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Objective: Despite the multitude of longitudinal neuro-

imaging studies that havebeenpublished, abasic questionon

the progressive brain loss in schizophrenia remains un-

addressed: Does it reflect accelerated aging of the brain, or is

it caused by a fundamentally different process? The authors

used support vector regression, a supervised machine learning

technique, to address this question.

Method: In a longitudinal sample of 341 schizophrenia pa-

tients and 386 healthy subjects with one or more structural

MRI scans (1,197 in total), machine learning algorithms were

used to build models to predict the age of the brain and the

presence of schizophrenia (“schizophrenia score”), based on

the gray matter density maps. Age at baseline ranged from

16 to 67 years, and follow-up scans were acquired between

1 and 13 years after the baseline scan. Differences between

brain age and chronological age (“brain age gap”) and be-

tween schizophrenia score and healthy reference score

(“schizophrenia gap”) were calculated. Accelerated brain

agingwas calculated from changes in brain age gap between

two consecutive measurements. The age prediction model

was validated in an independent sample.

Results: In schizophrenia patients, brain agewas significantly

greater than chronological age at baseline (+3.36 years) and

progressively increased during follow-up (+1.24 years in

addition to the baseline gap). The acceleration of brain aging

was not constant: it decreased from 2.5 years/year just after

illness onset to about the normal rate (1 year/year) approx-

imately 5 years after illness onset. The schizophrenia gap also

increased during follow-up, butmore pronounced variability

in brain abnormalities at follow-up rendered this increase

nonsignificant.

Conclusions: The progressive brain loss in schizophrenia

appears to reflect two different processes: one relatively

homogeneous, reflecting accelerated aging of the brain

and related to various measures of outcome, and a more

variable one, possibly reflecting individual variation and

medication use. Differentiating between these two

processes may not only elucidate the various factors

influencing brain loss in schizophrenia, but also assist in

individualizing treatment.
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Cross-sectional MRI studies have convincingly shown that

brain volumes in schizophrenia patients are smaller than those

in healthy subjects. Some of these abnormalities, such as

changes in white matter volume and structure, are present

before illnessonset (1,2)andaremost likelyofadevelopmental

(3), possibly genetic (4), nature and appear to be stable over

time (5). In contrast, otherbrainchanges, suchas reductions in

gray matter volume, become more pronounced during the

course of the illness (6). Although several studies suggest that

gray matter volume reductions are related to outcome (7),

psychosis (8), relapses (9), medication (10), cannabis use (11),

and genetic liability (12), the cause and nature of the pro-

gressive loss of gray matter are still unclear.

Indeed, despite the multitude of longitudinal neuroimaging

studies, a basic question on the progressive brain loss in

schizophrenia remainsunaddressed:Does it reflect accelerated

aging of the brain, or is it caused by a fundamentally different

process? Here, we address this question by using a relatively

new technique, support vector regression (13), a supervised

machine learning technique used tomake predictions basedon

high-dimensional (image) data. A model can be trained to

recognizepatterns inbrain tissue thatareassociatedwithaging.

Using these patterns, themodel then transforms, or aggregates,

the high-dimensional image data of each individual into a

predicted age, or brain age. Comparable techniques have

successfully been applied to MRI scans leading to age pre-

dictions in adults (14) and across the lifespan (15), as well as

development/maturation indices in children and young adults

(16–19). The advantage of such techniques over univariate

analyses is that they detect and use the coherence between

voxels involved in aging and are capable of dealing with the

large variation in brain structures between subjects.

The aging of the brain in schizophrenia patients, as esti-

mated from their brain images, was found to be increased

compared with the chronological age of the brain (20). On

average, this “brain age gap” estimate (14) was 5.5 years. The
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resultsofsuchcross-sectionalstudiessupport theuseofmachine

learning to studybraindevelopment in schizophrenia across the

lifespan. However, longitudinal studies are required to capture

the dynamic aspects of aging, truly measuring (abnormal)

accelerations or decelerations in the aging of the brain.

To investigate whether the brains of schizophrenia

patients age in an accelerated fashion, we measured brain

age in a large longitudinal sample of healthy subjects and

schizophrenia patients. An age prediction model was

trained on the healthy subjects’ baseline image data. It was

subsequently applied to the follow-up scans of the healthy

subjects and the baseline and follow-up scans of the patients.

Brain age gaps and accelerations were calculated and, for

patients, related to duration of illness. In addition, a model

separating schizophrenia patients from healthy subjects

was built. Using these models, we were able to separate the

effects of normal aging on the brain and those specific to

schizophrenia.

