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Abstract

Exposure simulations are fundamental to many xVA calculations and are a nested expectation problem
where repeated portfolio valuations create a significant computational expense. Sensitivity calcula-
tions which require shocked and unshocked valuations in bump-and-revalue schemes exacerbate the
computational load. A known reduction of the portfolio valuation cost is understood to be found in
polynomial approximations, which we apply in this article to interest rate sensitivities of expected
exposures. We consider a method based on the approximation of the shocked and unshocked valuation
functions, as well as a novel approach in which the difference between these functions is approximated.
Convergence results are shown, and we study the choice of interpolation nodes. Numerical experi-
ments with interest rate derivatives are conducted to demonstrate the high accuracy and remarkable
computational cost reduction. We further illustrate how the method can be extended to more general
xVA models using the example of CVA with wrong-way risk.

Keywords: xVA, Sensitivity, Exposure Simulation, Portfolio Approximation, Polynomial
Interpolation, Quadrature Nodes, Monte Carlo

1. Introduction

Value adjustments (xVA) are a core component in the risk management frame-
work of modern asset pricing and are used to account for additional risks not covered
under the standard theory of asset pricing. All xVA computations depend on the
future evolution of the portfolios for which they are computed, so accurate exposure
calculations are of high importance. Over many stochastically modelled risk factors
with potentially intricate dependencies, the exposure distribution quickly becomes in-
tangible and warrants the use of Monte Carlo simulations. With a large number of
simulation paths and evaluation times of the exposures, an enormous amount of re-
quired portfolio valuations may aggregate, which acts as a significant driver behind
the often large computational demand of the exposure simulation.

One way to achieve faster simulations is through a reduction of the number of
Monte Carlo paths or monitoring dates, but this is to the immediate detriment of
accuracy. An alternative approach is to improve the speed of portfolio valuations.

Approximation techniques provide such an opportunity to reduce the computa-
tional complexity along the number of Monte Carlo simulations. At every time step,
instead of evaluating the exact, and expensive, portfolio valuation function directly in
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every realisation of its underlying risk factors, an accurate approximation is constructed
from only a few exact evaluations. The resulting approximation can be evaluated very
efficiently thanks to its polynomial structure. Similar approaches have been applied to
improve efficiency in the simulation of differential equations (Xiu and Hesthaven, 2005)
where they are known as stochastic collocation techniques. The approach considered
in this article is closely connected to polynomial asset valuation approximation tech-
niques, which have recently gained increased attention in the Mathematical Finance
literature. Gaß et al. (2018) and Glau et al. (2019a) utilized polynomial interpolation
over Chebyshev nodes for the pricing of options, respectively for the approximation of
implied volatility functions. Glau et al. (2019b) introduced a novel approach to the
pricing of American options, which uses Chebyshev interpolation to approximate the
continuation values of the option. This approach allows for the splitting of the com-
putation into a construction phase, where the approximation functions are computed,
and a numerically efficient evaluation phase. In Glau et al. (2021), this dynamic ap-
proach is extended to a broader class of options, and to the nested expectation problem
which is posed by exposure simulations. Here, it is also remarked that approximation
techniques could prove suitable for sensitivity computations.

Grzelak et al. (2018) studied stochastic collocation techniques to improve the effi-
ciency in sampling from random distributions, and showed optimality of quadrature
interpolation nodes for (normally distributed) interest rates with respect to the L2-
norm. In Grzelak (2022) the approximation of portfolio valuations with sparse grids
in a multi-dimensional setting is considered.

In this article, we extend the stochastic-collocation-based approach of exposure
simulation to the calculation of expected exposure sensitivities at high numerical ef-
ficiency. We consider the calculation of interest-rate sensitivities, in particular the
sensitivity with respect to market quotes used in the construction of the yield curve.
These sensitivities are typically obtained from difference quotients, where the evalu-
ation under a particular market shock is compared to the evaluation under normal,
unshocked market conditions, so-called bump-and-revalue schemes (see, for example,
Green (2015)). For each market shock, such a scheme demands the full amount of exact
portfolio valuations, which effectively multiplies the numerical effort by the number of
market shocks considered.

Many attempts to manage this complexity are based on novel techniques, such as
Adjoint Algorithmic Differentiation (Capriotti et al., 2017, Huge and Savine, 2017) or
neural-network-based xVA engines (Gnoatto et al., 2020). However, such methods re-
quire substantial overhead in their implementation. The approach introduced in this
article can be seamlessly integrated into standard Monte Carlo exposure simulations
and merely requires the implementation of a polynomial interpolation scheme. We
construct approximations over quadrature nodes, which can be explicitly computed
based on the moments of the underlying risk factor distribution. This approach auto-
matically resolves the challenge of finding a suitable interpolation domain.

We show how approximation techniques can be directly applied to the unshocked
and shocked valuation functions, which reduces the computational requirements of
sensitivity calculations greatly. Furthermore, we introduce an even more efficient ap-
proach, where instead of the shocked valuation function, the difference between shocked
and unshocked valuation functions is approximated with a reduced-degree polynomial
to the effect of increased complexity reduction. We study convergence results and error
bounds for the proposed methods. The proposed approximation technique is compat-
ible with sophisticated xVA frameworks, which we outline by an adaption to models
that include wrong-way risk. Numerical experiments are conducted for portfolios of
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linear and of non-linear assets, with special attention given to Bermudan swaptions as
an example for a non-linear asset with multiple exercise dates.

The present article is structured as follows. In Section 2 we introduce exposure sim-
ulations in the classical sense and their approximations with polynomial interpolation.
Section 3 summarizes the concept of interest-rate sensitivities, i.e., sensitivities with
respect to the market quotes used in the construction of the yield curve, and defines the
sensitivity of expected exposures. In Section 4, two approximation methods for these
sensitivities are introduced. A full-order approximation applies the previously defined
expected exposure approximations in a bump-and-revalue scheme. A low-order dif-
ference approximation directly approximates the functional change under the market
shock. Section 5 contains an analytical error analysis, where we show convergence of
the sensitivity approximation and also discuss the selection of interpolation nodes. In
Section 6 we investigate the accuracy of the methods with numerical experiments, and
in Section 7 we detail how the approach can be applied to Bermudan Swaptions with
an additional numerical experiment. Finally, we summarize our findings in Section 8.

2. Exposure simulation and approximation

Before we introduce the sensitivity approximation methods studied in this article,
we provide the context in which they arise, given by exposure simulations for xVA.
We consider portfolios with underlying risk factors modelled by a stochastic process
(X(t))t≥0 on a filtered probability space (Ω,F , (Ft)t≥0,Q), where Q is the risk-neutral
measure. The stochastic process X(t) takes values in Rm, where m corresponds to the
number of modelled risk factors. The portfolio value at time t is then described by
a stochastic process (V (t,X(t)))t≥0. When all future cash flows can be expressed in
terms of payoffs H(Tk,X(Tk)), k ∈ {1, . . . , L}, L ∈ N, the portfolio valuation is given
by the conditional expectation1

V (t,X(t)) = E
Q
t

[
L∑

k=1

B(t)

B(Tk)
H(Tk,X(Tk))

]
, (2.1)

where B(t) = exp(
∫ t

0 r(s)ds) is the numéraire of the measure Q, i.e. we denote the
risk-neutral interest (short) rate by r(t).

In many xVA models, the valuation adjustment depends on whether a portfolio is
associated with a cost or a benefit, that is, the models depend on the sign of the (future)
valuations. This is expressed by the notion of positive and negative exposures, which
are given by the positive and negative part of the valuation functions, V +(t,X(t)) and
V −(t,X(t)), respectively. Exemplarily for credit valuation adjustments, a default of
the counterparty only affects those portfolios which have a positive present value at
the time of default. Equivalently from the point of view of the counterparty, its own
default event is associated with its debit valuation adjustment, which analogously is
based on the negative exposure (as seen by the counterparty).

The deterministic xVA quantities at initial time t0 are based on expected (positive or
negative) exposures, which are defined as the expectations of the respective discounted

1We denote expectations conditional on the filtration Ft with a subscript Et.
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exposures. The expectedpositive2 exposure at monitoring date t ≥ t0 is given by

EE(t0, t) = E
Q
t0

[
B(t0)

B(t)
V +(t,X(t))

]
≈

1

M

M∑

j=1

B(t0)

B(t;ωj)
V +(t,X(t;ωj)), (2.2)

which can be approximated by a Monte Carlo simulation approach with a large number
of simulations M ∈ N of the underlying risk factors X(t;ωj), ωj ∈ Ω, j ∈ {1, . . . ,M}.

