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Abstract—We propose a method to accelerate Yang’s real-
time O(1) bilateral filtering algorithm, based on the observation
that in the original algorithm, some of the computation can
be strategically eliminated. To identify such computation, the
algorithm steps are analyzed in conjunction with its recursive
Gaussian filtering component. By block partitioning the image,
the procedure to isolate these unnecessary computation is sim-
plified, and the proposed algorithm only needs to skip some of
the image blocks when performing recursive linear filtering. The
resultant accelerated algorithm is able to achieve 1.5~5 times
speedup, depending on the image statistics and the filtering
parameters. The proposed algorithm only marginally degrades
the accuracy of the filtering, and the simplicity and small memory
footprint of Yang’s original algorithm are largely maintained.

Index Terms—Linear filter, linear interpolation.

I. INTRODUCTION

The bilateral filter was introduced by Tomasi and Manduchi
[1] as an edge preserving smoothing filter. Unlike the Gaussian
filter which simply smooths in a spatially invariant manner, the
bilateral filter has a factor which controls the smoothing using
the intensity (color) domain information. This added control
enables the bilateral filtering to effectively preserve the strong
edges while smoothing away the undesirable noises, leading to
many applications such as image denoising [2], tone mapping
[3], flash/no-flash fusion [4] and stereo matching [5].

The benefit of edge preserving smoothing is not without its
cost. The bilateral filter is essentially a non-linear filter, and
thus is computationally expensive, usually requiring a naive
implementation several minutes to filter a typical megapixel
image. Over the years, several methods have been developed
to approximate and accelerate the computation of bilateral
filtering [3], [6]-[9], and as a result we have seen several
orders of magnitude speedup.

Among the fastest existing bilateral filtering algorithms is
the real-time O(1) bilateral filtering algorithm recently pro-
posed by Yang et al. [8], where O(1) refers to a constant factor
of computation per image pixel. This algorithm generates the
filtered image by first computing the Principle Bilateral Fil-
tered Image Component (PBFIC) through recursively linearly
filtering two intermediate images, then linearly interpolating
between two adjacent PBFICs. The main step in computing
the PBFICs is spatial invariant linear filtering, which is well
understood and much less expensive computationally than
non-linear filtering. This algorithm is able to produce very
accurate bilateral filtered result with a small memory footprint.

In this letter, we provide a further improvement of Yang’s
algorithm, based on the observation that in Yang’s original
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algorithm, some of the computation for the PBFICs are
wasteful. To reduce such wasteful computations, we care-
fully analyze the computation steps in conjunction with the
recursive Gaussian filtering procedure to isolate them, and
skip some of the image blocks to avoid a large portion of
such computation. The resultant algorithm is able to achieve
1.5 to 5 times speed up, depending on the image statistics
and the filtering parameters. The proposed improvement only
marginally degrades the accuracy of the filtering, and at the
same time the simplicity and small memory footprint of Yang’s
original algorithm are largely maintained.

II. BILATERAL FILTERING AND YANG’S ALGORITHM
A. Bilateral Filtering

Mathematically, the bilateral filtering operation performs the
following computation for each pixel Z in an image
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where I(Z) is the intensity value at pixel location &, N(Z) is
a specific neighborhood of %, fs(Z, ) is the spatial filtering
kernel depending only on the pixel locations & and 3, and
frU(Z), I(y)) is the range filtering kernel depending only on
the intensity I(Z) and I(¥). The original bilateral filtering uses
Gaussian-like filter of different variances for the spatial filter-
ing kernel fs(%,%) and range filtering kernel fr(I(Z), (%)),

fs(&, ) = exp (= ||Z - 711*/20%), 2)
frU(Z),1(§) = exp (= (I(Z) — I[(§))?/20%), ()
where g and oy are the spatial kernel variance and the range
kernel variance, respectively. The kernel functions fg(Z,%)

and fr(I(Z), I(¥)) have since been generalized to other filters,
e.g., to the box-filter spatial kernel.
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B. Yang’s Real-Time O(1) Algorithm

Yang’s real-time O(1) bilateral filtering algorithm can be
described as follows. For a digital image, there are only a finite
number of possible intensity values, i.e., I(Z) € {0,1,..., N—
1}. For each intensity value k € {0,1,..., N — 1} in a given
image, the following two quantities are only functions of the
pixel location 3

