

Accelerated Convergence in Newton's Method Author(s): Jurgen Gerlach Source: SIAM Review, Vol. 36, No. 2 (Jun., 1994), pp. 272-276 Published by: Society for Industrial and Applied Mathematics Stable URL: <u>http://www.jstor.org/stable/2132465</u> Accessed: 29/11/2010 06:49

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=siam.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend access to SIAM Review.

ACCELERATED CONVERGENCE IN NEWTON'S METHOD*

JÜRGEN GERLACH[†]

Abstract. Newton's Method is based on a linear approximation of the function whose roots are to be determined taken at the current point, and the resulting algorithm is known to converge quadratically. In a procedure to increase the rate of convergence the author modifies the target function in such a way that Newton's Method applied to the modified function will yield a faster rate of convergence.

Key words. Newton's method, rate of convergence

AMS subject classifications. 65-01, 65B99, 65H05

This paper is concerned with achieving higher-order convergence for Newton's method. Newton's method itself converges quadratically, and it is based on a linear approximation (tangent line) to the function at the current iterate x_k :

$$f(x) \approx l(x) = f(x_k) + f'(x_k)(x - x_k) .$$

The equation $l(x_{k+1}) = 0$ leads to the familiar Newton scheme

(1)
$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} .$$

In order to accelerate Newton's method, numerical analysis texts frequently suggest using a higher-order approximation to f at x_k ; see, e.g., [2] or [3]. In this note we take a different approach, and ask: For what class of functions does Newton's method perform particularly well? And, secondly, once these functions have been identified we ask: How can we modify a given function in such a way that the order of convergence is increased?

Throughout we assume that

1. f is sufficiently many times differentiable;

2. f has a simple root at x = a, i.e., f(a) = 0 and $f'(a) \neq 0$; and that

3. the initial approximation x_0 is sufficiently close to a so that convergence to a will occur.

The answer to our first question is given by the following.

THEOREM 1. In addition to the hypotheses above let us assume that $f''(a) = f'''(a) = \cdots = f^{(m-1)}(a) = 0$, and that $f^{(m)}(a) \neq 0$. Then the Newton sequence $\{x_k\}$ defined by (1) yields

(2)
$$|x_{k+1} - a| \le C |x_k - a|^m$$

for some constant C.

This theorem can be found as an exercise in the book by Dennis and Schnabel [2]; its proof is included in the Appendix. It roughly says that the more f looks like a linear function, the faster the Newton iterations will converge. Our next goal is to mold a given function into a new one in such a way that the roots remain unchanged, but it looks *nearly linear* in a neighborhood of the root so that the convergence of Newton's method will be accelerated.

Before we present a general result, let us begin with the case f(a) = 0, f'(a) > 0, and $f''(a) \neq 0$, and consider the function F(x) := f(x)g(x), where the function g(x) is to be

^{*}Received by the editors January 14, 1993; accepted for publication August 10, 1993.

[†]Department of Mathematics and Statistics, Radford University, Box 6942, Radford, VA 24142.

determined subsequently. We have F(a) = 0 and, if $g(a) \neq 0$, we get $F'(a) \neq 0$. Moreover, since f(a) = 0,

$$F''(a) = 2f'(a)g'(a) + f''(a)g(a).$$

Although we only wish to satisfy the equation F''(a) = 0 at the single point x = a, we turn it into a differential equation for the function g:

$$g'(x) = -\frac{1}{2} \frac{f''(x)}{f'(x)} g(x).$$

Upon integration we obtain $g(x) = C/\sqrt{f'(x)}$ as a general solution, and with C = 1 the function F becomes $F(x) = f(x)/\sqrt{f'(x)}$. Newton's method applied to F(x) yields

(3)
$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - \frac{1}{2}f(x_k)f''(x_k)}$$

This is an example of an iteration scheme with cubic convergence, and can be traced back to Halley in 1694 (see [4]).

Let us now turn to a general method, and present the result in the following form.

THEOREM 2. Let f(a) = 0, f'(a) > 0, $f''(a) = \cdots = f^{(m-1)}(a) = 0$, and let $f^{(m)}(a) \neq 0$. Then the function

(4)
$$F(x) = \frac{f'(x)}{\sqrt[m]{f'(x)}}$$

satisfies F(a) = 0, F'(a) > 0, $F''(a) = \cdots = F^{(m)}(a) = 0$. Moreover, for $m \ge 3$ we have $F^{(m+1)}(a) = -\frac{1}{m} f^{(m+1)}(a) / \sqrt[m]{f'(a)}$.