2.1. Construction of approximating portfolio valuation functions

Given R ∈ N monitoring dates and M simulation paths, the Monte Carlo approxi-
mation in (2.2) requires M×R valuations of the portfolio. Each of these exact portfolio
valuations may correspond to a contrived function evaluation, potentially due to the
number of assets in the portfolio, or due to the presence of (non-linear) assets which
require complex solution schemes. Therefore, the large number of exact portfolio valua-
tions contributes an immense numerical expense to the exposure simulation. However,
at each monitoring date t, the shape of the portfolio valuation function V (t, ·) often
exhibits a high degree of regularity when seen as a surface Rm → R. This suggests
that alternative functions g(t, ·) exist, which generate almost indistinguishable valua-
tion surfaces but can be numerically evaluated at much higher efficiency. Replacing
the exact portfolio valuations with such approximation functions drastically reduces
the computational burden of exposure simulations.

To obtain such approximating functions g(t, ·) of the portfolio valuation func-
tions V (t, ·), we administer polynomial interpolation methods. The construction of
a polynomial approximation based on N interpolation points {(xk(t), V (t, xk(t)) : k ∈
{1, . . . , N}} requires only N of the expensive, exact portfolio valuations, where N is
typically by orders of magnitude smaller than the number M of exact portfolio valua-
tions utilized in the classical Monte Carlo approach (2.2). One of the challenges in the
approach is to find appropriate interpolation nodes xk(t) ∈ Rm in the domain of the
underlying risk factor X(t).

For the remainder of the article, we will focus on the base case of m = 1, i.e.
portfolios with a single, one-dimensional risk factor. Particularly, in the numerical ex-
periments of Section 6 and Section 7, we will consider interest rate products whose price
at time t depends on the state of the underlying risk-free rate r(t). The approximating
functions g(t, ·) can then be explicitly given in the Lagrange form

g(t, x) :=

N∑

k=1


V (t, xk(t))

N∏

ℓ=1
ℓ 6=k

x− xℓ(t)

xk(t) − xℓ(t)


 ≈ V (t, x), (2.3)

after a suitable choice of interpolation nodes (x1(t), . . . , xN (t)) has been chosen, and
the corresponding exact valuations (V (t, x1(t)), . . . , V (t, xN (t))) have been computed.
We define the set of N interpolation nodes by xN (t). The described polynomial of
degree N − 1 through a fixed choice of N interpolation points is unique, hence a
numerical implementation may equivalently utilize a different polynomial basis, or a
numerically more stable form, like the barycentric interpolation formula. We refer to
Berrut and Trefethen (2004) for a treatise on its derivation and advantages.

2The expected negative exposure is identical to (2.2) with the positive exposure replaced by the neg-
ative exposure V −(t,X(t)). Within this article, we consider only the positive exposure, by symmetry
the results can be extended to negative exposure computations.
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Monte Carlo exposure simulations can be greatly simplified with a stochastic collo-
cation method, where exact valuations V (t, ·) in (2.2) are replaced by approximations
g(t, ·). This yields an approximation of the expected (positive) exposure.

Definition 2.1 (Expected exposure approximation). At each monitoring date t, let
V (t, ·) : R → R be a portfolio valuation function with stochastic risk factor X(t). Let
g(t, ·) be an approximation of the portfolio valuation. Then, the expected (positive)
exposure approximation is given by

ẼE(t0, t) = E
Q
t0

[
B(t0)

B(t)
g+(t,X(t))

]
≈

1

M

M∑

j=1

B(t0)

B(t;ωj)
g+(t,X(t;ωj)), (2.4)

with M ∈ N samples of the risk factor.

Notably, at every monitoring date t, each approximated expected exposure ẼE(t0, t)
requires only N (depending on the degree of the polynomials g(t, ·)) exact, expensive
portfolio valuations and M ‘cheap’ valuations of the polynomial approximation, which
can be undertaken at high numerical efficiency. This stands in contrast to the M exact,
expensive portfolio valuations in the classical approach (2.2).

Remark 2.1. The approximation technique is not limited to basic xVA models that
rely on isolated expected exposure terms. In general, the methods introduced here can
be directly applied to many advanced xVA models, with the only requirement that ex-
plicit portfolio valuations take place within a Monte Carlo simulation. We outline the
generalization on the example of unilateral CVA with wrong-way risk in Appendix A.

In the remainder of the article, we adopt the expected-exposure form of Defini-
tion 2.1 which suffices to demonstrate the proposed methodology and has a straightfor-
ward representation.

3. Sensitivities with respect to the yield curve

We now introduce the concept of sensitivity with respect to the yield curve and
apply it to the expected exposures previously defined.

In order to appropriately define the involved quantities and sensitivities, we briefly
outline the yield curve construction. The yield curve represents the term structure of
interest rates, which makes it a crucial tool in asset valuation.

Definition 3.1 (Yield curve and zero-coupon bond curve). The yield curve Y of
an investment horizon [t0, T ] maps maturities to their associated total rate of return.
That is, a payment of 1 (unit of the currency associated with the yield curve) at time
t0 returns an expected payment of exp(Y (S)(S − t0)) at time S. This is described by a
real function

Y : [t0, T ] → R, S 7→ Y (S). (3.1)

Under no-arbitrage conditions, the yield curve is directly related to the zero-coupon
bond curve P (t0, ·), which indicates the equivalent discounted value that a payment of
1 at time S has at time t0,

P (t0, ·) : [t0, T ] → R+, S 7→ P (t0, S) := exp (−Y (S)(S − t0)) . (3.2)

A yield curve is calibrated to the market on the basis of a set of liquidly traded
instruments with associated market quotes. We refer to this basis as the market instru-
ments. Yield curve calibration refers to the process of finding a curve that reproduces
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each of these market quotes when the model prices of the instruments are calculated
with respect to the curve. Typically, each instrument will only contribute information
towards distinct parts of the yield curve. To obtain the entire curve over a continuous
spectrum, suitable curve-fitting schemes must be applied, which affect the resulting
yield curve. One such scheme is the multi-dimensional Newton–Raphson algorithm,
which is applied in Oosterlee and Grzelak (2019) to obtain a discrete set of points on
the yield curve. The effect that various interpolation methods between such points
have on the yield curve is studied in Hagan and West (2006).

In this article, we use sensitivity to the yield curve as a general moniker, also the
term interest rate sensitivity is known in the literature. To be precise, we refer to
sensitivity with respect to the market quote of one of the market instruments of the
yield curve. Each market instrument is associated with a particular maturity and par-
ticularly influences the yield curve in the surrounding region. Unlike approaches where
only the finalized yield curve is shifted in a neighbourhood of the desired maturity, the
sensitivity with respect to a market quote ensures that potential non-localities of the
yield curve interpolation are correctly taken into account. Since the effect of different
market quotes are of interest, the sensitivity with respect to the yield curve is rather
a family of sensitivities or a sensitivity profile.

We formalise this in the following definitions.

Definition 3.2 (Market instruments). The market instruments of a zero-coupon bond
curve P (t0, ·) are a set of market instruments

Φ = {ϕ1, . . . , ϕn}, (3.3)

where at time t0, the market instrument ϕi, i ∈ {1, . . . , n}, corresponds to a maturity
Ti ∈ [t0, T ], has an available market quote Ki and a valuation function in terms of the
curve P (t0, ·).

In the following, we define the sensitivity of the expected exposure of a portfolio
in terms of difference quotients obtained from shocked and unshocked valuations. The
shocked valuations are based on shocked yield curves that are obtained by applying a
small shift to one of their underlying market quotes.

Definition 3.3 (Shocked yield curves). Let Y be a yield curve obtained from the market
instruments Φ with market quotes {K1, . . . ,Kn}. For any i ∈ {1, . . . , n}, let Yi be the
yield curve obtained from the same set of instruments Φ, where the i-th instrument
has its market quote shifted by a value ∆Ki ∈ R. That is, the market quotes of yield
curve Yi’s market instruments are {K1, . . . ,Ki−1,Ki + ∆Ki,Ki+1, . . . ,Kn}.

We can now define the precise sensitivities considered in this article.

