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Highly efficient and even nearly optimal algorithms have
been developed for the classical problem of univariate poly-
nomial root-finding (see, e.g., [6], [7], [4], and the bibliogra-
phy therein), but this is still an area of active research. By
combining some powerful techniques developed in this area
we devise new nearly optimal algorithms, whose substantial
merit is their simplicity, important for the implementation.

We first recall the basic concept of the isolation ratio, cen-
tral also for [6], [7]. Assume a real or complex polynomial

p = p(x) =
∑d

i=0 pix
i = pn

∏d

j=1(x − zj), pd 6= 0, of de-

gree d, an annulus A(X,R, r) = {x : r ≤ |x − X| ≤ R} on
the complex plane with a center X and the radii r and R of
the boundary circles. Then the internal disc D(X, r) = {x :
|x − X| ≤ r} is R/r-isolated and R/r is its isolation ratio

if the polynomial p has no roots in the annulus. Next we
reproduce [13, Corollary 4.5]. It shows that Newton’s iter-
ation converges quadratically to a single simple root of p if
is initiated at the center of a 5d2-isolated disc that contains
just this root.

Theorem 1. Suppose both discs D(c, r) and D(c, r/s) for

s ≥ 5d2 contain a single simple root α of a polynomial p =
p(x) of degree d. Then Newton’s iteration

xk+1 = xk − p(xk)/p
′(xk), k = 0, 1, . . . (1)

converges quadratically to the root α right from the start

provided x0 = c.

Now suppose that we are given a disc with a single simple
zero of p having an isolation ratio 1 + η for a fixed constant
η > 0. Can we increase the ratio to 5d2? Yes, we just need
to apply a technique already used in [15] for the computation
of the power sums of the roots lying inside such a disc. In
our case this is a single root, the power sum is the root itself,
and we just need its approximation c within an error at most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

∆ such that rη/∆ ≥ 5d2. Indeed in this case ∆ ≤ 0.2rη/d2,
and so the disc D(c,∆) is 5d2-isolated.
We can shift and scale the variable x, and so wlog we as-

sume dealing with a (1 + t)2-isolated disc D(0, r) for r =
1/(1 + t) for a fixed t > 0, and with polynomial p having a
single simple root z1 in this disc. Recall the Laurent expan-
sion,

p′(x)

p(x)
=

d∑

j=1

1

x− zj
= −

∞∑

k=1

Skx
k−1 +

∞∑

k=0

skx
−k−1

=

∞∑

h=−∞

chx
h.

(2)

Here |x| = 1, s0 = 1, sk = zk1 , Sk =
∑d

i=2 z−k
i , k = 1, 2, . . .

Consequently sk = zk1 , whereas Sk is the kth power sum of
the zeros of the reverse polynomial prev(x) that lie in the disc
D(0, r). The leftmost equation of (2) is verified by the dif-

ferentiation of p(x) = pn
∏d

j=1(x−zj). The middle equation

is implied by the decompositions 1
x−z1

= 1
x

∑∞

h=0

(
z1
x

)h
and

1
x−zi

= − 1
zi

∑∞

h=0

(
x
zi

)h

for i > 1, provided |x| = 1 for all

i.
We cover the case of any positive integer k, although we

only need the case where k = 1. For a fixed positive integer
q we compute the approximations s∗k ≈ sk as follows,

s∗k =
1

q

q−1∑

j=0

ωj(k+1)p(ωj)/p′(ωj), k = 1, 2, . . . , q − 1. (3)

Here ω = ωq = exp(2π
√
−1/q) is a primitive qth root of

unity. Then the evaluation of the polynomial p(x) at the qth
roots of unity amounts to the same task for a polynomial
pq(x) of degree at most q − 1 with the coefficients pq,i =∑l

j=0 pi+jq for l = ⌊d/q⌋ obtained by means of less than d
additions of the coefficients of p.
Having computed the polynomial pq(x) we reduce the eval-

uation of all the desired approximations s∗k for k = 1, . . . , q−
1 essentially to performing three DFTs, each on q points,
that is to a total of O(q log(q)) ops. Namely, we apply two
DFTs to compute p(ωi) and p′(ωi) for i = 0, 1, . . . , q−1 and
a single DFT to multiply the DFT matrix Ω = [ωhi]q−1

h,i=0 by

the vector v = [p(ωi)/p′(ωi]q−1
i=0 .
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Let us estimate the approximation errors. Equations (2)
and (3) imply that

s∗k =

+∞∑

l=−∞

c−k−1+lq.

Moreover, (2) for h = −k−1, k ≥ 1 implies that sk = c−k−1,
whereas (2) for h = k − 1, k ≥ 1 implies that Sk = −ck−1.
Consequently

s∗k − sk =

∞∑

l=1

(clq−k−1 + c−lq−k−1).