Again we refer to the Appendix for the proof of this assertion. The determination of m may not always be easy. However, it is reassuring to know that the performance of Newton's method for $F(x) = f(x)/\sqrt[m]{f'(x)}$ will never be worse than the one found for f(x) itself, regardless of the choice of m. The Newton iterations based on the function F are given by

(5)
$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)} = x_k - \frac{f(x_k)f'(x_k)}{f'(x_k)^2 - \frac{1}{m}f(x_k)f''(x_k)},$$

in analogy to (3).

Theorem 2 provides a procedure to increase the order of convergence of Newton's method by at least one: If $f''(a) \neq 0$ set m = 2, else identify the smallest m > 2 with $f^{(m-1)}(a) = 0$ and $f^{(m)}(a) \neq 0$. Now form the function $F(x) = f(x)/\sqrt[m]{f'(x)}$, and Newton's method will converge to the root x = a at a rate of m + 1 or better. Repeated application will furnish an algorithm to generate an iterative scheme that will converge to a root of f(x) in any desired order, at the expense of the use of higher-order derivatives of f, (and some awkward computations).

Example. Compute $\sqrt[3]{5}$ as a root of $f(x) = x^3 - 5$, and let us assume x > 0 throughout. A first application of Theorem 2 with m = 2 leads to

$$F_1(x) = \frac{f(x)}{\sqrt{f'(x)}} = \frac{x^3 - 5}{\sqrt{3x^2}} = \frac{1}{\sqrt{3}} \left(x^2 - \frac{5}{x} \right) \,.$$

We may now apply Theorem 2 with m = 3 to the function F_1 , and after dropping constant factors we obtain

$$F_2(x) = \frac{x^3 - 5}{\sqrt[3]{2x^4 + 5x}} \; .$$

CLASSROOM NOTES

At first glance it appears that the occurrence of roots in F_1 and F_2 defeats the purpose of finding an algorithm to compute $\sqrt[3]{5}$. But, similar to (5), a look at the resulting Newton iterations shows that computation of roots are not required in the process, as shown in Table 1.

TABLE 1

Function	Newton scheme		
of(x)	$x_{k+1} = x_k - \frac{x_k^3 - 5}{3x_k^2}$		
$F_1(x)$	$x_{k+1} = x_k - \frac{x_k(x_k^3 - 5)}{2x_k^3 + 5}$		
$F_2(x)$	$x_{k+1} = x_k - \frac{3x_k(2x_k^3 + 5)(x_k^3 - 5)}{10x_k^6 + 80x_k^3 + 25}$		

In numerical experiments we used $x_0 = 2$ as an initial approximation. The first three iterations for the respective functions with their respective absolute errors are shown below in Table 2.

	$f(\mathbf{x})$	$F_1(x)$	$F_2(x)$
x ₁	1.75	1.714	1.7103
error	4.0×10^{-2}	4.3×10^{-3}	3.7 × 10 ⁻⁴
x ₂	1.7108	1.709975964	$\begin{array}{c} 1.7099759466766982\\ 1.2\times10^{-15} \end{array}$
error	9.1 × 10 ⁻⁴	1.8 × 10 ⁻⁸	
x ₃	1.7099764	$\begin{array}{l} 1.709975946676696989\\ 1.4\times10^{-24} \end{array}$	
error	4.8 × 10 ⁻⁷		1.5×10^{-60}

TABLE 2

In closing it should be pointed out that a variation of Theorem 2 with m = 1 can be used to restore quadratic convergence in the case of multiple roots, i.e., if f has a multiple root at x = a, then the function F(x) = f(x)/f'(x) has a simple root at x = a. See [1] for details.

Appendix. We present the remaining two proofs.

Proof of Theorem 1. Suppose x_k has already been computed. By Taylor's theorem, together with the fact that f and many of its derivatives vanish at x = a, there exist constants ξ_0 and ξ_1 between a and x_k such that

$$f(x_k) = f'(a)(x_k - a) + \frac{f^{(m)}(\xi_0)}{m!}(x_k - a)^m \text{ and}$$

$$f'(x_k) = f'(a) + \frac{f^{(m)}(\xi_1)}{(m-1)!}(x_k - a)^{m-1}$$

hold. Upon substitution of these expressions into Newton's formula we obtain

$$\begin{aligned} x_{k+1} - a &= x_k - a - \frac{f(x_k)}{f'(x_k)} = \frac{1}{f'(x_k)} \left\{ f'(x_k)(x_k - a) - f(x_k) \right\} \\ &= \frac{1}{f'(x_k)} \left\{ \frac{f^{(m)}(\xi_1)}{(m-1)!} - \frac{f^{(m)}(\xi_0)}{m!} \right\} (x_k - a)^m \\ &= \frac{m f^{(m)}(\xi_1) - f^{(m)}(\xi_0)}{f'(x_k)m!} (x_k - a)^m . \end{aligned}$$

Now we fix a neighborhood N = [a - l, a + l] of a for some suitably small l, so that the inequalities $|f'(x)| \ge c_0 > 0$ and $|f^{(m)}(x)| \le c_1$ hold true on N for some constants c_0 and c_1 . If $x_k \in N$, then

$$\left|\frac{mf^{(m)}(\xi_1) - f^{(m)}(\xi_0)}{f'(x_k) \, m!}\right| \le \frac{mc_1 + c_1}{m! \, c_0} =: C ,$$

and thus

(2)
$$|x_{k+1} - a| \le C |x_k - a|^m$$
.