Definition 3.4 (Sensitivity of the expected exposure with respect to the yield curve).
Let V (t;Y ) denote the portfolio valuation at time t ∈ [t0, T ] under the assumption of
an initial yield curve Y . For any i ∈ {1, . . . , n}, the sensitivity of V with respect to Ki

is defined by
∂V (t;Y )

∂Ki

:= lim
∆Ki→0

V (t;Yi) − V (t;Y )

∆Ki

. (3.4)

Let EE(t0, t) be the expected (positive) exposure of V as given in (2.2). The sensitivity
of the expected exposure at time t with respect to the market quote Ki is given by

∂EE(t0, t)

∂Ki
=

∂

∂Ki
E
Q
t0

[
B(t0)

B(t)
V +(t,X(t))

]
. (3.5)
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The sensitivity of the expected exposure can be rewritten by exchanging the or-
der of the expectation and differentiation operator, followed by the product rule of
differentiation. This yields the formula

∂EE(t0, t)

∂Ki
= E

Q
t0

[
∂

∂Ki

(
B(t0)

B(t)
V +(t,X(t))

)]

= E
Q
t0

[(
∂

∂Ki

B(t0)

B(t)

)
V +(t,X(t)) +

B(t0)

B(t)

∂V +(t,X(t))

∂Ki

]
. (3.6)

This expanded form is suitable to approximation in the common framework of Monte
Carlo exposure simulations and allows us to relate the sensitivity of the expected
exposure to sensitivities of the numéraire and of the portfolio.

The derivatives in (3.6) can not be assumed to be analytically available, depending
on the construction methodology of the yield curve and the type of assets in the
portfolio. Therefore, we will consider forward differences for some fixed, small values
of ∆Ki > 0 in (3.4).

We introduce some short-hand notations. In the unshocked market, we continue
denoting the interest rate by r(t), the money market account by B(t), the risk factor
by X(t) and the value of the portfolio by V (t,X(t)). In the i-th shocked market, we
denote the interest rate by ri(t), the money market account by Bi(t) = exp(

∫ t

0 ri(s)ds),
the risk factor by Xi(t) and the portfolio valuation by Vi(t,Xi(t)). We emphasize that
the market shock affects the entire discounting structure.

The resulting Monte Carlo simulation scheme for the sensitivity of an interest rate
asset with M paths ωj, j = 1, . . . ,M , is given by

∂

∂Ki
EE(t0, t) ≈

M∑

j=1

(
∂

∂Ki

B(t0;ωj)

B(t;ωj)

)
V +(t,X(t;ωj)) +

B(t0;ωj)

B(t;ωj)

∂V +(t,X(t;ωj))

∂Ki

≈
M∑

j=1

Bi(t0;ωj)
Bi(t;ωj)

−
B(t0;ωj)
B(t;ωj )

∆Ki
V +(t,X(t;ωj))+

B(t0;ωj)

B(t;ωj)

V +
i (t,Xi(t;ωj)) − V +(t,X(t;ωj))

∆Ki
.

(3.7)

This is equivalent to the forward sensitivity approach given in Green (2015).

4. Approximation of expected exposure sensitivities

Analogous to the expected exposure approximation in Definition 2.1, we define two
approximations of the expected exposure sensitivity (3.6). First, a full-order approxi-
mation, in which both the shocked and unshocked portfolio valuation functions, V (t, ·)
and Vi(t, ·) are approximated with polynomials of full degree N − 1, i.e. constructed
with N exact portfolio valuations each. Secondly, we define a low-order difference ap-
proximation, where only V (t, ·) is approximated at full degree, and the approximations
of Vi(t, ·) are constructed with a lower degree approximation of the difference between
the shocked and unshocked portfolio valuation functions.

Definition 4.1 (The full-order approximation of the sensitivity). For any monitoring
date t0 ≤ t ≤ T , let the exact portfolio valuation V (t, ·) associated with the yield curve
Y be approximated by the polynomial g(t, ·), based on N interpolation nodes xN (t),
given in (2.3).

For a fixed i ∈ {1, . . . , n}, let Vi(t, ·) be the exact portfolio valuation function as-
sociated with the yield curve Yi of the i-th market shock, given in Definition 3.3. Let
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gi(t, ·) be a polynomial approximation function of Vi(t, ·) based on N interpolation nodes
(xi1(t), . . . , xiN (t)), the set of which we denote by x

i
N (t).

The full-order approximation of the sensitivity of the expected exposure with respect
to market quote Ki, Ψi

N (t) ≈ ∂EE(t0, t)/∂Ki, is given by

Ψi
N (t) := E

Q
t0

[(
∂

∂Ki

B(t0)

B(t)

)
g+(t,X(t)) +

B(t0)

B(t)

g+i (t,Xi(t)) − g+(t,X(t))

∆Ki

]

≈
M∑

j=1

Bi(t0;ωj)
Bi(t;ωj)

−
B(t0;ωj)
B(t;ωj )

∆Ki

g+(t,X(t;ωj))+
B(t0;ωj)

B(t;ωj)

g+i (t,Xi(t;ωj)) − g+(t,X(t;ωj))

∆Ki

.

This greatly reduces the number of exact portfolio valuations. In the classical ap-
proach given in (3.7), 2M exact portfolio valuations are required, where we recall that
M is the number of paths in the Monte Carlo simulation. In the full-order approach,
this is reduced to 2N exact valuations to obtain the approximation functions, and
2M (cheap) valuations of the polynomial approximations. The full-order approach
to sensitivity in Definition 4.1 relies on polynomial approximations based on N exact
valuations at their interpolation nodes. In the computation of a sensitivity profile with
respect to multiple market quotes {K1, . . . ,Kn}, each sensitivity approximation reuses
the same approximation g(t, ·) of V (t, ·) but requires a newly constructed approxima-
tion gi(t, ·) of Vi(t, ·). Thus, n different market shocks require (n+ 1)N exact portfolio
valuations per monitoring date.

We now intruduce a low-order difference approximation which reduces the number
of exact valuations needed to approximate the shocked portfolio valuation Vi(t, ·).

In the low-order difference approach, for every monitoring date t, an approximation
g̃i(t, ·) ≈ Vi(t, ·) is constructed based on the previously established estimator of the
unshocked portfolio function g(t, ·), to which another polynomial hi(t, ·) of lower degree
is added. That is, we set

g̃i(t, ·) := g(t, ·) + hi(t, ·). (4.1)

By constructing hi(t, ·) with d < N interpolation nodes, only d exact portfolio val-
uations V i(t, ·) are required, and consequently, the total number of exact portfolio
valuations in the sensitivity profile is reduced to nd+N at each monitoring date.

We construct hi(t, ·) as a polynomial of degree d−1 which approximates the differ-
ence between the polynomial approximation g(t, ·) and the shocked portfolio, Vi(t, ·).
That is, in Lagrange form, the difference approximation hi(t, ·) is given by

hi(t, x) :=
d∑

j=1

(
Vi(t, x

i
j,d(t)) − g(xij,d(t))

)
Li
j,d,t(x), (4.2)

with Lagrange basis

Li
j,d,t(x) :=

d∏

k=1
k 6=j

x− xik,d(t)

xij,d(t) − xik,d(t)
, (4.3)

where (xi1,d(t), . . . , xid,d(t)) are the interpolation nodes used in the construction of

hi(t, ·) which we collect in the set x
i
d(t). We now define the low-order difference

approximation of the sensitivity.

Definition 4.2 (The low-order difference approximation of the sensitivity). For any
monitoring date t0 ≤ t ≤ T and shock to market quote Ki, i ∈ {1, . . . , n}, let the un-
shocked portfolio valuation function V (t, ·), its approximation g(t, ·), and the shocked
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portfolio valuation function Vi(t, ·) be defined as in Definition 4.1. Let g̃i(t, ·) be the
approximation of Vi(t, ·) given in (4.1) and (4.2). The low-order difference approx-
imation of the sensitivity of the expected exposure with respect to market quote Ki,
Ψi

d,N (t) ≈ ∂EE(t0, t)/∂Ki, is given by

Ψi
d,N(t) := E

Q
t0

[(
∂

∂Ki

B(t0)

B(t)

)
g+(t,X(t)) +

B(t0)

B(t)

g̃+i (t,Xi(t)) − g+(t,X(t))

∆Ki

]
. (4.4)

When the set of interpolation nodes xi
d(t) of hi(t, ·) are chosen as a subset of the N

interpolation nodes xi
N (t) on which the approximation gi(t, ·) in the full-order approach

is based, another interpretation of the low-order difference method arises. Under this
particular choice of interpolation nodes, it becomes possible to rewrite (4.2) as

hi(t, x) =
d∑

j=1

Vi(t, x
i
j,d(t))Li

j,d,t(x) −
d∑

j=1

g(t, xij,d(t))Li
j,d,t(x)

=

d∑

j=1

gi(t, x
i
j,d(t))Li

j,d,t(x) −
d∑

j=1

g(t, xij,d(t))Li
j,d,t(x), (4.5)

since gi and Vi coincide in the interpolation nodes xij,d(t). This lets us relate hi(t) solely

to the approximations gi and g. In particular, we may interpret hit as the difference
between a polynomial approximation pi(t, ·) of gi(t, ·), and a polynomial approximation
p(t, ·) of g(t, ·), both of reduced degree d− 1. Summarizing,

hi(t, x) =: pi(t, x) − p(t, x). (4.6)

With this representation at hand, it becomes easy to see that if the difference approx-
imation is constructed with the full number of d = N points, then, by uniqueness
of the polynomial approximation, it holds that pi(t, ·) = gi(t, ·) and p(t, ·) = g(t, ·).
Consequently, the approximations g̃i(t, ·) and gi(t, ·) must coincide and the same holds
for the expected exposure sensitivity estimators Ψi

d,N(t) and Ψi
N (t).