Wi (9) = fr(k, 1(7)),
Now (1) can be written as
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where by denoting I(Z) = k
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Fig. 1. The Gaussian filter and its truncated version.
Both the numerator and the denominator in (6) are spatial-
invariant linear Gaussian filtering, which can be computed
efficiently using the recursive method in [10], [11]. This gives
the bilateral filtered value for pixels of intensity k. By sweep-
ing through all possible intensities, the filtered value for each
pixel can be determined. Each of these 7 () images is called
a Principle Bilateral Filtered Image Component (PBFIC).
The algorithm in [8] is built on the observation that there
is no need to compute PBFIC for all the intensity levels,
but instead only PBFICs for K < N levels (denoted as
{Lo,L1,...,Lx_1} where Ly and Lk _; are the lower and
upper limits of the dynamic range, respectively) need to be
computed; for notational simplicity, we shall write them as
PBFIC(Ly),PBFIC(L;),...,PBFIC(Lk_1). The final bilat-
eral filtered value IP(%) at location # can then be linearly
interpolated using the values at location Z of PBFIC(L;_1) and
PBFIC(L;) for any pixel Z such that I(Z) € [L;_1,L;), ie.,
using the linear combination of them with weights —— 2

Li—L;—1
and %, respectively. An advantage of this algorithm is

its small memory footprint, because one could sweep through
{Lo,L1,...,Lik_1}, and only two adjacent PBFICs need to
be kept such that for any pixels whose intensities fall into this
range, their filtered values can be correctly obtained.

Since the Gaussian filter is separable, the overall process can
be decomposed into horizontal and vertical filtering. The one
dimensional recursive algorithm of Deriche [10], [11] includes
a forward pass and a backward pass, each one of which is a
linear filtering using an infinite impulse response (IIR) filter,
and the combination of these two passes leads to an extremely
accurate approximation of the Gaussian smoothing.

III. THE ACCELERATED ALGORITHM
A. Motivation

Consider the case where the image pixel intensity values are
all in the range of [Lg, L1). When Yang’s algorithm is used
on this image, since the filtered result 7”(%) at each pixel
is completely determined by PBFIC(L,) and PBFIC(L;),
the other PBFICs are useless, and thus computing them is
unnecessary and wasteful. This simple observation is the main
motivation for the improvement proposed in this work.

B. Necessary Computations and Unnecessary Computations

The extreme case example discussed above may leave the
impression that for a given pixel Z, we only need to compute
the two levels of PBFICs at those locations & where I(Z) is
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Fig. 2. The coherent region for the forward vertical pass.

sandwiched in between. This is however not the case when
the recursive filtering method is used.

For simplicity, let us consider the one-dimensional case, and
assume the IIR filter is given as

y[n] = aox[n] + arz[n — 1] + biyln — 1] — bay[n — 2], (7)

where x[n] is the input at location n, and y[n| is the filtered
output at location n. Because the recursive IIR filter relies
on the (previously computed) causal filtering result when
computing the current output, in order to compute y[ng], all
y[m]’s for m < mg essentially need to be computed. This
suggests that as long as a single pixel in the image has
an intensity in the range [L;_1,L;), then the whole image-
sized PBFIC(L;) and PBFIC(L;_1) (or at least some “causal
portion” of them) will need to be computed. This does not
lead to significant savings in computation.

Note however that since the Gaussian filter has a rather
short (fast decaying) tail, it can be truncated aggressively in
practice (see Fig. 1). When the Gaussian filtering is computed
using the recursive method, this is equivalent to saying that
faraway signals can be ignored completely. More precisely,
when computing the filtered output of (7) at location n, using
a truncated version of the signal x[n], i.e., using 2'[n] = 0
for n < n, — ¢, and 2'[n] = z[n] for n >= n, — ¢, the
difference from the true filtered value using z[n] is very small
when c is sufficiently large. In practice, a moderate value of
c is usually sufficient and we shall denote such a choice as
¢, and call it the coherent width. The precise choice of ¢, is
usually application dependent and we shall return to this point
later in the context of our algorithm.

With the coherent width ¢, fixed, the previous mentioned
difficulty is alleviated. To compute y[no] within a small error,
only additional y[m]’s for m = ng—co,no—co+1,...,n9—1
need to be computed. For two-dimensional filtering on an
image, the concept of the coherent length can be generalized
to the concept of the coherent region. For example, for the
forward vertical filter pass, the coherent region is illustrated in
Fig. 2. Combining it with the coherent region of the backward
vertical filter pass, as well as the forward and backward
horizontal filter passes, the overall coherent region is a square
neighborhood of size (2¢, + 1) x (2¢, + 1) with the pixel at
the center. This implies if the intensity value of a pixel Z,
is sandwiched between two levels L; and L; 1, then we only
need to compute J' 1, (Z), W', (Z), J'r,,, (&) and W', (%)
for 7 in a square neighborhood of size (2¢,+1) x (2¢,+1) with
Z, at the center. Note that we could potentially distinguish
the different coherent regions for the four filter passes, but
this complicates the algorithm and does not appear to provide
significant gain in practice.
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Fig. 3. A pixel (the black dot) has an intensity in the range [L;_1, Lit1),
then PBFIC(L;) is computed for all the shaded area covering nine blocks.
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Following the above discussion, we could generate com-
putation maps for a given image for the specified levels
Lg,Lq,...,Lxg_1 using a morphological dilation operation,
and avoid all unnecessary computations following these maps.
This naive approach is however counter-productive since di-
rectly computing such maps is relatively (to Yang’s original
algorithm) expensive, defeating the whole purpose of acceler-
ating the algorithm. Next, we shall propose a simple approach
to approximate such maps and describe our algorithm.