If necessary, we decrease l such that l < 1, and $l^{m-1}C < 1$ are satisfied. Then $x_k \in N$ implies $|x_k - a| \le l$, and from (2) it follows that $|x_{k+1} - a| \le C l^m \le l$, i.e., the sequence remains in N and the estimate (2) holds for all subsequent terms of the sequence.

Proof of Theorem 2. The case m = 2 was outlined just before the theorem. We assume $m \ge 3$ and we proceed in two steps.

Step 1. We define the function $g(x) := 1/\sqrt[m]{f'(x)}$. By definition we have $1 = g(x)^m f'(x)$, and implicit differentiation yields

$$0 = mg(x)^{m-1}g'(x)f'(x) + g(x)^m f''(x),$$

and thus

(6)
$$0 = mg'(x)f'(x) + g(x)f''(x) .$$

f''(a) = 0, together with $f'(a) \neq 0$, implies g'(a) = 0. Further differentiation of equation (6) leads to

(7)

$$0 = mg^{(k)}(x) f'(x) + (m(k-1)+1)g^{(k-1)}(x) f''(x) + \cdots + \frac{(k-1)!}{j!(k-j)!}(j+m(k-j))g^{(k-j)}(x) f^{(j+1)}(x) + \cdots + (m+k-1)g'(x) f^{(k)}(x) + g(x) f^{(k+1)}(x) .$$

Since $f''(a) = \cdots = f^{(m-1)}(a) = 0$, equation (7) implies $g^{(k)}(a) = 0$ for $1 \le k \le m - 2$. For k = m - 1 and x = a equation (7) reduces to

$$mg^{(m-1)}(a)f'(a) + g(a)f^{(m)}(a) = 0$$

while for k = m and x = a we obtain

$$mg^{(m)}(a)f'(a) + g(a)f^{(m+1)}(a) = 0$$

Step 2. We now investigate F(x) := f(x)g(x). Repeated application of the product rule yields

$$F'(x) = f(x)g'(x) + f'(x)g(x)$$

$$F''(x) = f(x)g''(x) + 2f'(x)g'(x) + f''(x)g(x)$$

$$\vdots$$

$$F^{(k)}(x) = f(x)g^{(k)}(x) + kf'(x)g^{(k-1)}(x) + \cdots$$

$$+ \binom{k}{j} f^{(j)}(x)g^{(k-j)}(x) + \cdots$$

$$+ kf^{(k-1)}(x)g'(x) + f^{(k)}(x)g(x) ,$$

CLASSROOM NOTES

for any function g(x). By definition F(a) = 0, and if we choose g(x) as before and use the results from Step 1, we obtain for the derivatives of F at x = a

$$\begin{split} F'(a) &= f'(a)g(a) = f'(a)^{1-1/m} > 0 \\ F''(a) &= 2f'(a)g'(a) = 0 \\ &\vdots \\ F^{(k)}(a) &= kf'(a)g^{(k-1)}(a) = 0 \\ &\vdots \\ F^{(m-1)}(a) &= (m-1)f'(a)g^{(m-2)}(a) = 0 \\ F^{(m-1)}(a) &= mf'(a)g^{(m-1)}(a) + f^{(m)}(a)g(a) = 0 \\ F^{(m)}(a) &= mf'(a)g^{(m-1)}(a) + f^{(m)}(a)g(a) = 0 \\ F^{(m+1)}(a) &= (m+1)f'(a)g^{(m)}(a) + f^{(m+1)}(a)g(a) \\ &= \left(1 - \frac{m+1}{m}\right)f^{(m+1)}(a)g(a) = -\frac{1}{m}\frac{f^{(m+1)}(a)}{\sqrt[m]{f'(a)}} \;, \end{split}$$

which proves the theorem.

REFERENCES

[1] R. L. BURDEN AND J. D. FAIRES, Numerical Analysis, 4th ed., Prindle, Weber, Schmidt, Boston, 1989.

Ο

- [2] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, NJ, 1983.
- [3] G. HÄMMERLIN AND K.-H. HOFFMANN, Numerische Mathematik, Springer-Verlag, New York, 1989.
- [4] J. TODD, Basic Numerical Mathematics, Vol. 1, Numerical Analysis, Birkhäuser-Verlag, New York, 1979.