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ACCELERATED AND INEXACT FORWARD-BACKWARD

ALGORITHMS

SILVIA VILLA ∗, SAVERIO SALZO † , LUCA BALDASSARRE ‡ , AND ALESSANDRO

VERRI §

Abstract. We propose a convergence analysis of accelerated forward-backward splitting methods
for composite function minimization, when the proximity operator is not available in closed form,
and can only be computed up to a certain precision. We prove that the 1/k2 convergence rate for the
function values can be achieved if the admissible errors are of a certain type and satisfy a sufficiently
fast decay condition. Our analysis is based on the machinery of estimate sequences first introduced
by Nesterov for the study of accelerated gradient descent algorithms. Furthermore, we give a global
complexity analysis, taking into account the cost of computing admissible approximations of the
proximal point. An experimental analysis is also presented.

Key words. convex optimization, accelerated forward-backward splitting, inexact proximity
operator, estimate sequences, total variation

AMS subject classifications. 90C25, 49M07, 65K10, 94A08

1. Introduction. Let H be a Hilbert space and consider the optimization prob-
lem

inf
x∈H

f(x) + g(x) =: F (x), (P)

where
H1) g : H → R is proper, lower semicontinuous (l.s.c.) and convex,
H2) f : H → R is convex differentiable and ∇f is L-Lipschitz continuous on H

with L > 0, namely

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ H.

We denote by F∗ the infimum of F . We do not require in general the infimum to be
attained, neither to be finite. It is well-known that problem (P) covers a wide range of
signal recovery problems (see [18] and references therein), including constrained and
regularized least-squares problems [27, 25, 51, 21], (sparse) regularization problems
in image processing, such as total variation denoising and deblurring (see e.g. [50, 13,
12]), as well as machine learning tasks involving nondifferentiable penalties (see e.g.
[4, 23, 42]).

The variety of applications to real life problems stimulated the search of simple
first-order methods to solve (P), which can be applied to large scale problems. In this
area, a significant amount of research has been devoted to forward–backward split-
ting methods, that allow to decouple the contributions of the functions f and g in a
gradient descent step determined by f and in a backward implicit step induced by
g [17, 18, 35]. These schemes are also known under the name of proximal gradient
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methods [61], since the implicit step relies on the computation of the so called prox-
imity operator, introduced by Moreau in [39]. Though appealing for their simplicity,
gradient-based methods often exhibit a slow speed of convergence. For this reason,
resorting to the ideas contained in the work of Nesterov [44], there has recently been
an active interest in accelerations and modifications of the classical forward-backward
splitting algorithm [61, 45, 7]. We will study the following general accelerated scheme

xk+1 = proxλkg
(yk − λk∇f(yk)),

yk+1 = c1,kxk+1 + c2,kxk + c3,kyk,
(1.1)

for suitably chosen constants ci,k, (i = 1, 2, 3, k ∈ N) and parameters λk > 0 — where
proxλkg

: H → H denotes the proximity operator associated to λkg. In particular,
choosing c3,k = 0, procedure (1.1) encompasses the popular Fast Iterative Shrinkage
Thresholding Algorithm (FISTA), whose optimal (in the sense of [43]) 1/k2 conver-
gence rate for the objective values F (xk) − F∗ has been proved in [7]. Furthermore,
the effectiveness of such accelerations has been tested empirically on several relevant
problems (see e.g. [6, 8]).

Unfortunately, the proximity operator is in general not available in exact form
or its computation may be very demanding. Just to mention some examples, this
happens when applying proximal methods to image deblurring with total variation
[12, 6, 26], or to structured sparsity regularization problems in machine learning and
inverse problems [67, 28, 33, 42, 49, 2]. In those cases, the proximity operator is
usually computed using ad hoc algorithms, and therefore inexactly. See [17] for a
list of possible approaches. In the end, the entire procedure for solving problem (P)
is constituted by two nested loops: an external one of type (1.1) and an internal
one which serves to approximately compute the proximity operator occurring in the
first row of (1.1). Hence, the problem of studying the convergence of accelerated
forward-backward algorithms under possible perturbations of proximal points arises.
In [6], FISTA is applied to the TV image deblurring problem and empirically it is
shown to possibly generate divergent sequences when the prox subproblem is solved
inexactly. However, no theoretical analysis is carried out for the role of inexactness in
the convergence and acceleration properties of the algorithm.

1.1. Main contributions. From a theoretical point of view, the contribution of
this paper is threefold: first, we show that by considering a suitable notion of admissi-
ble approximation of the proximal point, it is possible to get quadratic convergence of
the inexact version of the accelerated forward-backward scheme (1.1). In particular,
we prove that the proposed algorithm shares the 1/k2 convergence rate in the objec-
tive values if the computation of the proximity operator at the k-th step is performed
up to a precision εk, with εk = O(1/kq) and q > 3/2. This assumption clearly implies
summability of the errors, which is a common requirement in similar contexts (see e.g.
[48, 18]). We underline however that, for slower convergence rates, summability can
be avoided and the requirement εk = O(1/kq) with q > 1/2, is sufficient. The second
main contribution of the paper is the study of the global iteration complexity of (1.1),
which takes also into account the cost of computing admissible approximations of the
proximity operator. Furthermore, we show that the proposed inexactness criterion
has an equivalent formulation in terms of duality gap, that can be easily checked in
practice. This allows to handle most significant penalty terms and different algorithms
to compute the proximal point, as for instance those in [12, 19, 14]. This resolves the
issue of convergence and applicability of the two-loops algorithm for many real-life
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problems, in the same spirit of [15].

The third contribution concerns the techniques we employ to obtain the result.
The algorithm derivation relies on the machinery of the estimate sequences. Lever-
aging on the ideas developed in [52], we propose a flexible method to build esti-
mate sequences, that can be easily adapted to deal with inexactness in accelerated
forward-backward algorithms. It is worth to mention that this framework includes the
well-known FISTA [7].

Finally, we performed numerical experiments investigating the impact of errors on
the acceleration property. We also illustrate the effectiveness of the proposed notion
of inexactness on two real-life problems, making performance comparisons with the
non accelerated version, and a benchmark primal-dual algorithm.

1.2. Related Work. Forward-backward algorithms belong to the wider class
of proximal splitting methods [17]. All these methods require the computation of
the proximity operator, consequently approximations of proximal points have been
studied in a number of papers, and the following list does not claim to be exhaustive.
For non accelerated schemes, convergence in the presence of errors has been addressed
in various contexts ranging from proximal point algorithms [3, 48, 29, 34, 20, 19, 1, 59],
hybrid extragradient-proximal point algorithms [55, 56, 57, 63], generalized proximal
algorithms using Bregman distances [24, 58, 11] and forward-backward splitting [18].

On the other hand, only very recently, accelerated proximal methods under inex-
act evaluation of the proximity operator have been studied. In [31, 52] the classical
proximal point algorithm is treated (f = 0 in (1.1)). Paper [38] considers inexact ac-
celerated hybrid extragradient-proximal methods, but actually the framework is shown
to include only the case of the exact accelerated forward-backward algorithm. In [22],
convergence rates for an accelerated projected-subgradient method is proved. The case
of an exact projection step is considered, and the authors assume the availability of an
oracle that yields global lower and upper bounds on the function. Although interesting,
it leads to a slower convergence rates than proximal-gradient methods. Summarizing,
none of the studies above covers the case of accelerated inexact forward-backward
algorithms.

Finally, we mention the subsequent, but independent, work [54], where an analysis
of an accelerated proximal-gradient method with inexact proximity operator is given
too, and the same convergence rates are proved. While the accelerated scheme is very
similar (though not exactly equal1), the employed techniques are completely different.
In particular, the estimate sequences framework which motivates the updating rules
for the parameters and auxiliary sequences are not used in [54]. The inexactness notion
is different as well: our choice is more demanding, but leads to a better (weaker)
dependence on the errors decay. For instance, in [54] the authors obtain convergence
of the algorithm for εk = O(1/k1+δ), while we only need εk = O(1/k1/2+δ), and the
optimal convergence rate of the algorithm for εk = O(1/k2+δ), while Theorem 4.4
requires only εk = O(1/k3/2+δ). For a comparison between the two errors see Section
2. For completeness, in Appendix A we show that the framework of estimate sequences
can handle the type of errors considered in [54] as well, but only 1/k convergence rate
can be obtained.

Note also that none of the above mentioned papers study the rate of convergence
of the nested algorithm, as we do in Section 6.

1There, the sequence yk in (1.1), is updated by setting c3,k = 0, and the choice of the parameters
c1,k, c2,k is different too.
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1.3. Outline of the paper. In Section 2, we give a notion of admissible ap-
proximation of proximal points and discuss its applicability. Section 3 reviews the
framework of Nesterov’s estimate sequences and gives a general updating rule for
recursively constructing estimate sequences for convex problems. In Section 4, we
present a new general accelerated scheme for forward-backward splitting algorithms
and a convergence theorem under admissible approximations of proximal points. In
Section 5, we rewrite the algorithm in equivalent forms, which encompass other popu-
lar algorithms. In Section 6, we discuss the subproblem of computing inexact proximal
points and the complexity of the resulting global nested algorithm. Finally, Section
7 contains a numerical evaluation of the effect of errors in the computation of the
proximal points on the forward-backward algorithm (1.1).

2. Inexact proximal points. The algorithms analyzed in this paper are based
on the computation of the proximity operator of a convex function, introduced by
Moreau [39, 40, 41], and then made popular in the optimization literature by Martinet
[36] and Rockafellar [48, 47].

