
The VLDB Journal (2023) 32:257–281
https://doi.org/10.1007/s00778-022-00746-0

REGULAR PAPER

Accelerated butterfly counting with vertex priority on bipartite graphs

Kai Wang1 · Xuemin Lin1 · Lu Qin2 ·Wenjie Zhang3 · Ying Zhang2

Received: 2 June 2021 / Revised: 22 March 2022 / Accepted: 1 April 2022 / Published online: 16 May 2022
© The Author(s) 2022

Abstract
Bipartite graphs are of great importance in many real-world applications. Butterfly, which is a complete 2×2 biclique, plays a
key role in bipartite graphs. In this paper, we investigate the problem of efficient counting the number of butterflies. The most
advanced techniques are based on enumerating wedges which is the dominant cost of counting butterflies. Nevertheless, the
existing algorithms cannot efficiently handle large-scale bipartite graphs. This becomes a bottleneck in large-scale applications.
In this paper, instead of the existing layer-priority-based techniques, we propose a vertex-priority-based paradigm BFC-VP to
enumeratemuch fewerwedges; this leads to a significant improvement of the time complexity of the state-of-the-art algorithms.
In addition, we present cache-aware strategies to further improve the time efficiency while theoretically retaining the time
complexity of BFC-VP. We also show that our proposed techniques can work efficiently in external and parallel contexts.
Moreover, we study the butterfly counting problem on batch-dynamic graphs. Specifically, given a bipartite graph G and a
batch-update of edges B, we aim to maintain the number of butterflies in G. To tackle this problem, fast vertex-priority-based
algorithms are proposed with optimizations for reducing the computation of existing wedges in G. Our extensive empirical
studies demonstrate that the proposed techniques significantly outperform the baseline solutions on real datasets.

Keywords Bipartite graph · Butterfly counting · Dynamic graph

1 Introduction

When modeling relationships between two different types
of entities, bipartite graph arises naturally as a data model in
many real-world applications [14,39]. For example, in online
shopping services (e.g., Amazon and Alibaba), the purchase
relationships between users and products can bemodeled as a
bipartite graph,where users formone layer, products form the
other layer, and the links between users and productions rep-

B Wenjie Zhang
zhangw@cse.unsw.edu.au

Kai Wang
cskaelwang@gmail.com

Xuemin Lin
xuemin.lin@sjtu.edu.cn

Lu Qin
lu.qin@uts.edu.au

Ying Zhang
ying.zhang@uts.edu.au

1 Antai College of Economics and Management, Shanghai Jiao
Tong University, Shanghai, China

2 University of Technology Sydney, Ultimo, NSW, Australia

3 University of New South Wales, Sydney, NSW, Australia

resent purchase records as shown in Fig. 1. Other examples
include author-paper relationships, actor-movie networks,
etc.

Since network motifs (i.e., repeated sub-graphs) are
regarded as basic building blocks of complex networks [45],
finding and counting motifs of networks/graphs is a key to
network analysis. In unipartite graphs, there are extensive
studies on counting and listing triangles in the literature
[5,16,19,31,38,57,58,60–62]. In bipartite graphs, butterfly
(i.e., 2 × 2 biclique) is the simplest bi-clique configuration
with equal numbers of vertices of each layer (apart from the
trivial single edge configuration) that has drawn reasonable
attention recently [4,30,53,54,56,64,73]; for instance, Fig. 1
shows the record that Adam and Mark both purchased Balm
and Doll forms a butterfly. In this sense, the butterfly can be
viewed as an analogue of the triangle in a unipartite graph.
Moreover, without butterflies, a bipartite graph will not have
any community structure [4].

In this paper, we study the butterfly counting problem.
Specifically, we aim to compute the total number of butter-
flies in a bipartite graph G, which is denoted by ��G . The
importance of butterfly counting has been demonstrated in
the literature of network analysis and graph theory. Below
are some examples.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00746-0&domain=pdf
http://orcid.org/0000-0001-6572-2600


258 K. Wang et al.

(Adam) (Mark) (Shego) (Taylor)

(Doll) (Carpet)(Balm) (Wine)(Hat)

u0 u1 u2 u3

v0 v1 v2 v3 v4

Fig. 1 A bipartite graph

Network measurement. The bipartite clustering coeffi-
cient [4,41,47,53] is a cohesiveness measurement of bipartite
graphs. Given a bipartite graph G, its bipartite clustering
coefficient equals 4 × ��G /

�

G , where

�

G is the total num-
ber of caterpillars (i.e., three-paths) in G. For example, (u0,
v0, u1, v1) in Fig. 1 is a three-path. High bipartite cluster-
ing coefficient indicates localized closeness and redundancy
in bipartite graphs [4,53]; for instance, in user-product net-
works, bipartite clustering coefficients can be used frequently
to analyze the sale status for products in different categories.
These statistics can also be used in Twitter network for
internet advertising where the Twitter network is a bipar-
tite graph consisting of Twitter users and the URLs they
mentioned in their postings. Since

�

G canbe easily computed
in O(m) time where m denotes the total number of edges in
G [4], computing ��G becomes a bottleneck in computing
the clustering coefficient.

Summarizing inter-corporate relations. In a director-board
network, two directors on the same two boards can be mod-
eled as a butterfly. These butterflies can reflect inter-corporate
relations [48–50]. The number of butterflies indicates the
extent to which directors re-meet one another on two or
more boards. A large butterfly counting number indicates a
large number of inter-corporate relations and formal alliances
between companies [53].
Computing k-wing in bipartite graphs. Counting the num-
ber of butterflies for each edge also has applications. For
example, it is the first step to compute a k-wing [56] (or
k-bitruss [67,68,73]) for a given k where k-wing is the
maximal subgraph of a bipartite graph with each edge in
at least k butterflies. Discovering such dense subgraphs is
proved useful in many applications, e.g., community detec-
tion [25,26,69,72], word-document clustering [21], and viral
marketing [24,42,65,71]. Given a bipartite graph G, the pro-
posed algorithms [56,67,68,73] for k-wing computation are
to first count the number of butterflies on each edge in G.
After that, the edge with the lowest number of butterflies
is iteratively removed from G until all the remaining edges
appear in at least k butterflies.

Note that in real applications, butterfly counting may hap-
pen not only once in a graph. We may need to conduct
such a computation against an arbitrarily specified subgraph.
Indeed, there can exist a high demand for butterfly counting
in large networks. However, the existing solutions cannot
efficiently handle large-scale bipartite graphs. As shown in
[54], on the Tracker network with 108 edges, their algo-
rithm needs about 9000 s to compute ��G . Therefore, the
study of efficient butterfly counting is imperative to support
online large-scale data analysis. Moreover, some applica-
tions demand exact butterfly counting in bipartite graphs.
For example, in k-wing computation, approximate counting
does not make sense since the k-wing decomposition algo-
rithm in [56] needs to iteratively remove the edges with the
lowest number of butterflies; the number has to be exact.

Notably, dynamic graphs have attracted significant inter-
est in recent research studies [11,15,28,44,46,61] since there
can exist a large number of constant updates on graphs
in real applications. To enable computational sharing and
increase system throughout (i.e., average processing time
per update) in practice, many existing studies consider pro-
cessing the updates in a batch-dynamic way which handles
updates as a set of batches [1,8,23,27,43]. However, there is
no systematic study over the butterfly counting problem on
batch-dynamic graphs in the literature. To fill this research
gap, we investigate how to design efficient parallel butterfly
counting algorithms for batch-dynamic settings in this paper.
Specifically, given a bipartite graph G and a batch-update of
edges B, we aim to maintain the number of butterflies in G.

State-of-the-art. Consider that there can be O(m2) but-
terflies in the worst case. Wang et al. in [64] propose an
algorithm to avoid enumerating all the butterflies. It has two
steps. At the first step, a layer is randomly selected. Then,
the algorithm iteratively starts from every vertex u in the
selected layer, computes the 2-hop reachable vertices from
u, and for each 2-hop reachable vertex w, counts the num-
ber nuw of times reached from u. At the second step, for
each 2-hop reachable vertex w from u, we count the number
of butterflies containing both u and w as nuw(nuw − 1)/2.
For example, regarding Fig. 1, if the lower layer is selected,
starting from the vertex v0, vertices v1, v2, and v3 are 2-hop
reached 3 times, 1 time, and 1 time, respectively. Thus, there
are C2

3
1 (= 3) butterflies containing v0 and v1 and no but-

terfly containing v0 and v2 (or v0 and v3). Iteratively, the
algorithm first uses v0 as the start-vertex, then v1, and so
on. Then, we add all the counts together; the added counts
divided by two is the total number of butterflies.

Observe that the time complexity of the algorithm in [64]
is O(

∑
u∈U (G) degG(u)2)) if the lower layer L(G) is chosen

to have start-vertices, where U (G) is the upper layer. Sanei

1 Ck
n represents choosing k out of n.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 259

et al. in [54] chooses a layer S such that O(
∑

v∈S degG(v)2))

is minimized among the two layers.

Observation. In the existing algorithms [54,64], the dom-
inant cost is at Step 1 that enumerates wedges to compute
2-hop reachable vertices and their hits. For example, regard-
ing Fig. 1, we have to traverse 3 wedges, (v0, u0, v1),
(v0, u1, v1), and (v0, u2, v1) to get all the hits from v0 to
v1. Here, in the wedge (v0, u0, v1), we refer v0 as the start-
vertex, u0 as the middle-vertex, and v1 as the end-vertex.
Continue with the example in Fig. 1, using u2 as the middle-
vertex, starting from v0, v1, and v2, respectively, we need to
traverse totally 6 wedges.

We observe that the choice of middle-vertices of wedges
(i.e., the choice of start-vertices) is a key to improving the
efficiency of counting butterflies. For example, consider the
graph G with 2002 vertices and 3000 edges in Fig. 2a. In G,
u0 is connected with 1000 vertices (v0 to v999), v1000 is also
connected with 1000 vertices (u1 to u1000), and for 0 ≤ i ≤
999, vi is connected with ui+1. The existing algorithms need
to go through u0 (or v1000) as the middle-vertex if choosing
L(G) (orU (G)) to start. Therefore, regardless of whether the
upper or the lower layer is selected to start,wehave to traverse
totally C2

1000 (= 499,500) plus 1000 different wedges by the
existing algorithms [54,64].

Challenges. The main challenges of efficient butterfly
counting are as follows.

1. Using high-degree vertices as middle-vertices may gen-
erate numerous wedges to be scanned. The existing
techniques [54,64], including the layer-priority-based
techniques [54], cannot avoid using unnecessary high-
degree vertices as middle-vertices as illustrated earlier.
Therefore, it is a challenge to effectively handle high-
degree vertices.

2. Effectively utilizing CPU cache can often reduce the
computation dramatically. Therefore, it is also a chal-
lenge to utilize CPU cache to speed up the counting of
butterflies.

3. On batch-dynamic graphs, we need to handle a batch of
updates on the original graph, which can be very large.

(a) (b)
v1000

u0

v0 v1 v998 v999

u1 u2 u999 u1000

U(G)

L(G)
v0 v1 v2 v3

u2 u3u1 u4 u5u0

Fig. 2 Two example bipartite graphs for illustrating the butterfly count-
ing algorithms

Thus, it is a challenge to explore possible sharing oppor-
tunities and reduce the computation that does not lead to
any new butterflies.

Our approaches. To address Challenge 1, instead of the
existing layer-priority-based algorithm, we propose a vertex-
priority-based algorithm BFC-VP that can effectively handle
hub vertices (i.e., high-degree vertices). To avoid over-
counting or miss-counting, we propose that for each edge
(u, v), the new algorithm BFC-VP uses the vertex with a
higher degree as the start-vertex so that the vertex with a
lower degree will be used as the middle-vertex. Specifically,
the BFC-VP algorithm will choose one end vertex of an edge
(u, v) as the start-vertex, say u, according to its priority. Note
that the vertex priority is a total ordering of vertices, and
we use degree-based priority in this paper. A higher degree
indicates a higher priority, and the tie is broken by the ID
of vertices. For example, regarding Fig. 2a, the BFC-VP algo-
rithmwill chooseu0 and v1000 as start-vertices; consequently,
only 2000 wedges in total will be scanned by our algorithm
compared with 500, 500 different wedges generated by the
existing algorithms as illustrated earlier. Once all edges from
the starting vertex u are exhausted, BFC-VPmoves to another
edge. This is the main idea of our BFC-VP algorithm.

As a result, the time complexity of ourBFC-VP algorithm is
O(

∑
(u,v)∈E(G) min{degG(u), degG(v)}), which is in gen-

eral significantly lower than the time complexity of the state-
of-the-art algorithm in [54] (i.e.,O(min{∑v∈U (G) degG(v)2,
∑

v∈L(G) degG(v)2)})). Note that the time complexity of
BFC-VP is also bounded by O(α ·m), whereα is the arboricity
of G [17].

In the BFC-VP algorithm, there are O(n) accesses of
start-vertices because we need to explore every vertex as a
start-vertex only once, O(m) accesses ofmiddle-vertices and
O(

∑
(u,v)∈E(G) min{degG(u), degG(v)}) accesses of end-

vertices in the processed wedges. Thus, the number of
accesses to end-vertices is dominant. Given that the cache
miss latency takes a big part of the memory access time [3],
improving the CPU cache performance when accessing the
end-vertices becomes a key issue. Our second algorithm, the
cache-aware algorithm BFC-VP++, aims to improve the CPU
cache performance of BFC-VP by having high-degree ver-
tices as end-vertices to enhance the locality while retaining
the total number of accesses of end-vertices (thus, retain the
time complexity of the BFC-VP algorithm). Consequently,
BFC-VP++ proposes to request the end-vertices to be prior-
itized in the same way as the start-vertices in the BFC-VP
algorithm.

For example, considering the graph in Fig. 2b, we have
p(v0) > p(v3) > p(u0) > p(v2) > p(v1) according to
their degrees where p(v) denotes the priority of a vertex v.
In this example, starting from v0 to v3, going through u0,

123



260 K. Wang et al.

BFC-VP needs to process 5 wedges using u0 as the middle-
vertex (i.e., (v0, u0, v1), (v0, u0, v2), (v0, u0, v3), (v3, u0, v1)
and (v3, u0, v2)), and there are 3 vertices, v1, v2 and v3
that need to be performed as end-vertices. Note that these
are the only 5 wedges using u0 as the middle-vertex since
p(u0) > p(v2) > p(v1). Regarding the same example,
BFC-VP++ also needs to process exactly 5 wedges with u0
as the middle-vertex, (v1, u0, v0), (v1, u0, v3), (v2, u0, v0),
(v2, u0, v3) and (v3, u0, v0); however, only 2 vertices, v0 and
v3, are performed as end-vertices.

We also propose the cache-aware reordering strategy to
improve the cache performance by storing high-priority
(more frequently accessed) end-vertices together to reduce
the cache-miss [70]. Considering the example in Fig. 2b,
BFC-VP++ will store v0 and v3 together after reordering.

To handle batch-dynamic graphs, we propose efficient
algorithmsby identifying the affected scope (subgraph) of the
batch-update. Then, we can also utilize our vertex-priority-
based techniques to accelerate the computation process. In
addition,we categorize the newbutterflies into different cases
and propose effective pruning techniques to further reduce
the computation (of old wedges on the original graph) that
does not lead to any new butterflies.