5. Error Analysis

We have thus introduced two approximators of the expected exposure’s yield curve
sensitivity, the full-order estimator Ψi

N (t) given in Definition 4.1 and the low-order dif-
ference estimator Ψi

d,N (t) given in Definition 4.2. The benchmark of the error analysis
is provided by the conventional estimator, the finite difference approach with exact
portfolio valuations given by

Ψi(t) := Et0

[(
∂

∂Ki

B(t0)

B(t)

)
V +(t,X(t)) +

B(t0)

B(t)

V +
i (t,X(t)) − V +(t,X(t))

∆Ki

]
. (5.1)

For every time t, we analyse the absolute approximation error between the con-
ventional estimator and the low-order difference approximation. Since it holds that
Ψi

d,N (t) = Ψi
N (t) for the special case of d = N , the resulting error bound can be quickly

extended to the full-order approach. The absolute error is given by

|Ψi(t) − Ψi
d,N (t)| =

∣∣∣∣∣Et0

[(
∂

∂Ki

B(t0)

B(t)

)(
V +(t,X(t)) − g+(t,X(t))

)

+
B(t0)

B(t)

(
V +
i (t,Xi(t)) − V +(t,X(t))

∆Ki
−
g̃+i (t,Xi(t)) − g+(t,X(t))

∆Ki

)]∣∣∣∣∣.
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In the following, we will not write the second argument of the functions V, Vi, g, gi
when using Lq(Ω) norms for q ∈ {1, 2}. Observe that for any two arbitrary functions
f1, f2, it holds that

|f+1 (x) − f+2 (x)| ≤ |f1(x) − f2(x)|. (5.2)

Together with an application of Jensen’s inequality and the triangle inequality, we
obtain a first upper bound

|Ψi(t) − Ψi
d,N (t)| ≤ Et0

[∣∣∣∣
(

∂

∂Ki

B(t0)

B(t)

)
(V (t,X(t)) − g(t,X(t)))

∣∣∣∣
]

+ Et0

[∣∣∣∣
B(t0)

B(t)

Vi(t,Xi(t)) − g̃i(t,Xi(t))

∆Ki

∣∣∣∣
]

+ Et0

[∣∣∣∣
B(t0)

B(t)

V (t,X(t)) − g(t,X(t))

∆Ki

∣∣∣∣
]

=

∥∥∥∥
(

∂

∂Ki

B(t0)

B(t)

)
(V (t) − g(t))

∥∥∥∥
1

+

∥∥∥∥
B(t0)

B(t)

Vi(t) − g̃i(t)

∆Ki

∥∥∥∥
1

+

∥∥∥∥
B(t0)

B(t)

V (t) − g(t)

∆Ki

∥∥∥∥
1

.

An application of Hölder’s inequality allows us to relate the absolute error directly
to distances between target functions and their approximations,

|Ψi(t) − Ψi
d,N (t)| ≤

∥∥∥∥
(

∂

∂Ki

B(t0)

B(t)

)∥∥∥∥
2

‖V (t) − g(t)‖2

+

∣∣∣∣
1

∆Ki

∣∣∣∣
∥∥∥∥
B(t0)

B(t)

∥∥∥∥
2

(‖Vi(t) − g̃i(t)‖2 + ‖V (t) − g(t)‖2) .

The terms related to the discount factor in this inequality are quickly bounded.
Because of its connection to the zero-coupon bond price P (t0, t), we immediately obtain
that the L2-norm of the discount factor is finite, and denote it by

C1(t) :=

∥∥∥∥
B(t0)

B(t)

∥∥∥∥
2

= Et0

[
exp

(
−2

∫ t

t0

r(s)ds

)] 1

2

<∞. (5.3)

A bound on the norm of the derivative of the discount factor is encoded in the as-
sumptions of the yield curve construction. Generally, it holds that

C2(t) :=

∥∥∥∥
∂

∂Ki

B(t0)

B(t)

∥∥∥∥
2

= Et0

[(
∂

∂Ki

exp

(
−

∫ t

t0

r(s)ds

))2
] 1

2

= Et0

[(∫ t

t0

∂

∂Ki

r(s)ds

)2

exp

(
−2

∫ t

t0

r(s)ds

)] 1

2

. (5.4)

One of the desirable features of yield curve interpolation described by Hagan and West
(2006) is (forward) stability, which describes how much the interpolated yield changes
with respect to the inputs. The authors empirically confirm boundedness for a broad
range of interpolation methods. Connecting forward stability to the interest rate be-
comes possible under concrete assumptions about the interest rate model used. In
Appendix B, this is shown explicitly for the 1-factor Hull–White interest rate model.
Thus, for suitable interest rate and yield curve models, we may assume a bound

|Ψi(t) − Ψi
d,N (t)| ≤ C2(t) ‖V (t) − g(t)‖2 +

C1(t)

|∆Ki|
(‖Vi(t) − g̃i(t)‖2 + ‖V (t) − g(t)‖2) ,

where C1(t), C2(t) ∈ R are the constants in (5.3) and (5.4), independent of the number
of nodes N and d.
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In the following, we identify the case i = 0 with the market without parameter
shocks, so that V0(t, x) = V (t, x) and g0(t, x) = g(t, x). Then, the approximation
errors of the portfolio valuation function, respectively its shocked market versions, are
given by

εi(t) := ‖Vi(t) − gi(t)‖2, i ∈ {0, . . . , N}. (5.5)

Recall that xi
N (t) are the N interpolation nodes used in the construction of gi(t) in

the full-order approach and x
i
d(t) are the d interpolation nodes used in the construction

of g̃i(t) in the low-order difference approach. In the previous section, it was shown that
choosing the interpolation nodes of the low-order difference approach as a subset of
the nodes in the full-order approach,

x
i
d(t) ⊆ x

i
N (t) for all d ≤ N, (5.6)

allows for a convenient interpretation of the low-order difference polynomial hi(x).
It was shown in (4.6), that the low-order difference polynomial can be expressed by
hi(t, ·) = pi(t, ·)−p(t, ·), a difference between the degree d−1 approximations of gi(t, ·)
and g(t, ·). This allows for further bounds

‖Vi(t) − g̃i(t)‖2 ≤ ‖Vi(t) − gi(t)‖2 + ‖gi(t) − g̃i(t)‖2

= εi(t) + ‖gi(t) − g(t) − (pi(t) − p(t))‖2

≤ εi(t) + ‖gi(t) − pi(t)‖2 + ‖g(t) − p(t)‖2. (5.7)

Analogously to (5.5), we set p0(t) := p(t) and denote the errors of approximating the
degree N − 1 polynomials with their degree d− 1 counterparts by

δi(t) := ‖gi(t) − pi(t)‖2, i ∈ {0, . . . , N}, (5.8)

so that, combining these results, we obtain the error bound of the low-degree approx-
imation,

|Ψi(t) − Ψi
d,N (t)| ≤ C2(t)ε0(t) +

C1(t)

|∆Ki|
(ε0(t) + εi(t) + δ0(t) + δi(t)). (5.9)

For d = N , it holds that δi(t) = 0 and (5.9) provides the error bound for the full-order
approximation. Its convergence follows in the next section by showing that εi → 0 as
N → ∞.

5.1. Quadrature nodes

For i ∈ {0, . . . , n}, let Iit := [min(xi
N (t)),max(xi

N (t))] denote the interval spanned
by the interpolation nodes x

i
N (t) = {xi1(t), . . . , x

i
N (t)}, where we set x

0
N (t) := xN (t).

When the target function Vi(t, x) is sufficiently regular, the accuracy of its polynomial
interpolation gi(t, x) can be explicitly given, for every x ∈ Iit , in terms of the Lagrange
bound,

Vi(t, x) − gi(t, x) =

dNVi(t,x)
dxN

∣∣∣
x=ξi

N !