METHOD

Samples

The subjects in this study were obtained from three samples

that have been described earlier. We included schizophrenia

patients andhealthycomparisonsubjects fromtwo independent

samples, both recruited to participate in a longitudinalMRI

study (sample 1 [21–23]; sample 2 [24, 25]). In addition,

healthy comparison subjects from a study of bipolar disorder

were included (sample 3 [26]). The baseline scans of samples

1 and 2 have been used for classification of schizophre-

nia (27). For details on inclusion criteria and imaging and

study design, see Figure 1 and the supplemental Methods

section in the online data supplement that accompanies the

online edition of this article.

Thetotal sampleconsistedof727subjects:341schizophrenia

patients and 386 healthy subjects. A baseline scan was

acquired for each subject. From 378 subjects, one or more

follow-up scans were acquired after 1–13 years, amounting to

1,197 scans in total. The age range at baseline was 16–67

years (Table 1). All T1-weighted images were acquired on a

1.5-T Philips scanner and had a resolution of 13131.2 mm3.

Images were preprocessed using our image-processing

pipeline (21, 28), resulting in gray matter density images

in a standardized space (21) for all subjects. In these images,

the voxel values reflect the amount of gray matter tissue

present at that location on a scale from 0 to 1 (for details, see

reference 27).

Validation and Reliability

The validity of the age prediction model was tested in an in-

dependent sampleof 55healthy subjects and60 schizophrenia

patients (ages 19–48 years) scanned at 3 T with a resolution

FIGURE 1. Schematic of the Support Vector Regression Machine and the Longitudinal Modela
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of 0.7530.7530.80 mm3 (29). A fifth sample

(30), consisting of five healthy volunteers

(ages 25–35 years) who were scanned twice

within 12 days,wasused to test the scan-rescan

reliability of the age prediction model.

Algorithms

Multivariate pattern recognition techniques

are capable of transforming high-dimensional

image data into single outcome values (y) such

as class (binary) or age (continuous). Thedata,

in our case gray matter density images, are

represented by a feature vector, x. We used

two machine learning algorithms: the sup-

port vector machine (31, 32) and support

vector regression machine (13, 32). Both al-

gorithms are supervised learning tech-

niques that include two phases. During the

training phase, the support vector or sup-

port vector regression machine is trained on

labeled data (x), resulting in a prediction

model (M).During the test phase, themodel is

applied to unlabeled (new) data: y=M(x).

n-Support vector regression was used for age

prediction. The support vector machine was

usedforbinaryclassification, that is, separating

schizophrenia patients and healthy subjects.

Optimal parameter settings for the latterwere

taken from Nieuwenhuis et al. (27) and from

a grid search for the age prediction (see the

online data supplement).

Brain Age Model

Thebaseline images of all 386healthy subjects

were used to train a support vector regression

machine to predict a subject’s age from the

gray matter density image. The resulting

model, MBA, consisted of a weight map, wBA,

containing each voxel’s weight for the pre-

diction of age. Positive or negative weights

indicate that higher or lower gray matter

density, respectively, contributes topredicting

a greater age. The performance of MBA was

assessed in this set using leave-one-out cross-

validation, by calculating the amount of

chronological age variance explained by the

model (R2) and the mean absolute error be-

tween predicted and chronological age. In

addition, the validity and reliability of the

brainagemodelwasassessedbyapplyingMBA

to 3-T scans (in sample 4) and repeated scans

within a very short interval (in sample 5).

Thepredicted agewill be calledbrain age, and its deviation

from the chronological age, brain age gap (GBA [14, 20])

(Figure 1). GBA reflects whether a subject’s brain appears

older or younger than expected from its chronological age.

TheMBAmodelwassubsequentlyapplied toall schizophrenia

baseline images and to all healthy and schizophrenia follow-up

images. A subject’s age at baseline and at follow-up was pre-

dicted by applying a cross-validation version of MBA that had

TABLE 1. Demographic and Clinical Characteristics of Schizophrenia Patients and

Healthy Comparison Subjects in an MRI Study of Brain Aging in Schizophrenia

Characteristic
Schizophrenia

Patientsa
Healthy Comparison

Subjects

N % N %

Baseline scan 341 100 386 100

Follow-up scans

1 192 56 186 48

2 63 18 11 3

3 12 4

4 6 2

First episode (,1 year ill at baseline)b 52 23

Baseline medication status

On atypical antipsychoticsc 208 62

On conventional antipsychoticsc 101 30

Medication naivec 37 11

Mean SD Mean SD

Age at baseline (all subjects) (years) 29.50 9.96 34.07 11.81

Age at baseline (subjects with follow-up

scans) (years)