C. Block Partitioning and Range Finding

The first simplification we propose is to partition the image
into blocks of size c, X c,, and thus instead of considering
whether PBFIC(Lj,) needs to be computed for a given pixel
in the image, we consider whether it needs to be computed
for a given block B(p, ¢), where ¢ and ¢ are its horizontal and
vertical indices. Following the discussion above, it is clear that
PBFIC(L;) should be computed for block B(p, q) if

o There exists a pixel, whose intensity value is in the range

[Li—1, Lit1), in B(p,q), or
o There exists a pixel, whose intensity value is in the range
[Li—1,Li+1), in the eight neighboring blocks of B(p, q).
The first case is necessary because of the filter computation
for that particular pixel, and the second case is because the
pixel in B(p,q) may be in the coherent region of a certain
pixel of interest in the neighboring blocks; see Fig. 3.

In a given image block B(p, q), denote the maximum pixel
intensity value and the minimum pixel intensity value as
max(p, q) and min(p, q), respectively. To determine whether
there exists a pixel in B(p,q) is in the range [L;_1, L;t1)
such that PBFIC(L;) needs to be computed for this block, we
make the simplification to assume there is such a pixel unless

Li_y >max(p,q) or  Lj; <min(p,q), (8)

i.e., to assume the pixels in block B(p, q) take up all the in-
tensity values between max(p, ¢) and min(p, ¢). Although this
is in general not true, it does not appear to make significance
difference in practice, but leads to a simpler algorithm.

D. The Proposed Algorithm

We are now ready to describe the proposed algorithm.
Different from Yang’s original algorithm, we have a pre-
filtering stage to find the maximum and minimum values of

a block, moreover to find for each block the maximum and
minimum values in the region consisting of its own and its
neighboring blocks, i.e.,

Pre-filtering Step:

1) For each block B(p, q), find max(p, ¢) and min(p, q);
2) For each block B(p,q), find max’(p,q) and min’(p, q)

where
max’(p, q) = max max (4, j)
li—p|<1,|j—ql<1
min’(p, q) £ min min(4, 7).

li—p|<1,|j—q|<1

For simplicity, we have implicitly assumed above that (i, ) is
only enumerated for blocks that exists in the image.

The other part of the algorithm largely follows Yang’s orig-
inal algorithm, except when performing the recursive filtering.
To be more precise, consider the horizontal forward filtering
pass to compute J', (%) for a given row, which lies within the
row of blocks B(p,1), B(p,2),..., B(p,m); recall the block
is of size ¢, X ¢,, then

Horizontal Pass for a Row of pixels: For ¢ = 1,2,...

1) If L; 1 < max'(p,q) and L; 1 > min’(p, q)

a) If B(p,q — 1) was not filtered, initialize the IIR
filter;

b) Filter the row segment within the block B(p,q)
using the IIR filter;

The precise initialization settings can be found in [10], [11],
but of importance to us is the fact that it only depends on the
pixels intensity at the boundary of the current block. Note
that the block B(p, —1) clearly does not exist, and thus in the
above algorithm it would be considered as not filtered. The
above row filtering procedure is done on each row of the image
Jr,, and Wr,,. The other three passes are done similarly, which
eventually give J'r, and W', and subsequently PBFIC(L;).

Another benefit of using the block structure is in updating
the resultant filtered image I”(%). In the original algorithm,
when PBFIC(L;) and PBFIC(L;1) have been computed, the
image is then scanned for any pixel whose intensity falls
between these two levels, and the filtered values are updated
for these locations using linear interpolation. However, since
we have recorded max(p, ¢) and min(p, q), if max(p, q) < L;
or min(p,q) > L;i+1, there is no need to search for such
pixels within B(p, ¢). This provides some noticeable but less
significant speedup, because the most expensive computation
is in computing PBFICs, but not in this updating steps.

