Accelerated Convergence in Newton's Method
Author(s): Jurgen Gerlach
Source: SIAM Review, Vol. 36, No. 2 (Jun., 1994), pp. 272-276
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2132465

Accessed: 29/11/2010 06:49

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Review.

ACCELERATED CONVERGENCE IN NEWTON'S METHOD*

JÜRGEN GERLACH ${ }^{\dagger}$

Abstract

Newton's Method is based on a linear approximation of the function whose roots are to be determined taken at the current point, and the resulting algorithm is known to converge quadratically. In a procedure to increase the rate of convergence the author modifies the target function in such a way that Newton's Method applied to the modified function will yield a faster rate of convergence.

Key words. Newton's method, rate of convergence
AMS subject classifications. $65-01,65 \mathrm{~B} 99,65 \mathrm{H} 05$
This paper is concerned with achieving higher-order convergence for Newton's method. Newton's method itself converges quadratically, and it is based on a linear approximation (tangent line) to the function at the current iterate x_{k} :

$$
f(x) \approx l(x)=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)
$$

The equation $l\left(x_{k+1}\right)=0$ leads to the familiar Newton scheme

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \tag{1}
\end{equation*}
$$

In order to accelerate Newton's method, numerical analysis texts frequently suggest using a higher-order approximation to f at x_{k}; see, e.g., [2] or [3]. In this note we take a different approach, and ask: For what class of functions does Newton's method perform particularly well? And, secondly, once these functions have been identified we ask: How can we modify a given function in such a way that the order of convergence is increased?

Throughout we assume that

1. f is sufficiently many times differentiable;
2. f has a simple root at $x=a$, i.e., $f(a)=0$ and $f^{\prime}(a) \neq 0$; and that
3. the initial approximation x_{0} is sufficiently close to a so that convergence to a will occur.

The answer to our first question is given by the following.
THEOREM 1. In addition to the hypotheses above let us assume that $f^{\prime \prime}(a)=f^{\prime \prime \prime}(a)=$ $\cdots=f^{(m-1)}(a)=0$, and that $f^{(m)}(a) \neq 0$. Then the Newton sequence $\left\{x_{k}\right\}$ defined by (1) yields

$$
\begin{equation*}
\left|x_{k+1}-a\right| \leq C\left|x_{k}-a\right|^{m} \tag{2}
\end{equation*}
$$

for some constant C.
This theorem can be found as an exercise in the book by Dennis and Schnabel [2]; its proof is included in the Appendix. It roughly says that the more f looks like a linear function, the faster the Newton iterations will converge. Our next goal is to mold a given function into a new one in such a way that the roots remain unchanged, but it looks nearly linear in a neighborhood of the root so that the convergence of Newton's method will be accelerated.

Before we present a general result, let us begin with the case $f(a)=0, f^{\prime}(a)>0$, and $f^{\prime \prime}(a) \neq 0$, and consider the function $F(x):=f(x) g(x)$, where the function $g(x)$ is to be

[^0]determined subsequently. We have $F(a)=0$ and, if $g(a) \neq 0$, we get $F^{\prime}(a) \neq 0$. Moreover, since $f(a)=0$,
$$
F^{\prime \prime}(a)=2 f^{\prime}(a) g^{\prime}(a)+f^{\prime \prime}(a) g(a)
$$

Although we only wish to satisfy the equation $F^{\prime \prime}(a)=0$ at the single point $x=a$, we turn it into a differential equation for the function g :

$$
g^{\prime}(x)=-\frac{1}{2} \frac{f^{\prime \prime}(x)}{f^{\prime}(x)} g(x)
$$

Upon integration we obtain $g(x)=C / \sqrt{f^{\prime}(x)}$ as a general solution, and with $C=1$ the function F becomes $F(x)=f(x) / \sqrt{f^{\prime}(x)}$. Newton's method applied to $F(x)$ yields

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{F\left(x_{k}\right)}{F^{\prime}\left(x_{k}\right)}=x_{k}-\frac{f\left(x_{k}\right) f^{\prime}\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)^{2}-\frac{1}{2} f\left(x_{k}\right) f^{\prime \prime}\left(x_{k}\right)} . \tag{3}
\end{equation*}
$$

This is an example of an iteration scheme with cubic convergence, and can be traced back to Halley in 1694 (see [4]).