28.13 8.95 32.10 12.40

Age at first follow-up (years) 31.61 9.58 35.98 12.99

Interval from baseline to first follow-up

(years)

3.48 1.62 3.84 1.44

PANSS scores at baseline

Positive scaled 15.87 5.77

Negative scaled 17.07 5.74

General psychopathology scalee 33.37 9.45

Total scoree 65.77 17.25

GAF score at baselinef 50.48 17.51

PANSS scores at first follow-up

Positive scaleg 12.34 4.62

Negative scaleg 13.56 6.00

General psychopathology scaleh 26.14 7.68

Total scoreh 51.99 15.61

GAF score at first follow-upi 54.52 17.38

Illness durationj (years) 4.21 3.73

During interscan interval

Number of hospitalizationsk 1.06 1.63

Cumulative duration of hospitalizationl

(days)

174 381

Antipsychotic daily dosage at follow-up

(chlorpromazine equivalents)m
349.6 181.7

Cumulative antipsychotic daily dosage

(chlorpromazine equivalents)n
2,511.5 1,106.0

aPercentages are based on the number of baseline scans.
bInformation available for 230 subjects.
c Information available for 335 subjects.
dInformation available for 210 subjects.
eInformation available for 202 subjects.
f Information available for 110 subjects.
gInformation available for 146 subjects.
hInformation available for 145 subjects.
iInformation available for 118 subjects.
jInformation available for 230 subjects.
kInformation available for 130 subjects.
lInformation available for 129 subjects.
m Information available for 94 subjects.
n Information available for 69 subjects.
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beenbuiltwithout that subject’s baseline scan. In thisway, bias

in the age estimations was avoided. Brain age gaps for the

schizophrenia patients were calculated and compared with

those of the healthy subjects using t statistics at baseline and

follow-up. Changes in brain age gap (DGBA) frombaseline to

follow-up were compared between patients and healthy

subjects (for details, see the online data supplement).

All scans (N=340) from the patients for whom duration of

illness was available were used to analyze the relationship

between age, duration of illness, and change in brain age gap

(Figure 2). The rates of change in brain age gap (DGBA/Dage)

along the individual trajectories between twomeasurements

were used in a locally weighted regression analysis (27). This

yielded an “average” rate of change in brain age gap along the

course of an “average”patient, from0years of illness at age 20

to 15 years of illness at age 35 (thick line in Figure 2).

Model Separating Schizophrenia Patients and Healthy

Subjects

The 541 baseline images (267 healthy subjects and 274

schizophrenia patients) from samples 1 and 2 were used to

train a support vector machine model predicting patient

status (ySZ=1: schizophrenia, ySZ=21: healthy) ofpatients and

healthy subjects, based on their gray matter density images

corrected for brain age (27, 33). The weight map (wSZ) of the

resulting model, MSZ, contained each voxel’s weight, with

positive or negative weights indicating that higher or lower

gray matter density, respectively, contributes to being clas-

sified as patient. Using cross-validation, the percentage of

correctly classified subjects was used to assess the model’s

performance.Themodelwassubsequentlyappliedtoallhealthy

and schizophrenia follow-up images.

Schizophrenia Gap, Brain Age, and Schizophrenia

Fingerprints

In analogy to the brain age gap, we define the schizophrenia

gap (GSZ) to reflect the difference between an individual’s

schizophrenia prediction score (ySZ) and the average healthy

comparison score. Using the brain age (schizophrenia)weight

map, each subject’s gray matter density pattern can be decom-

posedintoapartcoincidingwith it—thebrainage(schizophrenia)

fingerprint—andaremainingpart.Anindividual’sGBAandGSZ

FIGURE 2. Individual Trajectories of Age and Duration of Illness for All Schizophrenia Patients in the Samplea
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are reflections of the size of the respective fingerprints,

which allow comparisons between them in terms of gray

matter density, as well as the building of classification

models on their combination (for details, see the online

data supplement).

Significance of the Weight Maps

Ten thousand models were built using permuted ages (brain

age) or labels (schizophrenia). This resulted in a null distri-

bution ofweights againstwhich theweights of the realmodels

(MBA, MSZ) were tested to find the voxel-wise significance of

the weight maps. Although analytical solutions exist for

support vector machines (34), the lack of such a method for

support vector regression led us to use this bootstrap method

for both models (35).