N∏

k=1

(x− xik(t)), i ∈ {0, . . . , n}, (5.10)

where the derivative of Vi(t, x) is evaluated in some value ξi ∈ Iit . Since the ap-
proximation setting considered in this article does not permit control over the function
Vi(t, x) or its derivatives, we may only exert influence over the error of the interpolation

11



through the choice of interpolation nodes x
i
N (t). The optimal choice of interpolation

nodes depends on the norm under which Vi(t, x) − gi(t, x) is considered.
The L2(Ω) norm in (5.5) implicitly depends on the random variable Xi(t), where

we again set X0(t) := X(t). When the risk-factor Xi(t) admits a density fXi(t), the
error with respect to the L2(Ω) norm can be expressed as an integral with weight
function fXi(t)(x), and Grzelak et al. (2018) showed that with respect to the L2(Ω)
norm required in (5.5), the optimal choice of interpolation nodes are the quadrature
points yik(t) of the associated quadrature rule,

εi(t)
2 =

∫

R

(Vi(t, x) − gi(t, x))2 fXi(t)(x)dx

=

N∑

k=1

(
Vi(t, y

i
k(t)) − gi(t, y

i
k(t))

)2
wi
k(t) + ε̃iN (t). (5.11)

Here, wi
k(t) are the corresponding quadrature weights and ε̃iN (t) is the quadrature

error. The quadrature points yik(t) can be constructed with the recurrence relation of
Golub and Welsch (1969), whenever the corresponding moments of Xi(t) are available.
Alternatively, when the orthogonal polynomial family of L2(Ω) is known, they can be
found as the zeros of these polynomials. Choosing the interpolation points in this
manner as xik(t) = yik(t) yields

εi(t)
2 = ε̃iN (t), (5.12)

and convergence εi(t) → 0, as N → ∞, can be inferred from convergence of the respec-
tive quadrature rule, which depends both on the risk factor Xi(t) and the valuation
function Vi(t).

In Section 6 and Section 7, we will consider interest rate products with normally
distributed risk factors X(t) = r(t). Then, the optimal interpolation points are given
by the zeros of the Hermite polynomials, and the convergence of the quadrature error,
as N → ∞, is obtained for sufficiently differentiable portfolio valuation functions Vi(t)
from the convergence of the Gauss-Hermite quadrature error (Abramowitz and Stegun,
1964).

Of the products considered, interest rate swap yield a valuation function which is a
linear combination of analytic functions and is thus easily seen as sufficiently smooth.
Gaß et al. (2018) prove that the valuation function of European options is analytic,
which can be applied to (European) swaptions. Glau et al. (2021) note that the valu-
ation function of a Bermudan swaption is merely continuously differentiable, but also
offer a practical method to determine convergence based on the decay of polynomial co-
efficients as the degree of the approximation function increases, a comparable approach
is discussed in Trefethen (2019).

The approximation errors of the low-order contribution, δi(t), i ∈ {0, . . . , N}, given
in (5.8), can be bounded over their domain of interpolation with the Lagrange error
(5.10), where now the target functions gi(t) are polynomials and therefore analytic
functions by construction. To ensure the nestedness of interpolation nodes x

i
d(t) for

d < N , we choose them as the inner sets of x
i
N (t), where nodes are alternatingly

removed from either end of the interval until the desired number of nodes remains,

x
i
d(t) := {xi

1+⌊N−d
2

⌋
(t), . . . , xi

N−⌈N−d
2

⌉
(t)}. (5.13)

5.2. Chebyshev nodes

An alternative selection of interpolation nodes is given by the Chebyshev nodes.
These are given by ck := cos(kx

N
) for the interval [−1, 1], and can be scaled to the
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domain Iit with a linear transformation T i
t : [−1, 1] → Iit . It is well-known, see for

example Burden et al. (2015), that Chebyshev nodes allow for a stricter bound of the
Lagrange error over their interpolation domain. From this, it can be deduced that
with respect to the supremum norm it holds that

‖Vi(t, x) − gi(t, x)‖∞ ≤
|Iit |

N

2NN !

∥∥∥∥∥
dNVi(t, x)

dxN

∣∣∣∣
x=ξ

∥∥∥∥∥
∞

. (5.14)

In this norm, the choice of Chebyshev interpolation nodes xik(t) = T i
t (ck) is considered

optimal and convergence ‖Vi(t, x)−gi(t, x)‖∞ → 0 for N → ∞ is easily shown whenever
Vi(t, x) is sufficiently regular.

The supremum norm is easily interpreted as the maximal deviation of the ap-
proximation function gi(t, x) from its target Vi(t, x), and it implies convergence with
respect to many other norms. However, these results are limited to the necessarily
finite domain of interpolation Iit .

6. Numerical experiments: interest-rate swaps

In this section, we conduct numerical experiments on portfolios of interest rate
swaps, i.e., the underlying risk factor of the portfolio is X(t) = r(t). In the first
experiment, we explore the behaviour of the proposed methods with a small portfolio
comprised of a single swap. Then, we move on to a larger portfolio, which consists of
many different payer and receiver swaps.

In all experiments, we construct a yield curve based on the market instruments
given in Table C.3. Each of these instruments is associated with a market quote Ki and
a maturity Ti, i ∈ {1, . . . , 8}. Sensitivities with respect to the yield curve are based on
individual shocks to each of these rates Ki, so that in total, n = 8 additional, shocked
yield curves are constructed as delineated in Definition 3.3. As we will see shortly,
there exists a correspondence between the maturity Ti of the shocked instrument, and
the region of effect on the yield curve. This motivates a practise of referring to the
shock of instrument Ki as the shock at maturity Ti.

To obtain a good approximation of the derivative (3.6), we fix the shock size to
∆Ki = 0.0001 = 1 bp.

The interest rates r(t), and its shocked-market versions ri(t), are modelled with
1-factor Hull–White models (Hull and White, 1990). In the following, we continue to
identify the case i = 0 with the market without parameter shocks, so that r0(t) = r(t).
The prescribed dynamics are

dri(t) = λ(θi(t) − r(t))dt+ ηW (t), 0 ≤ i ≤ n, (6.1)

with a Brownian motion W (t), speed of mean reversion λ = 0.01, volatility coefficient
η = 0.02, and time-dependent drift term θi(t) chosen such that the bond prices obtained
from the model fit the respective yield curves. Later on, in Section 6.1, we also consider
a stressed scenario with an increased volatility coefficient.

At each time t, the interest rates follow normal distributions ri(t) ∼ N (µi(t), σ
2
i (t))

with explicitly known distribution parameters. As discussed in Section 5.1, we choose
the interpolation nodes x

i
N (t) based on these distributions as the zeros of the (proba-

bilist’s) Hermite polynomials orthogonal under L2(Ω), and the reduced interpolation
nodes x

i
d(t) as their inner subsets given in (5.13).
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Figure 1: Left: Sensitivity profile obtained from exact approach Ψi(t) and the
full-order approximations Ψi

N(t) for 1 ≤ i ≤ 8. Right: Relative approximation
errors of the full-order approach εiN(t), and of the low-order difference approach,
εid,N(t). N = 7, d ∈ {5, 6}.

6.1. Single swap portfolio

We consider a portfolio consisting of a single interest-rate payer swap with twice-
yearly payments at times T̄1, . . . , T̄m, final maturity T̄m = 20 years, and a notional of
N̄ = 10000 units of the currency. The fixed swap rate K̄ is chosen as the par rate
K̄ = 0.02226, i.e., it holds V (t0) = 0 at initial time t0 = 0.

Initially, the number N of interpolation nodes needs to be determined. In practice,
an approximation g(t, ·) of the valuation function V (t, ·) is already obtained during
calculations of the expected exposure. This can be reused in the sensitivity approx-
imations to the effect of improved numerical efficiency. For this experiment, we find
that N = 7 interpolation nodes are sufficient to achieve a relative approximation error
of the expected exposure below 1 bp,

εEE :=

∣∣∣∣∣ max
t∈[t0,T ]

(
ẼE(t0, t) − EE(t0, t)

EE(t0, t)

)∣∣∣∣∣ ≈ 2.7 × 10−5 < 1 bp. (6.2)

The output of the sensitivity calculations is a sensitivity profile of the expected
exposure of the portfolio, which is a collection of all the sensitivities ∂EE(t0, t)/∂Ki,
for certain Ki within the market instruments. In these numerical experiments, we
consider sensitivity with respect to all market quotes used, 1 ≤ i ≤ 8.