We assumed in (3) that 0 < k < q − 1. It follows that
c−lq−k−1 = slq+k and clq−k−1 = −Slq−k for l = 1, 2, . . ., and
we obtain

s∗k − sk =
∞∑

l=1

(slq+k − Slq−k). (4)

On the other hand |sh| ≤ zh, |Sh| ≤ (d− 1)zh, h = 1, 2, . . .
where z = max1≤j≤d min(|zj |, 1/|zj |), and so z ≤ 1

1+t
in our

case. Substitute these bounds into (4) and obtain |s∗k−sk| ≤
(zq+k + (d − 1)zq−k)/(1 − zq). Therefore it is sufficient to
choose q of order log(d) to decrease the error of the approx-
imation to the root z1 by a factor of gdh for any pair of
constants g and h, and so we can ensure the desired error
bound ∆. To support this computation we only need less
than d additions, followed by O(log(d)) evaluations of the
polynomial pq(x) of degree q − 1 at the lth roots of unity
for l = O(log(d)). This involves O(log(d) log(log(d))) ops
overall. (Here and hereafter “ops” stand for “arithmetic op-
erations”.) Summarizing we obtain the following estimates.

Theorem 2. Suppose the unit disc D(0, r) = {x : |x| ≤ 1}
is (1 + η)2-isolated for (1 + η)r = 1 and a fixed η > 0 and

contains a single simple root z of a polynomial p = p(x)
of a degree d. Then it is sufficient to apply less than d
additions and O(log(d) log(log(d))) other ops to compute a

5d2-isolated subdisc of D(0, r) containing this root.

Combine Thm. 1 and 2 and obtain the following result.

Corollary 3. Under the assumptions of Theorem 2 we can

approximate the root z of the polynomial p(x) within a fixed

positive error bound ǫ < 1 by using O(log(d) log(log(d)) +
d log(log(1/ǫ))) ops.

Corollary 4. Suppose that we are given d discs, each con-

taining a single simple root of a polynomial p = p(x) of

degree d and each being (1 + η)2-isolated for a fixed η >
0. Then we can approximate all d roots of this polyno-

mial within a fixed positive error bound ǫ < 1 by using

O(d log2(d)(1 + log(log(1/ǫ)))) ops.

Proof: Apply the same algorithm that supports Corollary 3
concurrently in all d given discs, but instead of the qth roots
of unity use q equally spaced points at the boundary circle
of each input disc (that is dq = O(d log d) points overall)
and instead of FFT apply the Moenck–Borodin algorithm
for multipoint polynomial evaluation. Also use it at the
stage of performing concurrent Newton’s iteration initial-
ized at the centers of the 5d2-isolated subdiscs of the d input
discs, each subdisc computed by the algorithm that supports
Theorem 2. Here we work with the dth degree polynomial

p rather than with the qth degree polynomials pq because
to support transition to polynomials pq of the degree q for
d discs we would need to perform d shifts and scalings of
the variable x. Instead we employ the Moenck–Borodin al-
gorithm, which still enables us to obtain a nearly optimal
root-refiner. Technically, in a relatively minor change of our
algorithm, we replace the matrix Ω = [ωj(k+1)]j,k in (3) by

the matrix [c+ ωj(k+1)]j,k = c[1]j,k + Ω where c is invariant
in j and k. The multiplication of the new matrix by a vec-
tor v is still reduced to multiplication of the matrix Ω by a
vector v with the additional 3d ops for computing the vector
c[1]j,kv and adding it to the vector Ωv. �

The Moenck–Borodin algorithm uses nearly linear arith-
metic time, and [2] proved that this algorithm supports mul-
tipoint polynomial evaluation at a low Boolean cost as well
(see also [14], [10], [3], [11], [8], [9]). Consequently our al-

gorithm supporting Corollary 4 can be extended to support

a nearly optimal Boolean cost bound for refining all simple

isolated roots of a polynomial.
We can immediately relax the assumption that the roots

are simple because our proof of Theorem 2 applies to a mul-
tiple root as well. Furthermore deduce from the Lucas the-
orem that the isolation ratio of the basic discs in our algo-
rithms does not decrease when we shift from a polynomial
to its derivative and higher order derivatives. Therefore we
can just apply Newton’s iteration to the derivative or to a
higher order derivative to approximate a double or multiple
root, respectively.

Boolean cost bounds

Hereafter ÕB denotes the bit or Boolean complexity ignor-
ing logarithmic factors. To estimate it we apply some results
from [10]–[12], which hold in the general case where the co-
efficients of the polynomials are known up to an arbitrary
precision. In our case the input polynomial is known ex-
actly; the parameter λ to be specified in the sequel could be
considered as the working precision.
Let p be given as a λ-approximation, ie lg‖p − p̃‖∞ ≤

−λ. We compute pq by using d additions. This produces a
polynomial such that lg‖pq‖∞ ≤ τ+lg d, and lg‖pq−p̃q‖∞ ≤
−λ+ τ lg d+ 1/2 lg2 d+ 1/2 lg d = O(−λ+ τ lg d+ lg2 d).
Similar bounds hold for p′q, ie lg‖p′q‖∞ ≤ τ + 2 lg d, and

lg‖p′q − p̃′q‖∞ ≤ −λ+ τ lg d+ 3/2 lg2 d + 1/2 lg d = O(−λ+
τ lg d+ lg2 d).
Recall that |p′q(ωi)| ≤ τ +2 lg d+ lg lg d+2 and |p′q(ωi)−

p̃′q(ωi)| ≤ −λ+ τ lg(2d) + 3/2 lg2 d+ 5/2 lg d+ lg lg d+ 5 for

all i, [11, Lemma 16], and similar bounds hold for pq(ω
i).