Let R = R ∪ {±∞} be the extended real line. For a proper, convex and l.s.c.
function g : H → R, λ > 0 and y ∈ H, the proximal point of y with respect to λg is
defined by setting

proxλg(y) := argmin
x∈H

{

g(x) +
1

2λ
‖x− y‖2

}

(2.1)

and the mapping proxλg : H → H is called the proximity operator of λg. If we let

Φλ(x) = g(x)+ 1
2λ‖x−y‖2, the first order optimality condition for a convex minimum

problem yields

z = proxλg(y) ⇐⇒ 0 ∈ ∂Φλ(z) ⇐⇒ y − z

λ
∈ ∂g(z), (2.2)

where ∂ denotes the subdifferential operator.
We already noted that, from a practical point of view, it is essential to replace

the proximal point with an approximate version of it.

2.1. The proposed notion. We employ here a concept of approximation of the
proximal point based on ε-subdifferential, which is indeed a relaxation of condition
(2.2). We recall that, for ε ≥ 0, the ε-subdifferential of g at the point z ∈ domg is the
set ∂εg(z) = {ξ ∈ H : g(x) ≥ g(z) + 〈x− z, ξ〉 − ε, ∀x ∈ H}.

Definition 2.1. Let ε ≥ 0. We say that z ∈ H is an approximation of proxλg(y)
with ε-precision and we write z ≅ε proxλg(y) if and only if

y − z

λ
∈ ∂ ε2

2λ

g(z). (2.3)

Note that if z ≅ε proxλg(y), then necessarily z ∈ dom g; therefore, the allowed ap-
proximations are always feasible. This notion has first been proposed, in the context
of the proximal point algorithm, in [34] and used successfully in e.g. [1, 19, 52]. A rela-
tive version of criterion (2.3) has recently been proposed for non accelerated proximal
methods in the preprint [37], which allows to interpret the (exact) forward-backward
splitting algorithm as an instance of an inexact proximal point algorithm.

Example 1. We describe the case where g is the indicator function of a closed
and convex set C, and the proximity operator is consequently the projection onto C,
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C

y

z

hǫ

Fig. 2.1. Admissible approximation of PC(y)

denoted by PC . Given y ∈ H, it holds

z ≅ε PC(y) ⇐⇒ z ∈ C and 〈x− z, y − z〉 ≤ ε2

2
∀x ∈ C. (2.4)

Recalling that the projection PC(y) of a point y is the unique point z ∈ C which
satisfies 〈x − z, y − z〉 ≤ 0 for all x ∈ C, approximations of this type are therefore
the points enjoying a relaxed formulation of this property. From a geometric point
of view, the characterization of projection ensures that the convex set C is entirely
contained in the half-space determined by the tangent hyperplane at the point PC(y),
namely C ⊆ {x ∈ X : 〈x− PC(y), y − PC(y)〉 ≤ 0}. Figure 2.1 depicts an admissible
approximation of PC(y). To check that z satisfies condition (2.4), it is enough to
verify that C is entirely contained in the negative half-space determined by the (affine)
hyperplane of equation

hε : 〈x− z,
y − z

‖y − z‖〉 =
ε2

2‖y − z‖ .

which is normal to y − z and at distance ε2/(2‖y − z‖) from z.
In the following we provide an analysis of the notion of inexactness given in

Definition 2.1, which will clarify the nature of these approximations and the scope of
applicability. To this purpose, we will make use of the duality technique, an approach
that is quite common in signal recovery and image processing applications [18, 12, 16].
The starting point is the Moreau decomposition formula [41, 18]

proxλg(y) = y − λproxg∗/λ(y/λ), (2.5)

where g∗ : H → R is the conjugate functional of g defined as g∗(y) = supx∈H(〈x, y〉 −
g(x)). In the cases where proxg∗/λ is easy to compute, formula (2.5) provides a con-
venient method to find the proximity operator of λg.

A remarkable property of inexact proximal points based on the criterion (2.3) is
that, in a sense, the Moreau decomposition still holds. If y, z ∈ H and ε, λ > 0, then,
letting η = ε/λ, it is

z ≅η proxg∗/λ(y/λ) ⇐⇒ y − λz ≅ε proxλg(y) . (2.6)

This arises immediately from Definition 2.1 and the following equivalence (see Theo-
rem 2.4.4, item (iv), in [65]):

y − λz ∈ ∂ η2λ
2

g∗(z) ⇐⇒ z ∈ ∂ ε2

2λ

g(y − λz).
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Next, we prove that the proposed inexactness criterion can be formulated in terms
of duality gap. This leads to a very natural and simple test for assessing admissible
approximations. Without loss of generality, we consider the case where g has the
following structure

g(x) = ω(Bx), (2.7)

with B : H → G a bounded linear operator between Hilbert spaces, and ω : G → R

a proper, l.s.c. convex function. The structure (2.7) often arises in regularization for
ill-posed inverse problems [13, 10, 28, 53, 67, 16]. By definition, finding proxλg(y)
requires the solution of the minimization problem

min
x∈H

ω(Bx) +
1

2λ
‖x− y‖2 = min

x∈H
Φλ(x). (2.8)

Then, Fenchel-Moreau-Rockafellar duality formula (see Corollary 2.8.5 in [65]) states
that, if ω is continuous in Bx0 for some x0 ∈ H, it holds

min
x∈H

Φλ(x) = −min
v∈G

Ψλ(v) =: m, (2.9)

where

Ψλ(v) =
1

2λ
‖λB∗v − y‖2 + ω∗(v)− 1

2λ
‖y‖2 , (2.10)

or equivalently the minimum of the duality gap is zero

0 = min
(x,v)∈H×G

Φλ(x) + Ψλ(v) =: G(x, v) . (2.11)

Moreover, if v̄ is a solution of the dual problem minv Ψλ(v), then z̄ = y−λB∗v̄ solves
the primal problem (2.8). This also means that minv G(y − λB∗v, v) = 0.

Proposition 2.2. Let η = ε/λ, v ∈ G and consider the following statements:

a) G(y − λB∗v, v) ≤ ε2/(2λ);

b) B∗v ≅η proxg∗/λ(y/λ);

c) y − λB∗v ≅ε proxλg(y).

Then, it holds a) ⇒ b) and b) ⇔ c). Furthermore they are all equivalent in case
ω∗(v) = g∗(B∗v).

Proof. Let us show that a) ⇒ b). From the definition of G it follows

G(y − λB∗v, v)

=
1

2λ

[

‖λB∗v‖2 − 2〈λB∗v, y〉
]

+
1

2λ
‖λB∗v‖2 + sup

w∈H

〈w, y − λB∗v〉 − g∗(w) + ω∗(v)

= 〈B∗v, λB∗v − y〉+ sup
w∈H

〈w, y − λB∗v〉 − g∗(w) + ω∗(v)

≥ sup
w∈H

〈w −B∗v, y − λB∗v〉 − g∗(w) + g∗(B∗v)

= sup
w∈H

−[g∗(w)− g∗(B∗v)− 〈w −B∗v, y − λB∗v〉],
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since ω∗(v) ≥ g∗(B∗v) — with all equalities in case ω∗(v) = g∗(B∗v). Therefore if
G(y − λB∗v, v) ≤ ε2/(2λ), setting η = ε/λ, it is

∀w ∈ H g∗(w)− g∗(B∗v) ≥ 〈w −B∗v, y − λB∗v〉 − η2λ

2

which is equivalent to y−λB∗v ∈ ∂η2λ/2g
∗(B∗v) and hence to B∗v ≅η proxg∗/λ(y/λ).

The equivalence of b) and c) comes directly from the inexact Moreau decomposition
formula (2.6).

Remark 1. In Proposition 2.2, the equivalence among statements a), b), c) occurs
in the following cases:

• ω is positively homogeneous. Since in that case ω∗ = δS with S = ∂ω(0) and
also g∗ = δK with K = ∂g(0) = B∗(S). Thus, if v ∈ S, it is δS(v) = δK(B∗v)
and

G(y − λB∗v, v) ≤ ε2

2λ
⇐⇒ λB∗v ≅ε PλK(y) ⇐⇒ y − λB∗v ≅ε proxλg(y) .

• B surjective. Since in that case g∗(B∗v) = supx∈H(〈Bx, v〉−ω(Bx)) = ω∗(v).
For instance, for B = id, it holds

G(y − λv, v) ≤ ε2

2λ
⇐⇒ v ≅η proxg∗/λ(y/λ) .

Summarizing, we have shown that admissible approximations in the sense of Def-
inition 2.1 can be computed by minimizing the duality gap G(y−λB∗v, v). In Section
6, we will provide a simple algorithm for doing this.

2.2. Comparison with other kinds of approximation. Other notions of
inexactness for the proximity operator have been considered in the literature. One of
the first is

d(0, ∂Φλ(z)) ≤
ε

λ
, (2.12)

which was proposed in [48], and treated also in [30].
Another notion, that we shall treat in the appendix, simply replaces the exact

minimization in (2.1) by searching for ε2/(2λ)-minima, that is

Φλ(z) ≤ inf Φλ +
ε2

2λ
. (2.13)

Condition (2.13) is equivalent to 0 ∈ ∂ε2/(2λ)Φλ(z) and implies2 ‖z − proxλg(y)‖ ≤ ε.
This type of error has been first considered in [3] and then employed for instance in
[19, 52, 66]. Paper [52] (Lemma 1) shows that criterion (2.13) is more general than
both (2.3), (2.12) and, actually, it is the combination of those error criteria. We also
note that (again from Lemma 1 in [52]) the error criterion proposed in [38, 55] for the
approximate hybrid extragradient-proximal point algorithm corresponds to a relative
version of (2.13).