,m

I'V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithm
using a single-thread C/C++ implementation. The computer
used has 2G memory and a 3.33GHz Intel i7-980X processor
on Windows 7 platform. Our implementation utilizes the pop-
ular OpenCV library, and to eliminate any unfair advantage,
we implemented Yang’s original algorithm using this library,
which is slightly faster than the implementation in [8].

The parameters og and o are application dependent, how-
ever usually in the range 4 ~ 40 and 0.04 ~ 0.3, respectively,
for typical applications. The higher the number of levels K, the
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Fig. 4. Average speedup vs. og for various K values.

better the filtering accuracy at the cost of more computation;
it is usually sufficient to use K in 4 ~ 25 when the dynamic
range is 0 ~ 255 depending on the accuracy requirement of
the applications (usually 40dB is considered sufficient).

Empirically we found that choosing ¢, = og offers a good
tradeoff between accuracy and efficiency for the typical range
of o0g and or given above, and it is used for the proposed
algorithm; for large og values, the advantage of the proposed
technique diminishes (see. Fig. 4), and by setting c, larger,
our algorithm reduces to Yang’s original algorithm. Thirty
randomly chosen images (from Internet) are used, the content
of which includes people, natural sceneries, buildings, plants
and animals; the images have sizes in the range 0.5~6 million
pixels. The naive implementation of the bilateral filtering is
used to compute the ground-truth.

We first compare the accuracy of the proposed algorithm and
reference algorithm (each to the ground-truth). The measure
used is the relative difference in peak signal-to-noise ratio
(PSNR) defined as

PSNRT'ef (K7 gs, UR) - PSNRpT'o(Ka gs, UR)
PSNR,.f(K,05,0R) ’

where PSNR,..;(K,0g5,0r) and PSNR,,,(K,0g,05) are
the PSNRs of the filtered results by the reference algo-
rithm and that by the proposed algorithm, respectively,
with parameters (K,0g,0r) for a given image. The pa-
rameters og is sampled as in Fig. 4, op is sampled
at (0.04,0.06,0.08,0.1,0.12,0.15,0.18,0.25,0.3), and K is
sampled at (4,6,8,10,12,15,25). The average (over the test
images and the sampled parameters) rd-PSNR is 0.0115 and
the variance is 5.97 x 107%. The inaccuracy increases as
or and og increase, with its dependence on og being more
prominent; the rd-PSNR is almost 3% at large og and og
when averaged over the test images, while being less than
1% at the other extreme. We deem this kind of accuracy
degradation acceptable because at the targeted quality (PSNR
40-55dB), less than 1dB difference is usually negligible for
typical applications of the bilateral filter. One can improve the
accuracy by choosing a more conservative ¢, at the cost of a
reduced speedup.

Next we consider the speedup of the proposed method. From
the structure of the method, it is clear that the speedup does

rd-PSNR =

not depend on the parameter o critically, and thus we plot
the average speedup (over the test images and o) vs og for
fixed K values in Fig. 4. It can be seen that the smaller the
value og, the more effective the proposed method is. This is
because ¢, = o and smaller ¢, allows the method to eliminate
the unnecessary computations more effectively. The method
is also more effective for larger values of K because this
usually implies a larger proportion of the PBFIC computations
in the original algorithm are unnecessary, which provides the
proposed method a larger target to reduce. As an example,
on a typical 1.5 mega-pixel image, the proposed algorithm
is able to complete in 383ms with parameters op = 0.06 and
os = 15, while Yang’s original algorithm completes in 835ms
with 45dB accuracy.

V. CONCLUSION

We propose a method to accelerate Yang’s bilateral filtering
algorithm by eliminating unnecessary computations through
block-skipping IIR filtering. It is able to achieve speedup of
1.5~5 times. Although only Gaussian kernel is treated here,
the method is general for other IIR spatial filtering kernels
with a short tail (e.g., the box filter). It was mentioned in [8]
that by downsampling the image, the algorithm can be further
sped up. Our method can also incorporate such downsampling,
and the amount of speed up is similar to using the proposed
method on a smaller image with a smaller value of og.

The proposed method can also be used in a GPU-based
implementation, however the speedup is much less significant,
usually in the range of 1.1~1.3 in our CUDA-based imple-
mentation. The main reason is that to take advantage of the
parallelism in the GPU, we choose ¢, to be a multiple of 16
or 32, however, this conservative choice reduces the speedup;
together with other architectural bottlenecks in the GPU, the
proposed method becomes less effective. As a future work, we
plan to investigate whether it is possible to make the choice
of ¢, to play a less significant role in the overall computation
architecture of the GPU-based implementation.
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