Contribution. We summarize the principal contributions of
this paper as follows.

– We propose a novel vertex-priority-based algorithm BFC-
VP to count the butterflies that reduce the time complexi-
ties of the state-of-the-art algorithms significantly in both
theory and practice.

– We propose a novel cache-aware butterfly counting algo-
rithm BFC-VP++ by adopting cache-aware strategies to
BFC-VP. Compared with BFC-VP, the BFC-VP++ algo-
rithm achieves a better CPU cache performance.

– We can replace the exact counting algorithm in the
approximate algorithm [54] by our exact counting algo-
rithm for a speedup.

– We also present an external-memory algorithm and a par-
allel algorithm for butterfly counting.

– This is also the first work to study butterfly counting on
batch-dynamic graphs. We propose a work-efficient par-
allel algorithm to solve the problem.

– We conduct comprehensive experimental evaluations on
real datasets. It shows that our proposed algorithms BFC-
VP and BFC-VP++ outperform the existing algorithms
by up to two orders of magnitude. For instance, on the
Tracker dataset, the BFC-VP++ algorithm can count
1012 butterflies in 50 s, and the state-of-the-art butterfly
counting algorithm [54] runs about 9000 s. In addition,
our advanced algorithm BFCB-IG+ for batch-dynamic
butterfly counting is up to 2 orders of magnitude faster
than the baseline algorithm.

Organization We organize the rest of the paper as fol-
lows. In Sect. 2, we show the preliminaries. Section 3
discusses the existing algorithms BFC-BS and BFC-IBS. We
introduce the BFC-VP algorithm in Sect. 4. Section 5 explores
cache-awareness. Section 6 extends our algorithms to count
butterflies against each edge, the parallel execution of our
proposed algorithms, and the external memory solution. Sec-
tion 7 presents our algorithms for batch-dynamic butterfly
counting. Section 8 reports experimental results. Section 9
reviews the relatedworks. Section10presents the conclusion.

2 Preliminaries

We define our problem over a bipartite graph G(V =
(U , L), E). HereU (G) contains all the upper layer vertices,
L(G) contains all the lower layer vertices, and E(G) is the
edge set. Note that U (G) ∩ L(G) = ∅. An edge connect-
ing two vertices u and v is represented as (u, v) (or (v, u)).
NG(u) is the neighbor set of a vertex u in G, and u’s degree
is represented as degG(u) = |NG(u)|. The 2-hop neighbor
set of u (i.e., the set of vertices which are exactly two edges
away from u) is denoted as 2hopG(u). Note that we assume
each vertex in G has an id, and the IDs of the vertices in
U (G) are always higher than that of the vertices in L(G). m
and n are used to represent the number of edges and vertices
inG. We use |G| to denote the size ofG, where |G| = m+n.

Definition 1 (Wedge) Consider a bipartite graphG, and three
vertices u, v,w ∈ V (G). A wedge (u, v, w) is a path starting
from u, going through v and ending at w. u, v, and w are
called the start-, the middle-, and the end-vertex in the wedge
(u, v, w), respectively.

Definition 2 (Butterfly) Consider a bipartite graph G and
four vertices u, w ∈ U (G) and v, x ∈ L(G). A butterfly
[u, v, w, x] is a complete bipartite subgraph (i.e., 2 × 2-
biclique) induced by u, v, w, x .

The total number of butterflies containing a vertex u and an
edge e are denoted as ��u and ��e, respectively. In addition,
the count of butterflies in G is denoted as ��G .

Problem statement Given a bipartite graph G, the butterfly
counting problem is to compute ��G .

3 Existing algorithms

Here, we discuss the two existing algorithms, the baseline
butterfly counting algorithm BFC-BS [64] and the improved
baseline butterfly counting algorithm BFC-IBS [54]. As dis-
cussed earlier, both algorithms are based on enumerating
wedges. Lemma 1 [64] is a key to the two algorithms.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 261

Lemma 1 In a bipartite graph G, the following equations
hold:

��u =
∑

w∈2hopG (u)

(|NG(u) ∩ NG(w)|
2

)

(1)

��G = 1

2

∑

u∈U (G)

��u = 1

2

∑

v∈L(G)

��v (2)

In fact, BFC-IBS has the same framework as BFC-BS and
improvesBFC-BS in two aspects: (1) pre-choosing the layer of
start-vertices to achieve a lower time complexity; (2) using
a hash map to speed up the implementation. We show the
details of BFC-IBS in Algorithm 1.

Algorithm 1: BFC- IBS
Input: G
Output: ��G

1 ��G ← 0
2 S ← U (G)

3 if
∑

u∈U (G) degG(u)2 <
∑

v∈L(G) degG(v)2 then
4 S ← L(G)

5 foreach u ∈ S do
6 wedge_cnt ← a hashmap initialized with zero
7 foreach v ∈ NG(u) do
8 foreach w ∈ NG(v) : w.id > u.id do
9 wedge_cnt(w) + +

10 foreach w ∈ wedge_cnt do
11 if wedge_cnt(w) > 1 then
12 ��G ← ��G + (

wedge_cnt(w)
2

)

13 return ��G

Note that to avoid counting a butterfly twice, for each
middle-vertex v ∈ NG(u) and the corresponding end-vertex
w ∈ NG(v), BFC-IBS processes the wedge (u, v, w) only if
w.id > u.id; consequently, in Algorithm 1 we do not need
to use the factor 1

2 in Equation 2 of Lemma 1.
Note that the BFC-BS algorithm has the time complexity

of O(
∑

v∈L(G) degG(v)2) if starting from the layer U (G),
while the time complexity of BFC-IBS is O(min{∑u∈U (G)

degG(u)2,
∑

v∈L(G) degG(v)2}).

4 Algorithm by vertex priority

In BFC-BS and BFC-IBS, the time complexity is related to the
total number of 2-hop neighbors visited (i.e., the total number
of wedges processed). When starting from one vertex layer,
the number of processed wedges is decided by the sum of
degree squares of middle-vertices of the other layer. If all the
vertices with low degrees are distributed in one vertex layer
as middle-vertices, BFC-IBS can just start from the vertices
in the other layer and obtain a much lower computation cost.

v1000 v1001

u0 u1

v0 v1 v998 v999

u2 u3 u1000 u1001

Fig. 3 A bipartite graph containing hub vertices u0, u1, v1000 and v1001

However, when there are vertices with high degrees (i.e.,
hub vertices) exist in both layers, which is not uncommon in
real datasets (e.g., Tracker dataset), choosing which layer
to start cannot achieve a better performance. For example,
consider the graph G with 2002 vertices and 4000 edges in
Fig. 3, where u0 and u1 are connectedwith 1, 000 vertices (v0
to v999), v1000 and v1001 are also connectedwith 1000 vertices
(u2 to u1001). In this example, choosing either of the two
layers still needs to go through hub vertices, u0, u1 ∈ U (G)

or v1000, v1001 ∈ L(G).

Optimization strategy. Clearly, [u0, v0, u1, v1] in Fig. 3 can
be constructed in the following two ways: (1) by the wedges
(u0, v0, u1) and (u0, v1, u1), or (2) by thewedges (v0, u0, v1)
and (v0, u1, v1). Consequently, a hub vertex (e.g., u0 in
Fig. 3) may not always necessary to become a middle-vertex
in a wedge for the construction of a butterfly. Thus, it is
possible to design an algorithm which can avoid using hub
vertices unnecessarily as middle-vertices. To achieve this
objective, we introduce the vertex-priority-based butterfly
counting algorithm BFC-VPwhich runs in a vertex level (i.e.,
choosing which vertex to be processed as the start-vertex)
rather than a layer level (i.e., choosing which vertex-layer to
be processed as the start-layer).

Given a graph G, BFC-VP first assigns a priority to each
vertex u ∈ V (G).

Definition 3 (Priority) Consider a bipartite graph G. The
vertex priority is a total ordering of the vertices in G. Specif-
ically, the priority p(u) of a vertex u ∈ V (G) is an integer
where p(u) ∈ [1, n]. Given u, v ∈ V (G), p(u) �= p(v) if
u �= v.

According to the concept of priority, we can always con-
struct a butterfly from two wedges (u, v, w) and (u, x, w)

where the start-vertex u has a higher priority than themiddle-
vertices v and x . This is because we can always find a vertex
that has the highest priority and connects to two vertices with
lower priorities in a butterfly.

Based on the above observation, the BFC-VP algorithm can
get all the butterflies by only processing the wedges where
the priorities of start-vertices are higher than the priorities of

123



262 K. Wang et al.

middle-vertices. In this way, the algorithm BFC-VPwill avoid
processing the wedges where middle-vertices have higher
priorities than start-vertices (e.g., (v0, u0, v1) in Fig. 3 if we
consider that a higher vertex degree indicates a higher prior-
ity). In addition, in order to avoid duplicate counting, another
constraint should also be satisfied in BFC-VP: BFC-VP only
processes the wedges where start-vertices have higher pri-
orities than end-vertices. To avoid processing unnecessary
wedges in the implementation, we sort the neighbors of ver-
tices in ascending order of their priorities. Then we can early
terminate the processing once wemeet an end-vertex that has
higher priority than the start-vertex (or meet a middle-vertex
that has higher priority than the start-vertex). We show the
details of the BFC-VP algorithm in Algorithm 2.

Algorithm 2: BFC- VP
Input: G
Output: ��G

1 calculate the priority for each vertex in V (G)

2 for each vertex u, sort N (u) according to their priorities
3 ��G ← 0
4 foreach vertex u ∈ V (G) do
5 wedge_cnt ← a hashmap initialized with zero
6 foreach vertex v ∈ NG(u) : p(v) < p(u) do
7 foreach vertex w ∈ NG(v) : p(w) < p(u) do
8 wedge_cnt(w)++
9 foreach vertex w ∈ wedge_cnt: wedge_cnt(w) > 1 do

10 ��G ← ��G + (
wedge_cnt(w)

2

)

11 return ��G

Firstly, BFC-VP assigns a priority to each vertex u ∈ V (G)

according to Definition 3 and sort the neighbors of u. After
that,BFC-VP processeswedges from each start-vertex u (Line
4). For each middle-vertex v ∈ NG(u), it processes v if it
satisfies p(v) < p(u). Then, it only processes w ∈ NG(v)

which satisfies p(w) < p(u) to avoid duplicate counting.
After that, the value |NG(u)∩ NG(w)| can be obtained for u
and w which is equal to wedge_cnt(w). Then, according to
Lemma 1, BFC-VP computes ��G . Finally, we return ��G .

Correctness and complexity analysis of the BFC-VP algo-
rithm. Below we show theoretical analysis of the BFC-VP
algorithms.

Theorem 1 The BFC-VP algorithm correctly solves the but-
terfly counting problem.

Proof We prove that BFC-VP correctly computes ��G for a
bipartite graphG. A butterfly can always be constructed from
two different wedges with the same start-vertex and the same
end-vertex. Thus, we only need to prove that each butterfly
in G will be counted exactly once by BFC-VP. Given a but-
terfly [x, u, v, w], we assume x has the highest priority. The
vertex priority distributionmust be one of the three situations

u w

vx
(a) (b) (c)

u w

vx

u w

vx

p1 p2

p3
p4

p1 p3 p3

p4 p4 p1

p2

p2

Fig. 4 Assume p4 > p3 > p2 > p1

as shown in Fig. 4 (the other situations can be transformed
into the above by symmetry), where pi is the corresponding
vertex priority. Regarding the case in Fig. 4a, b, or c, BFC-VP
only counts the butterfly [x, u, v, w] once from the wedges
(x, u, v) and (x, w, v). Thus, we can prove that BFC-VP cor-
rectly solves the butterfly counting problem. �	
Theorem 2 The time complexity of BFC-VP is
O(

∑
(u,v)∈E(G),p(u)>p(v) degG(v)).

Proof Algorithm 2 has two phases: initializing in the first
phase and computing ��G in the second phase. The time
complexity of the first phase is O(n + m). Firstly, we need
O(m) to get the degrees of vertices and O(n) time to get
the priorities by sorting the vertices using bin sort [37]. Sec-
ondly, we need O(m) time to sort the neighbors of vertices in
ascending order of their priorities. To achieve this, we gener-
ate a new empty neighbor list T (u) for each vertex u. Then,
we process the vertex with lower priority first and for each
vertex u and its neighbor v, we put u into T (v). Finally, the
neighbors of vertices are ordered in T .

The time cost of the second phase is bounded by the num-
ber of wedge counting operations executed in Algorithm 2
Line 8 (i.e., the number of wedges traversed in BFC-VP).
According to the processing rule of BFC-VP, the wedge
counting operations consume O(deg(v)) time for each edge
(u, v) ∈ E(G) with p(u) > p(v). This is because only
the wedges where the priorities of middle-vertices are lower
than the priorities of start-vertices are processed in BFC-VP.
Hence, BFC-VP needs O(

∑
(u,v)∈E(G),p(u)>p(v) degG(v))

time in total, and this theorem holds. �	
According to the above analysis, how to order the vertices

can affect the complexity of the algorithm. In this paper, we
propose using the degree-based priority to achieve both good
practical and theoretical results.

Definition 4 (Degree priority) Consider a bipartite graph G.
The degree priority pd(u) of a vertex u ∈ V (G) is an integer
where pd(u) ∈ [1, n]. Given u, v ∈ V (G), pd(u) > pd(v)

if

– degG(u) > degG(v), or
– degG(u) = degG(v), u.id > v.id.

Based onDefinition 4, we can have the following theorem.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 263

Theorem 3 The time complexity ofBFC-VP is O(
∑

(u,v)∈E(G)

min{degG(u), degG(v)}) = O(α ·m), if the degree priority
is applied.

Proof Since the degree priority is applied, the time com-
plexity of BFC-VP is O(

∑
(u,v)∈E(G),pd (u)>pd (v) degG(v))

= O(
∑

(u,v)∈E(G) min{degG(u), degG(v)}). According to
[17], the time complexity of BFC-VP can be simplified to
O(α · m), where α is the arboricity of G. �	

In the following parts, we simply call the degree priority as
the priority and use p(u) to denote the degree priority when
the context is clear.

Theorem 4 The space complexity of BFC-VP is O(m).

Proof InAlgorithm 2,we need O(m) space to store the graph
structure and O(n) space to store the arrays for the priority
of vertices and counting the number of wedges. Thus, the
space cost of the BFC-VP algorithm is bounded by O(m). �	
Lemma 2 In a bipartite graph G, the following equation
holds:

∑

(u,v)∈E(G)

min{degG(u), degG(v)}

≤ min{
∑

u∈U (G)

degG(u)2,
∑

v∈L(G)

degG(v)2} (3)

The equality happens if and only if one of the following two
conditions is satisfied: (1) for every edge (u, v) ∈ E(G)

and u ∈ U (G), degG(u) ≤ degG(v); (2) for every edge
(u, v) ∈ E(G) and u ∈ U (G), degG(v) ≤ degG(u).