Here, to help positioning the proposed criterion, we give a proposition and two
corollaries that directly link approximations in the sense of (2.3) with those in the
sense of (2.13), valid for a sub-class of functions g.

2See [52]. This accounts also for ε2 in (2.13).
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Proposition 2.3. Let g : H → R be a proper, convex and l.s.c. function and
y, z ∈ H. Suppose dom g be bounded (in norm). Then, if 0 < η ≤ diam(dom g) and
η diam(dom g) ≤ ε2/2, it holds

z ≅η proxλg(y) in the sense of (2.13) =⇒ z ≅ε proxλg(y) in the sense of (2.3) .

Proof. Thanks to Lemma 1 in [52], if (2.13) holds with ε replaced by η, then there
exist η1, η2 ≥ 0 with η21 + η22 ≤ η2 and e ∈ H, ‖e‖ ≤ η2, such that (y + e − z)/λ ∈
∂η2

1
/(2λ)g(z). Therefore, for every x ∈ dom g

λg(x)− λg(z) ≥ 〈x− z, y − z〉 − diam(dom g)η2 −
η21
2

.

Now it is easy to show that, if 0 < η ≤ diam(dom g), then

sup
η2
1
+η2

2
≤η2

(

diam(dom g)η2 +
η21
2

)

= diam(dom g)η .

Thus, if diam(dom g)η ≤ ε2/2, it holds λg(x)−λg(z) ≥ 〈x− z, y− z〉− ε2/2 for every
x ∈ dom g, which proves that (y − z)/λ ∈ ∂εg(z).

Proposition 2.3 tells us that for each ε > 0 we can get approximations of proximal
points in the sense of Definition 2.1 from approximations in the sense of (2.13) as soon
as η is chosen small enough. Combining Proposition 2.3 with (2.6), we also have

Corollary 2.4. Let g : H → R be proper, convex and l.s.c. and y ∈ H. Sup-
pose dom g∗ be bounded (in norm). For any ε > 0, if 0 < σ ≤ diam(dom g∗) and
σλ2diam(dom g∗) ≤ ε2/2, then

z ≅σ proxg∗/λ(y/λ) in the sense of (2.13) =⇒ y − λz ≅ε proxλg(y)

for every z ∈ dom g∗.
Proof. The condition on σ, given in the statement, is equivalent to

σdiam(dom g∗) ≤ η2/2

with η = ε/λ. Therefore we can apply Proposition 2.3 to the function g∗, obtaining
that for z ∈ dom g∗, it holds

z ≅σ proxg∗/λ(y/λ) in the sense of (2.13) =⇒ z ≅η proxg∗/λ(y/λ) .

Then, the inexact Moreau decomposition formula (2.6) gives y − λz ≅ε proxλg(y)

Remark 2. The hypothesis dom g∗ be bounded in Corollary 2.4 is satisfied (in
finite dimension) for many significant regularization terms, like total variation, nu-
clear norm and structured sparsity regularization and it has been consider in similar
contexts, for instance, in [14, 9]. It implies that g is Lipschitz continuous on dom g.
Indeed, for a proper, convex function g : H → R, we have

dom g∗ =
⋃

x∈H

∂εg(x)

for every ε > 0. Therefore, if dom g∗ is bounded in norm, say by M ≥ 0, it is easy to
see that |g(x1)− g(x2)| ≤ M‖x1 − x2‖+ ε for every x1, x2 ∈ dom g and ε > 0. Since
ε is arbitrary, this shows that g is in fact M -Lipschitz on the entire dom g.
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In case g is positively homogeneous, namely g(αx) = αg(x) for α ≥ 0, λg is
positively homogeneous too and (λg)∗ = δ∂(λg)(0) = δλK with K := ∂g(0). The
inexact Moreau decomposition (2.6), applied to λg, gives

z ≅ε PλK(y) ⇐⇒ y − z ≅ε proxλg(y) (2.14)

meaning that we can approximate the proximity operator of λg by means of an ap-
proximation of the projection onto the closed and convex set λK. Thus, we can further
specialize Corollary 2.4, obtaining that

z ≅σ PλK(y) in the sense of (2.13) =⇒ y − z ≅ε proxλg(y)

if σλdiamK ≤ ε2/2.

3. Nesterov’s estimate sequences. In [44], Nesterov illustrates a flexible mech-
anism to produce minimizing sequences for an optimization problem. The idea is to
recursively generate a sequence of simple functions that approximate F . In this sec-
tion, we briefly describe this method and review the general results obtained in [52]
for constructing quadratic estimate sequences when F is convex. We do not provide
proofs, referring to the mentioned works for details.

3.1. General framework. We start by providing the definition and motivation
of estimate sequences.

Definition 3.1. A pair of sequences (ϕk)k∈N, ϕk : H → R and (βk)k∈N, βk ≥ 0
is called an estimate sequence of a proper function F : H → R iff

∀x ∈ H, ∀k ∈ N : ϕk(x)− F (x) ≤ βk(ϕ0(x)− F (x)) and βk → 0. (3.1)

The next statement represents the main result about estimate sequences and explains
how to use them to build minimizing sequences and get corresponding convergence
rates.

Theorem 3.2. Let ((ϕk)k∈N, (βk)k∈N) be an estimate sequence of F and denote by
(ϕk)∗ the infimum of ϕk. If, for some sequences (xk)k∈N, xk ∈ H and (δk)k∈N, δk ≥ 0,
we have

F (xk) ≤ (ϕk)∗ + δk, (3.2)

then for any x ∈ domF

F (xk) ≤ βk(ϕ0(x)− F (x)) + δk + F (x). (3.3)

Thus, if δk → 0 (being also βk → 0), (xk)k∈N is a minimizing sequence for F , that is
limk→∞ F (xk) = F∗. If in addition the infimum F∗ is attained at some point x∗ ∈ H,
then the following rate of convergence holds true

F (xk)− F∗ ≤ βk(ϕ0(x∗)− F∗) + δk .

We point out that the previous theorem provides convergence of the sequence
(F (xk))k∈N

to the infimum of F without assuming any existence of a minimizer for
F , neither the boundedness from below. However, the hypothesis of attainability of
the infimum is required if an estimate of the convergence rate is needed.
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3.2. Construction of an estimate sequence. In this section, we review a
general procedure, introduced in [52], for generating an estimate sequence of a proper,
l.s.c. and convex function F : H → R. First of all, we deal with the generation of the
sequence of functions (ϕk)k∈N.

Denote by F(H,R) the space of functions from H to R. Given F , we define an
updating rule for functions ϕ ∈ F(H,R), depending on the choice of four parameters
(z, η, ξ, α) ∈ domF × R+ ×H× [0, 1), as

U(z, η, ξ, α) : F(H,R) → F(H,R)

U(z, η, ξ, α)(ϕ)(x) = (1− α)ϕ(x) + α(F (z) + 〈x− z, ξ〉 − η) .

Hereafter, for convenience, we will often denote the update of ϕ simply by ϕ̂, that is

ϕ̂ := U(z, η, ξ, α)(ϕ)

hiding the dependence on the parameters. The same hat notation will also be used for
other quantities: in all cases it will stand for an update of the corresponding variable.

One can see that, given ((zk, ηk, ξk, αk))k∈N, (zk, ηk, ξk, αk) ∈ domF ×R+ ×H×
[0, 1) with ξk+1 ∈ ∂ηk

F (zk+1) and an arbitrary function ϕ : H → R, the sequence
defined by setting ϕ0 = ϕ and ϕk+1 = U(zk+1, ηk, ξk+1, αk)ϕk satisfies

ϕk+1(x)− F (x) ≤ (1− αk)(ϕk(x)− F (x)) , (3.4)

and the pair ((ϕk)k∈N, (βk)k∈N), with βk =
∏k−1

i=0 (1− αi), is an estimate sequence of
F provided that

∑

k∈N
αk = +∞.

If the starting ϕ is a quadratic function written in canonical form, namely

ϕ(x) = ϕ∗ +
A

2
‖x− ν‖2, with ϕ∗ ∈ R, A > 0, ν ∈ H,

then, for an arbitrary choice of the parameters, the update ϕ̂ of ϕ introduced above
is still a quadratic function, that can be written in canonical form as ϕ̂(x) = ϕ̂∗ +
Â
2 ‖x− ν̂‖2, with























ϕ̂∗ = (1− α)ϕ∗ + αF (z) + α〈ν − z, ξ〉 − α2

2(1− α)A
‖ξ‖2 − αη

Â = (1− α)A

ν̂ = ν − α

(1− α)A
ξ.

(3.5)

This means that the subset of quadratic functions is closed with respect to the action
of the operator U(z, η, ξ, α), which therefore induces a transformation on the relevant
parameters defining their canonical form, depending of course on (z, η, ξ, α).

Next, we will need to generate a sequence (xk)k∈N satisfying inequality (3.2) and
to study the asymptotic behavior of βk. To this aim we recall two lemmas, whose
proofs are provided in [52], that will be crucial in the whole subsequent analysis.

Lemma 3.3. Let x, ν ∈ H, A > 0 and ϕ = ϕ∗ + A/2‖ · −ν‖2 be such that
F (x) ≤ ϕ∗ + δ for some δ ≥ 0. If z, ξ ∈ H, η ≥ 0 are given with ξ ∈ ∂ηF (z), defining
ϕ̂ = U(z, η, ξ, α)(ϕ), with α ∈ [0, 1) and setting y = (1− α)x+ αν, we get

(1− α)δ + η + ϕ̂∗ ≥ F (z) +
λ

2

(

2− α2

(1− α)Aλ

)

‖ξ‖2 + 〈y − (λξ + z), ξ〉
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for every λ > 0.

