work). Therefore, we formulate the energy consumption

of our in-memory adder in analytic expressions. This will aid
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others to do qualitative comparison with our adder, in future.

From Fig. 10 and Fig. 12, we can observe that the number of

majority gates grows from 36 to 76 from 8-bit to 16-bit, while

the number of NOT gates remains the same (n NOT gates for

n-bit adder). In general, n-bit Ladner-Fischer PP adder will

require (n · log2n + n + 2) majority gates [25]. For our in-

memory implementation, each gate’s input becomes a WRITE

operation while each gate’s output becomes a READ operation

i.e. each majority gate becomes three WRITE operations and

one READ operation while each NOT gate becomes a WRITE

and a READ operation. The total energy for an n-bit adder is

therefore

Energyn−bit = EWRITE ·
(

3n · log2n+ 4n+ 6
)

+

EMAJ ·
(

n · log2n+ n+ 2
)

+ ENOT · n
(6)

where EWRITE is the energy required to write a single bit

and EMAJ and ENOT are the READ energy for majority

and NOT operations per bit. From the simulation results in

section IV-F, EWRITE ≈ 20 × EMAJ implying that the

energy consumption of our adder will be dominated by the

energy to WRITE to the array. Although our adder requires

numerous WRITE operations, writing to a 1T–1R array can

be achieved in an energy-efficient manner due to the absence

of sneak currents. Sneak currents contribute to energy leakage

and constitute a portion of the energy consumed in 1S–1R

based adders [44], [46], while the percentage of such energy

leakage is negligible in 1T–1R arrays. Overall, the proposed

adder is energy-efficient, thanks to the 1T–1R configuration.

VII. COMPARISON WITH RELATED WORKS

A. Majority gate implementation in Resistive RAM (1S–1R)

In this section, we compare our work with two other in-

memory majority gate implementation in literature. The first

method to implement majority gate is proposed in prior works

[47]–[49]. In this method, a majority gate is implemented in

a 1S–1R array by applying the two inputs of the majority

gate as voltages across ReRAM’s terminals, and the initial

state of the ReRAM (which is also the third input) switches

to evaluate majority (see Fig. 14(a)). This manner of com-

putation complicates the row/column decoders of the memory

array, which were conventionally used to select rows/columns.

Thus the peripheral circuitry will get complicated, i.e., the

row/column decoders have to be significantly modified to

do row selection (during memory operation) and to apply

the inputs (during majority operation). In contrast, in our

implementation, the row/column decoders retain their func-

tionality as in a conventional memory array, with a minor

modification (triple-row decoding capability). Furthermore,

our gate is conducive for parallel-processing since multiple

gates can be mapped to the same set of rows, while multiple

majority gates have to be mapped diagonally in [47]–[49]

(Fig. 14-(c)). This parallel-friendly nature of our majority gates

resulted in in-memory parallel-prefix adders with O(log2(n))
latency. The second implementation is the in-memory minority

gate (inverse of majority gate) proposed in [50]. The minority

gate is realized by exploiting voltage division between three

memristors (which store the inputs) and an output memristor.

All the four memristors are located in a row/column of the

array. Analysis of the functioning of such a gate with variations

(in memristor’s switching voltages and resistive states) is not

discussed in [50].
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B. Comparison with other in-memory adders

In this section, we compare our proposed in-memory addi-

tion technique with other adders/logic primitives and provide

insights regarding latency, area and energy. Table IV summa-

rizes the latency and array area required by different n-bit

in-memory adders. From Table IV, it is evident that only PP

configuration can shorten the latency drastically since for non-

PP structures, latency grows as O(n). Furthermore, even with

PP structure, majority logic-based implementation performs

better than OR/AND implementation [45]. As plotted in Fig.

15, the proposed adder is one of the fastest in-memory adders

since its latency has a logarithmic dependence on n. This was

possible because of the parallel-friendly nature of the proposed

majority gate which enabled efficient in-memory implementa-

tion. Regarding the array area, the proposed adder requires a

huge area which is to be expected since parallel-prefix adders

minimize latency at the cost of hardware resources (more gates

in parallel). Considering Figs. 11 and 13, one can observe

that only 18% of the cells in the 6×80 (6×144 for 16-bit)

area are actually used for computation. Due to sharing of SA,

the remaining cells are blocked i.e. this area cannot be used

as a regular memory during computing. Even with this huge

area requirement, n-bit adders can be realized in an array of

reasonable size (32-bit adder requires 6×272).