Proof Given a bipartite graph G, since there are degG(u)

edges attached to a vertex u, we can get that:

∑

u∈U (G)

degG(u)2 =
∑

(u,v)∈E(G),u∈U (G)

degG(u)

≥
∑

(u,v)∈E(G)

min{degG(u), degG(v)} (4)

Similarly,

∑

v∈L(G)

degG(v)2 =
∑

(u,v)∈E(G),u∈U (G)

degG(v)

≥
∑

(u,v)∈E(G)

min{degG(u), degG(v)} (5)

Thus, we can prove that Eq. (3) holds. The condition of
equality can be easily proved by contradiction which is omit-
ted here. �	

From Lemma 2, we can get that BFC-VP improves the
time complexity of BFC-IBS. Now we illustrate how BFC-VP
efficiently handles the hub-vertices compared with BFC-IBS
using the following example.

Example 1 Consider the example in Fig. 3.
BFC-VP first assigns a priority to each vertex in G where

p(u1) > p(u0) > p(v1001) > p(v1000) > p(u1001) >

p(u1000) > · · · > p(v1) > p(v0). Starting from u1, BFC-
VP needs to process 1000 wedges ending at u0. Similarly,
starting from v1001, BFC-VP needs to process 1000 wedges
ending at v1000. No other wedges need to be processed by
BFC-VP. In total, BFC-VP needs to process 2000 wedges.

BFC-IBS processes each vertex u ∈ U (G) as start-vertex.
Starting from u0, BFC-IBS needs to process 1000wedges end-
ing at u1. Starting from u1, no wedges need to be processed.
In addition, starting from the vertices in {u2, u3, . . . , u1001},
BFC-IBS needs to process 999,000 wedges. In total, BFC-IBS
needs to process 1,000,000 wedges.

5 Cache-aware techniques

As discussed in Sect. 1, below is the breakdown of memory
accesses to vertices required when processing the wedges
in the BFC-VP algorithm: O(n) accesses of start-vertices,
O(m) accesses of middle-vertices, and O(

∑
(u,v)∈E(G)

min{degG(u), degG(v)}) accesses of end-vertices. Thus, the
total access of end-vertices is dominant. For example, by run-
ning the BFC-VP algorithm on Tracker dataset, there are
about 6 × 109 accesses of end-vertices, while the accesses
of start-vertices and middle-vertices are only 4 × 107 and
2 × 108, respectively. Since the cache miss latency takes a
big part of the memory access time [3], we try to improve the
CPU cache performance when accessing the end-vertices.

Because the CPU cache is hard to control in algorithms, a
general approach to improve the CPU cache performance is
storing frequently accessed vertices together. Suppose there
is a buffer BF that is partitioned into a low-frequency area
LFA and a high-frequency area HFA as shown in Fig. 5. The
vertices are stored inBF and only a limited number of vertices
are stored in HFA. For an access of the end-vertex w, we
compute miss(w) by the following equation:

miss(w) =
{
1, iff. w ∈ LFA,

0, iff. w ∈ HFA.
(6)

We want to minimize F which is computed by:

F =
∑

(u,v,w)∈W
miss(w) (7)

Low Frequency High Frequency

Fig. 5 The buffer BF

123



264 K. Wang et al.

Here, W is the set of processed wedges of an algorithm.
Since F can only be derived after finishing the algorithm,

theminimumvalue of F cannot be pre-computed.We present
two strategies that aim to decrease F :

– Cache-aware wedge processing which performs more
high-priority vertices as end-vertices, while retaining the
total number of accesses of end-vertices (thus, the same
time complexity of BFC-VP). Doing this will enhance the
access locality.

– Cache-aware graph reordering which stores vertices with
high-priority together in HFA.

5.1 Cache-aware wedge processing

Issues in wedge processing of BFC-VP. In BFC-VP, the pro-
cessing rule restricts the priorities of end-vertices should be
lower than the priorities of start-vertices in the processed
wedges. Because of that, the accesses of end-vertices exhibit
bad locality (i.e., not clustered in memory). For example, by
counting the accesses of end-vertices over Tracker dataset,
as shown in Fig. 6a, 79% of total accesses are accesses of
low-degree vertices (i.e., degree < 500) while the percent-
age of high-degree vertices (i.e., degree > 2000) accesses is
only 9% in BFC-VP. Since the locality of accesses is a key
aspect of improving the CPU cache performance, we explore
whether the locality of end-vertex-accesses can be improved.
With the total access of end-vertices remaining unchanged,
we hope the algorithm can access more high-degree vertices
as end-vertices. In that manner, the algorithm will have more
chance to request the same memory location repeatedly and
the accesses of HFA are more possible to increase (i.e., F is
more possible to decrease).

New wedge processing strategy. Based on the above
observation, we present a new wedge processing strategy:
processing the wedges where the priorities of end-vertices
are higher than the priorities of middle-vertices and start-
vertices. We name the algorithm using this new strategy as
BFC-VP+. BFC-VP+ will perform more high-priority vertices
as the end-vertices than BFC-VP because of the restriction
of priorities of end-vertices. For example, considering the

< 500

79%

501-1000

6%

1001-1500

5%

1501-2000

1%

> 2000

9%

< 500 501-1000 1001-1500
1501-2000 > 2000

Degree

(a) BFC-VP

< 500

5%
501-1000

5%
1001-1500

6%

1501-2000

3%

> 2000

81%

> 500 501-1000 1001-1500
1501-2000 > 2000

Degree

(b) BFC-VP+

Fig. 6 The degree distribution of the end-vertex-accesses on Tracker

graph in Fig. 2b, we have p(v0) > p(v3) > p(u0) >

p(v2) > p(v1) according to their degrees. We analyze the
processed wedges starting from v0 to v3, going through
u0. BFC-VP needs to process 5 wedges (i.e., (v0, u0, v1),
(v0, u0, v2), (v0, u0, v3), (v3, u0, v1) and (v3, u0, v2)) and
3 vertices (i.e., v1, v2 and v3) are performed as end-vertices.
Utilizing the new wedge processing strategy, as shown in
Fig. 2b, the number of processed wedges of BFC-VP+ is still
5 (i.e., (v1, u0, v0), (v1, u0, v3), (v2, u0, v0), (v2, u0, v3) and
(v3, u0, v0)) but only 2 vertices with high-priorities (i.e., v0
and v3) are performed as end-vertices. Thus, the number
of accessing different end-vertices is decreased from 3 to
2 (i.e., the accesses exhibit better locality). Also as shown in
Fig. 6b, after applying the newwedge processing strategy, the
percentage of accesses of high-degree vertices (i.e., degree
> 2000) increases from 9 to 81% on Tracker dataset.

Analyzing the new wedge processing strategy. Although
the new wedge processing strategy can improve the CPU
cache performance of BFC-VP, there are two questions that
arise naturally: (1) whether the number of processed wedges
is still the same as BFC-VP; (2) whether the time complexity
is still the same as BFC-VP after utilizing the new wedge
processing strategy. We denote the set of processed wedges
of BFC-VP as Wvp and the set of processed wedges of BFC-
VP+ as Wvp+ , and the following lemma holds.

Lemma 3 |Wvp| = |Wvp+|.
Proof For a wedge (u, v, w) ∈ Wvp, it always satisfies
p(u) > p(v) and p(u) > p(w) according to Algo-
rithm 2. For a wedge (u, v, w) ∈ Wvp+ , it always satisfies
p(w) > p(v) and p(w) > p(u) according to the new wedge
processing strategy. In addition, p(u) is unique for each
vertex u and the new wedge processing strategy does not
change p(u) of u. Thus, for each wedge (u, v, w) ∈ Wvp,
we can always find a wedge (w, v, u) ∈ Wvp+ . Similarly,
for each wedge (u, v, w) ∈ Wvp+ , we can always find a
wedge (w, v, u) ∈ Wvp. Therefore, we prove that |Wvp| =
|Wvp+|. �	

Since no duplicate wedges are processed, based on the
above lemma, BFC-VP+ will process the same number of
wedgeswith BFC-VP. However, if only applying this strategy,
when going through a middle-vertex, we need to check all its
neighbors to find the end-vertices which have higher prior-
ities than the middle vertex and the start-vertex. The time
complexity will increase to O(

∑
u∈V (G),v∈NG (u) degG(u)

degG(v)) because each middle-vertex v has degG(v) neigh-
bors. In order to reduce the time complexity, for each vertex,
we need to sort the neighbors in descending order of their
priorities. After that, when dealing with a middle-vertex, we
can early terminate the priority checking once we meet a
neighbor which has a lower priority than the middle-vertex
or the start-vertex.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 265

v*0 v*1 v*2 v*3 …

v0 v1 v2 v3 …

f

Before Reordering: sorted by id

After Reordering: sorted by priority

Fig. 7 Illustrating the cache-aware graph reordering

5.2 Cache-aware graph reordering

Motivation. After utilizing the cache-aware wedge process-
ing strategy, end-vertices are mainly high-priority vertices.
Generally, vertices are sorted by their ids when storing in the
buffer. Figure 7 shows accesses of the bufferwhen processing
end-vertices (i.e., v0 and v3) starting from v0 to v3 and going
through u0 in Fig. 2b by BFC-VP. We can see that although
end-vertices are mostly high-priority vertices, the distance
between two end-vertices (e.g., v0 and v3) can be very long.
This is because many low-priority vertices are stored in the
middle of high-priority vertices. In addition, real graphs usu-
ally follow power-law distributions which do not contain too
many vertices with high priorities (degrees). For example, in
the Tracker dataset with about 40,000,000 vertices, there
are only 10,338 vertices with degree ≥ 1000, and only 1%
vertices (400,000) with degree≥ 37.Motivated by the above
observations,wepropose the graph reordering strategywhich
can further improve the cache performance.

Graph reordering strategy. The main idea of the graph
reordering strategy is reordering the given bipartite graph G
into a reordering graph G∗ using a 1 to 1 bijective function
f . The reordering graph G∗ is defined as follows.

Definition 5 (Reordering graph) For a bipartite graph G, the
reordering graph G∗ is defined as: G∗ ← reordering(G,

f ), where f is a bijection from E(G) to E(G∗). For each e =
(u, v) ∈ E(G), e∗ = (u∗, v∗) = f (e) where u∗ ∈ U (G∗),
v∗ ∈ L(G∗), andu∗.id = rankU (u)+l, v∗.id = rankL(v).
rankU (u) ∈ [0, r − 1] (rankL(v) ∈ [0, l − 1]) denotes the
rank of the priority of u ∈ U (G) (the rank of the priority of
v ∈ L(G)).

Note that our linear graph reordering uses a 1 to 1 bijective
function to relabel the vertex-IDs which does not change the
graph structure. Thus, the number of vertices and edges are
both unchanged after reordering. After reordering the origi-
nal graph G into the reordering graph G∗, the vertices with
high priorities will be stored together. In this manner, we
can store more high-priority vertices consecutively in HFA.
Figure 7 illustrates the idea of graph reordering using the

example in Fig. 2b. After obtaining the reordering graph G∗,
we can see that the distance between two high-priority end-
vertices becomes much shorter, e.g., the distance between
v∗
1 and v∗

2 is 1 while the distance between v0 and v3 before
reordering is 3. In the experiments, we prove that the algo-
rithms applying with the graph reordering strategy achieve a
much lower cache miss ratio than BFC-VP.

5.3 Putting cache-aware strategies together

The BFC-VP++ algorithm. Putting the above strategies
together, we show the details of the algorithm BFC-VP++ in
Algorithm3.BFC-VP++ first generates a reordering graphG∗
according toDefinition 5 and for each vertexu∗ ∈ V (G∗), we
sort its neighbors. Then, BFC-VP++ finds NG∗(u∗) for each
vertex u∗ ∈ V (G∗). For each vertex v∗ ∈ NG∗(u∗), we find
w∗ ∈ NG∗(v∗) with p(w∗) > p(u∗) and p(w∗) > p(v∗)
(Lines 5 - 12).After Lines 6 - 12,we have |NG(u∗)∩NG(w∗)|
for the start-vertex u∗ and the end-vertex w∗ ∈ 2hopG(u∗).
Finally, we compute ��G (Lines 13–14).

Algorithm 3: BFC- VP++
Input: G
Output: ��G

1 ��G ← 0
2 G∗ ← reordering(G, f ) // Definition 5
3 calculate the priority for each vertex in V (G∗)
4 for each u∗ ∈ V (G∗), sort N (u∗) according to their priorities
5 foreach vertex u∗ ∈ V (G∗) do
6 wedge_cnt ← a hashmap initialized with zero
7 foreach v∗ ∈ NG∗ (u∗) do
8 foreach w∗ ∈ NG∗ (v∗) : p(w∗) > p(u∗) do
9 if p(w∗) > p(v∗) then

10 wedge_cnt(w∗)++
11 else
12 break
13 foreach vertex w∗ ∈ wedge_cnt: wedge_cnt(w∗) > 1 do
14 ��G ← ��G + (

wedge_cnt(w∗)
2

)

15 return ��G

Theorem 5 BFC-VP++ solves the butterfly counting problem
correctly.

Proof We prove that BFC-VP++ correctly computes ��G for
a bipartite graph G. Since the graph reordering strategy
just renumbers the vertices, it does not affect the structure
of G. Given a butterfly [x, u, v, w], we assume x has the
highest priority. We only need to prove that BFC-VP++ will
count exactly once for each butterfly in Fig. 4. Regarding the
case in Fig. 4a, b, or c, BFC-VP++ only counts the butterfly
[x, u, v, w] once from the wedges (v, u, x) and (v,w, x).
Thus, we can get that the BFC-VP++ algorithm correctly
solves the butterfly counting problem. �	

123



266 K. Wang et al.

Theorem 6 The time complexity of BFC-VP++ is O(α · m).

Proof Algorithm 3 has two phases including the initializa-
tion phase and ��G computation phase. In the first phase,
similar to BFC-VP, the algorithm needs O(n + m) time to
compute the priority number, sort the neighbors of vertices
and compute the reordering graph. Secondly,we analyze how
many wedge counting operations executed by BFC-VP++
in Algorithm 3 Line 10 (i.e., the number of wedges pro-
cessed) as follows. In BFC-VP++, we only need to process
the wedges where the degree of the end-vertex is higher
than or equal to the middle-vertex. Thus, the wedge counting
operations consume O(degG(v)) time to process each edge
(u, v) ∈ E(G) connecting an end-vertex u and a middle-
vertex v with deg(u) ≥ deg(v). Hence, BFC-VP++ needs
O(

∑
(u,v)∈E(G) min{degG(u), degG(v)}) = O(α · m) time

in total, and this theorem holds. �	
Theorem 7 The space cost of BFC-VP++ is O(m).

Proof InAlgorithm 3,we need O(m) space to store the graph
structure and O(n) space to store the arrays for the priority
of vertices and counting the number of wedges. The graph
reordering process also needs O(m) space for the reorder-
ing graph. Thus, the space cost of the BFC-VP algorithm is
bounded by O(m). �	
Remark Note that our algorithms (i.e., BFC-VP and BFC-
VP++) are able to output all the butterflies in a com-
pact format in O(α · m) time. For instance, we can use
[ui , u j , {vx , vy, vz}] to represent three butterflies that contain
ui andu j with theother twovertices chosen from {vx , vy, vz}.
If wewant to enumerate all the butterflies one by one, it needs
an additional O( ��G) time based on this compact data struc-
ture. Here, O( ��G) denotes the total number of butterflies in
G, which can reach O(m2) in the worst-case.

6 Handling other cases

In this section, firstly, we extend our algorithms to compute

��e for each e in G. Secondly, we extend our algorithms to
parallel algorithms. Thirdly, we introduce the external mem-
ory butterfly counting algorithm to handle large graphs with
limited memory size.