Lemma 3.4. Given the sequence (λk)k∈N, λk ≥ λ > 0 and A > 0, a, b > 0, a ≤ b,
define (Ak)k∈N and (αk)k∈N recursively, such that A0 = A and for k ∈ N

αk ∈ [0, 1), with a ≤ α2
k

(1− αk)Akλk
≤ b

Ak+1 = (1− αk)Ak.

Then, the sequence defined by setting βk :=
∏k−1

i=0 (1 − αi) satisfies βk = O(1/k2).
Moreover, if (λk)k∈N is also bounded from above, βk ∼ 1/k2.

4. Derivation of the general algorithm. In this section, we show how the
mechanism of estimate sequences can be used to generate an inexact version of accel-
erated forward-backward algorithms. A general theorem of convergence will also be
provided.

We shall assume both the hypotheses H1) and H2), given in the introduction, be
satisfied. The following lemma generalizes a well-known result [7] and will enable us
to build an appropriate estimate sequence.

Lemma 4.1. For any x, y ∈ H, z ∈ domg, ε ≥ 0 and ζ ∈ ∂εg(z) it holds

F (x) ≥ F (z) + 〈x− z,∇f(y) + ζ〉 − L

2
‖z − y‖2 − ε. (4.1)

In other words, ∇f(y) + ζ ∈ ∂ηF (z), with η = L/2‖z − y‖2 + ε .

Proof. Fix y, z ∈ H, since ∇f is L-Lipschitz continuous we get

f(y) ≥ f(z)− 〈z − y,∇f(y)〉 − L

2
‖z − y‖2 . (4.2)

On the other hand, being f convex, we have f(x) ≥ f(y) + 〈x − y,∇f(y)〉, which
combined with (4.2) gives

f(x) ≥ f(z) + 〈x− z,∇f(y)〉 − L

2
‖z − y‖2 . (4.3)

Since g is convex and ζ ∈ ∂εg(z), we have g(x) ≥ g(z) + 〈x− z, ζ〉 − ε, that summed
with (4.3), gives the statement.

Combining the previous Lemma 4.1 with Lemma 3.3, we derive the following
result.

Lemma 4.2. Let x, ν ∈ H, A > 0 and ϕ = ϕ∗ + A/2‖ · −ν‖2 be such that
F (x) ≤ ϕ∗ + δ for some δ ≥ 0. If z, ζ ∈ H, ε ≥ 0, λ > 0 are given with ζ ∈
∂ε2/(2λ)g(z), setting y = (1 − α)x + αν and η = L/2‖y − z‖2 + ε2/(2λ) and defining
ϕ̂ = U(z, η,∇f(y) + ζ, α)ϕ, with α ∈ [0, 1), we get

(1− α)δ +
ε2

2λ
+ ϕ̂∗ ≥ F (z) +

λ

2

(

2− α2

(1− α)Aλ

)

‖∇f(y) + ζ‖2

+ 〈y − (λ(∇f(y) + ζ) + z),∇f(y) + ζ〉 − L

2
‖y − z‖2

The next result shows how to choose ζ in order to derive an iterative procedure.
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Theorem 4.3. Fix λ > 0, ε > 0. Let x, ν ∈ H, A > 0 and ϕ = ϕ∗ +A/2‖ · −ν‖2
be such that F (x) ≤ ϕ∗ + δ for some δ ≥ 0. If α2/((1− α)Aλ) ≤ 2− λL, choosing

y = (1− α)x+ αν

x̂ ≅ε proxλg(y − λ∇f(y)), ζ =
y − x̂

λ
−∇f(y) (∈ ∂ ε2

2λ

g(x̂))

ϕ̂ = U(x̂, η,∇f(y) + ζ, α)ϕ, with η =
L

2
‖y − x̂‖2 + ε2

2λ

Â = (1− α)A

ν̂ = ν − α

Â
(∇f(y) + ζ)

δ̂ = (1− α)δ +
ε2

2λ
,

we have δ̂ + ϕ̂∗ ≥ F (x̂) +
c

2λ
‖y − x̂‖2 ≥ F (x̂) with c = 2− λL− α2/(Âλ) ≥ 0.

Proof. Applying Lemma 4.2, with z = x̂ and ζ defined above, taking into account
that y − (λ(∇f(y) + ζ) + x̂) = 0, we get

(1− α)δ +
ε2

2λ
+ ϕ̂∗ ≥ F (x̂) +

1

2λ

(

2− λL− α2

(1− α)Aλ

)

‖y − x̂‖2.

If we choose λ and α such that α2/(1− α)Aλ ≤ 2 − λL we immediately obtain the
statement of the theorem.

We are now ready to define a general accelerated and inexact forward-backward
splitting (AIFB) algorithm and to prove its convergence rate. For fixed numbers A >
0, a ∈ ]0, 2], a sequence of parameters (λk)k∈N, λk ∈ ]0, (2− a)/L] and a sequence of
errors (εk)k∈N with εk ≥ 0, we set A0 = A, δ0 = 0 and x0 = ν0 ∈ domF and for every
k ∈ N, we recursively define

αk ∈ [0, 1) such that a ≤ α2
k

(1− αk)Akλk
≤ 2− λkL

yk = (1− αk)xk + αkνk

xk+1 ≅εk proxλkg
(yk − λk∇f(yk))

Ak+1 = (1− αk)Ak

νk+1 = νk − αk

(1− αk)Akλk
(yk − xk+1)

δk+1 = (1− αk)δk +
ε2k
2λk

.

(AIFB)

Then, by setting ξk+1 = (yk−xk+1)/λk, we get two sequences (xk)k∈N and (ξk)k∈N

such that ξk+1 ∈ ∂ηk
F (xk+1), where ηk = L

2 ‖yk − xk+1‖2 + ε2k/(2λk). Therefore,
the sequence of functions (ϕk)k∈N defined as ϕk+1 = U(xk+1, ηk, ξk+1, αk)ϕk is an

estimate sequence of F provided that βk =
∏k−1

i=0 (1 − αi) → 0. The last condition
holds true due to Lemma 3.4.
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Moreover, starting from ϕ0 = F (x0) + A0/2‖ · −ν0‖2, we have δ0 + ϕ∗
0 ≥ F (x0)

and, by induction, applying Theorem 4.3, also δk + (ϕk)∗ ≥ F (xk) for every k ≥ 1. If
δk → 0, the sequence (xk)k∈N is a minimizing sequence for F .

Remark 3. To be more precise, Theorem 4.3 implies

δk+1 + ϕ∗
k+1 ≥ F (xk+1) +

ck
2λk

‖yk − xk+1‖2 with ck = 2− λkL− α2
k

(1− αk)Akλk
.

From this inequality, along the lines of the proof of Theorem 1 in [52], if x∗ is a
minimizer of F , one has

ck−1

2λk−1
‖yk−1 − xk‖2 + (F (xk)− F∗) ≤ βk(ϕ0(x∗)− F∗) + δk .

The last result shows that, if ck ≥ c > 0 (e.g. if 2 − λkL − a ≥ c > 0), being λk

bounded from above, then ‖yk−1 − xk‖ → 0.
Concerning the structure of the error term δk, it is easy to prove (see Lemma 3.3

in [30]) that the solution of the last difference equation in AIFB is given by

δk =
βk

2

k−1
∑

i=0

ε2i
λiβi+1

. (4.4)

The behavior of βk established in Lemma 3.4 allows us to impose explicit conditions
on the error sequence εk in order to get a convergent algorithm. The following theorem
is the main result of the paper.

Theorem 4.4. Consider the AIFB algorithm for a bounded sequence λk ∈ [λ, (2−
a)/L], and fixed λ ∈ ]0, 2/L[ and a ∈ ]0, 2− λL[.
Then, if εk = O(1/kq) with q > 1/2, the sequence (xk)k∈N is minimizing for F and if
the infimum of F is attained the following bounds on the rate of convergence hold true

F (xk)− F∗ =























O
(

1/k2
)

if q > 3/2

O
(

1/k2
)

+O
(

log k/k2
)

if q = 3/2

O
(

1/k2
)

+O
(

1/k2q−1
)

if q < 3/2.

Proof. Since λk ∈ [λ, (2 − a)/L], by Lemma 3.4, βk ∼ 1/k2. Hence the error δk
can be majorized as follows

δk =
βk

2

k−1
∑

i=0

ε2i
λiβi+1

≤ c

2λ(k + 1)2

k−1
∑

i=0

ε2i (i+ 1)2 ,

for a properly chosen constant c > 0. If εk = O(1/(k+1)q), the last inequality implies

δk ≤ c̃

(k + 1)2

k−1
∑

i=0

1

(i+ 1)2(q−1)
.

The sequence
∑k−1

i=0 1/(i+1)2(q−1) is convergent if q > 3/2, it is an O(log k) if q = 3/2
and an O((k + 1)3−2q) if q < 3/2.

The rates of convergence given in Theorem 4.4 hold for the function values and
not for the iterates, as usual for accelerated schemes [7, 61]. In particular, we proved
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that the proposed algorithm shares the convergence rate of the exact one, if the errors
εk in the computation of the proximity operator in (1.1) decay as 1/kq and q > 3/2.
We underline that summability of the errors is not required to get convergence, which
is guaranteed for q > 1/2. If the infimum is not achieved, it is not possible to get a
convergence rate for F (xk) − F∗, but inequality (3.3) ensures that a solution within
accuracy σ requires O(1/

√
σ) iterations if q > 3/2 and O(1/σ1/(2q−1)) if 1/2 < q <

3/2. We finally point out that the results given in Theorem 4.4 provide lower bounds
for the convergence rates of AIFB algorithm, meaning that faster empirical rates
might be observed for particular instances of problem (P).