The divisions pq(ω
i)/p′q(ω

i) output complex numbers such
that |pq(ω)/p′q(ω)| ≤ τ+2 lg d+lg lg d+2 with the logarithm
of the error ≤ −λ+τ lg(4d)+3/2 lg2 d+9/2 lg d+2 lg lg d+11.
The final DFT produces numbers such that the logarithms

of their magnitudes are not greater than τ+2 lg d+2 lg lg d+
4 and the logarithms of their approximation errors are at
most −λ+ τ lg(8d)+3/2 lg2 d+13/2 lg d+4 lg lg d+18, [11,
Lemma 16].
To achieve an error within 2−ℓ in the final result, we per-

form all the computations with accuracy λ = ℓ + τ lg(8d) +
3/2 lg2 d+13/2 lg d+4 lg lg d+18, that is ℓ = O(ℓ+ τ lg d+

lg2 d) = Õ(ℓ+ τ ).
We perform d additions at the cost OB(dλ) and perform

the rest of computations, that is the 3 DFTs, at the cost

OB(lg d lg lg d µ(λ)) or ÕB(d(ℓ+ τ )) [11, Lemma 16].



If the root that we want to refine is not in the unit disc,
then we replace τ in our bounds with dτ .

We apply a similar analysis from [10, Section 2.3] to the
Newton iteration (see also [11, Section 2.3]) and arrive at the
same asymptotic bounds on the Boolean complexity. Only
the overhead constants change because now we perform com-
putations with complex numbers.

The overall complexity is ÕB(d
2τ + dℓ) and the working

precision is O(dτ + ℓ).
Here we assume the exact input, that is assume the co-

efficients of the input polynomials known up to arbitrary
precision. For the refinement of the root up to precision of
L bits, we arrive at an algorithm with the complexity in

ÕB(d2τ + dL).
If we are interested in refining all complex roots, we cannot

work anymore with the polynomial pq of degree q = O(lg d)
unless we add the cost of d shifts of the initial approxi-
mations to the origin. Instead we rely on fast algorithms
for multipoint evaluation. Initially we evaluate the polyno-
mial p of degree d at O(d lg d) points, and we assume that
lg ‖p‖∞ ≤ τ . These d points approximate the roots of p, and
so their magnitude is at most ≤ 2τ .

We use the following result of [12, Lemma 21]. Similar
bounds appear in [2, 3, 14].

Lemma 5 (Modular representation). Assumem+1 poly-
nomials, F ∈ (C[x] of degree 2mn and Pj ∈ (C[x] of degree
n, for j = 1, . . . , m such that ‖F‖∞ ≤ 2τ1 and all roots of

the polynomials Pj for all j have magnitude of at most 2ρ.

Furthermore assume λ-approximations of F by F̃ and of Pj

by P̃j such that ‖F − F̃‖∞ ≤ 2−λ and ‖Pj − P̃j‖∞ ≤ 2−λ.

Let ℓ = λ − O(τ1 lgm + mnρ). Then we can compute an

ℓ-approximations F̃j of Fj = F mod Pj for j = 1, . . . ,m

such that ‖Fj − F̃j‖∞ ≤ 2−ℓ in ÕB(mn (ℓ+ τ1 +mnρ)).

Using this lemma we bound the overall complexity of mul-

tipoint evaluation by ÕB(d(L+dτ )). The same bounds holds
at the stage where we perform Newton’s iteration. We need

to apply Newton’s operator Õ(1) for each root. Each ap-
plication of the operators consists of two polynomial evalua-
tions. We perform the evaluations simultaneously and apply
Lemma 5 to bound the complexity. On similar estimates for
the refinement of the real roots see [11].

Extensions

The algorithm of [5] computes at nearly optimal cost 64d-
isolated initial discs for all d roots of a polynomial p(x). By
combining this algorithm with ours we obtain a distinct al-
ternative algorithm, which like the one of [6], [7], supports
the record nearly optimal bounds on the Boolean complexity

of the approximation of all complex polynomial roots, but has
the advantage of allowing substantially simpler implementa-
tion.

Finally the same algorithm of [15] approximate the power
sums of any numberm of roots (forming, e.g., a single cluster
or a number of clusters) in an isolated disc. The algorithm
runs at about the same cost, already stated and depending
just on the isolation ratio. Having the power sums available
we can readily compute the coefficients of the factor f of p of
degree df , whose roots are exactly the roots of p in this disc:
this is a numerically stable algorithm using O(m log(m)) ops
(cf. [1, pages 34–35]).
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Tech. Rep. 2008-09, Université Paris-Sud, Orsay, France, 2008.

[15] A. Schönhage, The Fundamental Theorem of Algebra in Terms
of Computational Complexity, manuscript, Univ. of Tübingen,
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