6.1 Counting the butterflies for each edge

For an edge e in G, the following equation holds [64]:

��e=(u,v) =
∑

w∈2hopG (u),w∈NG (v)

(|NG(u) ∩ NG(w)| − 1)

=
∑

x∈2hopG (v),x∈NG (u)

(|NG(v) ∩ NG(x)| − 1) (8)

Based on the above equation, our BFC-VP++ algorithm
can be extended to compute the butterfly count for each edge.
In Algorithm 3, for a start-vertex u∗ and a valid end-vertex
w∗ ∈ 2hopG(u), the value |NG(u∗) ∩ NG(w∗)| is already
computed which can be used directly to compute ��e.

Here, we present the BFC-EVP++ algorithm to compute

��e. The details of BFC-EVP++ are shown in Algorithm 4.
In the initialization process, we initialize ��e for each edge
e in G. After that, for each start-vertex u∗, we run Algo-
rithm3Lines 6–12 to compute |NG(u∗)∩NG(w∗)|. Then,we
run another round of wedge processing and update ��e(u,v),

��e(v,w) according to Eq. (8) (Lines 5–14). Finally, we return
the result.

InAlgorithm4,we only need an extra array to store ��e for
each edge e. In addition, because it just runs the wedge pro-
cessing procedure twice, we can get that the time complexity
of the BFC-EVP++ algorithm is the same as BFC-VP++.

Algorithm 4: BFC- EVP++
Input: G
Output: �� e for each e in G

1 run Algorithm 3 Line 2 - Line 4
2 �� e ← 0 for each edge e ∈ E(G)

3 foreach vertex u∗ ∈ V (G∗) do
4 run Algorithm 3 Line 6 - Line 12
5 foreach v∗ ∈ NG∗ (u∗) do
6 foreach w∗ ∈ NG∗ (v∗) : p(w∗) > p(u∗) do
7 if p(w∗) > p(v∗) then
8 δ ← wedge_cnt(w) − 1
9 (v,w) ← f −1(v∗, w∗)

10 (u, v) ← f −1(u∗, v∗)
11 �� (u,v) ← �� (u,v) + δ

12 �� (v,w) ← �� (v,w) + δ

13 else
14 break
15 return �� e for each edge e in G

6.2 Parallelization

Shared-memory parallelization. In Algorithm 3, only read
operations occur on the graph structure. This motivates us
to consider the shared-memory parallelization. Assume we
have multiple threads and these threads can handle different
start-vertices simultaneously. No conflict occurs when these
threads read the graph structure simultaneously. However,
conflicts may occur when they update wedge_cnt and ��G
simultaneously in Algorithm 3. Thus, we can divide the data
space into the global data space and the local data space.
In the global data space, the threads can access the graph
structure simultaneously. In the local data space, we use
local_wedge_cnt and local_ ��G for each thread to avoid

123



Accelerated butterfly counting with vertex priority on bipartite graphs 267

conflicts. Thus, we can use O(n ∗ t + m) space to extend
BFC-VP++ into a parallel version, where t denotes the num-
ber of threads.

Algorithm 5: BFC- VP++ in parallel
Input: G and t
Output: ��G

1 run Algorithm 3 Line 1 - Line 4
2 initialize local_wedge_cnt[i] and local_ ��G [i] for each thread
i ← 1..t

3 sort u∗ ∈ V (G∗) in non-ascending order by their priorities
4 foreach vertex u∗ ∈ V (G∗) do
5 allocate u∗ to an idle thread i
6 run Algorithm 3 Line 6 - Line 15, replace wedge_cnt , ��G

with local_wedge_cnt[i], local_ ��G [i]
7 /* on master thread */
8 ��G ← ��G + local_ ��G [i] for each thread i ← 1..t
9 return ��G

The algorithm BFC-VP++ in parallel. We show the details
of the algorithm BFC-VP++ in parallel in Algorithm 5. Note
that we use the priority-based dynamic scheduling strategy
by considering the workload balance [66]. Similar as BFC-
VP++, we first generate a reordering graph G∗. Then, the
algorithm sequentially processes the start-vertices in non-
ascending order by their priorities. For a vertex u∗ ∈ V (G∗),
it will be dynamically allocated to an idle thread i . Note
that, for each thread i , we generate an independent space for
local_wedge_cnt[i] and local_ ��G [i]. After all the threads
finishing their computation, we compute ��G on the master
thread.

Note that the work-span model is popularly used to ana-
lyze the parallel algorithms. The work of an algorithm
measures the total number of operations, and the span of
an algorithm is the longest dependency path [20]. Based on
this model, Algorithm 5 takes O(α ·m)work and O(log(m))

span with high probability, which can be analyzed similarly
as done in [59].

6.3 External memory butterfly counting

In order to handle large graphs with limited memory size, we
introduce the external memory algorithm BFC-EM in Algo-
rithm 6 which is also based on the vertex priority. We first
run an external sorting on the edges to group the edges with
the same vertex-IDs together. Then, we compute the prior-
ities of vertices by sequentially scanning these edges once.
Then, for each vertex v ∈ V (G), we sequentially scan its
neighbors from the disk and generate the wedges (u, v, w)

with p(w) > p(v) and p(w) > p(u) where w ∈ NG(v) and
u ∈ NG(v) (Lines 4–6). For each wedge (u, v, w), we only
store the vertex-pair (u, w) on disk. After that, we maintain

the vertex-pairs on disk such that all (u, w) pairs with the
same u and w values are stored continuously (Line 7). This
can be simply achieved by running an external sorting on
these (u, w) pairs. Then, we sequentially scan these vertex-
pairs, and for the vertex-pair (u, w), we count the occurrence
of it and compute ��G based on Lemma 1 (Lines 8–10).

Algorithm 6: BFC- EM
Input: G
Output: ��G

1 sort all the edges e ∈ G on disk
2 calculate the priority for each vertex in V (G) on disk
3 ��G ← 0
4 foreach vertex v ∈ G do
5 forall the u, w ∈ NG(v) : p(w) > p(v), p(w) > p(u) by

sequentially scanning NG(v) from disk do
6 store vertex-pair (u, w) on disk
7 sort all the vertex-pairs on disk
8 foreach vertex-pair (u, w) do
9 count_pair(u, w) ← count the occurrence of (u, w) on disk

sequentially

10 ��G ← ��G + (count_pair(u,w)
2

)

11 return ��G

I/O complexity analysis. We use the standard notations in
[2] to analyze the I/O complexity of BFC-EM: M is the main
memory size and B is the disk block size. The I/O complex-
ity to scan N elements is scan(N ) = Θ( NB ), and the I/O
complexity to sort N elements is sort(N ) = O( NB log M

B

N
B ).

In BFC-EM, the dominate cost is to scan and sort the vertex-
pairs. Since there are O(α ·m) vertex-pairs generated by the
BFC-EM algorithm, we can get that the I/O complexity of
BFC-EM is O(scan(α · m) + sort(α · m)).

7 Batch-dynamic butterfly counting

In this section, we discuss the problem of batch-dynamic but-
terfly counting. Given a bipartite graphG and a batch-update
B, we aim to compute the number of butterflies resulting from
the batch-update B (denoted as �� B). Here, a batch-update
B is a batch of edge insertion and edge deletion operations.
In other words, suppose we already know how many butter-
flies in G, we want to obtain the number of butterflies after
updating B on G. Since B contains edge insertion and dele-
tion operations, we use B+ to represent the set of inserting
edges and use B− to represent the set of deleting edges. We
suppose B+ and B− are disjoint (i.e., B+ ∩ B− = ∅) since
we can safely remove all the common edges in these two sets
without affecting the final butterfly counts. Then, we can first
count the number of affected butterflies of B− and then count
the number of affected butterflies of B+. Note that the count-

123



268 K. Wang et al.

ing procedures of the deletion batch and the insertion batch
are inherently the same since we can consider deleting B−
from G as inserting B− into G\B−. All we need to know
is the number of affected butterflies resulting from a batch
of updates. It is worth noticing that to transform a deletion
case into an insertion case, we need to adjust the initial data
structures. Specifically, we remove B− from G and consider
B− as B+. As evaluated in our experiments, such overhead is
small. For the ease of presentation,we suppose all the updates
are edge insertions in the following parts (i.e., B = B+).

7.1 Computing ��B from each new edge

It is apparent that each new butterfly contains at least one
new edge from B. As a result, a straightforward algorithm
BFCB-BS can be designed by sequentially processing each
edge (u, v) ∈ B. For a new edge (u, v) ∈ B, we insert it into
G and compute the number of new butterflies resulting from
it according to Eq. (8). The details of BFCB-BS are shown in
Algorithm 7.

The BFCB-BS Algorithm. For each new edge (u, v) in B,
we first insert it into G and get the neighbor set NG(v) of
v. Then, for each w ∈ NG(v), we compute the number of
common neighbors between u andw (i.e., |NG(u)∩NG(w)|)
and add |NG(u) ∩ NG(w)| − 1 to �� B according to Eq. (8).
When computing the common neighbors of u and w, we
can construct a hash map H using the neighbor set of u
(Line 4). Then, we can just look up each vertex x ∈ NG(w)

to check whether it is in H (Lines 4–8). The time cost
of the above procedure for processing each edge (u, v) is
O(

∑
w∈N (v) degG(w)). To reduce the time cost, when pro-

cessing the edge (u, v), we first compute the values of∑
x∈NG (u) degG(x) and

∑
w∈NG (v) degG(w). If it satisfies∑

x∈NG (u) degG(x) <
∑

w∈NG (v) degG(w), we exchange u
and v (i.e., process the neighbor set of u instead of that
of v). In this way, we can reduce the number of wedges
processed in the algorithm. One may also consider pre-
computing the hash map of neighbor set for each vertex in
G. Then, when computing |NG(u)∩NG(w)|, we can choose
to scan the smaller set between NG(u) and NG(w) with
O(min{degG(u), degG(w)}) time. However, it incurs addi-
tional time cost to compute the hashmap for each vertex inG
which can be a very large overhead under the batch-dynamic
context.

Example 2 Consider the original graph G and the batch-
update B = {(u3, v1), (u3, v2)} in Fig. 8a. We first insert
(u3, v1) into G. Since we have

∑
x∈NG (u3) degG(x) <

∑
w∈NG (v1)

degG(w), we process the neighbor set of u3.
For each x ∈ NG(u3)\v1 (i.e., v0), we compute |NG(v1) ∩
NG(v0)| = 3 (i.e., u0, u1, and u3). Then, we can get the
number of new butterflies containing (u3, v1) is 3 − 1 = 2.

v0 v1 v2

u2 u3u1u0

v3 v4 v5 v0 v1 v2

u2 u3u1u0

(a) The original graph G and the batch-update B (b) The affected subgraph GA

Fig. 8 An example of batch-updating. The edges in red color are the
new edges

After that, we insert (u3, v2) into G, and get the number of
new butterflies containing (u3, v2) is 5. In total, we can get
the number of new butterflies resulting from B is 7.

Theorem 8 The time complexity of BFCB-BS is O(
∑

(u,v)∈B
min{∑x∈N (u) degG(x),

∑
w∈N (v) degG(w)}) in the

worst-case.

Proof Algorithm 7 processes the edges in B one by one.
For each inserted edge e = (u, v), the new butterflies
can be enumerated by exploring the two-hop neighbors
of u and check if they are connected to v, which takes
O(

∑
x∈N (u) degG(x)) time. An alternative approach is to

explore the two-hop neighbors of v that are connected to
u, which takes O(

∑
w∈N (v) degG(w)) time. With the time

costs of these two approaches pre-computed (Line 4), the
time complexity of enumerating newbutterflies for each edge
(u, v) is the smaller of the two. Summing this time complex-
ity over all the inserted edges completes the proof. �	

In addition, BFCB-BS has the space complexity of O(|G|+
|B|) since we need O(|G| + |B|) space to store the graph
structure, and the hashmap H used in Algorithm 7 needs
additional O(|V (G ∪ B)|) space.

Algorithm 7: BFCB- BS
Input: G and B
Output: �� B : the number of new butterflies

1 �� B ← 0
2 foreach edge (u, v) ∈ B do
3 insert (u, v) into G;
4 exchange u and v if

∑
x∈N (u) degG(x) >

∑
w∈N (v) degG(w)

5 initialize a hashmap H using NG(u)

6 foreach vertex w ∈ NG(v)\u do
7 foreach vertex x ∈ NG(w)\v do
8 if vertex x ∈ H then
9 �� B ← �� B + 1

10 return �� B

Analysis ofBFCB-BS ReviewingAlgorithm7, the drawbacks
of BFCB-BS are apparent. (1) BFCB-BS needs to enumerate
each butterfly containing a new edge in B which is inefficient.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 269

The in-depth reason is that if we want to count the number of
butterflies containing exactly one new edge, we cannot use
vertex-priority-based techniques to amortize the time cost
like Algorithm 4. (2) It is not easy to parallelize BFCB-BS
since it needs to process each edge e ∈ B sequentially and
insert the edge e into G after processing it. Specifically, if
we directly parallelize Line 2 in Algorithm 7, the parallel
algorithm will likely overlook the new butterflies with more
than one new edge which are processed by different threads
simultaneously. There is no simple parallel implementation
of BFCB-BS which can address this issue efficiently.

7.2 Computing ��B from the affected subgraph

To address the above-mentioned issues, we propose an
affected-subgraph-based algorithm BFCB-IG. The main intu-
ition behind BFCB-IG is that before computing the new
butterflies resulting from B, we first update B to G and iden-
tify the affected scope (or subgraph) of B. In this way, we not
only can use the vertex-priority-based algorithms (in a sub-
graph with limited size) but also can easily derive a parallel
implementation. We define the affected subgraph as follows.

Definition 6 (Affected subgraph) Given a bipartite graph G
and a batch-update B, the affected subgraph GA due to B is
the induced subgraph of all the vertices in V 1

B ∪ V 2
B . Here,

V 1
B is the set of vertices that are incident to at least one new

edge in B. V 2
B is the set of vertices that are the neighbors of

at least one vertex in V 1
B . For instance, the affected subgraph

GA of G is shown in Fig. 8.

Lemma 4 Consider a bipartite graph G and a batch-update
B. All the new butterflies resulting from B are contained in
the affected subgraph GA.

Proof For each new butterfly, it must contain at least one new
edge e = (u, v). Since V 1

B includes all the vertices incident
to the new edges, u and v must be in V 1

B . Due to the butterfly
structure, the other two vertices of the new butterfly must
be connected to u and v, which must be contained in V 2

B
(Definition 6). Therefore, all of the new butterflies resulting
from B are contained in the affected subgraph GA. �	

Based on the above lemma, we can guarantee that all the
new butterflies are contained inGA. Since GA may also con-
tain many butterflies which originally exist in G (i.e., old
butterflies), we need to subtract the count of these old but-
terflies when applying the butterfly counting algorithm (e.g.,
BFC-VP++) onGA. Reviewing the BFC-VP++ algorithm (i.e.,
Algorithm 3), we can see that it starts from each vertex and
processes valid wedges to count the number of butterflies. In
the batch-dynamic context, we call a wedge is a new wedge
if it contains at least one new edge from B. Otherwise, we
call it is an old wedge. For example, (v0, u3, v1) is a new

wedge. It is easy to observe that any new butterfly in GA is
composed of (1) one new wedge and one old wedge; or (2)
two new wedges. Thus, we can have the following lemma.