Backtracking stepsize rule. As other forward-backward splitting schemes, the
above procedure requires the explicit knowledge of the Lipschitz constant of∇f . Often
in practice, especially for large scale problems, computing L might be too demanding.
For this reason, procedures allowing the use of a forward-backward splitting algorithm
while avoiding the computation of L have been proposed [45, 7]. In this section, we
describe how the so called backtracking procedure can be applied in our context as
well, when L is not known. The key idea is the fact that the statement of Lemma 4.1
still holds if y ∈ H, z ∈ dom g and M > 0 satisfy the inequality

f(y) ≥ f(z)− 〈z − y,∇f(y)〉 − M

2
‖z − y‖2. (4.5)

Then, a straightforward generalization of Theorem 4.3 yields the key inequality δ̂ +
ϕ̂∗ ≥ F (x̂), for y, x̂ satisfying (4.5). These two facts allow us to add a subroutine to
AIFB, denoted BT , without affecting its convergence rate. More precisely, the direct
choice of λk and αk and the computation of yk and xk+1 in AIFB is substituted at
each step by means of the following function:

(Mk, λk, αk, yk, xk+1) = BT (Mk−1, εk, xk, νk),

where Mk−1 is the current guess for L. Let γ > 1, for arbitrary M, ε, x, ν, we define
BT (M, ε, x, ν) by iteratively constructing the finite sequence ((M̃i, λ̃i, α̃i, ỹi, x̃i+1))

m
i=0,

for i ≥ 0 as
















M̃i = γiM, λ̃i ∈ ]0, (2− a)/M̃i]

α̃i ∈ [0, 1) such that a ≤ α̃2
i

(1− α̃i)Aλ̃i

≤ 2− λ̃iM̃i

ỹi = (1− α̃i)x+ α̃iν

x̃i+1 ≅ε proxλ̃ig
(ỹi − λ̃i∇f(ỹi))

We then let BT (M, ε, x, ν) = (M̃m, λ̃m, α̃m, ỹm, x̃m+1), where m is defined as

m := min{i ∈ N : f(ỹi) ≥ f(x̃i+1)− 〈x̃i+1 − ỹi,∇f(ỹi)〉 − M̃i‖x̃i+1 − ỹi‖2/2}.

Note that m is finite, since limi M̃i = +∞ (being γ > 1) and the condition (4.5) is
satisfied by any point when M ≥ L.

5. Recovering FISTA. We show that the proposed general algorithm can be
rewritten in equivalent forms, which include the well-known FISTA [7].

We prove that the sequence νk in AIFB can be eliminated, achieving a first
alternative form of the algorithm. To this purpose, let us define

ak :=
α2
k

(1− αk)Akλk
∈ [a, 2[ (5.1)
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Then, the updating rule for ν can be written as

νk+1 = νk − ak
αk

(yk − xk+1) (5.2)

From the definition of yk in AIFB, we get νk = α−1
k (yk− (1−αk)xk) and substituting

into (5.2), we have

νk+1 =
( 1

αk
− 1

)

(xk+1 − xk) +
1

αk
(1− ak)(yk − xk+1) + xk+1 .

Thus, substituting that expression of νk+1 in yk+1 = (1−αk+1)xk+1 +αk+1νk+1 and
computing the solution αk ∈ [0, 1[ of equation (5.1), AIFB can be equivalently written
as

αk =

√

(Akakλk)2 + 4Akakλk −Akakλk

2
xk+1 ≅εk proxλkg

(yk − λk∇f(yk))

yk+1 = xk+1 + αk+1

( 1

αk
− 1

)

(xk+1 − xk) + (1− ak)
αk+1

αk
(yk − xk+1)

Ak+1 = (1− αk)Ak .

(5.3)

This form depends on an extra arbitrary numerical sequence (ak)k∈N with 0 < a ≤
ak < 2 and resembles the one given in equations (34) - (36) in [61].

We can formulate the algorithm in yet another, simpler form, replacing the two
numerical sequences (αk)k∈N and (Ak)k∈N with a new one. By defining tk = 1/αk the
update tk+1 can be computed recursively. Indeed, being α2

k = akAk+1λk and taking
into account (5.1) for k + 1, we have

t2k+1 − tk+1 −
λk

λk+1

ak
ak+1

t2k = 0

which can be solved in the unknown tk+1. Therefore, a third form of the algorithm
reads as follows

tk+1 =
1 +

√

1 + 4(akλk)t2k/(ak+1λk+1)

2

xk+1 ≅εk proxλkg
(yk − λk∇f(yk))

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk) + (1− ak)

tk
tk+1

(yk − xk+1) .

(5.4)

Regarding the initialization, we highlight that we are free to choose any t0 > 1 as well
as x0 = y0 ∈ H. Indeed α0 = 1/t0 ∈ ]0, 1[ and α2

0/((1 − α0)A0λ0) = a0 holds if we
choose A0 = A = α2

0/((1− α0)a0λ0).
Remark 4. We are allowed to choose t0 = 1 in the initialization step because, as

one can easily check, with this choice we get t1 > 1 and if a0 = 1, y1 = x1. Therefore
the sequences continue as if they started from (t1, x1, y1).

The last form of the algorithm, together with Remark 4, shows that we can recover
FISTA [7, 61] by choosing ak = 1 and λk = λ ≤ 1/L, starting with t0 = 1. Moreover,
for f = 0 and ak = 2, we also obtain the proximal point algorithm given in the
appendix of [30].
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6. Study of the global nested algorithm. In this section we consider the
entire two-loops algorithm that results from the composition of AIFB with an inner
algorithm which computes the proximity operator.

6.1. Computing admissible approximations. We first cope with the com-
putation of solutions of the subproblem

z ≅ε proxλg(y) (6.1)

required by the proposed algorithm at each iteration. There are various possibilities
to solve problem (6.1). In [20, 19] a bundle algorithm returning an element z ∈ H
satisfying (6.1) is provided, and convergence in a finite number of steps is proved when
g is Lipschitz continuous over bounded sets (see Algorithm 6.1 and Proposition 6.1 in
[19]). As in Section 2, we consider the case of g(x) = ω(Bx). Proposition 2.2 allows
to state problem (6.1) as the minimization of the duality gap, in fact z := y − λB∗v
solves (6.1), if v ∈ G is such that

G(y − λB∗v, v) ≤ ε2

2λ
. (6.2)

It is evident that condition (6.2) can be explicitly checked in practice. Following the
same notations of Section 2, let v be a solution of the dual problem minΨλ and
z = y − λB∗v the solution of the primal problem (2.8). Then one has

0 ∈ B(λB∗v − y) + ∂ω∗(v),

or, equivalently, the primal solution z satisfies

Bz ∈ ∂ω∗(v). (6.3)

In the following, we show that each algorithm that produces a minimizing se-
quence for the dual function Ψλ yields a minimizing sequence for the duality gap as
well, if ω is continuous on the entire G.

Theorem 6.1. Let domω = G, (vn)n∈N be a minimizing sequence for Ψλ and set
zn = y − λB∗vn. Then it holds

zn → z , G(zn, vn) → 0 .

Moreover, if Ψλ(vn)−Ψλ(v) = O(1/np) for some p > 0, we have

‖zn − z‖ = O

(

1

np/2

)

, G(zn, vn) = O

(

1

np/2

)

. (6.4)

Proof. We claim that

1

2λ
‖zn − z‖2 ≤ Ψλ(vn)−Ψλ(v). (6.5)

To prove (6.5), first note that

1

2λ
‖λB∗vn − y‖2 − 1

2λ
‖λB∗v − y‖2 + 〈Bz, vn − v〉 (6.6)

=
1

2λ
〈λB∗(vn + v)− 2y, λB∗(vn − v)〉+ 1

2λ
〈2(y − λB∗v), λB∗(vn − v)〉

=
1

2λ
〈λB∗(vn + v)− 2λB∗v, λB∗(vn − v)〉

=
1

2λ
‖λB∗(vn − v)‖2 .
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By (6.3) we obtain ω∗(vn) − ω∗(v) − 〈Bz, vn − v〉 ≥ 0. Summing the last equation
with (6.6), we get

Ψλ(vn)−Ψλ(v) =
1

2λ
‖λB∗vn − y‖2 − 1

2λ
‖λB∗v − y‖2 + ω∗(vn)− ω∗(v)

≥ 1

2λ
‖λB∗(vn − v)‖2

=
1

2λ
‖zn − z‖2 .

Since domω = G, ω is continuous on G and hence Φλ is continuous on H. Therefore
Φλ(zn) → Φλ(z). This implies, being Φλ(z) = −Ψλ(v),

G(zn, vn) = Φλ(zn) + Ψλ(vn) → Φλ(z) + Ψλ(v) = 0 .

Now suppose that Ψλ(vn) − Ψλ(v) = O(1/np). Then, the first part of statement
(6.4) directly follows from (6.5). Regarding the rate on the duality gap, note that the
function Φλ is Lipschitz continuous on bounded sets, being convex and continuous.
Thus there exists L1 > 0 such that

Φλ(zn)− Φλ(z) ≤ L1‖zn − z‖ ≤ L1

√
2λ (Ψλ(vn)−Ψλ(v))

1/2
.