In the collection of graphs on the left of Figure 1, the sensitivity profile of the swap
portfolio is shown. It is computed both with the full-order estimator of the sensitivities,

Ψi
N (t) ≈ ∂ẼE(t0,t)

∂Ki
, defined in Definition 4.1, and with the exact valuation approach

Ψi(t) ≈ ∂EE(t0,t)
∂Ki

, given in (5.1). For each i ∈ {1, . . . , 8}, the market instruments Ki

correspond with maturities Ti ∈ {1, 2, 5, 7, 10, 20, 30}. We observe that the magnitude
of the sensitivities increases for i ∈ {1, . . . , 7}, up to the special quote K7, whose
maturity is equal to the maturity of the swap in the portfolio itself, T7 = 20 = T̄m.
With respect to the market quote K8 which is associated with the maturity T8 = 30,
there is nearly no sensitivity as the portfolio expires beforehand.

In the graphical sensitivity profiles, no difference between the full-order approach
and the exact valuations is discernible. To demonstrate the differences, we continue
with representations of the approximation errors, and additionally include the low-
order difference approximation Ψi

d,N (t), defined in Definition 4.2.
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For each of the sensitivities with respect to Ki, 1 ≤ i ≤ 8, we compute a rela-
tive approximation error of the full-order approach, and of the low-order difference
approximations. These relative errors are defined as the total approximation errors
normalized with the exact result Ψi(t), that is,

εiN (t) :=
Ψi

N (t) − Ψi(t)

Ψi(t)
, εid,N (t) :=

Ψi
d,N (t) − Ψi(t)

Ψi(t)
, (6.3)

respectively. The relative errors are not well-defined for Ψi(t) = 0 and only numerically
stable, when Ψi(t) is not too close to zero. In these cases, we refrain from computing
the relative error.

The approximation errors of the single-swap portfolio are given in the graphs to
the right of Figure 1, computed for N = 7 and for d = 5, d = 6. At most times,
all three considered methods display an extremely small relative approximation error
below 0.1%. There are a few exceptions at individual time points, however, the error
remains very small. For the low-order difference approaches, it can be found to be at
most 7% for d = 5, 0.6% for d = 6, and 0.2% for the full-order approach (d = N). In
the context of computing xVA functions, the expected exposures are often integrated
over time, which further minimizes the impact of these spike-type errors. This is
further investigated in Section 6.2.

The efficiency improvement provided by the method is highly promising. Recall
that M is the number of Monte Carlo paths which can easily range in the tens of
thousands for exposure simulations. Under the classical, exact valuation approach,
it is necessary to compute M exact valuations at each time point for the unshocked
market, and another M ×n exact valuations for the n shocked markets considered. In
this example, this attributes to 180000 exact valuations at each monitoring time t.

In the full-order approach withN interpolation nodes, at each time t only (n+1)×N
exact valuations (63 in this example) are required. Additionally, the approximation
function must be constructed, which attributes a numerical complexity of at worst
O(N2) per approximation function. Finally, the approximated portfolio valuations re-
quire M evaluations of the approximation function, which are always cheap to evaluate,
independent from the choice of exact valuation function. For the low-order difference
method, the number of exact valuations is further reduced to N + n × d (47 and 55,
respectively, for d = 5, d = 6). This efficiency advantage increases further, as greater
sensitivity profiles with more market shocks n are considered.

We demonstrate the advantage of using the low-order difference approach over
the more straightforward full-order approach with a reduced degree N . To this end,
we consider the low-order difference approach Ψi

d,N (t) with N = 7 and d = 5, for
which 47 exact valuations are required. It is compared to the full-order approaches
Ψi

N (t) for N = 5 and N = 6, with 45 and 54 exact valuations, respectively. This
choice provides a similar number of exact valuations and we will demonstrate that the
baseline parameter N = 7 in the low-order approach is not simply overspecified.

The findings are visualized in the collection of graphs on the left of Figure 2, where
the relative errors of these three approaches are compared. From these error plots, we
can observe that the low-order difference approximation performs substantially better
than both alternative full-order approaches.

When a choice has to be made on how the number of interpolation nodes is allo-
cated, this implies that it is advantageous to choose a larger value N at the cost of
reducing the value d, rather than spreading the number of nodes uniformly to d = N
with a lower number of nodes N . An expected exposure calculation benefits from such
a selection, since it utilizes only the unshocked portfolio approximation.
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Figure 2: Left: The relative errors of the full-order approach εiN (t) with fewer
nodes N = 5 and N = 6, compared to the relative error of the low-order difference
approach, εid,N(t), for N = 7, d = 5.
Right: The relative approximation errors in a stressed scenario of high volatility
η = 5%. N = 13, d ∈ {11, 12}.

We conclude the experiments on the single-swap portfolio with a stressed mar-
ket scenario, where the volatility η of the underlying interest rate r(t) is now 5%,
increased from previously 2%. To guarantee that the pricing error of the expected
exposure adheres to the threshold, εEE < 1 bp, the number of interpolation nodes
must be increased to N = 13. In the collection of graphs to the right of Figure 2,
the corresponding relative errors are displayed for the full-order approach and the
low-order difference approaches with 1 and 2 points removed, respectively. Magnitude
and behaviour of the relative errors appear comparable to the observations made in
the previous experiments with an unstressed volatility coefficient, which indicates a
robustness of the method.

6.2. Large swap portfolio

Having examined the properties of the model in a simplified setting, we consider a
more realistic portfolio of linear derivatives that involves a larger number of interest
rate swaps. The exact composition of this portfolio is given in Appendix C. A choice
of N = 13 interpolation nodes ensures an expected exposure estimation error close to
the threshold of 1 basis point (εEE ≈ 1.2 bp). However, we note that already with a
smaller number of nodes N = 9, the maximal expected exposure error εEE is smaller
than 7 basis points.

In Figure 3, we repeat the previously established experiment to obtain the relative
sensitivity approximation errors. As in the previous experiments, we observe extremely
small estimation errors. Particularly, it stands out that the largest relative estimation
errors continue to be restricted to individual time points.

The expected exposures are not a risk metric in themselves, but rather a compo-
nent of xVA computations. In many of these, the expected exposures are integrated
over time, together with weight functions representing risks such as defaults or fund-
ing costs, see for example the credit valuation adjustment with wrong-way risk in
(A.3). We introduce another error measurement that resembles the sensitivities of
xVA computations in a general setting. This error, ζ id, relates to the sensitivity of the

16



−0.00025
0.00000
0.00025

Ti = 1Ti = 1 −0.001

0.000

Ti = 2Ti = 2

−0.01

0.00

Ti = 3Ti = 3 0.0

0.1

Ti = 5Ti = 5

−0.02

0.00

Ti = 7Ti = 7 0.00

0.05

Ti = 10Ti = 10

0 5 10 15 20

−0.0005

0.0000

Ti = 20Ti = 20

0 5 10 15 20
−0.001

0.000

Ti = 30Ti = 30

Time t

εiN(t) εid,N(t), d=11 εid,N(t), d=12

Figure 3: Relative approximation errors for the large swap portfolio.
N = 13, d ∈ {11, 12}.

time-integrated expected exposures,

∣∣∣∣
∂

∂Ki

∫ T
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∂Ki
EE(t0, t)
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≈

∫ T

t0

∣∣Ψi
d,N (t) − Ψi(t)

∣∣dt =: ζ id. (6.4)

We recall that Ψi
N,N (t) = Ψi

N (t), so that ζ id represents the error associated with the
full-order approach for d = N , and the error associated with the low-order difference
approach for d < N . To improve interpretability, we define the normalized versions of
these error measurements by

κid :=
ζ id∫ T

t0
|Ψi(t0, t)| dt

. (6.5)

The findings are arranged in Table 1, where we tabulate the normalized errors κid for
1 ≤ i ≤ 8 and a broad range of degrees for the low-order difference approximation,
ranging from a linear difference approximation (d = 2) to the full-order approximation
(d = 13). We observe that already with a low-order difference approach in d = 7 nodes,
the normalized error is below 1% for all sensitivities. This translates to N+d×n = 69
exact valuations, an improvement of over 40% compared to 117 valuations in the full-
order approach. Both methods improve significantly on the (n + 1) ×M evaluations
in the classical, exact approach, which range in the tens to hundreds of thousands. In
Table 2, an overview over the complexity improvements is provided.