Lemma 5 Given an affected subgraph GA and a vertex u ∈
GA, the number of new butterflies containing u denoted as

��

+
u can be computed by the following equation:

��

+
u =

∑

w∈2hopGA (u)

(|NGA (u) ∩ NGA (w)|
2

)

−
(
Cold(w)

2

)

(9)

Here Cold(w) is the number of old wedges containing u and
w in GA.

Proof For any two vertices x1, x2 in NGA (u) ∩ NGA (w),
[u, x1, w, x2] is a butterfly in GA, so the first term in the
equation counts the number of butterflies containing u and
w. To compute the number of new butterflies in GA, we need
to subtract the number of old butterflies. Note that an old
butterfly can only be formed by two old wedges. Thus, the
number of old butterflies can be computed as

(Cold(w)
2

)
. ��

+
u

is computed by taking the difference of these numbers and
summing over all 2-hop neighbors of u, which completes the
proof. �	

The BFCB-IG Algorithm. Based on the above lemma, we
design the algorithm BFCB-IG to count the number of new
butterflies inGA as shown inAlgorithm8.Wefirst insert each
edge in B into G. Then, we construct the affected subgraph
GA according to Definition 6. After that, we re-organized
GA using the cache-aware graph reordering technique and
compute the vertex priority on GA. Then, starting from each
vertex in V (GA), we use the same strategy as BFC-VP++ to
process the wedges. Unlike BFC-VP++, BFCB-IG needs two
hash maps Ctotal and Cold to record the number of wedges
and the number of old wedges containing an end-vertex w,
respectively. This is because we need to obtain the number of
newbutterflieswhich canbe computed according toLemma5
(Line 17).

Example 3 Consider the example in Fig. 8a and the batch-
update B = {(u3, v1), (u3, v2)}. We first construct GA as
shown in Fig. 8b. In GA, we have p(v2) > p(v1) >

p(u3) > p(u1) > p(u0) > p(v0) > p(u2) > p(v3). Then,
we start from each vertex in GA to count the number of
new butterflies by traversing valid wedges. From v0, we get
wedges (v0, u0, v1), (v0, u1, v1), (v0, u3, v1), (v0, u0, v2),
(v0, u1, v2), and (v0, u3, v2). Since only (v0, u3, v1) and
(v0, u3, v2) are new wedges, we have Ctotal(v1) = 3,
Cold(v1) = 2, Ctotal(v2) = 3, Cold(v2) = 2. Thus, the num-
ber of newbutterflies can be obtained is

(3
2

)−(2
2

)+(3
2

)−(2
2

) =
4. Then, when starting from v2, we will get 3 new butterflies
similarly. In total, we have 7 new butterflies.

123



270 K. Wang et al.

Algorithm 8: BFCB- IG
Input: G and B
Output: �� B : the number of new butterflies

1 �� B ← 0;
2 update B to G;
3 construct the affected subgraph GA according to Definition 6
4 GA ← run Algorithm 3 Lines 2–4 on GA
5 foreach u ∈ V (GA) do
6 Ctotal ← a hashmap initialized with zero
7 Cold ← a hashmap initialized with zero
8 foreach v ∈ NGA (u) do
9 foreach w ∈ NGA (v) : p(w) > p(u) do

10 if p(w) > p(v) then
11 Ctotal(w) ← Ctotal(w) + 1
12 if (u, v) /∈ B ∧ (v,w) /∈ B then
13 Cold(w) ← Cold(w) + 1
14 else
15 break
16 foreach w : Ctotal(w) > 1 do
17 �� B ← �� B + (Ctotal(w)

2

) − (Cold(w)
2

)

18 return �� B

Theorem 9 The BFCB-IG algorithm correctly solves the
batch-dynamic butterfly counting problem.

Proof By Lemma 5, the new butterflies due to the batch-
update are all contained in the affected subgraph GA.
Algorithm 8 visits the vertices in the affected subgraph GA

and counts the number of new butterflies. Specifically, for
each visited vertex u ∈ V (GA), the algorithm explores the
two-hop neighbors of u and counts how many new wedges
and old wedges are formed according to the vertex priority.
For each two-hop neighbor w of u, Ctotal(w) counts the total
number of wedges containing u and w and Cold(w) counts
the old wedges (Lines 6, 7, 11, and 13). Note that only the
wedges in whichw has the highest priority are visited (Lines
9–10), which can avoid counting duplicate butterflies. By
Lemma 5, the new butterflies containing u andw is computed
by subtracting the number of the old butterflies containing u
and w from the total count (Line 17). Since �� B keeps an
accumulating sum of the number of new butterflies contain-
ing the visited vertices, �� B becomes the number of new
butterflies when the for-loop terminates in line 18, which
completes the proof. �	
Theorem 10 The worst-case time complexity of BFCB-IG is
O(TCGA +∑

(u,v)∈E(GA) min{degGA(u), degGA (v)}. Here,
TCGA is the worst-case time complexity of constructing GA,
bounded by O(|B| + ∑

u∈V (GA) degG(u)).

Proof Algorithm 8 constructs the affected subgraph GA

from B first and then counts the new butterflies on GA.
When constructing GA, the algorithm inserts the edges
in B into G, which takes O(|B|) time. Then, it needs
to visit the vertices in V (GA) and scan through each
vertex’s neighbors in G to construct the affected sub-
graph. Therefore, the affected subgraph construction takes

TCGA = O(|B| + ∑
u∈V (GA) degG(u)) time. Also, Algo-

rithm 8 needs to enumerate all the valid wedges sim-
ilar to Algorithm 3. By Theorem 3, this process takes
O(

∑
(u,v)∈E(GA) min{degGA(u), degGA (v)}) time. Adding

it to the time complexity of GA construction completes the
proof. �	

In addition, BFCB-IG has the space complexity of O(|G|+
|B|) since apart from the graph structure, the data structures
used in BFCB-IG+ (e.g., Ctotal and Cold) are all bounded by
O(|G| + |B|).

7.3 Reducing the computation of old wedges

Motivation. Although the algorithmBFCB-IG can effectively
utilize the vertex-priority-based techniques, it can be further
sped up by reducing the computation of oldwedges. In BFCB-
IG, the number of newbutterflies is obtained based onLemma
5 which needs to compute the total number of butterflies and
the number of old butterflies on GA. In this manner, we need
to traverse many old wedges, and some of them do not lead to
a new butterfly. For instance, consider the affected subgraph
GA in Fig. 10, we need to traversemanywedgeswhich do not
form any new butterfly such as (u1, v1, u2) and (u1, v2, u2).
To explore how to reduce the computation of oldwedges (and
old butterflies), we first present all the cases of new butterflies
as shown in Fig. 9. These cases are based on the fact that each
new butterfly must contain at least one new edge.

– The new butterfly contains one new edge. Case 1 and
Case 2. The number of new edges that w is incident to:
Case 1: 0; Case 2: 1.

– The new butterfly contains two new edges. Case 3–
Case 6. The number of new edges that w is incident to:
Case 3: 1 (two new edges are incident edges); Cases 4: 0;
Case 5: 1 (two new edges are not incident edges); Case
6: 2.

– The new butterfly contains three new edges. Case 7
and Case 8. The number of old edges that w is incident
to: Case 7: 0; Case 8: 1.

– The new butterfly contains four new edges. Case 9.

Handling new butterflies of different cases. Reviewing
the vertex-priority-based algorithm BFCB-IG, a butterfly is
counted by composing two wedges which both use a vertex
w with the highest priority as the end-vertex.We show all the
cases of new butterflies in Fig. 22. We can see that the butter-
flies in Cases 4–9 are all composed of two new wedges (i.e.,
a wedge composed by at least one new edge). Thus, to avoid
touching old wedges when identifying these butterflies, we
can split NGA into Nold(u) and Nnew(u) for each u ∈ V (GA)

which contain the old neighbors and new inserted neighbors
of u, separately. Then, when starting from a vertex u, we can

123



Accelerated butterfly counting with vertex priority on bipartite graphs 271

u w

vx

u w

vx

u w

vx

u w

vx

u w

vx

u w

vx

u w

vx

u w

vx

u w

vx

(a) Case 1 (b) Case 2 (c) Case 3 

(d) Case 4 (e) Case 5 (f) Case 6 

(g) Case 7 (h) Case 8 (i) Case 9 

Fig. 9 All the cases of new butterflies. We suppose w is the vertex
with the highest priority in a butterfly, and the new edges are denoted
in dotted line

v0 v1 v2

u2 u3u1u0

v3 v4 v5 v6

Fig. 10 Illustrating the BFCB-IG+ algorithm

choose a vertex v from Nold(u) (or Nnew(u)) and choose a
vertex w from Nnew(v) (or NGA (v)) to only traverse new
wedges.

When handling Cases 1–3, we cannot avoid the traver-
sal of old wedges since these butterflies are composed of
one new wedge and one old wedge. For instance, consider-
ing Case 1 in Fig. 10, the butterfly is composed of the new
wedge (u, x, w) and the old wedge (u, v, w). To reduce the
computation of old wedges which do not lead to new butter-
flies, we adopt the following strategies. (1)We do not process
a start-vertex u if there is no new wedge generated from it.
To achieve this, we can record the set of end-vertices of the
new wedges in an array arr_2hop when handling Cases 4–
9 and terminate the finding process if arr_2hop is empty.
For instance, consider the example in Fig. 10. When starting

from u1, there is no new wedge exists from it and we skip
the process of finding butterflies in Cases 4–9 from u1. (2)
When enumerating oldwedges from a start-vertex u, we need
to scan the neighbor list Nold(v) for each v ∈ Nold(u) to find
whetherw ∈ arr_2hop exists. In many cases, the number of
end-vertices of new wedges can be much smaller compared
with the size of the neighbor set of v (i.e., |Nold(v)|). In
such cases, we can perform a binary search to check whether
each w ∈ arr_2hop exists in Nold(v). For instance, when
starting u0, the only end-vertex of a new wedge is u1. Thus,
when finding old wedges starting from u0, we can use binary
search to checkwhether u1 exists in Nold(v1) rather than scan
Nold(v1).

The BFCB-IG+ Algorithm. With the above optimization
strategies, we propose the BFCB-IG+ algorithm in Algorithm
9. We construct the affected subgraph GA similarly as BFCB-
IG. After that, we split NGA (u) into Nold(u) and Nnew(u)

for each u ∈ V (GA) (Line 5). Then, starting from each ver-
tex in V (GA), we use the same strategy as BFC-VP++ to
process the wedges. Unlike BFCB-IG, we first count the num-
ber of butterflies in Cases 4–9 (i.e., the butterflies composed
by two new wedges) as shown in Fig. 22. To achieve this,
we need to process all the new wedges. We can choose a
vertex v from Nold(u) (or Nnew(u)) and choose a vertex w

from Nnew(v) (or NGA (v)) (Lines 10–25). Note that all the
end-vertices of the new wedges containing u are recorded
in an array arr_2hop. Then, we count the number of but-
terflies for Cases 1–3 (Lines 31–41). We skip this stage if
there is no new wedges in GA to reduce the time cost (Line
28). Inherently, in this stage, we aim to find the number
of common neighbors for each u and w ∈ arr_2hop on
the original graph. We can scan the neighbor list for each
v ∈ Nold(u) to find whether w ∈ arr_2hop exists. Alterna-
tively, we can use binary search approach to check whether
each w ∈ arr_2hop in Nold(v). For each v ∈ Nold(u), we
can pre-compute |Nold(v)| and |arr_2hop| · log(|Nold(v)|)
to choose which method is more efficient (Line 32).

Example 4 Consider the affected subgraph GA in Fig. 10.
The only new butterfly in GA is [u0, v0, u1, v1]. To count
this new butterfly using BFCB-IG+, we first start from u0 and
get the newwedge (u0, v0, u1). Then, we use binary search to
get that u1 is the neighbor of v1 (i.e., there exists a old wedge
(u0, v1, u1)). Compared with BFCB-IG, BFCB-IG+ does not
need to traverse any other old wedges. For instance, the old
wedge (u1, v1, u2) is not touched since there is no newwedge
generated starting from u1.

Theorem 11 The BFCB-IG+ algorithm correctly solves the
batch-dynamic butterfly counting problem.

Proof By Lemma 5, Algorithm 9 only counts the new butter-
flies inGA. For eachvertexu, it first counts the newbutterflies

123



272 K. Wang et al.

with two new wedges (Lines 9–27) and then counts the ones
with only one new wedge (Lines 31–41). Specifically, Lines
10–17 process the new wedges in which (u, v) is old and
(v,w) is new, and Lines 18–25 process those in which (u, v)

is new. Since the new butterflies in Cases 4–9 are formed
by two new wedges, Lines 26 and 27 correctly compute the
number of such butterflies containing u. In Lines 31–41, the
algorithm finds an old wedge (u, v, w) and checks howmany
newwedges containing u andw exist. Since the butterflies of
Cases 1–3 need one old wedge and one new wedge, there are
Ctotal(w) many such butterflies corresponding to each old
wedge (u, v, w). Thus, this algorithm handles all possible

Algorithm 9: BFCB- IG+
Input: G and B
Output: �� B : the number of new butterflies

1 �� B ← 0;
2 update B to G;
3 construct the affected subgraph GA according to Definition 6
4 GA ← run Algorithm 3 Lines 2 - 4 on GA
5 split NGA (u) into Nold(u) and Nnew(u) for each u ∈ V (GA).
6 foreach u ∈ V (GA) do
7 Ctotal ← a hashmap initialized with zero
8 arr_2hop ← an array initialized with empty
9 /*Counting butterflies for Cases 4 - 9*/

10 foreach v ∈ Nold(u) do
11 foreach w ∈ Nnew(v) : p(w) > p(u) do
12 if p(w) > p(v) then
13 Ctotal(w) ← Ctotal(w) + 1
14 if w /∈ arr_2hop then
15 arr_2hop.add(w)

16 else
17 break
18 foreach v ∈ Nnew(u) do
19 foreach w ∈ NGA (v) : p(w) > p(u) do
20 if p(w) > p(v) then
21 Ctotal(w) ← Ctotal(w) + 1
22 if w /∈ arr_2hop then
23 arr_2hop.add(w)

24 else
25 break
26 foreach w : Ctotal(w) > 1 do
27 �� B ← �� B + (Ctotal(w)

2

)

28 if arr_2hop is empty then
29 continue;
30 /*Counting butterflies for Cases 1–3*/
31 foreach v ∈ Nold(u) do
32 if |Nold(v)| ≤ |arr_2hop| · log(|Nold(v)|) then
33 foreach w ∈ Nold(v) : p(w) > p(u) do
34 if p(w) > p(v) then
35 �� B ← �� B + Ctotal(w)

36 else
37 break
38 else
39 foreach w ∈ arr_2hop : p(w) > p(v) do
40 if binary_search(Nold(v), w) = True then
41 �� B ← �� B + Ctotal(w)

42 return �� B

cases of new butterflies and correctly returns the number of
new butterflies. �	

Complexity analysis. BFCB-IG+ has the same worst-case
time complexity as BFCB-IG. However, it reduces much com-
putation of old wedges and can be more efficient as studied
in our experimental evaluations. In addition, BFCB-IG+ has
the same space complexity as BFCB-IG (i.e., O(|G| + |B|))
since the additional data structures used in BFCB-IG+ (i.e.,
arr_2hop, Nold, and Nnew) are all bounded by O(|G|+|B|).
Remark The algorithms BFCB-IG and BFCB-IG+ can all be
parallelized similarly as Algorithm 5. Note that it is straight-
forward to devise a work-efficient2 parallel algorithm based
on BFCB-IG+. In the affected graph constructing phase, we
can scan each new edge in B in parallel to get the vertex set
V 1
B . Then, we scan the vertices in V

1
B in parallel to get the ver-

tex set V 2
B . In the butterfly counting phase, we can follow the

same paradigm as Algorithm 5 to process the start-vertices
in parallel.