This shows that the convergence rate stated for the duality gap in (6.4) holds.
In order to compute admissible approximations of the proximal point, we can

choose any minimizing algorithm for the dual problem. A simple choice is the forward-
backward splitting algorithm (called also ISTA [7]). In this case, as done in [16], we
get the following algorithm (for an arbitrary initialization v0 ∈ G)

vn+1 = prox γn
λ ω∗

(

vn − γn
λ
B(λB∗vn − y)

)

0 < γn <
2

‖B‖2 . (6.7)

Since for this choice Ψλ(vn) − Ψλ(v) = O(1/n), this gives the rate G(zn, vn) =
O(1/

√
n) for the duality gap. We remark that the pair of sequences (y − λB∗vn, vn)

corresponds exactly to the pair (xn, yn) generated by the primal-dual Algorithm 1
proposed in [14] when applied to the minimization of Φλ(x) = g(x) + 1

2λ‖x − y‖2
(τ = λ, θ = 1).

A more efficient choice is FISTA, resulting in the rate G(zn, vn) = O(1/n). The
latter will be our choice in the numerical section. For the case of ω positively homoge-
neous (e.g. total variation), it holds ω∗ = δS , with S = ∂ω(0), and the corresponding
dual minimization problem minΨλ becomes a constrained smooth optimization prob-
lem. Then, FISTA reduces to an accelerated projected gradient descent algorithm

vn+1 = PS

(

un − γn
λ
B(λB∗un − y)

)

0 < γn ≤ 1

‖B‖2 (6.8)

un+1 = vn+1 +
tn − 1

tn+1
(vn+1 − vn),

with the usual choices for tn (see Remark 4).
Remark 5. We highlight that the results in Theorem 6.1 holds for the more

general setting of a minimization problem of the form

min
x∈X

ω(Bx) + ϕ(x)
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where domϕ = X and ϕ is strongly convex and differentiable with Lipschitz continuous
gradient.3 Indeed, in this case one has z = ∇ϕ∗(−B∗v), zn = ∇ϕ∗(−B∗vn) and the
strong convexity of ϕ∗ allows to get the analogous bound of (6.5)

1

2L
‖zn − z‖2 ≤ Ψ(zn)−Ψ(z) .

6.2. Global iteration complexity of the algorithm. Each iteration of AIFB
consists of a gradient descent step, to which we refer to as external iteration, and an
inner loop, to approximate the proximity operator of g up to a precision εk. Theorem
6.1 proves that using FISTA to solve the dual problem guarantees G(zn, vn) ≤ D/n
for a constant D > 0. This shows that ⌈2λD/ε2⌉ iterations suffice to get a solution of
problem (6.1). We note that, under the additional hypotheses ω∗(v)/‖v‖ → +∞ and
γn constant, the same number of iterations is sufficient to get the same convergence
rate for the gap, using the sequences of ergodic means computed via Algorithm 1
proposed in [14]. On the other hand, the algorithm provided in [19] reaches the same
goal in O(1/ε4) iterations.

In general, given an (internal) algorithm that solves problem (6.1) in at most

Dλ

ε2/p
, p > 0, (6.9)

iterations4, we can bound the total iteration complexity of the AIFB algorithm. From
Theorem 4.4, if we let εk := 1/kq, and take k ≥ Ne, with

Ne :=

{

⌈

(C/ε)
1

2q−1

⌉

if 1/2 < q < 3/2
⌈

(C/ε)
1
2

⌉

if q > 3/2

we have F (xk) − F∗ ≤ ε, where C > 0 is the constant masked in the rates given in
Theorem 4.4. Now for each k ≤ Ne, from the hypothesis (6.9) on the complexity of

the internal algorithm, one needs at most Dλk/ε
2/p
k = Dλkk

2q/p internal iterations to
get an approximate proximal point xk+1 in AIFB with precision εk = 1/kq. Summing
all the internal iterations from 1 to k, and if λk ≤ λ, we have

Ni =

k
∑

k=1

Dλkk
2q/p ≤ Dλ

∫ k

0

t2q/pdt =
Dλ

2q/p+ 1
k
2q/p+1

and hence

Ni =







O
(

1/ε
2q/p+1

2q−1

)

if 1/2 < q < 3/2

O
(

1/ε
2q/p+1

2

)

if q > 3/2 .

3This is equivalent to require ϕ∗ strongly convex and differentiable with Lipschitz continuous
gradient. See Theorems 4.2.1 and 4.2.2 in chapter 4 of [32].

4The constant D in general depends on the starting point and the problem solution set, and at
the end by y. If domω∗ is bounded, D can be chosen independently on y, since for most algorithms
it is majorized by diam(domω∗).



ACCELERATED AND INEXACT FORWARD-BACKWARD ALGORITHMS 19

Adding the costs of internal and external iterations together, the global complexity
Cg of the two loops algorithm is

Cg = ciNi + ceNe =







O
(

1/ε
2q/p+1

2q−1

)

+O
(

1/ε
1

2q−1

)

if 1/2 < q < 3/2

O
(

1/ε
2q/p+1

2

)

+O
(

1/ε
1
2

)

if q > 3/2 .
(6.10)

where ci and ce denotes the unitary costs of each type of iteration. From the estimates
above, one can easily see that, in each case, the lower global complexity is reached for
q → 3/2 and it is

Cg = O(1/ε
p+3

2p +δ)

for whatever small δ > 0. For p = 1, as it is the case of algorithm (6.8), one obtains a
complexity of O(1/ε2+δ). For p = 1/2, which corresponds to the rate of the algorithm
studied in [19], we have a global complexity of O(1/ε7/2+δ). We finally note that for
p → +∞ we have a complexity of O(1/ε1/2+δ): in other words the global rate of
convergence tends to 1/N2, in the total number N of iterations, and the algorithm
behaves once more as an accelerated method.

We remark that the analysis of the global complexity given above is valid only
asymptotically, since we did not estimate any of the constants hidden in theO symbols.
However, in real situations constants do matter and, in practice, the most effective
accuracy rate q is problem dependent and might be different from 3/2, as we illustrate
in the experiments of Subsection 7.3.

7. Numerical Experiments. In this section, we present two types of experi-
ments. The first one is designed to illustrate the influence of the errors on the behavior
of AIFB and on its non accelerated counterpart ISTA. The second one is meant to
measure the performance of the two loops algorithm AIFB+algorithm (6.8), in com-
parison with ISTA+algorithm (6.8), and with the primal-dual algorithm proposed in
[14].

7.1. Experiments setup. In all the following cases, we consider the regularized
least-squares functional

F (x) :=
1

2
‖Ax− y‖2Y + g(x) , (7.1)

where H,Y are Euclidean spaces, x ∈ H, y ∈ Y, A : H → Y is a linear operator and
g : H → R is of type (2.7). In all cases ω will be a norm and the projection onto
S = ∂ω(0) will be explicitly computable.

We minimize F using AIFB in the equivalent form (5.4), with λk = λ = 1/L,
where L = ‖A∗A‖. We use ak = 1 (corresponding to FISTA), since we empirically
observed that the choice of ak, if independent of k, does not significantly influence the
speed of convergence of the algorithm (although preliminary tests revealed a slightly
better performance for ak = 0.8). At each iteration, we employ algorithm (6.8) to
approximate the proximity operator of g up to a precision εk. The stopping rule for
the inner algorithm is given by the duality gap, according to Proposition 2.2, item
a). Following Theorem 4.4, we consider sequences of errors of type εk = C/kq, with
q, hereafter referred as accuracy rate, chosen between 0.1 and 1.7. The coefficient C
should be comparable to the magnitude of the duality gap. In fact, it determines the
practical constraint on the duality gap at the first iterations: the constraint should be
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active, but not too demanding to avoid unnecessary precision. We choose C by solving
the equation G(y0−λ∇f(y0), 0) = C2/(2λ) where G is the duality gap corresponding
to the first proximal subproblem encountered in AIFB for k = 0, evaluated at v0 = 0.
We finally consider an “exact” version, obtained by solving the proximal subproblems
at the machine precision.

We analyze two well-known problems: deblurring with total variation regulariza-
tion and learning a linear estimator via regularized empirical risk minimization with
the overlapping group lasso penalty. The numerical experiments are divided in two
parts. In the first one, we evaluate the impact of the errors on the convergence rate of
AIFB and the (non accelerated) forward-backward splitting (here denoted as ISTA).
The plot of the relative objective values (F (xk)−F∗)/F∗ against the number of exter-
nal iterations for different accuracy rates on the error is shown. We underline that this
study is independent of the algorithm chosen to produce an admissible approximation
of the proximal points.

In the second part, we assess the overall behavior of the two-loops algorithm, as
described in Section 6, using algorithm (6.8) to solve the proximal subproblems. We
compare it with the non accelerated version (ISTA) and the Primal-Dual (PRIDU)
algorithm proposed by [14] for image deconvolution. For all algorithms we provide
CPU time, and the number of external and internal iterations for different precisions.
Note that the cost of each external iteration relies mainly in the evaluation of the
gradient of the quadratic part of the objective function (7.1). The internal iteration
has a similar form, but being the matrix B sparse and structured in both experiments,
can be implemented in a fast way. All the numerical experiments have been performed
in MATLAB environment5, on a a desktop iMac with Intel Core i5 CPU, 2,5 Ghz,
6MB cache L3, and 6 GB of RAM.

7.1.1. Deblurring with Total Variation. Regularization with the Total Vari-
ation [50, 12, 6] is a widely used technique for deblurring and denoising images, that
preserves sharp edges.