Relationship With Clinical Parameters

Associations betweenchanges inbrain age and schizophrenia

gaps and Positive andNegative Syndrome Scale (PANSS) total

scores and Global Assessment of Functioning Scale (GAF)

scores at baseline and follow-up, and number and cumu-

lative duration of hospitalizations and cumulative antipsy-

chotic daily dosage during the interscan interval and daily

dosage at follow-up were calculated.We applied a Bonferroni

correction for multiple comparisons to test the significance of

the associations.

RESULTS

Brain Age Model: Accuracy, Validity, and Reliability

Thebrain agemodel explained almost 80%of thebaseline age

variance (R2=0.79) in healthy subjects. The mean absolute

error was 4.31 years. These values are comparable to earlier

models (4.98 years (14); 4.6 years (20), R2=0.83) (Figure 3).

Mean brain age gap at baseline for the healthy subjects

was, as expected, almost zero: GBA=20.0017 years (SD=5.40)

(less than 1 day).

Application of the brain age model to the 3-T images

yielded amean brain age gap of20.18 years (SD=4.80) (mean

absolute error=3.86 years) in healthy subjects and +5.59 years

(SD=5.11) in schizophrenia patients.

When applied to the brain images of subjects who were

scanned twice within 12 days, the brain age model yielded

differences inbrainagewithameanof0.062years (SD=1.516).

Applying a “reverse” brain agemodel, built on brain images

ofschizophreniapatients, yieldedabrainagegapof24.83years

for the healthy subjects (see the online data supplement).

Application of the Brain Age Model to Patient and

Follow-Up Scans

In healthy subjects, the mean brain age gap at follow-up (on

average 3.84 years later [SD=1.44]) was GBA=20.045 years

(SD=5.82) (16days), not significantlydifferent fromzero.This

shows that, on average, the aging of healthy subjects’ brains

was consistentwith their increasing chronological ageduring

the interscan interval.

At baseline, the brain age of schizophrenia patients was

significantlygreaterthantheirchronologicalage:GBA=3.36years

(SD=5.87) (N=341; t=10.73, p,0.001), indicating excessive aging

of the brain at baseline.

At follow-up (on average 3.48 years later [SD=1.62]), the

brain age of the patients had progressively increased by

4.72 years (SD=4.14), increasing the gap to GBA=4.32 years

(SD=6.20) (N=192; t=9.65, p,0.001); DGBA=1.24 years

(SD=3.81) (t=4.53, p,0.001). The aging thus accelerated at a

rate of 4.72/3.48=1.36 years/year, or an additional 4months in

each year during the follow-up period (Figure 3).

Brain Age Acceleration Along the Age and

Duration-of-Illness Trajectory

Results of the locallyweighted regression ofDGBA/Dage for the

“average” patient’s age and duration-of-illness trajectory are

shown in Figure 2 (inset). Just after illness onset, the brain age

gap starts growing by about 2.5 years/year—in other words,

when the patient has become 1 year older (and thus has been ill

for one more year) his or her brain age has become 3.5 years

older. Subsequently, the acceleration rate rapidly slows over the

first fewyears of the illness.After about 5 years, the acceleration

is no longer significant: the brain age gap stays constant.

Separation of Healthy Subjects and Schizophrenia

Patients: Comparisons in Gray Matter Density Space

The schizophrenia model separated patients and healthy

subjects with an accuracy of 68.6%. From baseline to follow-

up, the size of the gray matter density component associated

with the brain age gap (GBA), the brain age fingerprint, in-

creased by 0.151 (t=2.35, df=191, p,0.01) for schizophrenia

patients as compared with healthy subjects (see Table S1 in

the online data supplement). From baseline to follow-up, the

length of the brain-age-corrected gray matter density com-

ponent associated with the schizophrenia gap (GSZ), the

schizophrenia fingerprint, changed by 0.132 (t=0.77, df=191,

n.s.) in the direction of “more schizophrenia” for patients

as compared with controls. Although about as large as

the change of the GBA-associated fingerprint, the change in

the schizophrenia fingerprint was not significant because of

the large standard deviation of the changes, which in turn

was related to a large increase in the standard deviation of

the size of the patient’sfingerprint at follow-up, from0.59 to

1.87 (F=3.17, p,0.001). Figure 4 shows the weight maps of

the models and their significance.