8 Experiments

In this section, we present the results of empirical studies.
In particular, our empirical studies are conducted against
the following designs in Sect. 8.2: (1) the state-of-the-art
BFC-IBS in [54] as the baseline algorithm (we thank the
authors for providing the code), (2) BFC-VP in Sect. 4, (3)
BFC-VP+ in Sect. 5.1, (4) BFC-VP++ in Sect. 5.3, (5) BFC-
EIBS, BFC-EVP, BFC-EVP++ by extending BFC-IBS, BFC-VP
and BFC-VP++, respectively, to compute ��e, (6) the paral-
lel version of BFC-IBS, BFC-VP and BFC-VP++, (7) the most
advanced approximate butterfly counting algorithm BFC-
ESap in [54], (8) BFC-ESapvp++ by combining BFC-VP++
with BFC-ESap since BFC-ESap relies on the exact butterfly
counting techniques on samples, and (9) the externalmemory
algorithm BFC-EM.

We also evaluate the algorithms for batch-dynamic butter-
flies counting in Sect. 8.3 including the baseline algorithm
BFCB-BS, the affected-graph-based butterfly counting algo-
rithm BFCB-IG, and the advanced affected-graph-based algo-
rithm BFCB-IG+.

The algorithms are implemented with C++. We run the
empirical studies on a computer with 512 GB main mem-
ory and 2 × Intel Xeon E5-2698 processors (2.20GHz, 640
KB L1I Cache, 640 KB L1D Cache, 5MB L2 Cache, 50MB
L3 Cache, and 40 cores in total). Although most empirical
studies have been against single-core, we want our empirical
studies to be conducted on the same computer as the evalu-

2 A parallel algorithm is work-efficient if the total work of it matches
that of the best sequential algorithm.

123



Accelerated butterfly counting with vertex priority on bipartite graphs 273

Table 1 Statistics of datasets

Dataset |E | |U | |L| ��G
∑

u∈L d(u)2
∑

v∈R d(v)2 TCibs TCnew

DBPedia 293,697 172,091 53,407 3.76 × 106 6.30 × 105 2.46 × 108 6.30 × 105 5.95 × 105

Twitter 1,890,661 175,214 530,418 2.07 × 108 7.42 × 107 1.94 × 109 7.42 × 107 3.02 × 107

Amazon 5,743,258 2,146,057 1,230,915 3.58 × 107 8.29 × 108 4.37 × 108 4.37 × 108 6.90 × 107

Wiki-fr 22,090,703 288,275 4,022,276 6.01 × 1011 2.19 × 1012 7.96 × 108 7.96 × 108 7.08 × 107

Live-journal 112,307,385 3,201,203 7,489,073 3.30 × 1012 9.57 × 109 5.40 × 1012 9.57 × 109 8.01 × 109

Wiki-en 122,075,170 3,819,691 21,504,191 2.04 × 1012 1.26 × 1013 2.33 × 1010 2.33 × 1010 9.32 × 109

Delicious 101,798,957 833,081 33,778,221 5.69 × 1010 8.59 × 1010 5.28 × 1010 5.28 × 1010 1.31 × 1010

Tracker 140,613,762 27,665,730 12,756,244 2.01 × 1013 1.73 × 1012 2.11 × 1014 1.73 × 1012 7.83 × 109

Orkut 327,037,487 2,783,196 8,730,857 2.21 × 1013 1.57 × 1011 4.90 × 1012 1.57 × 1011 1.12 × 1011

Bi-twitter 601,734,937 20,826,115 20,826,110 6.30 × 1013 2.69 × 1013 3.48 × 1013 2.69 × 1013 1.66 × 1011

Bi-sk 910,924,634 25,318,075 25,318,075 1.22 × 1014 3.42 × 1013 1.80 × 1013 1.80 × 1013 7.83 × 1010

Bi-uk 1,327,632,357 38,870,511 38,870,511 4.89 × 1014 4.22 × 1013 4.16 × 1013 4.16 × 1013 2.92 × 1011

ation of parallel performance. An algorithm is terminated if
it cannot finish within 10 h.

8.1 Datasets

Twelve datasets are used in our experiments including all the
9 real datasets in [54]. We add 3 more datasets to evaluate
the scalability of our techniques. All these datasets can be
downloaded from KONECT (http://konect.cc/).

The 9 real-world datasets that we used are DBPedia,
Twitter, Amazon, Wiki-fr, Wiki-en, Live-jour
nal, Delicious, Tracker, and Orkut.

To further test the scalability, we also evaluate three
bipartite networks (i.e.,Bi-twitter,Bi-sk and Bi-uk)
which are sub-networks obtained from billion-scale real
datasets (i.e., twitter, sk-2005 and uk-2006-05). To
obtain bipartite-subgraphs from these two datasets, we put
the vertices with odd ids in one group while the vertices
with even ids in the other group and remove the edges which
formed by two vertices with both odd ids or even ids.

In Table 1, we show the statistics of datasets. Note that
∑

u∈L d(u)2 and
∑

v∈R d(v)2 represent the sum of degree
squares for L and R, respectively. TCibs = min{∑u∈L
d(u)2,

∑
v∈R d(v)2} which is the time complexity bound of

BFC-IBS. TCnew is the time complexity bound of BFC-VP and
BFC-VP++.

8.2 Evaluation of butterfly counting algorithms

In this section, the performance of the proposed algorithms
for butterfly counting is evaluated.

Evaluating the performance on all datasets. Figure 11
shows the performance of BFC-IBS, BFC-VP, and BFC-VP++
on different datasets. We can observe that BFC-VP++ is

10-2

10-1

100

101

102

103

104

INF

DBPedia Twitter Amazon Wiki-fr Live-journal Wiki-en Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk

T
im

e 
C

os
t (

se
c)

Datasets

IBS VP VP++

Fig. 11 Evaluation on all datasets

10-2

10-1

100

101

102

103

104

INF

DBPedia Twitter Amazon Wiki-fr Live-journal Wiki-en Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk

T
im

e 
C

os
t (

se
c)

Datasets

EIBS EVP EVP++

Fig. 12 Performance on all datasets (computing �� e)

the most efficient algorithm, while BFC-VP also outper-
forms BFC-IBS. This is because BFC-VP++ utilizes both
the vertex-priority-based optimization and the cache-aware
strategies which significantly reduce the computation cost.
On Tracker, BFC-VP and BFC-VP++ are faster than BFC-
IBS by at least two orders of magnitude. On Bi-twitter,
Bi-sk and Bi-uk, BFC-IBS cannot finish within 10 h. This
is because the degree distribution of these datasets is skewed
and high-degree vertices exist in both layers. For instance,
TCibs is more than 100× larger than TCnew in Tracker.
This property leads to a large number of wedge processing
for BFC-IBSwhile our BFC-VP and BFC-VP++ algorithms can
handle such situation efficiently. In Fig. 12, we also show the
performance for computing ��e for each e. The performance
differences of these algorithms follow similar trends to those
in Fig. 11.

123

http://konect.cc/


274 K. Wang et al.

Evaluating the number of processed wedges. Figure 13
shows the number of processed wedges of the proposed algo-
rithms. We can observe that on Tracker, Bi-twitter,
Bi-sk and Bi-uk datasets, BFC-IBS needs to process 100×
more wedges than BFC-VP and BFC-VP++. This is because
TCibs is much larger than TCnew and there exist many hub-
vertices in both L and R in these datasets. Thus, BFC-VP and
BFC-VP++ only need to process a limited number of wedges
while BFC-IBS should process numerous wedges no matter
choosing which layer to start. We also observe that BFC-VP
and BFC-VP++ process the same number of wedges since
BFC-VP++ improves BFC-VP on cache performance, which
does not change the number of processed wedges.

Scalability. Figure 14 studies the scalability of the algo-
rithms by varying the number of vertices n. Specifically,
we randomly sample 20–100% of the dataset’s vertices and
retrieve the induced subgraphs of the selected vertices. It is
observed that BFC-VP and BFC-VP++ are scalable and the
computational cost of all the algorithms increases when the
percentage of vertices increases. On Bi-twitter, BFC-
IBS can only complete when n = 20%. As discussed before,
BFC-VP++ is the most efficient algorithm.

105

107

109

1011

1013

DBPedia Twitter Amazon Wiki-fr Live-journal Wiki-en Delicious Tracker Orkut Bi-twitter Bi-sk Bi-uk

Pr
oc

es
se

d 
W

ed
ge

s

Datasets

IBS VP VP++

Fig. 13 The number of processed wedges

100

101

102

103

20 40 60 80 100

T
im

e 
C

os
t (

se
c)

Percentage

IBS
VP
VP++

(a) Wiki-en

101

102

103

104

20 40 60 80 100

T
im

e 
C

os
t (

se
c)

Percentage

IBS
VP
VP++

(b) Delicious

10-1

101

103

105

20 40 60 80 100

Ti
m

e 
C

os
t (

se
c)

Percentage

IBS
VP
VP++

(c) Tracker

102

103

104

INF

20 40 60 80 100

T
im

e 
C

os
t (

se
c)

Percentage

IBS
VP
VP++

(d) Bi-twitter

Fig. 14 Varying the number of vertices

Evaluating the effect of graphdensity. Figure 15 studies the
effect of graph density (or sparsity) by varying the number
of edges m. Specifically, we fix all the vertices and ran-
domly sample 20–100% of the edges in the datasets. We can
observe that when the graph is sparse, the performance gap
between the vertex-priority-based algorithms and the base-
line algorithm is relatively small. This is because the number
of high degree vertices and the total number of butterflies are
relatively low in a sparse graph. When the graph becomes
denser, the advantage of the vertex-priority-based algorithms
becomes more apparent.

Evaluating the parallelization techniques. Figure 16 stud-
ies the performance of the BFC-IBS, BFC-VP, and BFC-VP++
algorithms in parallel by varying the thread number t from 1
to 32 on four datasets. Note that we are actually increasing
the number of physical cores when increasing the number
of threads. The BFC-IBS algorithm in parallel is not parallel-
friendly. For example, on Tracker, the BFC-IBS algorithm
in parallel performs worse when t increases from 16 to 32.
On Bi-twitter, the algorithm BFC-IBS in parallel can-
not get a result within the timeout threshold when t = 1 and
t = 8. We can also observe that, on all these datasets, the

101

102

103

104

20 40 60 80 100

T
im

e 
C

os
t (

se
c)

Percentage

IBS
VP
VP++

(a) Delicious

10-1

101

103

105

20 40 60 80 100
T

im
e 

C
os

t (
se

c)

Percentage

IBS
VP
VP++

(b) Tracker

Fig. 15 Varying the number of edges

100

101

102

103

1 8 16 24 32

T
im

e 
C

os
t (

se
c)

Number of Threads

IBS
VP
VP++

(a) Wiki-en

100

101

102

103

104

1 8 16 24 32

T
im

e 
C

os
t (

se
c)

Number of Threads

IBS
VP
VP++

(b) Delicious

100

101

102

103

104

105

1 8 16 24 32

Ti
m

e 
C

os
t (

se
c)

Number of Threads

IBS
VP
VP++

(c) Tracker

101

102

103

104

INF

1 8 16 24 32

T
im

e 
C

os
t (

se
c)

Number of Threads

IBS
VP
VP++

(d) Bi-twitter

Fig. 16 Varying the number of threads

123



Accelerated butterfly counting with vertex priority on bipartite graphs 275

computation costs of the BFC-VP and BFC-VP++ algorithms
in parallel decrease when the number of threads increases,
and BFC-VP++ in parallel is more efficient than the other
algorithms.

Evaluating the cache-aware strategies. In Tables 2, 3, 4
and 5, we evaluate the cache-aware strategies on Wiki-en,
Delicious, Tracker and Bi-twitter, respectively.
Here, Cache-ref denotes the total cache access number.
Cache-m denotes the total cache miss number which means
the number of cache references missed. Cache-mr denotes
the percentage of cache references missed over the total
cache access number. Time denotes the computation time
of different algorithms. Here, BFC-VP+ is the BFC-VP algo-
rithmdeployingwith only the cache-awarewedge processing
strategy. BFC-VPC is the BFC-VP algorithm deploying with
only the graph reordering strategy. BFC-VP has the largest
number of cache-miss on all the datasets. By utilizing the

Table 2 Cache statistics over Wiki-en

Algorithm Cache-ref Cache-m Cache-mr Time (s)

BFC-VP 2.78 × 1011 3.13 × 109 1.12% 90.41

BFC-VPC 2.39 × 1011 1.46 × 109 0.61% 63.45

BFC-VP+ 2.68 × 1011 1.55 × 109 0.58% 65.26

BFC-VP++ 2.36 × 1011 8.30 × 108 0.35% 48.60

Table 3 Cache statistics over Delicious

Algorithm Cache-ref Cache-m Cache-mr Time (s)

BFC-VP 4.53 × 1011 8.36 × 109 1.85% 189.71

BFC-VPC 4.19 × 1011 4.08 × 109 0.97% 133.48

BFC-VP+ 4.40 × 1011 3.87 × 109 0.88% 102.82

BFC-VP++ 4.13 × 1011 1.01 × 109 0.24% 80.26

Table 4 Cache statistics over Tracker

Algorithm Cache-ref Cache-m Cache-mr Time (s)

BFC-VP 2.74 × 1011 5.27 × 109 1.93% 142.66

BFC-VPC 2.40 × 1011 1.88 × 109 0.84% 87.61

BFC-VP+ 2.52 × 1011 1.75 × 109 0.78% 82.16

BFC-VP++ 2.39 × 1011 6.20 × 108 0.26% 45.48

Table 5 Cache statistics over Bi-twitter

Algorithm Cache-ref Cache-m Cache-mr Time (s)

BFC-VP 4.87 × 1012 4.96 × 1010 1.02% 1897.15

BFC-VPC 4.55 × 1011 2.47 × 1010 0.54% 1261.11

BFC-VP+ 4.58 × 1012 2.39 × 1010 0.52% 1096.86

BFC-VP++ 4.54 × 1012 1.35 × 1010 0.30% 822.31

cache-awarewedgeprocessing, comparedwithBFC-VP,BFC-
VP+ reduces the number of cache miss over 50% on all the
datasets. By utilizing the cache-aware reordering, compared
with BFC-VP, BFC-VPC also reduces over 50% cache-miss
on all the datasets. BFC-VP++ achieves the smallest cache-
miss-numbers and reduces the cache-miss-ratio significantly
on all these datasets since BFC-VP++ combines the two
cache-aware strategies together. Compared with BFC-VP,
BFC-VP++ reduces over more than 70% cache miss on all
the testing datasets.