In this problem, H = Y = R
N×N is the space of (discrete 2D) images on the grid

[1, N ]2, A is a linear map representing some blurring operator [6] and y is the observed
noisy and blurred datum. The (discrete) total variation regularizer is defined as

g = ω ◦ ∇ g(x) = τ

N
∑

i,j=1

‖(∇x)i,j‖2

where ∇ : H → H2 is the (discrete) gradient operator (see [12] for the precise defini-

tion) and ω : H2 → R, ω(p) = τ
∑N

i,j=1 ‖pi,j‖2 with τ > 0 a regularization parameter

and ‖·‖2 the euclidean norm in R
2. Note that the matrix corresponding to ∇ is highly

sparse (it is bidiagonal). This feature has been taken into account to get an efficient
implementation.

We followed the same experimental setup as in [6]. We considered the 256× 256
Lena test image, blurred by a 9×9 Gaussian blur with standard deviation 4, followed
by additive normal noise with zero mean and standard deviation 10−3. The regular-
ization parameter τ was set to 10−3. Since the blurring operator A is a convolution
operator, in the implementation it is common to evaluate it by an FFT based method
(see e.g. [6, 14]).

5The code is available upon request to the authors
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7.1.2. Overlapping group lasso. The group lasso penalty is a regularization
term for ill-posed inverse problems arising in statistical learning [64, 33], image pro-
cessing and compressed sensing [46], enforcing structured sparsity in the solutions.
Regularization with this penalty consists in solving a problem of the form (7.1), where
H = R

p, Y = R
m, A is a data or design matrix and y is a vector of outputs or mea-

surements. Following [33], the overlapping group lasso (OGL) penalty is

g(x) = τ

r
∑

i=1





∑

j∈Ji

(wi
j)

2x2
j





1/2

, (7.2)

where J = {J1, . . . , Jr} is a collection of overlapping groups of indices such that
⋃r

i=1 Ji = {1, . . . , p}. The weights wi
j are defined as

wi
j =

(

1

2

)ai
j

, with aij = #{J ∈ J : j ∈ J, J ⊂ Ji, J 6= Ji}.

This penalty can be written as ω ◦B, with B = (B1, . . . , Br) : R
p → R

J1 × . . .RJr ,

Bi : R
p → R

Ji , Bix = (wi
jxj)j∈Ji ,

and ω : RJ1 × . . .RJr → R, ω(v1, . . . , vr) = τ
∑r

i=1 ‖vi‖2, where ‖ · ‖2 is the euclidean
norm in R

Ji .
The matrix A and the datum y are generated from the breast cancer dataset

provided by [62]. The dataset consists of expression data for 8, 141 genes in 295 breast
cancer tumors (78 metastatic and 17 non-metastatic). The groups are defined accord-
ing to the canonical pathways from MSigDB [60], that contains 639 groups of genes,
637 of which involve genes from the breast cancer dataset. We restrict the analysis
to the 3510 genes that are contained in at least one group. Hence, our data matrix A
consists of 295 different expression levels of 3510 genes. The output vector y contains
the labels (±1, metastatic or non-metastatic) of each sample. The structure of the
overlapping groups gives rise to a matrix B of size 15126 × 3510. Despite the high
dimensionality, one can take advantage of its sparseness. We analyze two choices of
the regularization parameter: τ = 0.01 and τ = 0.1.

7.2. Results - Part I. We run AIFB and its non-accelerated counterpart, ISTA,
up to 2.000 external iterations. With the aim of maximizing the effect of inexactness,
we require algorithm (6.8) to produce solutions with errors close to the upper bounds
ǫ2k/2λ prescribed by the theory. We achieve this by reducing the internal step-size
length γn and using cold restart, i.e. initializing at each step algorithm (6.8) with
v0 = 0.

As a reference optimal value, F∗, we use the value found afters 10, 000 iterations
of AIFB with error rate q = 1.7.

As shown in Fig. 7.1, the empirical convergence rate of (F (xk)−F∗)/F∗ is indeed
affected by the accuracy rate q: to smaller values of q correspond slower convergence
rates both for AIFB and the inexact (non-accelerated) forward-backward algorithm.
When the errors in the computation of the proximity operator do not decay fast
enough, the convergence rates are much deteriorated and the algorithms can even
not converge to the infimum. If the errors decay sufficiently fast, AIFB shows a faster
convergence w.r.t. ISTA in both experiments. In contrast, this is not true for accuracy
rates q < 1, where ISTA has practically the same behavior of AIFB.
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Fig. 7.1. Impact of the errors on AIFB and ISTA. Loglog plots of relative objective value
vs external iterations, k, obtained for TV deblurring (upper row) and the OGL problem with regular-
ization parameter τ = 10−1 (bottom row). The AIFB and inexact ISTA for different accuracy rates
q in the computation of the proximity operator are shown in the left and right column, respectively.
For larger values of the parameter q the curves overlap. It can be seen from visual inspection, that
the errors affect the acceleration.

Moreover, it turns out that AIFB is more sensitive to errors then ISTA. This
is more evident in the experiment on TV deblurring. Indeed, for AIFB most curves
corresponding to the different accuracy rates are well separated, while for ISTA they
are closer to each other, and often completely overlapped. Yet, the overlapping phe-
nomenon in general starts earlier (lower q) for ISTA than AIFB, indicating that no
gain is obtained in increasing the accuracy error rates over a certain level, in accor-
dance to the theoretical results.

7.3. Results - Part II. This section is the empirical counterpart of Subsection
6.2. Here, we test the global iteration complexity of AIFB and inexact ISTA combined
with algorithm (6.8) on the two problems described above. We provide the number of
external iterations and the total number of inner iterations. When taking into account
the cost of computing the proximity operator, there is a trade-off between the number
of external and internal iterations. Since internal and external iterations in general
have different computational costs — which depend on the specific problem considered
and the machine CPU — the total number of iterations is not a good measure of the
algorithm’s performance. For instance, on our computer, the ratio between the cost
of the external and internal iteration is about 2.15 in the TV deblurring and 2.5
in the OGL problem. Therefore, we also report the CPU time needed to reach a
desired accuracy for the relative difference to the optimal value. In this part, we use
the warm-restart procedure, consisting in initializing algorithm (6.8) with the solution
obtained at the previous step. We empirically observed that this initialization strategy
drastically reduces the total number of iterations and speeds up the algorithm.
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Table 7.1

Deblurring with Total Variation regularization, τ = 10−3. Performance evaluation of
AIFB, ISTA and PRIDU, corresponding to different choices of the parameters q and σ, respectively.
Concerning AIFB and ISTA, the results are reported only for the q’s giving the best results. The
entries in the table refer to the CPU time (in seconds) needed to reach a relative difference w.r.t. to
the optimal value below the thresholds 10−4, 10−6 and 10−8, the number of external iterations (#
Ext), and the total number of internal interations (# Int).

Precision 10−4 10−6 10−8

Algo Time # Ext # Int Time # Ext # Int Time # Ext # Int

AIFB

q = 1 11.8 137 1062 124.2 905 12313 1750 8776 182006

q = 1.3 16.2 118 1600 63.6 387 6437 272.1 1300 28350

q = 1.5 26.0 117 2734 98.7 373 10540 414.5 1085 45297

ISTA

q = 0.1 36.9 1341 1341 147.2 5346 5346 635.4 23031 23031

q = 0.8 36.9 1341 1341 147.2 5346 5346 635.4 23031 23031

q = 1.0 63.2 1337 4533 189.9 5226 11126 745.1 18224 48333

PRIDU

σ = 10 7.4 362 - 165.7 8186 - 4684 231848 -

σ = 12.5 6.2 310 - 132.2 6609 - 3715 185588 -

We compare AIFB and ISTA with PRIDU taken as a benchmark, since it often
outperforms state-of-the-art methods, in particular for TV regularization (see the
numerical section in [14]).

Algorithm PRIDU depends on two parameters6 σ, ρ > 0. In our experiments, we
tested two choices, indicated by the authors (in the paper and code as well) for the
image deblurring and denoising problem: σ = 10 and ρ = 1/(σ‖B‖2), and ρ = 0.01
(corresponding to σ = 1/(ρ‖B‖2) = 12.5 for the TV problem and σ ≅ 1.07 for the
OGL problem). We implemented the algorithm also for the OGL problem and, as
a consequence of preliminary tests, the same choices of parameters turn out to be
appropriate too.

On the other hand, AIFB and ISTA, depend on the accuracy rate q. We verified
that the best empirical results are obtained choosing q in the range [1, 1.5] for AIFB
and [0.1, 0.5] for ISTA. This once more confirms the higher sensitivity to the errors of
the accelerated version w.r.t. the basic one. In the tables, we detail the results only
for most significant choices of q. We remark that the “exact” version of AIFB (and
ISTA), where the prox is computed at machine precision at each step, is not even
comparable to the results we reported here.

As concerns the TV problem, AIFB (q = 1.3 or q = 1.5) outperforms both PRIDU
and ISTA, for high precisions. PRIDU exhibits a fast convergence at the beginning,
but then explodes in correspondence of higher precisions, for both choices of σ. This
is a known drawback of primal-dual algorithms with fixed step-size (see e.g. [9]).