Let us now turn to a general method, and present the result in the following form.
ThEOREM 2. Let $f(a)=0, f^{\prime}(a)>0, f^{\prime \prime}(a)=\cdots=f^{(m-1)}(a)=0$, and let $f^{(m)}(a) \neq 0$. Then the function

$$
\begin{equation*}
F(x)=\frac{f(x)}{\sqrt[m]{f^{\prime}(x)}} \tag{4}
\end{equation*}
$$

satisfies $F(a)=0, F^{\prime}(a)>0, F^{\prime \prime}(a)=\cdots=F^{(m)}(a)=0$. Moreover, for $m \geq 3$ we have $F^{(m+1)}(a)=-\frac{1}{m} f^{(m+1)}(a) / \sqrt[m]{f^{\prime}(a)}$.

Again we refer to the Appendix for the proof of this assertion. The determination of m may not always be easy. However, it is reassuring to know that the performance of Newton's method for $F(x)=f(x) / \sqrt[m]{f^{\prime}(x)}$ will never be worse than the one found for $f(x)$ itself, regardless of the choice of m. The Newton iterations based on the function F are given by

$$
\begin{equation*}
x_{k+1}=x_{k}-\frac{F\left(x_{k}\right)}{F^{\prime}\left(x_{k}\right)}=x_{k}-\frac{f\left(x_{k}\right) f^{\prime}\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)^{2}-\frac{1}{m} f\left(x_{k}\right) f^{\prime \prime}\left(x_{k}\right)}, \tag{5}
\end{equation*}
$$

in analogy to (3).
Theorem 2 provides a procedure to increase the order of convergence of Newton's method by at least one: If $f^{\prime \prime}(a) \neq 0$ set $m=2$, else identify the smallest $m>2$ with $f^{(m-1)}(a)=0$ and $f^{(m)}(a) \neq 0$. Now form the function $F(x)=f(x) / \sqrt[m]{f^{\prime}(x)}$, and Newton's method will converge to the root $x=a$ at a rate of $m+1$ or better. Repeated application will furnish an algorithm to generate an iterative scheme that will converge to a root of $f(x)$ in any desired order, at the expense of the use of higher-order derivatives of f, (and some awkward computations).

Example. Compute $\sqrt[3]{5}$ as a root of $f(x)=x^{3}-5$, and let us assume $x>0$ throughout. A first application of Theorem 2 with $m=2$ leads to

$$
F_{1}(x)=\frac{f(x)}{\sqrt{f^{\prime}(x)}}=\frac{x^{3}-5}{\sqrt{3 x^{2}}}=\frac{1}{\sqrt{3}}\left(x^{2}-\frac{5}{x}\right) .
$$

We may now apply Theorem 2 with $m=3$ to the function F_{1}, and after dropping constant factors we obtain

$$
F_{2}(x)=\frac{x^{3}-5}{\sqrt[3]{2 x^{4}+5 x}}
$$

At first glance it appears that the occurrence of roots in F_{1} and F_{2} defeats the purpose of finding an algorithm to compute $\sqrt[3]{5}$. But, similar to (5), a look at the resulting Newton iterations shows that computation of roots are not required in the process, as shown in Table 1.

Table 1

| Function | Newton scheme |
| :---: | :---: | :--- |
| $o f(x)$ | $x_{k+1}=x_{k}-\frac{x_{k}^{3}-5}{3 x_{k}^{2}}$ |
| $F_{1}(x)$ | $x_{k+1}=x_{k}-\frac{x_{k}\left(x_{k}^{3}-5\right)}{2 x_{k}^{3}+5}$ |
| $F_{2}(x)$ | $x_{k+1}=x_{k}-\frac{3 x_{k}\left(2 x_{k}^{3}+5\right)\left(x_{k}^{3}-5\right)}{10 x_{k}^{6}+80 x_{k}^{3}+25}$ |

In numerical experiments we used $x_{0}=2$ as an initial approximation. The first three iterations for the respective functions with their respective absolute errors are shown below in Table 2.