Speeding up the approximate butterfly counting algorithm.
In the approximate algorithm BFC-ESap [54], the exact but-
terfly counting algorithm BFC-IBS is served as a basic block
to count the butterfly exactly in a sampled graph. Since
BFC-VP++ and BFC-IBS both count the number of butter-
flies exactly, the approximate algorithm BFC-ESapvp++ can
be obtained by applying BFC-VP++ in BFC-ESap without
changing the theoretical guarantee.

In Fig. 17, we first evaluate the average running time of
BFC-ESap and BFC-ESapvp++ for each iteration by varying
the probability p. Comparing two approximate algorithms,
BFC-ESapvp++ outperforms BFC-ESap under all the setting
of p on Tracker and Bi-twitter datasets. Especially,
on these two datasets, BFC-ESapvp++ is more than one order
of magnitude faster than BFC-ESap when p ≥ 0.062.

In the second experiment, we run the algorithms to yield
the theoretical guarantee Pr [| ˆ

��G − ��G | > ε ��G] ≤ δ as
shown in [54].We vary ε and fix δ = 0.1 and p as the optimal
p as suggested in [54]. We can see that in Fig. 18, for these
two approximate algorithms, the time costs are increased
on these two datasets in order to get better accuracy and

100

101

102

103

104

0.004 0.016 0.062 0.25 1

Ti
m

e 
C

os
t (

se
c)

p

ESap
ESapvp++

(a) Tracker, varying p

101

102

103

104

INF

0.004 0.016 0.062 0.25 1

T
im

e 
C

os
t (

se
c)

p

ESap
ESapvp++

(b) Bi-twitter, varying p

Fig. 17 Effect of p

102

103

104

INF

0.15 0.125 0.10 0.075 0.05

Ti
m

e 
C

os
t (

se
c)

ε

ESap
ESapvp++

(a) Tracker, varying ε

102

103

104

INF

0.15 0.125 0.10 0.075 0.05

T
im

e 
C

os
t (

se
c)

 ε

ESap
ESapvp++

(b) Bi-twitter, varying ε

Fig. 18 Effect of ε

123



276 K. Wang et al.

102

103

104

INF

20 40 60 80 100

T
im

e 
C

os
t (

se
c)

 Percentage

Bi-sk
Bi-uk

(a) Time Cost, varying n

108

109

1010

1011

20 40 60 80 100

N
um

be
r 

of
 I/

O

 Percentage

Bi-sk
Bi-uk

(b) I/O, varying n

Fig. 19 Evaluating the external memory algorithm

BFC-ESapvp++ significantly outperforms BFC-ESap as men-
tioned before.

Evaluating the external memory algorithm. In Fig. 19, we
evaluate the scalability of the external memory algorithm
BFC-EM on two large datasetsBi-sk and Bi-uk by varying
the graph size n. We limit the memory size to 1GB in our
evaluation. On Bi-sk and Bi-uk, we can see that the time
cost and I/O both increase with the percentage of vertices
increases.

Cache-aware graph reordering versus Gorder. In [70], the
authors propose Gorder to reduce the cache miss in graph
algorithms. Here, we replace the graph reordering strategy
with Gorder in BFC-VP++ and evaluate the performance.

Table 6 shows the time cost. We can observe that the
renumbering time cost of the graph reordering is much less
than Gorder on all datasets. This is because graph reordering
can be simply obtained according to the priority number of
vertices while Gorder needs complex renumbering computa-
tion. Regarding the computation time, the performance of the
algorithm with graph reordering is better than the algorithm
with Gorder on 9 datasets while the algorithm with Gorder

is better on 3 datasets. Finally, the total time cost of graph
reordering is better than Gorder.

Table 7 shows the cache statistics. Firstly, they have a
similar number of cache references since the renumbering
process does not change the algorithm itself. Secondly, graph
reordering achieves a better CPU performance than Gorder
on almost all datasets (i.e., fewer cache-misses and fewer
cache-miss-ratios on 9 datasets) when handing the butterfly
counting problem with BFC-VP++. In summary, our graph
reordering strategy is more suitable when handling butterfly
counting.

8.3 Evaluation of batch-dynamic butterfly counting

In this subsection, we evaluate the performance of BFCB-BS,
BFCB-IG, and BFCB-IG+ to solve the batch-dynamic butterfly
counting problem. For each test, we randomly extract a pro-
portion b of edges from the graph as the newly inserted edges
for batch-update, and the graph consisting of the remaining
edges is used as the original graph. By default, we set the
batch size b = 0.5% and the number of threads t = 1.

Evaluating the performance on all datasets. Figure 20
shows the performance of the BFCB-BS, BFCB-IG, and BFCB-
IG+ algorithms on all datasets with b and t set to default
values. We can observe that BFCB-IG and BFCB-IG+ outper-
form BFCB-BS on almost all the large datasets. The BFCB-IG
and BFCB-IG+ algorithms are faster than BFCB-BS by at least
one order of magnitude on Wiki-fr, Live-journal,
Wiki-en, Orkut Bi-twitter, Bi-sk, and Bi-uk.
Especially, on Trackers, the BFCB-IG+ algorithm is faster
than the BFCB-BS algorithm by at least two orders of magni-
tude. In addition, BFCB-IG+ is faster than BFCB-IG on all the
datasets since it is designed to avoid much computation of
existing wedges than BFCB-IG. Note that both BFCB-IG and

Table 6 Time cost compared
with Gorder

Dataset Renumbering time Computation time Total time

Reordering Gorder Reordering Gorder Reordering Gorder

DBPedia 0.01 0.04 0.02 0.03 0.03 0.07

Twitter 0.06 4.26 0.29 0.25 0.35 4.51

Amazon 0.30 3.56 0.96 1.46 1.26 5.02

Wiki-fr 0.49 28.51 3.16 5.28 3.65 33.79

Live-journal 1.32 125.96 37.86 52.76 39.18 178.72

Wiki-en 3.02 856.07 48.60 75.78 51.62 931.85

Delicious 3.82 2225.44 80.26 134.86 84.08 2360.30

Tracker 4.89 315.01 45.48 56.13 50.37 371.13

Orkut 2.17 1615.01 435.12 553.03 437.29 2168.04

Bi-twitter 6.64 3211.63 822.31 1276.63 828.95 4488.26

Bi-sk 8.32 605.87 133.34 107.07 141.66 692.94

Bi-uk 9.91 1231.93 435.29 401.64 445.20 1633.57

123



Accelerated butterfly counting with vertex priority on bipartite graphs 277

Table 7 Cache statistics
compared with Gorder

Dataset Cache reference Cache miss Cache miss ratio

Reordering Gorder Reordering Gorder Reordering Gorder

DBPedia 4.02 ×107 5.61 × 107 4.54 ×104 1.20 × 105 0.11% 0.21%

Twitter 8.89 ×108 9.56 × 108 5.09 ×105 4.68 ×105 0.06% 0.05%

Amazon 2.51 ×109 2.52 × 109 8.93 ×106 1.02 × 107 0.36% 0.40%

Wiki-fr 1.34×1010 1.38×1010 7.33×107 8.40×107 0.55% 0.61%

Live-journal 1.72×1011 1.68×1011 6.68×108 8.02×108 0.39% 0.48%

Wiki-en 2.36×1011 2.30×1011 8.30×108 1.29×109 0.35% 0.56%

Delicious 4.13×1011 4.03×1011 1.01×109 1.63×109 0.24% 0.40%

Tracker 2.39×1011 2.34×1011 6.20×108 7.29×109 0.26% 0.31%

Orkut 2.69×1012 2.58×1012 7.21×109 8.38×109 0.27% 0.33%

Bi-twitter 4.54×1012 4.49×1012 1.35×1010 3.04×1010 0.30% 0.68%

Bi-sk 1.64×1012 1.58×1012 2.29×109 2.01×109 0.14% 0.13%

Bi-uk 6.15×1012 6.00×1012 3.67×109 3.21×109 0.06% 0.05%

Fig. 20 Performance on different datasets

BFCB-IG+ are slightly slower than BFCB-BS on small datasets
(i.e., DBPedia, Twitter, and Amazon). This is because
when the datasets are small, the number of updates (i.e., b)
is also very small. Thus, the updating process of BFCB-BS
can be finished efficiently without counting a large number
of butterflies while BFCB-IG and BFCB-IG+ need to construct
the affected graph at first. In the following experiments, we
omit the BFCB-BS algorithm since the algorithms BFCB-IG
and BFCB-IG+ significantly outperform BFCB-BS as evalu-
ated here.

Evaluating the effect of t. Figure 21 shows the result of
the BFCB-IG and BFCB-IG+ algorithms in parallel by varying
the thread number t from 1 to 32 on 4 large datasets (with
b = 0.5%). We also evaluate the breakdown of execution
time (i.e., the execution time of different stages) including the
affected subgraph construction stage (-GC) and the butterfly
counting stage (-Count). Note that these two stages both
run in parallel. We can see that the parallelization techniques
improve the efficiency of bothBFCB-IG andBFCB-IG+ signifi-
cantly. In addition, the speedup of the butterfly counting stage
is higher than the speedup of the affected subgraph construc-
tion stage for both of the algorithms. This is because there
do not exist many writing conflicts in the butterfly count-

(a) Delicious (b) Tracker

(c) Bi-sk (d) Bi-uk

Fig. 21 Varying t

ing stage, and the updating/writing operations are need to be
performed to construct the affected subgraphwhichmay lead
to extra latency when the same memory location is updated
simultaneously by multiple threads.

Evaluating the effect of b. Here, we evaluate the effect of
the batch size b by setting b from 0.01 to 2% of the orig-
inal number of edges (m) in the dataset. We first show the
number of affected butterflies in Fig. 22. It is observed that
the number of affected butterflies can be very large even the
batch-size is small. For instance, on Bi-uk, the number of
affected butterflies reaches 3.80 × 1013 with b = 2% (the
original butterfly counts on Bi-uk is 4.89× 1014 as shown
in Table 1).

123



278 K. Wang et al.

Fig. 22 The number of affected butterflies w.r.t. the batch size b

(a) Delicious (b) Tracker

(c) Bi-sk (d) Bi-uk

Fig. 23 Time cost w.r.t. the batch size b

In Fig. 23, we show the processing time of the BFCB-
IG and BFCB-IG+ algorithms when varying b. We can see
that BFCB-IG+ consistently outperforms BFCB-IG for all val-
ues of b. Especially, when b becomes smaller, the margin
between BFCB-IG+ and BFCB-IG becomes larger. This is
because BFCB-IG+ can reduce the traversal of wedges in the
original graph and take advantage of the small number of
updated edges.

Evaluating the deletion cases. In this part, we evaluate the
performance of the algorithms for both insertion and deletion
cases.

(1) Firstly, we evaluate the performance of the algorithms
on Delicious, Tracker, Bi-sk, and Bi-uk by
setting b = 2% and b = 10% in Fig. 24. In deletion
cases, we randomly extract a proportion b of edges from
the input graph and consider these edges as the deletion
edges. When using BFCB-IG and BFCB-IG+ for handling
deletion cases, we denote these two algorithms as Del-
IG and Del-IG+, respectively. We can observe that the
overhead for deletion cases is relatively small when

(a) b = 2% (b) b = 10%

Fig. 24 Evaluating the deletion cases, varying b

Fig. 25 Performance on MoiveLense

b=2% and becomes large when b=10%, especially on
datasets Bi-sk and Bi-uk.

(2) Secondly, we run the algorithms on a dynamic graph
MovieLens, which contains 162,000 users (U ), 62,000
movies (L), 25,000,095 ratings (E) and the timestamp of
the ratings. In real scenarios, the edge insertion/deletion
operations usually run in a sliding-window manner.
Thus, in insertion cases, we consider a proportion b of
edges with the latest timestamp as the insertion edges.
In deletion cases, we consider a proportion b of edges
with the oldest timestamp as the deletion edges. The per-
formance of the algorithms is shown in Fig. 25. We can
see that the time cost of the algorithms increases with
the increase of b in both insertion and deletion cases. In
addition, the overhead for deletion cases also increases
when b becomes large. Note that compared to insertion
cases, the total time cost for handling deletion cases is
only slightly higher since the dominant cost in the algo-
rithms is to maintain the number of butterflies.

9 Related work

Motif counting in unipartite graphs. Triangle is the smallest
non-trivial cohesive structure and there are extensive studies
on counting triangles in the literature [5,9,16,19,31,32,38,57,
57,58,60–62]. However, the butterfly counting is inherently
different from the triangle counting for two reasons, (1) the
number of butterflies may be significantly larger than that
of triangles (O(m2) versus O(m1.5) in the worst case), and
(2) the structures are inherently different. Thus, the existing
triangle counting techniques are not applicable to efficient

123



Accelerated butterfly counting with vertex priority on bipartite graphs 279

butterfly counting because the existing techniques for count-
ing triangles (e.g., [19,60]) are based on enumerating all
triangles and the enumeration is not affordable in counting
butterflies due to the quadratic number O(m2) of butter-
flies. There are also some studies [33,34,52] focusing on the
other cohesive structures such as 4-vertices and 5-vertices. In
[6], the authors propose generic matrix-multiplication based
algorithm for counting the cycles of length k (3 ≤ k ≤ 7)
in O(n2.376) time and O(n2) space. While the algorithm in
[6] can be used to solve our problem, it cannot process large
graphs due to its space and time complexity. As shown in
[64], the algorithm in [64] has a significant improvement
over [6], while our algorithm significantly improves [64].

Bipartite graphs. Some studies are conducted towardmotifs
such as 3 × 3 biclique [14] and 4-path [47]. These struc-
tures are different from the butterfly thus these works also
cannot be used to solve the butterfly counting problem. Algo-
rithms for accurate estimation of the number of butterflies in
graph streams is studied [55]. The authors in [40] propose
an approach that applies sampling and sketching techniques
for approximate butterfly counting in graph streams which
outperforms the algorithms in [55]. Independent from our
work, in [59], the authors study the parallel implementa-
tion of butterfly counting algorithms. [59] mainly focuses
on parallel algorithms for butterfly computations includ-
ing butterfly counting and wing/tip decomposition, while
we propose efficient butterfly counting algorithms under
different settings including in-memory algorithms, paral-
lel algorithms, I/O efficient algorithms, and batch-dynamic
algorithms. When implementing the parallel butterfly count-
ing algorithms, [59] uses different data structures compared
to us. [59] also provides a more detailed theoretical anal-
ysis about the work/span of parallel algorithms. Based on
the butterfly structure, the k-bitruss (or k-wing) and k-
tip decomposition problems are studied in the literature
[56,59,67,68,73]. Recently, the authors in [36] propose a new
coarse-to-fine framework for parallel tip decomposition.

Dynamic graphs. There are many existing studies on trian-
gle counting [15,28,61], butterfly counting [44], and other
motif counting [11,46] on dynamic graphs. Stefani et al.
[61] propose a streaming algorithm for triangle counting on
dynamic graphs with both edge insertions and deletions con-
sidered. Bulteau et al. [15] introduce a one-pass algorithm
for triangle counting estimation. In [28], an edge-sampling-
based framework is proposed to augment traditional models
for triangle counting and improve computational and mem-
ory costs. In [44], the authors present a distributed imple-
mentation of butterfly counting in dynamic environments.
As shown in [46], the authors propose a suite of approaches
to count the number of motifs by calculating the number of

embeddings of each motif. In addition, counting multi-layer
temporal motifs on dynamic graphs is studied in [11].