The behavior on the OGL problem is presented for two choices of the regular-
ization parameter, since this heavily influence the results. For τ = 0.1 and precision
10−4, AIFB is the fastest. For the middle precision, all the algorithms’ performances
are comparable. For the highest precision, PRIDU and ISTA perform better. We
notice the very good behavior of ISTA, which is probably due to the warm-restart

6Denoted σ and τ in [14]
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Table 7.2

Breast cancer dataset: Overlapping Group Lasso, τ = 10−1. Performance evaluation of
AIFB, ISTA and PRIDU, corresponding to different choices of the parameters q and σ, respectively.
Concerning AIFB and ISTA, the results are reported only for the q’s giving the best results. The
entries in the table refer to the CPU time (in seconds) needed to reach a relative difference w.r.t. to
the optimal value below the thresholds 10−4, 10−6 and 10−8, the number of external iterations (#
Ext), and the total number of internal interations (# Int).

Precision 10−4 10−6 10−8

Algo Time # Ext # Int Time # Ext # Int Time # Ext # Int

AIFB

q = 1 3.9 104 3985 41.5 983 42239 414.1 9748 421769

q = 1.3 2.1 51 2103 11.2 247 11389 60.4 1179 61915

q = 1.5 2.8 50 2857 16.2 199 16945 61.3 548 64518

ISTA

q = 0.1 5.3 1675 1682 10.7 3421 3428 16.0 5124 5131

q = 0.3 5.2 1613 1730 10.3 3246 3363 15.9 5065 5182

q = 0.5 4.4 1217 1827 9.5 2850 3460 14.9 4603 5213

q = 0.8 7.0 585 6092 15.5 2218 11264 19.8 3599 12645

q = 1 12.4 535 12031 26.6 1236 25547 42.1 3606 36508

PRIDU

σ = 10 10.5 2901 - 25.4 7040 - 47.4 13141 -

σ = 1.07 5.8 1602 - 11.0 3026 - 16.1 4452 -

Table 7.3

Breast cancer dataset: Overlapping Group Lasso, τ = 10−2. See caption of Table 7.2.

Precision 10−4 10−6 10−8

Algo Time # Ext # Int Time # Ext # Int Time # Ext # Int

AIFB

q = 0.8 11.8 443 11392 74.4 2651 72109 1124 39699 1089732

q = 1 12.1 432 11616 44.8 1581 43191 170.9 6004 164849

q = 1.3 27.0 431 27311 126.9 1572 129708 502.9 4687 518492

q = 1.5 62.0 431 64351 312.5 1572 325868 1303 4686 1362149

ISTA

q = 0.1 34.9 11125 11125 69.4 22111 22111 112.3 35782 35782

q = 0.3 34.9 11125 11125 69.4 22111 22111 112.3 35782 35782

q = 0.5 35.6 11124 11946 70.1 22109 22931 113.0 35781 36603

q = 0.8 133.7 11095 114686 218.3 21883 178405 273.2 35781 203992

q = 1 335.7 11093 348408 659.7 21818 643374 882.9 33075 851890

PRIDU

σ = 10 21.8 5625 - 44.6 11529 - 82.5 21346 -

σ = 1.07 4.6 1178 - 24.7 6407 - 827.5 214558 -

strategy combined with the greater stability of ISTA against the errors. Finally, on
the OGL with τ = 0.01, AIFB still accelerates ISTA at the lower precisions if q is
properly tuned, though at the end ISTA wins. The PRIDU algorithm suffers of the
same drawbacks remarked in the TV experiment for σ = 1.07, but exhibits an overall
good performance with σ = 10.

Summarizing, the performance of algorithm AIFB combined with (6.8) and warm
restart is comparable with state-of-the-art algorithms, being sometimes better. To this
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purpose, the experiments also give some guidelines for choosing the parameter q. We
also show situations where the acceleration is lost, in particular referring to high
precision.

Appendix A. Accelerated FB algorithms under error criterion (2.13).
We give here a discussion of the behavior of algorithm AIFB using approximations

in the sense of (2.13): this is the error considered in [54]. More precisely, the subsequent
analysis shows that if at each step of AIFB xk+1 is computed with accuracy εk, with
εk = O(1/kq) with q > 3/2, relying on our techniques we are able to obtain the
following convergence rates on the objective values:

F (xk)− F∗ =











O (1/k) if q > 2

O
(

log2 k/k
)

if q = 2

O
(

1/k2q−3
)

if q < 2.

These results are weaker that the ones given in Theorem 4.4. This is in line with
what was obtained in [52], whereas, as mentioned before, the techniques employed in
[54] allow to get the rate of convergence O(1/k2).

Let us consider Lemma 4.2, where we re-denominates y by t and z by x̂. Let
ϕ = ϕ∗ + A

2 ‖ · −ν‖2 and x ∈ H with F (x) ≤ ϕ∗ + δ and x̂, ζ ∈ H with ζ ∈ ∂ ε2
1

2λ

g(x̂).

Then, setting t = (1 − α)x + αν and ϕ̂ = U(x̂, L
2 ‖t − x̂‖2 + ε21

2λ ,∇f(t) + ζ, α)ϕ, the
conclusion can be equivalently written as

(1− α)δ +
ε21
2λ

+ ϕ̂∗ ≥ F (x̂)− 1

2λ

{ α2

(1− α)Aλ
‖λ(∇f(t) + ζ)‖2

− 2〈t− x̂, λ(∇f(t) + ζ)〉+ Lλ‖t− x̂‖2
}

.

Thus if we assume α2

(1−α)Aλ ≤ 1 and λL ≤ 1, we have

(1− α)δ +
ε21
2λ

+ ϕ̂∗ ≥ F (x̂)− 1

2λ
‖t− x̂− λ(∇f(t) + ζ)‖2 . (A.1)

Now let us take u ∈ H with ‖u − ν‖ ≤ η, thus u = ν − ∆ and ‖∆‖ ≤ η (u is
considered as a perturbed center of the quadric ϕ), and set t = (1 − α)x + αν and
y = (1− α)x+ αu (perturbed). Clearly y = t− α∆, hence ‖y − t‖ ≤ αη. Let

x̂ ≅ε proxλg(y − λ∇f(y)) in the sense of (2.13) .

Then from Lemma 1 in [52], it is

ζ :=
y − λ∇f(y)− x̂− e

λ
∈ ∂ ε2

1
2λ

g(x̂), ‖e‖ ≤ ε2, ε21 + ε22 ≤ ε2 (A.2)

and if we set h = −(∇f(t)−∇f(y)), we have

ζ =
y − x̂− e

λ
−∇f(y) =

t− x̂− (α∆+ e)

λ
−∇f(t)− h .

We have ‖h‖ = ‖∇f(t)−∇f(y)‖ ≤ L‖t− y‖ ≤ Lαη and

λ(∇f(t) + ζ) = t− x̂− (ê+ λh), (A.3)
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where we set ê = e+α∆ for brief. We can therefore apply the conclusion (A.1). Thus

if ϕ̂ = U(x̂, L
2 ‖t− x̂‖2 + ε21

2λ ,∇f(t) + ζ, α)ϕ, we get

(1− α)δ +
ε21
2λ

+ ϕ̂∗ ≥ F (x̂)− 1

2λ
‖ê+ λh‖2

= F (x̂)− 1

2λ
‖e+ (t− y)− λ(∇f(t)−∇f(y))‖2

Now taking into account the Baillon-Haddad theorem [5], we have

‖e+ (t− y)− λ(∇f(t)−∇f(y))‖ ≤ ‖e‖+ ‖(I − λ∇f)(t)− (I − λ∇f)(y)‖ ≤ ε2 + αη .

Therefore reordering the inequality above, it holds

(1− α)δ +
1

2λ
(ε21 + (ε2 + αη)2) + ϕ̂∗ ≥ F (x̂) .

But, taking into account the third inequality in (A.2), it is

(ε+ αη)2 = ε2 + (αη)2 + 2εαη ≥ ε21 + ε22 + (αη)2 + 2ε2αη = ε21 + (ε2 + αη)2.

Thus we finally obtain

(1− α)δ +
(ε+ αη)2

2λ
+ ϕ̂∗ ≥ F (x̂) .

To conclude, we need only to evaluate the quantity ‖û − ν̂‖, where û and ν̂ are the
updating of the centers u, ν, which, taking into account formula (3.5), are defined as
follows











ν̂ = ν − α

λ(1− α)A
λ(∇f(t) + ζ) (t and ζ are unknowns);

û = u− α

λ(1− α)A
(y − x̂) (y and x̂ are known quantities).

Evidently, taking into account (A.3) and that y = t− α∆ and ê = e+ α∆, it is

ν̂ = ν − α

λ(1− α)A
[y − x̂− (e+ λh)]

= u− α

λ(1− α)A
(y − x̂) + ∆ +

α

λ(1− α)A
(e+ λh)

= û+
1

α

[

α∆+
α2

λ(1− α)A
(e+ λh)

]

If we set for brief γ := α2/(λ(1− α)A), then

ν̂ = û+
1

α
(γe+ (t− y)− γλ(∇f(t)−∇f(y)))

and if we suppose γ ≤ 1, we have

‖γe+ (t− y)− γλ(∇f(t)−∇f(y))‖ ≤ ε2 + ‖(t− y)− γλ(∇f(t)−∇f(y))‖ ≤ ε+ αη,

where we took into account again the Baillon-Haddad theorem. Concluding our proof,
if we set η̂ = η + ε/α, it holds

(1− α)δ +
(αη̂)2

2λ
+ ϕ̂∗ ≥ F (x̂), ‖v̂ − û‖ ≤ η̂ .
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Thus, the errors behaves exactly in the same manner as in Theorem 3 of [52] and
hence we can get the same conclusion of the subsequent Theorem 4. We note also
that we required only α2/(λ(1− α)A) ≤ 1 and λL ≤ 1.
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