Table 2

	$f(x)$	$F_{1}(x)$	$F_{2}(x)$
x_{1}	1.75	$1.714 \ldots$	$1.7103 \ldots$
error	4.0×10^{-2}	4.3×10^{-3}	3.7×10^{-4}
x_{2}	$1.7108 \ldots$	$1.709975964 \ldots$	$1.7099759466766982 \ldots$
error	9.1×10^{-4}	1.8×10^{-8}	1.2×10^{-15}
x_{3}	1.7099764	1.709975946676696989	\ldots
error	4.8×10^{-7}	1.4×10^{-24}	1.5×10^{-60}

In closing it should be pointed out that a variation of Theorem 2 with $m=1$ can be used to restore quadratic convergence in the case of multiple roots, i.e., if f has a multiple root at $x=a$, then the function $F(x)=f(x) / f^{\prime}(x)$ has a simple root at $x=a$. See [1] for details.

Appendix. We present the remaining two proofs.
Proof of Theorem 1. Suppose x_{k} has already been computed. By Taylor's theorem, together with the fact that f and many of its derivatives vanish at $x=a$, there exist constants ξ_{0} and ξ_{1} between a and x_{k} such that

$$
\begin{aligned}
& f\left(x_{k}\right)=f^{\prime}(a)\left(x_{k}-a\right)+\frac{f^{(m)}\left(\xi_{0}\right)}{m!}\left(x_{k}-a\right)^{m} \quad \text { and } \\
& f^{\prime}\left(x_{k}\right)=f^{\prime}(a)+\frac{f^{(m)}\left(\xi_{1}\right)}{(m-1)!}\left(x_{k}-a\right)^{m-1}
\end{aligned}
$$

hold. Upon substitution of these expressions into Newton's formula we obtain

$$
\begin{aligned}
x_{k+1}-a & =x_{k}-a-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}=\frac{1}{f^{\prime}\left(x_{k}\right)}\left\{f^{\prime}\left(x_{k}\right)\left(x_{k}-a\right)-f\left(x_{k}\right)\right\} \\
& =\frac{1}{f^{\prime}\left(x_{k}\right)}\left\{\frac{f^{(m)}\left(\xi_{1}\right)}{(m-1)!}-\frac{f^{(m)}\left(\xi_{0}\right)}{m!}\right\}\left(x_{k}-a\right)^{m} \\
& =\frac{m f^{(m)}\left(\xi_{1}\right)-f^{(m)}\left(\xi_{0}\right)}{f^{\prime}\left(x_{k}\right) m!}\left(x_{k}-a\right)^{m} .
\end{aligned}
$$

Now we fix a neighborhood $N=[a-l, a+l]$ of a for some suitably small l, so that the inequalities $\left|f^{\prime}(x)\right| \geq c_{0}>0$ and $\left|f^{(m)}(x)\right| \leq c_{1}$ hold true on N for some constants c_{0} and c_{1}. If $x_{k} \in N$, then

$$
\left|\frac{m f^{(m)}\left(\xi_{1}\right)-f^{(m)}\left(\xi_{0}\right)}{f^{\prime}\left(x_{k}\right) m!}\right| \leq \frac{m c_{1}+c_{1}}{m!c_{0}}=: C
$$

and thus

$$
\begin{equation*}
\left|x_{k+1}-a\right| \leq C\left|x_{k}-a\right|^{m} \tag{2}
\end{equation*}
$$

If necessary, we decrease l such that $l<1$, and $l^{m-1} C<1$ are satisfied. Then $x_{k} \in N$ implies $\left|x_{k}-a\right| \leq l$, and from (2) it follows that $\left|x_{k+1}-a\right| \leq C l^{m} \leq l$, i.e., the sequence remains in N and the estimate (2) holds for all subsequent terms of the sequence.

Proof of Theorem 2. The case $m=2$ was outlined just before the theorem. We assume $m \geq 3$ and we proceed in two steps.