In the literature, there are also various works that consider
the batch-dynamic settings [1,8,23,27,43]. Ediger et al. [23]
present an algorithm for computing clustering coefficients
in batch-dynamic graphs. A batch algorithm of the single-
source dynamic shortest path is proposed in [8]. In [1], the
authors present a parallel algorithm for batch-dynamic con-
nectivity problems. In order to improve the computational
efficiency, [27] propose GPU-based algorithms under the
batch-dynamic setting. Makkar et al. [43] study the exact
triangle counting algorithm in batch-dynamic graphs.

Graph ordering. There are some studies on specific graph
algorithms using graph ordering. Then et al. [63] opti-
mize BFS algorithms. Park et al. [51] improve the CPU
cache performance of many classic graph algorithms such as
Bellman-Fold and Prim. The authors in [29] present a suite
of approaches to accelerate set intersections in graph algo-
rithms. Since these techniques are specific to the problems
studied, they are not applicable to butterfly counting.

In the literature, there are also works studying gen-
eral graph ordering methods to speed up graph algorithms
[7,10,12,13,18,22,35,70]. In the experiments, we show that
our cache-aware techniques outperform the state-of-the-art
technique [70]; that is, our cache-aware strategy is more suit-
able for counting butterflies.

10 Conclusion

We study the butterfly counting problem in this paper.
We propose a vertex-priority-based butterfly counting algo-
rithm BFC-VP which can effectively handle high-degree
vertices. We also propose the cache-aware butterfly count-
ing algorithm BFC-VP++ which improves the CPU cache
performance of BFC-VP with two cache-aware strategies.
Efficient butterfly counting algorithms for batch-dynamic
graphs are also investigated. We conduct comprehensive
experimental evaluations and the result shows that our vertex-
priority-based solutions outperform the baseline algorithms
significantly.

Acknowledgements Wenjie Zhang is supportedbyARCFT210100303
and ARC DP200101116. Ying Zhang is supported by FT170100128.
Lu Qin is supported by ARC FT200100787 and DP210101347.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-

123



280 K. Wang et al.

cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Acar, U.A., Anderson, D., Blelloch, G.E., Dhulipala, L.: Parallel
batch-dynamic graph connectivity. In: The 31st ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pp. 381–392
(2019)

2. Aggarwal, A., Vitter, J., et al.: The input/output complexity of
sorting and related problems. Commun. ACM 31(9), 1116–1127
(1988)

3. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: Dbmss on
a modern processor: Where does time go? In: PVLDB, number
DIAS-CONF-1999-001, pp. 266–277 (1999)

4. Aksoy, S.G., Kolda, T.G., Pinar, A.: Measuring and modeling
bipartite graphs with community structure. J. Complex Netw. 5(4),
581–603 (2017)

5. Al Hasan, M., Dave, V.S.: Triangle counting in large networks: a
review. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. 8(2),
e1226 (2018)

6. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length
cycles. Algorithmica 17(3), 209–223 (1997)

7. Auroux, L., Burelle, M., Erra, R.: Reordering very large graphs for
fun and profit. In: International Symposium on Web Algorithms
(2015)

8. Bauer, R., Wagner, D.: Batch dynamic single-source shortest-path
algorithms: An experimental study. In: International Symposium
on Experimental Algorithms, pp. 51–62. Springer (2009)

9. Becchetti, L., Boldi, P., Castillo, P., Gionis, A.: Efficient semi-
streaming algorithms for local triangle counting in massive graphs.
In: KDD, pp. 16–24. ACM (2008)

10. Blandford, D.K., Blelloch, G.E., Kash, I.A.: Compact representa-
tions of separable graphs. In: ACM-SIAMSymposium on Discrete
Algorithms, pp. 679–688. Society for Industrial andAppliedMath-
ematics (2003)

11. Boekhout, H.D., Kosters, W.A., Takes, F.W.: Efficiently counting
complex multilayer temporal motifs in large-scale networks. Com-
put. Soc. Netw. 6(1), 1–34 (2019)

12. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing
social networks. In: WWW, pp. 587–596. ACM (2011)

13. Boldi, P., Santini, M., Vigna, S.: Permuting web graphs. In: Inter-
national Workshop on Algorithms and Models for the Web-Graph,
pp. 116–126. Springer (2009)

14. Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data.
Soc. Netw. 19(3), 243–269 (1997)

15. Bulteau, L., Froese, V., Kutzkov, K., Pagh, R.: Triangle counting
in dynamic graph streams. Algorithmica 76(1), 259–278 (2016)

16. Chang, L., Zhang, C., Lin, X., Qin, L.: Scalable top-k structural
diversity search. In: ICDE, pp. 95–98. IEEE (2017)

17. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algo-
rithms. SIAM J. Comput. 14(1), 210–223 (1985)

18. Chierichetti, F., Kumar, R., Lattanzi, S., Mitzenmacher, M., Pan-
conesi, A., Raghavan, P.: On compressing social networks. In:
KDD, pp. 219–228. ACM, (2009)

19. Chu, S., Cheng, J.: Triangle listing in massive networks. TKDD
6(4), 17 (2012)

20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, London (2009)

21. Dhillon, I.S.: Co-clustering documents and words using bipartite
spectral graph partitioning. In: KDD, pp. 269–274. ACM (2001)

22. Dhulipala, L., Kabiljo, I., Karrer, B., Ottaviano, G., Pupyrev, S.,
Shalita, A.: Compressing graphs and indexes with recursive graph
bisection. In: KDD, pp. 1535–1544. ACM (2016)

23. Ediger, D., Jiang, K., Riedy, K., Bader, D.A.: Massive streaming
data analytics: A case study with clustering coefficients. In: 2010
IEEE International Symposium on Parallel and Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), pp. 1–8. IEEE
(2010)

24. Fain, D.C., Pedersen, J.O.: Sponsored search: A brief history. Bull.
Am. Soc. Inf. Sci. Technol. 32(2), 12–13 (2006)

25. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W., Cheng, R.,
Lin, X.: A survey of community search over big graphs. VLDB J.
29(1), 353–392 (2020)

26. Fang, Y., Wang, K., Lin, X., Zhang, W.: Cohesive subgraph search
over big heterogeneous information networks: Applications, chal-
lenges, and solutions. In: Proceedings of the 2021 International
Conference on Management of Data, pp. 2829–2838 (2021)

27. Green, O., Bader, D.A.: custinger: Supporting dynamic graph
algorithms for gpus. In: 2016 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6. IEEE (2016)

28. Han, G., Sethu, H.: Edge sample and discard: A new algorithm for
counting triangles in large dynamic graphs. In: 2017 IEEE/ACM
InternationalConference onAdvances inSocialNetworksAnalysis
and Mining (ASONAM), pp. 44–49. IEEE (2017)

29. Han, S., Zou, L., Yu, J.X.: Speeding up set intersections in graph
algorithms using simd instructions. In: SIGMOD, pp. 1587–1602.
ACM (2018)

30. He, Y., Wang, K., Zhang, W., Lin, X., Zhang, Y.: Exploring cohe-
sive subgraphs with vertex engagement and tie strength in bipartite
graphs. Inf. Sci. 572, 277–296 (2021)

31. Hu, X., Tao, Y., Chung, C.-W.: Massive graph triangulation. In:
SIGMOD, pp. 325–336. ACM (2013)

32. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM
J. Comput. 7(4), 413–423 (1978)

33. Jain, S., Seshadhri, C.: A fast and provable method for estimat-
ing clique counts using turán’s theorem. In: WWW, pp. 441–449.
International World Wide Web Conferences Steering Committee
(2017)

34. Jha, M., Seshadhri, C., Pinar, A.: Path sampling: A fast and prov-
able method for estimating 4-vertex subgraph counts. In: WWW,
pp. 495–505. International World WideWeb Conferences Steering
Committee, (2015)

35. Kang, U., Faloutsos, C.: Beyond’ caveman communities’: Hubs
and spokes for graph compression andmining. In: ICDM, pp. 300–
309. IEEE (2011)

36. Kannan, R., Prasanna, V.K., De Rose, C.A.F. et al.: Receipt: Refine
coarse-grained independent tasks for parallel tip decomposition of
bipartite graphs. In: Proceedings of the VLDB Endowment, 2020,
Estados Unidos. (2020)

37. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core
decomposition of large networks on a single pc. PVLDB 9(1), 13–
23 (2015)

38. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.:
Efficient triangle counting in large graphs via degree-based ver-
tex partitioning. Internet Math. 8(1–2), 161–185 (2012)

39. Latapy, M., Magnien, C., Del Vecchio, N.: Basic notions for the
analysis of large two-mode networks. Soc. Netw. 30(1), 31–48
(2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Accelerated butterfly counting with vertex priority on bipartite graphs 281

40. Li, R., Wang, P., Jia, P., Zhang, P., Zhao, J., Tao, J., Yuan, Y.,
Guan, X.: Approximately counting butterflies in large bipartite
graph streams. IEEE Trans. Knowl. Data Eng. (2021)

41. Lind, P.G., Gonzalez, M.C., Herrmann, H.J.: Cycles and clustering
in bipartite networks. Phys. Rev. E 72(5), 056127 (2005)

42. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient
(α, β)-core computation: An index-based approach. In:WWW, pp.
1130–1141. ACM (2019)

43. Makkar, D., Bader, D. A., Green, O.: Exact and parallel triangle
counting in dynamic graphs. In: 2017 IEEE 24th International Con-
ference on High Performance Computing (HiPC), pp. 2–12. IEEE
(2017)

44. Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: A scalable and
dynamic emulation of the butterfly. In: Proceedings of the Twenty-
First Annual Symposium on Principles of Distributed Computing,
pp. 183–192 (2002)

45. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,
Alon, U.: Network motifs: simple building blocks of complex net-
works. Science 298(5594), 824–827 (2002)

46. Mukherjee, K., Hasan, M.M., Boucher, C., Kahveci, T.: Counting
motifs in dynamic networks. BMC Syst. Biol. 12(1), 6 (2018)

47. Opsahl, T.: Triadic closure in two-mode networks: Redefining the
global and local clustering coefficients. Soc. Netw. 35(2), 159–167
(2013)

48. Ornstein, M.: Interlocking directorates in Canada: Intercorporate
or class alliance? Admin. Sci. Quarterly 210–231 (1984)

49. Ornstein,M.D.: Interlocking directorates inCanada: evidence from
replacement patterns. Soc. Netw. 4(1), 3–25 (1982)

50. Palmer, D.: Broken ties: Interlocking directorates and intercorpo-
rate coordination. Adminis. Sci. Q. 40–55 (1983)

51. Park, J.-S., Penner, M., Prasanna, V.K.: Optimizing graph algo-
rithms for improved cache performance. IEEE Trans. Parallel
Distrib. Syst. 15(9), 769–782 (2004)

52. Pinar, A., Seshadhri, C., Vishal, V.: Escape: Efficiently counting
all 5-vertex subgraphs. In: WWW, pp. 1431–1440. International
World Wide Web Conferences Steering Committee (2017)

53. Robins, G., Alexander,M.: Small worlds among interlocking direc-
tors: network structure and distance in bipartite graphs. Comput.
Math. Organ. Theory 10(1), 69–94 (2004)

54. Sanei-Mehri, S.-V., Sariyuce, A. E., Tirthapura, S.: Butterfly count-
ing in bipartite networks. In: KDD, pp. 2150–2159. ACM (2018)

55. Sanei-Mehri, S.-V., Zhang,Y., Sariyüce,A.E., Tirthapura, S.: Fleet:
butterfly estimation from a bipartite graph stream. In: CIKM, pp.
1201–1210 (2019)

56. Sarıyüce, A.E., Pinar, A.: Peeling bipartite networks for dense sub-
graph discovery. In: WSDM, pp. 504–512. ACM (2018)

57. Schank, T., Wagner, D.: Finding, counting and listing all triangles
in large graphs, an experimental study. In: International Workshop
on Experimental and Efficient Algorithms, pp. 606–609. Springer
(2005)

58. Seshadhri, C., Pinar, A., Kolda, T.G.: Triadic measures on graphs:
The power of wedge sampling. In: SDM, pp. 10–18. SIAM (2013)

59. Shi, J., Shun, J.: Parallel algorithms for butterfly computations. In:
Symposium on Algorithmic Principles of Computer Systems, pp.
16–30. SIAM (2020)

60. Shun, J., Tangwongsan, K.: Multicore triangle computations with-
out tuning. In: ICDE, pp. 149–160. IEEE (2015)

61. Stefani, L.D., Epasto, A., Riondato, M., Upfal, E.: Triest: Count-
ing local and global triangles in fully dynamic streams with fixed
memory size. TKDD 11(4), 43 (2017)

62. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the
last reducer. In: WWW, pp. 607–614. ACM (2011)

63. Then,M., Kaufmann,M., Chirigati, F., Hoang-Vu, T.-A., Pham,K.,
Kemper, A., Neumann, T., Vo, H.T.: Themore themerrier: efficient
multi-source graph traversal. PVLDB 8(4), 449–460 (2014)

64. Wang, J., Fu,A.W.-C., Cheng, J.: Rectangle counting in large bipar-
tite graphs. In: BigData Congress, pp. 17–24. IEEE (2014)

65. Wang, K., Cao, X., Lin, X., Zhang, X., Qin, L.: Efficient computing
of radius-bounded k-cores. In: ICDE, pp. 233–244. IEEE (2018)

66. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Vertex prior-
ity based butterfly counting for large-scale bipartite networks. In:
PVLDB (2019)

67. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss
decomposition for large-scale bipartite graphs. In: ICDE, pp. 661–
672. IEEE (2020)

68. Wang,K., Lin, X., Qin, L., Zhang,W., Zhang,W.: Towards efficient
solutions of bitruss decomposition for large-scale bipartite graphs.
In: VLDB Journal, pp. 1–24 (2021)

69. Wang, K., Zhang, W., Lin, X., Zhang, Y., Qin, L., Zhang, Y.:
Efficient and effective community search on large-scale bipartite
graphs. In: ICDE. IEEE (2021)

70. Wei, H., Yu, J.X., Lu, C., Lin, X.: Speedup graph processing by
graph ordering. In: SIGMOD, pp. 1813–1828. ACM (2016)

71. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: When engage-
ment meets similarity: efficient (k, r)-core computation on social
networks. PVLDB 10(10), 998–1009 (2017)

72. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently rein-
forcing social networks over user engagement and tie strength. In:
ICDE, pp. 557–568. IEEE (2018)

73. Zou, Z.: Bitruss decomposition of bipartite graphs. In: DASFAA,
pp. 218–233. Springer (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Accelerated butterfly counting with vertex priority on bipartite graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Existing algorithms
	4 Algorithm by vertex priority 
	5 Cache-aware techniques
	5.1 Cache-aware wedge processing
	5.2 Cache-aware graph reordering
	5.3 Putting cache-aware strategies together

	6 Handling other cases
	6.1 Counting the butterflies for each edge
	6.2 Parallelization
	6.3 External memory butterfly counting

	7 Batch-dynamic butterfly counting
	7.1 Computing
	7.2 Computing
	7.3 Reducing the computation of old wedges

	8 Experiments
	8.1 Datasets
	8.2 Evaluation of butterfly counting algorithms
	8.3 Evaluation of batch-dynamic butterfly counting

	9 Related work
	10 Conclusion
	Acknowledgements
	References