Applying a GBA=1.55-year threshold value, GBA can be used

to separate patients and healthy subjects with an accuracy of

60.2%(asensitivityof59.5%andaspecificityof60.9%).Training

a two-feature support vector machine on the (GBA,GSZ) fin-

gerprints resulted in a schizophrenia classification model with

71.5% accuracy (see Figure S4 in the data supplement).

Relationship With Clinical Parameters

At follow-up, brain age gap was significantly negatively as-

sociated with GAF score (Figure 5; see also Table S3 in the

data supplement) and positively with antipsychotic dosage
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(see Table S3). Brain age acceleration rate was negatively as-

sociatedwithGAF score andpositivelywithPANSS total score

at follow-up, and positively with number of hospitalizations,

duration of hospitalization, and cumulative antipsychotic

intake. The latter was also significantly associated with

schizophrenia gap acceleration rate.

DISCUSSION

This longitudinal study in 727 subjects with 1,197 scans is, to

our knowledge, the first to show that some of the frequently

and consistently reported progressive changes in the gray

matter morphology of schizophrenia patients (6) resemble,

andpossibly reflect, anacceleratedagingprocess that is related

to outcome. The remaining part of the progressive changes

in patients is qualitatively different from the brain changes

observed in healthy subjects over time, and possibly reflects

individual variation related to the illness and medication

use.

At baseline, brain age in schizophrenia patients was 3.36

years greater than chronological age, replicating earlier re-

sults (20) (but see “Methodological Considerations” in the

data supplement for a discussion of the possible influence of

methodology on our finding of a brain age gap smaller than

that reported in reference 20). This means that at around

4 years of illness (when baseline scans were made in this

study) brain morphology in schizophrenia patients is similar

to that of healthy subjects who are more than 3 years older.

Despite this already considerable age gap at baseline, the

brain morphology of the schizophrenia patients showed

(further) accelerated aging over the 3.5-year follow-up period.

Specifically, while the pattern of brain aging in the healthy

subjects developed in line with the increase in their chrono-

logical age, in the schizophrenia patients this pattern pro-

gressed at an augmented pace of 1.36 years/year: an additional

4 months in each year during the follow-up period.

We also found differences between patients and healthy

subjects in gray matter change that were qualitatively

FIGURE 3. Brain Age Versus Chronological Age at Baseline and From Baseline to Follow-Upa
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different from those involved in aging. The “schizophrenia

gap”—the aggregate of these differences—was present at

baseline and widened during the interval. Interestingly,

the variance increased significantly over the interscan

interval, rendering the widening of the schizophrenia gap

over time nonsignificant. This suggests that these illness-

specific changes are more related to the individual course

of the disease. Indeed, an association (albeit a weak one)

with outcome was found, while differences in medication

played a much more significant role in acceleration of the

schizophrenia gap than of the brain age gap (see Table S3 in

the data supplement). Conversely, the relative interindividual

stability of the accelerated brain aging in the schizophrenia

patients suggests that it is due to shared factors underlying

the disease.

Healthy subjects displayed considerable variability in

changes in their brain age gaps during the measurement

interval as well. While these changes were on average zero,

their standard deviation was 2.7 years. A large part of these

changes (2.2years, asdetermined fromrepeatedscans) canbe

attributed to real structural aging of thebrain. Thenature and

cause of these changes are unknown, but they could be of

genetic origin orbe related to cognitive functioning (36, 37) or

to differences in lifestyles or physical (29, 38) andmental (39)

activity.

The accelerated aging of the brain in schizophrenia takes

place predominantly during thefirst years after disease onset.

After the first year of illness, the brain age gap had increased

by about 2 years. Over the first 5 years of follow-up, the

acceleration rate slowed to almost zero. Since, in our sample,

FIGURE 4. Weight Maps and 10log(p) Maps of the Brain Age Model and the Schizophrenia Modela

a The figure shows axial, sagittal, and coronal views (top, middle, and bottom rows, respectively). Warm colors refer to relative increases of gray

matter density in older with respect to younger subjects (MBA) or schizophrenia subjects with respect to healthy subjects (MSZ), and vice versa for

cool colors. The absolute values of the weights have been clamped between 0.0003 and 0.0013 in the brain age model and 0.0006 and 0.0025

in the schizophrenia model. Brain regions with substantial negative weight include the left and right caudate nucleus, the putamen, the cerebral

peduncle, the cerebral vermis, parts of the temporal lobe, the right posterior part of the cerebrum (angular/lingual/cingulate), and the left occipital

pole. Those with substantial positive weights include the left and right thalamus, the cistern of the lamina tecti/great cerebral vein, and the left