Conventionally, in the field of VLSI, two adders are com-

pared in terms of latency, energy and silicon area the circuit

occupies. In CMOS-based adders, the circuit is dedicated to

perform addition, but in in-memory computing, we are ‘re-

purposing’ the memory array to perform addition. Hence, the

array area an in-memory adder requires is not a significant

limiting factor since the array is already available (used as a

regular memory) and a portion of it is used for computing. As

stated, in all related works, computing capability is augmented

to the memory array by some modifications to the peripheral
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TABLE IV: Comparison of n-bit in-memory adders

Primitive Adder Type Latency Array Area Ref.

IMPLY Ripple carry 5n+18 9n [27]

IMPLY+OR Ripple carry 6n+6 11n [43]

NOR Ripple carry 10n+3 13n-3 [51]

NOR Look-Ahead 5n+8 13(n+1) [52]

OR+AND∗∗ Ripple carry 6n+1 4n [53]

ORNOR Parallel-
clocking

2n+15 6n+6 [46]

RIMP/NIMP∗ Pre-
calculation

2n+4 2n+2 [54]

OR+AND Parallel-prefix 8log2(n)+13 (5+log2(n))n [45]

Majority+NOT Parallel-prefix 4log2(n)+6 6(8n+16) This
work

∗RIMP/NIMP stands reverse implication and inverse implication in a Comple-
mentary Resistive Switch (CRS) based adder. ∗∗Memristor overwrite logic
Note: XOR-based adder of Table III is not compared here since it is not
extended to n-bit in [7]
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Fig. 15: In-memory adders with O(n) latency require hundreds of
cycles for 64-bit addition while the proposed in-memory adder will
require only 30 cycles.

circuitry of the array. The increase in the peripheral circuit area

required to perform logic operations is a significant factor to

be considered since this increase in silicon area is solely to

make the array ‘computable’. Therefore, a holistic comparison

between in-memory adders should consider both the increase

in the peripheral circuitry area and the array area (occupied

during addition), with the former being the significant factor.

In this work, the triple-row decoder is the only change (Section

IV-B) required while all the other parts of the peripheral

circuitry do not change since computing is performed using

normal memory operations (READ and WRITE).

C. Strengths and weakness of the proposed in-memory adder

The proposed in-memory adder achieves O(log(n)) latency,

which is it’s major strength. Due to the sharing of the SAs,

the area of the array required during addition grows as ≈ 48n,

which is it’s major weakness. Regarding the peripheral cir-

cuitry area, our in-memory adder necessitates a 47% increase

in row decoder area to accommodate triple-row decoding. The

energy consumption of the proposed adder is dominated by

the energy to write to the cell, which can be achieved energy-

efficiently in a 1T–1R configuration due to the absence of

sneak paths. Although the focus of this work was addition,

this work has great potential for accelerating in-memory mul-

tiplication. For example, a shift-and-add multiplier multiplies

two n-bit numbers by shifting and adding the partial products.

Since n-bit addition can be performed in O(log(n)), n-bit

multiplication can be performed in memory in O(n.log(n)).

VIII. CONCLUSION

In this work, we have proposed a new memristive logic

family based on majority logic. The majority gate can be

implemented in a 1T–1R array without necessitating any major

change in the peripheral circuit (except the row decoder which

needs to be modified to activate three rows simultaneously).

Majority logic can be combined with parallel-prefix techniques

to design fast adders, and the proposed gate can be used to

implement them in memory arrays, with O(log2(n)) latency.

In addition to accelerating computation in the array, the

proposed adder is energy-efficient since sneak currents and its

associated energy leakage is negligible in 1T–1R array. While

the proposed adder does not require major modifications to

the peripheral circuitry of ReRAM, it requires a considerable

area of the memory array since it performs parallel-processing

to minimize latency of computation.

APPENDIX

STANFORD-PKU RERAM MODEL PARAMETERS

Ea = 0.6 a0 =2.5×10−10 tox = 6×10−9 T0 = 298 K

RTH = 1500 I0 = 7×10−4 g0 =0.318×10−9 V0 = 0.35

υ0 = 0.4 γ0 = 20 β = 0.4 δ0g = 0.005

TCRIT

=450
TSMTH =500 gapmax

=1.8×10−9

gapmin

=0.85×10−9
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