7. Approximation and sensitivity of Bermudan swaptions

We now turn our attention to the approximation of exposure and sensitivity of
Bermudan swaptions. These are non-linear interest rate derivatives composed of an
underlying swap and the optionality of entering this swap at multiple exercise dates.
This makes the valuation of a Bermudan swaption an optimal-exercise type problem,
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Table 1: The normalized, integrated expected exposure sensitivity approximation
errors κid for the large swap portfolio. For each shock to Ki (associated with Ti),
the lowest order d with an approximation error below 1% is highlighted. N = 13.

d
Ti

1 2 3 5 7 10 20 30

2 1.3E+00 2.6E+00 2.6E+00 1.2E+00 1.0E+00 5.1E-01 1.4E-01 2.3E-01

3 1.2E-01 2.9E-01 2.5E-01 1.2E-01 1.3E-01 7.6E-02 1.2E-02 2.2E-02

4 1.0E-01 2.3E-01 3.6E-01 2.0E-01 1.8E-01 9.4E-02 1.3E-02 2.8E-02

5 2.0E-03 3.1E-03 1.3E-02 1.2E-02 1.6E-02 1.1E-02 1.8E-03 2.8E-03

6 1.4E-03 1.9E-03 1.0E-02 6.6E-03 1.2E-02 1.1E-02 2.2E-03 2.9E-03

7 4.3E-05 1.3E-04 1.3E-03 1.4E-03 2.2E-03 1.6E-03 3.0E-04 4.7E-04

8 2.2E-05 6.0E-05 7.5E-04 7.1E-04 1.2E-03 9.8E-04 1.4E-04 2.1E-04

9 8.0E-06 2.3E-05 2.6E-04 3.9E-04 7.9E-04 6.5E-04 8.8E-05 1.3E-04

10 1.0E-05 1.8E-05 2.0E-04 2.2E-04 6.1E-04 6.3E-04 1.5E-04 1.8E-04

11 4.9E-06 7.0E-06 7.0E-05 1.0E-04 2.8E-04 2.9E-04 9.3E-05 1.2E-04

12 5.7E-06 6.6E-06 1.1E-05 7.9E-06 3.3E-05 8.4E-05 4.5E-05 8.6E-05

13 3.9E-06 4.4E-06 7.4E-06 4.6E-06 2.6E-05 4.1E-05 4.3E-05 7.2E-05

Table 2: The number of exact valuations at each monitoring date t obtained from
the classical approach and the approximation methods. We assume a Monte Carlo
simulation with M = 20000 samples, N = 13 nodes in the unshocked market and
n = 8 market shocks.

Low-order Full-order Classical

N + dn N +Nn M +Mn

d 7 8 9 10 11 12

Number of

exact valuations
69 77 85 93 101 109 117 180’000

Proportion of

full-order approach
59% 66% 73% 79% 86% 93% 100% > 1500%

where at each exercise date, the (expected) pay-off from exercising the option (i.e.,
entering the underlying swap) has to be weighed against the continuation of the option
to the next exercise date. This results in a high numerical valuation cost, particularly
so in exposure simulations.

Efficient pricing algorithms have received much attention in the literature. In
the seminal article of Longstaff and Schwartz (2001), the authors introduce the least
squares Monte Carlo (LSMC) algorithm, which can be briefly described as a recursive,
backwards search through the option values at the exercise times, where the continua-
tion values are approximated by linear regressions. This allows for a simulation-based
valuation, which only requires one set of paths per valuation time. Another notable ap-
proach has been introduced by Glau et al. (2021), where an iterative use of Chebyshev
interpolation approximates the continuation values and allows for further complexity
reduction in the exposure simulation of a Bermudan swaption.

In our outline of a possible approximation for the valuation of a Bermudan swaption
U(t, r(t)) with underlying interest rate swap V (t, r(t)), we assume physical settlement,
i.e. the Bermudan swaption is replaced by the underlying swap after exercise. Let
S1, . . . , SL, L ∈ N, be the exercise dates and let τ ∈ R ∪ {∞} be the time of exercise,
where τ = ∞ indicates no exercise of the optionality. Then, the portfolio comprised
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of this Bermudan swaption is given by

Π(t, r(t)) =

{
U(t, r(t)), t < τ,

V (r(t)), t ≥ τ.
(7.1)

This combination of valuation functions introduces a new challenge to approximations.
In an exposure simulation path ω ∈ Ω, the portfolio value at some point r(t, ω) may
be either the value of the Bermudan swaption, U(t, r(t, ω)) if t < τ(ω), or the value
of the underlying swap, V (t, r(t, ω)) if the option has been previously exercised, i.e.,
t ≥ τ(ω).

This implies that there can be no single polynomial interpolation of the portfolio
value. A possible resolution lies in the construction of two approximation functions
gU (t, ·) and gV (t, ·), where gU approximates the Bermudan swaption value U , and gV
the swap value V .

Then, the approximation of the portfolio valuation is given by

g(t, r(t, ω)) =

{
gU (t, r(t, ω)), t < τ(ω),

gV (r(t, ω)), t ≥ τ(ω),
(7.2)

which implies that the path-wise execution times τ(ω) must be tracked in the expo-
sure simulation. A numerically efficient way to estimate these execution times is an
initial pass over all exposure simulation paths r(t, ω), for t ∈ [t0, Sn] with the LSMC
algorithm, which allows for an approximation of the exercise time τ(ω) of each path.
Karlsson et al. (2016) remark that this approach constitutes an estimation of an ex-
ercise boundary. With such a boundary, it becomes possible to rephrase the exercise
decision in terms of a threshold r∗(t) in the underlying short rate, where the option is
exercised at time Sk if r(Sk) < r∗(Sk).

This implies that all inputs to the optionality component approximation gU (t, ·)
come from a truncated distribution r(t)|{r(t) < r∗(t)}. The corresponding quadrature
nodes can be computed by the Golub-Welsch algorithm (Golub and Welsch, 1969) from
the moments of this truncated distribution.

For our numerical experiment, we consider a Bermudan swaption with exercise
dates Sk = k for k ∈ {1, . . . , 5}, strike rate K̄ and as an underlying the swap V (t)
described in Section 6.1. Whenever the Bermudan swaption is exercised, it transforms
into a swap which we have treated in the previous section. Therefore, we focus on
monitoring dates prior to the expiry of the option, 0 ≤ t ≤ 5, and solely on the
approximation of the valuation function in unexercised paths, i.e., the approximation
gU (t, ·) of the optionality component. For the sensitivity approximations, we restrict
the profile to sensitivities with respect to Ti ∈ {1, 2, 3, 5} years, where a large effect on
the optionality component can be observed.

As indicated above, the quadrature nodes can be explicitly computed with the mo-
ments of the truncated distribution. In this experiment, the interest rate is simulated
with the Hull–White dynamics given in (6.1), so the required moments are those of
a truncated normal distribution which can be explicitly computed, see for example
Burkardt (2014). In the left graph of Figure 4, we display the distribution of the sam-
ples r(t, ω) that are evaluated with the approximation of the optionality component,
gU (t, ·), and we showthe corresponding choice of quadrature interpolation nodes at
time t = 2.

We find that with these quadrature nodes, a choice of N = 15 nodes yields a
maximal expected exposure error εEE < 3 bp. In the graph on the right of Figure 4, we
compare the sensitivity profile obtained from the LSMC algorithm with profile obtained
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Figure 4: Left: Distribution of the risk factor in unexercised paths at time t = 2
and the corresponding quadrature nodes for N = 15. Right: Sensitivity profiles
of the Bermudan Swaption, obtained from the full- and low-order approximation
methods and the LSMC algorithm.

from the full-order and low-order approximation for N = 15, d ∈ {12, 13}. In this
experiment, the high computational demand of computing expected exposures with the
LSMC algorithm leads to relatively low accuracy of the ‘exact’ pricing approach, which
makes it challenging to draw deep conclusions about the sensitivity approximation
error. We recognize the sensitivity profiles computed in Figure 4 as plausible and
emphasize the large numerical savings provided by the introduced methods.

8. Conclusion

We have shown that the computational demands of expected exposure sensitivity
calculations can be greatly reduced in a setting of bump-and-revalue schemes, used
to obtain xVA sensitivities with respect to the yield curve. We showed that the use
of quadrature interpolation nodes allows for efficient approximations of the portfolio
valuation functions, which is combined with a stochastic collocation technique to obtain
the desired sensitivities. Two methods for the determination of the expected exposure
sensitivity have been introduced. The first, full-order approach applies equal-degree
polynomial approximations to shocked and unshocked valuation functions. The second,
low-order difference approach offers an even stronger reduction in numerical complexity
by utilizing a reduced order model to appraise the difference introduced to the valuation
function by the market shock.

The convergence of the low-order difference approximation to the full-order ap-
proximation of the sensitivity, and of the full-order approximation of the sensitivity to
the classical, exact-valuation-based sensitivity have been studied.

Numerical experiments have demonstrated the accuracy and numerical efficiency
of the method. Further, experiments indicate that the low-order difference approach,
where an increased degree approximation of the unshocked portfolio is combined with
a difference approximation of a lower degree, may be used to improve the accuracy for
both the expected exposure simulation and the sensitivity computations.