middle temporal gyrus. Negative weights in the schizophrenia model were found near the left and right posterior horns of the lateral ventricles, the

insula, parts of the temporal lobes, large areas in the frontal lobes, the inferior parietal lobule, and the precuneus. Positive weights were found in

the left and right putamen and globus pallidus, the right inferior occipitofrontal fasciculus (indicatingwhitematter reduction), the left and right occipital

poles, and left and right precentral gyrus.
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this period roughly coincides with ages 20–25 (Figure 2),

the end of a period of neuromaturational processes such

as synaptic pruning and dendritic retraction (40), the

accelerated aging in schizophrenia patients may reflect

accelerated neuromaturation. Interestingly, the individual

variation in changes in brain age gap among patients was

larger (SD=3.8 years) than in healthy subjects. This could be

related to the same factors that play a role in healthy subjects

as well, such as genetic background, cognitive functioning,

and lifestyle, although the effect of some of these factors may

be magnified in schizophrenia as a result of, for example,

diminished cognitive challenges and reduced levels of

physical activity. Nevertheless, our data also suggest that

some of the accelerated aging of the brain in schizophrenia is

related to the severity of the illness, since we found it to be

positively associated with symptom and outcome scores and

number and duration of hospitalizations. That progressive

aging of the brain becomes less pronounced after the first

years of illness could reflect the transition from a clinically

unstable period, with large variability in functioning, to a

relatively stable period,whenpatients have reached aplateau

in functioning (41, 42). The large variation in the pace of brain

aging among the schizophrenia patients could thus be a re-

flectionof this individual variation in the courseof thedisease

and, related to that, lifestyle.

Applying our age prediction model in an independent

sample,we found a zero brain age gap in healthy subjects and

a significant gap (5.6 years) in schizophrenia patients. This

replication at a different field strength (3 T) supports the

generalization of our age prediction model. Interestingly,

most brain areas that played a role in the prediction of age

were not involved in the prediction of schizophrenia and vice

versa. Many regions were found where lower gray matter

density contributed to the greater age prediction, which is in

linewith the graymatter decreases found in agingbrains (43).

These regions included the left and right caudate nucleus, the

putamen, parts of the temporal lobes, the cerebellar vermis,

and the left occipital pole. A few regions were foundwith the

opposite effect: higher gray matter density contributed to

greater age prediction in the posterior parts of the thalami.

Whether these effects are true structural or physiological

changes in gray matter or reflect degrading surrounding

white matter tissue remains to be investigated. In the

schizophrenia prediction weight map, widespread decreases

in gray matter density were found at the interface between

the left and right hemispheres and in the frontal lobe, the

temporal lobe, the insula, and around the lateral ventricles.

Anumberofmarkedpositiveassociationsbetweengraymatter

density and schizophrenia were also found in the left and

right occipital poles, the putamen, and the globus pallidus.

Interestingly, the latter two structureswere the only regions

that were enlarged in a meta-analysis of brain volumes in

schizophrenia (3).

The findings of this study should be considered in light of

some limitations. Our brain age model is insensitive to any

nonlinear changes of graymatter with age.Most patients had

been ill for several years at the time of their first scan, so

changes in brain age just after illness onset were based on a

relatively low number of subjects. Patients with the poorest

outcomes may not have been able to participate at follow-up

(22; but see also 25), which may have confounded the results

on brain aging. Almost all patients used antipsychotic

medication at the time of scanning, making it impossible

to separate the effects of medication on aging of the brain

from those of the illness.However, progressive brain changes

in a sample of chronic, never-medicated schizophrenia pa-

tients (ages 20–70 years) have recently been reported (44).

In conclusion, our data suggest that the widely reported

progressive gray matter loss in schizophrenia reflects in part

an accelerated aging of the brain that is quantitatively, but not

qualitatively, different from that observed in healthy aging.

While we also find brain abnormalities that are qualitatively

FIGURE 5. Relationship BetweenBrain Age AccelerationRate (DGBA/Dage) and Positive andNegative Syndrome Scale (PANSS) andGlobal

Assessment of Functioning Scale (GAF) Scores
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different from those observed in healthy subjects, their

evolution over time is highly variable. Thus, the progressive

brain loss in schizophrenia appears to reflect two different

processes: one relatively homogeneous, reflecting accelerated

aging of the brain and related to outcome, the other more

variable and specific, possibly reflecting individual variation

related to the illness and to medication use. Differentiating

between these two processes may not only elucidate the

various factors influencingbrain loss inschizophrenia, but also

assist in individualizing treatment.
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