Step 1. We define the function $g(x):=1 / \sqrt[m]{f^{\prime}(x)}$. By definition we have $1=g(x)^{m} f^{\prime}(x)$, and implicit differentiation yields

$$
0=m g(x)^{m-1} g^{\prime}(x) f^{\prime}(x)+g(x)^{m} f^{\prime \prime}(x)
$$

and thus

$$
\begin{equation*}
0=m g^{\prime}(x) f^{\prime}(x)+g(x) f^{\prime \prime}(x) \tag{6}
\end{equation*}
$$

$f^{\prime \prime}(a)=0$, together with $f^{\prime}(a) \neq 0$, implies $g^{\prime}(a)=0$. Further differentiation of equation (6) leads to

$$
\begin{align*}
0= & m g^{(k)}(x) f^{\prime}(x)+(m(k-1)+1) g^{(k-1)}(x) f^{\prime \prime}(x)+\cdots \\
& +\frac{(k-1)!}{j!(k-j)!}(j+m(k-j)) g^{(k-j)}(x) f^{(j+1)}(x)+\cdots \tag{7}\\
& +(m+k-1) g^{\prime}(x) f^{(k)}(x)+g(x) f^{(k+1)}(x)
\end{align*}
$$

Since $f^{\prime \prime}(a)=\cdots=f^{(m-1)}(a)=0$, equation (7) implies $g^{(k)}(a)=0$ for $1 \leq k \leq m-2$. For $k=m-1$ and $x=a$ equation (7) reduces to

$$
m g^{(m-1)}(a) f^{\prime}(a)+g(a) f^{(m)}(a)=0,
$$

while for $k=m$ and $x=a$ we obtain

$$
m g^{(m)}(a) f^{\prime}(a)+g(a) f^{(m+1)}(a)=0
$$

Step 2. We now investigate $F(x):=f(x) g(x)$. Repeated application of the product rule yields

$$
\begin{aligned}
F^{\prime}(x)= & f(x) g^{\prime}(x)+f^{\prime}(x) g(x) \\
F^{\prime \prime}(x)= & f(x) g^{\prime \prime}(x)+2 f^{\prime}(x) g^{\prime}(x)+f^{\prime \prime}(x) g(x) \\
& \vdots \\
F^{(k)}(x)= & f(x) g^{(k)}(x)+k f^{\prime}(x) g^{(k-1)}(x)+\cdots \\
& +\binom{k}{j} f^{(j)}(x) g^{(k-j)}(x)+\cdots \\
& +k f^{(k-1)}(x) g^{\prime}(x)+f^{(k)}(x) g(x)
\end{aligned}
$$

for any function $g(x)$. By definition $F(a)=0$, and if we choose $g(x)$ as before and use the results from Step 1, we obtain for the derivatives of F at $x=a$

$$
\begin{aligned}
F^{\prime}(a) & =f^{\prime}(a) g(a)=f^{\prime}(a)^{1-1 / m}>0 \\
F^{\prime \prime}(a) & =2 f^{\prime}(a) g^{\prime}(a)=0 \\
& \vdots \\
F^{(k)}(a) & =k f^{\prime}(a) g^{(k-1)}(a)=0 \\
& \vdots \\
F^{(m-1)}(a) & =(m-1) f^{\prime}(a) g^{(m-2)}(a)=0 \\
F^{(m)}(a) & =m f^{\prime}(a) g^{(m-1)}(a)+f^{(m)}(a) g(a)=0 \\
F^{(m+1)}(a) & =(m+1) f^{\prime}(a) g^{(m)}(a)+f^{(m+1)}(a) g(a) \\
& =\left(1-\frac{m+1}{m}\right) f^{(m+1)}(a) g(a)=-\frac{1}{m} \frac{f^{(m+1)}(a)}{\sqrt[m]{f^{\prime}(a)}},
\end{aligned}
$$

which proves the theorem.

REFERENCES

[1] R. L. Burden and J. D. Faires, Numerical Analysis, 4th ed., Prindle, Weber, Schmidt, Boston, 1989.
[2] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.
[3] G. Hämmerlin and K.-H. Hoffmann, Numerische Mathematik, Springer-Verlag, New York, 1989.
[4] J. Todd, Basic Numerical Mathematics, Vol. 1, Numerical Analysis, Birkhäuser-Verlag, New York, 1979.

[^0]: *Received by the editors January 14, 1993; accepted for publication August 10, 1993.
 ${ }^{\dagger}$ Department of Mathematics and Statistics, Radford University, Box 6942, Radford, VA 24142.