Applications of approximation techniques in exposure simulations have recently
provided fruitful research topics, but further challenges and opportunities remain. The
approach to sensitivity computations proposed in this article is based on an interpo-
lation node selection which is entirely domain-driven, that is, the selection of nodes
only depends on the distribution of the underlying risk factors. Beyond a certain
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regularity to ensure the approximability of the portfolio valuation functions, little is
assumed about their functional structure. Adaptive algorithms that infer structures
such as domains of functional variation from pointwise evaluations may provide a use-
ful improvement in efficiency and complexity, whilst preserving the advantage of not
requiring strong assumptions about the composition of the portfolios considered.
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L. A. Grzelak, J. Witteveen, M. Suárez-Taboada, and C. Oosterlee. The stochastic collocation Monte

Carlo sampler: highly efficient sampling from expensive distributions. Quantitative Finance, 19:
1–18, 06 2018. doi: 10.1080/14697688.2018.1459807.

P. S. Hagan and G. West. Interpolation methods for curve construction. Applied Mathematical Finance,
13(2):89–129, 2006. doi: 10.1080/13504860500396032.

B. N. Huge and A. Savine. LSM reloaded - differentiate xVA on your iPad mini. SSRN Electronic

Journal, 2017. doi: 10.2139/ssrn.2966155.
J. Hull and A. White. Pricing interest-rate-derivative securities. The Review of Financial Studies, 3

(4):573–592, 1990. doi: 10.1093/rfs/3.4.573.
P. Karlsson, S. Jain, and C. W. Oosterlee. Fast and accurate exercise policies for Bermudan swaptions

in the LIBOR market model. International Journal of Financial Engineering, 03(01):1650005, Mar.
2016. doi: 10.1142/s2424786316500055.

F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple least-squares
approach. The Review of Financial Studies, 14(1):113–147, 2001. doi: 10.1093/rfs/14.1.113.

21

https://arxiv.org/abs/2005.02633


C. W. Oosterlee and L. A. Grzelak. Mathematical Modeling and Computation in Finance: With

Exercises and Python and Matlab Computer Codes. World Scientific Publishing Company, 2019.
doi: 10.1142/q0236.

L. N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition. SIAM, 2019.
doi: 10.1137/1.9781611975949.

D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random
inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005. doi: 10.1137/040615201.

Appendix A. Extension to more general xVA models on the example of

wrong-way risk

In the following, we demonstrate how portfolio valuation approximation can be
applied to more complex xVA models, by example of the unilateral CVA with wrong-
way risk (WWR).

Generally, the CVA is constructed from three components. The probability of de-
fault of the counterparty (PD), the expected (positive) exposure (EE) and the loss given
default (LGD), which describes what percentage of the exposure is lost in a default
event. A common and simplifying CVA approximation is based on the assumption
of independence between exposure and the probability of default (see, for example,
Gregory (2020)). The resulting credit valuation adjustment is given by

CVA1(t0) := LGD ·
R∑

k=1

EE(t0, tk)PD(tk−1, tk). (A.1)

The independence assumption which allows for factorization of EE and PD is not
always warranted, as the exposure may rely on the same risk factors which influence
the default risk. Depending on the sign of correlation, this is known as wrong-way risk
(when exposure increases together with the probability of default) or right-way risk
(when exposure decreases as the probability of default rises). Let τ denote the time of
counterparty default and assume that at the time of valuation t0, the default has not
yet occurred, τ > t0. Then, a more general formulation of the CVA is given by

CVA2(t0) := LGD · EQ
t0

[B(t0)

B(τ)
1{τ≤T}V

+(τ)
]
. (A.2)

One way to introduce correlations is through stochastic hazard rates y(t), which are
continuous stochastic processes that describe the intensity default process. Correlating
these hazard rates with the underlying is one way to induce an analytically solvable
dependency structure between default times and exposure. Analogous to the stochastic
intensity model in Chapter 22.7 of Brigo and Mercurio (2006), it is possible to show
that the previous equation can be rewritten as

CVA2(t0) = LGD ·

T∫

t0

E
Q
t0

[B(t0)

B(s)

(
e
−

∫ s

t0
yuduys

)
V +(s)

]
ds. (A.3)

This expected value contains an additional factor corresponding to the probability of
default, D(s) := exp(−

∫ s

t0
yudu)ys, which is governed by the stochastic hazard rates.

The asset valuation, however, is not impeded. Therefore, a Monte Carlo experiment
analogous to (2.2) can be conducted, where an additional risk factor y(t) is simulated.
The approximation techniques discussed in this article can be applied in the usual way
to replace the exact portfolio valuations V with a polynomial approximation function
g, to the effect of the same efficiency improvements as before.
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Appendix B. Explicit discount factor sensitivity

We consider the derivative of the discount factor

∂

∂Ki

B(t0;ω)

B(t;ω)
=

∂

∂Ki
exp

(
−

∫ t

t0

r(s;ω)ds

)
. (B.1)

In the following, we will consider the explicit choice of the 1-factor Hull–White model
for the interest rate r(t), but the methodology can be extended to many other ex-
ogenous interest rate models (see Brigo and Mercurio (2006) for an overview of such
models). Then, the short rate r(t) can be explicitly expressed in terms of a stochastic
process u(t), and a purely deterministic function ψ(t), such that at any time it holds
r(t;ω) = u(t;ω) +ψ(t). The deterministic function ψ(t) imposes the term structure of
interest rates, i.e. the initial yield curve, onto the model, whereas the stochastic pro-
cess u(t) only depends on the yield curve through its parameter calibration procedure.
As explained in Chapter 21 of Green (2015), the remaining model parameters are not
usually recalibrated when sensitivities to the yield curve are computed. Under this
assumption, it holds that

∂ exp(−
∫ t

t0
r(s;ω)ds)

∂Ki

= exp

(∫ t

t0

−u(s;ω)ds

)
∂ exp(
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−ψ(s)ds)

∂Ki

= exp
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−u(s;ω)ds

)
exp
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t0

−ψ(s)ds

)(
−

∫ t

t0

∂ψ(s)

∂Ki
ds

)
.

(B.2)

The deterministic function ψ(t) is explicitly known, in this example of the 1-factor
Hull–White model it is given for t0 = 0 by

ψ(t) = f r(0, t) + exp(−λt)
η2

λ2
(cosh(λt) − 1), (B.3)

where λ is the speed of mean reversion parameter, η is the volatility parameter, and
f r(0, t) is the instantaneous forward rate associated with the model. Under the yield
curve, respectively its associated zero-coupon bond curve P (0, ·) given in (3.2), the
instantaneous forward rate at time t equals

f r(0, t) =
−∂ log(P (0, t))

∂t
. (B.4)

Since the model parameters λ, η are not recalibrated to the change in the yield curve,
it can be shown that it holds

∂ψ(t)

∂Ki

=
∂f r(t)

∂Ki

=
∂
(
−∂ log(P (0,t))

∂t

)

∂Ki

= −
∂

∂t

(
1

P (0, t)

∂P (0, t)

∂Ki

)
. (B.5)

The derivative with respect to the market quote, ∂P (0, t)/∂Ki is typically not
analytically available since the zero-coupon bond curve P (0, t) is obtained from the
market quotes by means of a curve-fitting scheme.

Appendix C. Parameters of the numerical experiments

In the numerical experiments, a yield curve is constructed based on (artificial)
market quotes for interest rate swaps, given in Table C.3. The composition of the
large swap portfolio is specified in Table C.4.
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Table C.3: Market instruments (interest rate swaps) used in the yield curve con-
struction.

i : 1 2 3 4 5 6 7 8
Maturity Ti : 1 2 3 5 7 10 20 30

Swap rate Ki (in %): 0.04 0.16 0.31 0.81 1.28 1.62 2.22 2.30

Table C.4: Specification of the interest rate swaps comprising the large swap
portfolio.

Sign Notional Fixed Rate Maturity Start Date Payments per Year
-1 10000 0.022 20 0 2.0
-1 8333 0.042 20 0 2.0
-1 8333 0.042 21 0 1.9
1 8333 0.042 24 0 1.7
1 8333 0.042 17 0 2.4
1 8333 0.042 26 0 1.5
1 8333 0.042 19 5 2.9
1 8333 0.042 40 10 1.3
-1 8333 0.042 19 3 2.5
-1 8333 0.042 20 7 3.1
1 8333 0.042 20 2 2.2
-1 8333 0.042 20 0 2.0
-1 8333 0.042 20 0 2.0
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