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ACCELERATED CONVERGENCE IN NEWTON'S METHOD* 
JURGEN GERLACHt 

Abstract. Newton's Method is based on a linear approximation of the function whose roots are to be determined 
taken at the current point, and the resulting algorithm is known to converge quadratically. In a procedure to increase 
the rate of convergence the author modifies the target function in such a way that Newton's Method applied to the 
modified function will yield a faster rate of convergence. 
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This paper is concerned with achieving higher-order convergence for Newton's method. 
Newton's method itself converges quadratically, and it is based on a linear approximation 
(tangent line) to the function at the current iterate Xk: 

f(x) 1(x) = f(Xk) + f'(Xk)(X - Xk). 

The equation l(Xk+l) = 0 leads to the familiar Newton scheme 

(1l ) Xk+1 = Xk f (Xk ) 

f'(Xk) 

In order to accelerate Newton's method, numerical analysis texts frequently suggest using 
a higher-order approximation to f at Xk; see, e.g., [2] or [3]. In this note we take a different 
approach, and ask: For what class offunctions does Newton's method perform particularly 
well? And, secondly, once these functions have been identified we ask: How can we modify 
a given function in such a way that the order of convergence is increased? 

Throughout we assume that 
1. f is sufficiently many times differentiable; 
2. f has a simple root at x = a, i.e., f(a) = 0 and f'(a) $ 0; and that 
3. the initial approximation xo is sufficiently close to a so that convergence to a will 

occur. 
The answer to our first question is given by the following. 
THEOREM 1. In addition to the hypotheses above let us assume that f"(a) = f"'(a) = 
= f(m-l) (a) = 0, and that f(m) (a) 5$ 0. Then the Newton sequence {Xk} defined by (1) 

yields 

(2) IXk+1 -al, < CIxk -aim 

for some constant C. 
This theorem can be found as an exercise in the book by Dennis and Schnabel [2]; its 

proof is included in the Appendix. It roughly says that the more f looks like a linear function, 
the faster the Newton iterations will converge. Our next goal is to mold a given function 
into a new one in such a way that the roots remain unchanged, but it looks nearly linear in a 
neighborhood of the root so that the convergence of Newton's method will be accelerated. 

Before we present a general result, let us begin with the case f (a) = 0, f'(a) > 0, and 
f"(a) $ 0, and consider the function F(x) := f (x)g(x), where the function g(x) is to be 
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determined subsequently. We have F(a) = 0 and, if g(a) :$ 0, we get F'(a) :$ 0. Moreover, 
since f (a) = 0, 

F"(a) = 2f'(a)g'(a) + f"(a)g(a). 

Although we only wish to satisfy the equation F"(a) = 0 at the single point x = a, we turn 
it into a differential equation for the function g: 

g'(x) = - 
I 
-f,(x) g(x). 2 f'(x) 

Upon integration we obtain g(x) = C/ jf`(x as a general solution, and with C = 1 the 
function F becomes F(x) = f (x)/ f'(x). Newton's method applied to F(x) yields 

F(Xk) f (Xk) f (Xk) 

F'(Xk) f'(xk)2 - ' f(xk)f'"(xk) 

This is an example of an iteration scheme with cubic convergence, and can be traced back to 
Halley in 1694 (see [4]). 

Let us now turn to a general method, and present the result in the following form. 
THEOREM 2. Let f(a) = 0, f'(a) > 0, f"(a) = *. = f(m l)(a) = 0, and let 

f(m) (a) :$ 0. Then the function 

(4) f(x) 
f x) 

satisfies F(a) = 0, F'(a) > 0, F"(a) = - F(m)(a) = 0. Moreover for m > 3 we have 
F(m+l) (a) =-1 f(m +1) (a)/ m f'(a). 

Again we refer to the Appendix for the proof of this assertion. The determination of m 
may not always be easy. However, it is reassuring to know that the performance of Newton's 
method for F(x) = f (x)/ m f`(x) will never be worse than the one found for f (x) itself, 
regardless of the choice of m. The Newton iterations based on the function F are given by 

F(Xk) f (Xk) f (Xk) 

F'(Xk) f'(xk)2- 9 f (xk) f"(xk) 

in analogy to (3). 
Theorem 2 provides a procedure to increase the order of convergence of Newton's method 

by at least one: If f"(a) :$ 0 set m = 2, else identify the smallest m > 2 with f(m-l)(a) = 0 
and f(m) (a) :$ 0. Now form the function F(x) = f(x)/ ;fj7ix-, and Newton's method 
will converge to the root x = a at a rate of m + 1 or better. Repeated application will 
furnish an algorithm to generate an iterative scheme that will converge to a root of f (x) in any 
desired order, at the expense of the use of higher-order derivatives of f, (and some awkward 
computations). 

Example. Compute 5 as a root of f (x) = x3-5, and let us assume x > 0 throughout. 
A first application of Theorem 2 with m = 2 leads to 

fix f(x) _ x- 5 1 2 

f'(x vtx-7 \X 

We may now apply Theorem 2 with m = 3 to the function Fl, and after dropping constant 
factors we obtain 

x3-5 
F2(X)= vX4+5x 
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At first glance it appears that the occurrence of roots in F1 and F2 defeats the purpose of finding 
an algorithm to compute X. But, similar to (5), a look at the resulting Newton iterations 
shows that computation of roots are not required in the process, as shown in Table 1. 

TABLE 1 

Function Newton scheme 

of(x) Xk+1 = Xk- k 

Xk(X'r-5) 
Fl(x) Xk+1 =Xk -2+5 

3xk(2x3+5)(x3 -5) 
F2(X) Xk+1 = Xk - kOx+8x k+25 

In numerical experiments we used xO = 2 as an initial approximation. The first three iterations 
for the respective functions with their respective absolute errors are shown below in Table 2. 

TABLE 2 

f(x) Fl(x) F2(X) 

X1 1.75 1.714... 1.7103... 
error 4.0 x 10-2 4.3 x 10-3 3.7 x 10-4 

X2 1.7108... 1.709975964... 1.7099759466766982... 
error 9.1 X 10-4 1.8 x 10-8 1.2 x 10-15 

X3 1.7099764 1.709975946676696989 ... 
error 4.8 x 10-7 1.4 x 10-24 1.5 x 10-60 

In closing it should be pointed out that a variation of Theorem 2 with m = 1 can be used 
to restore quadratic convergence in the case of multiple roots, i.e., if f has a multiple root at 
x = a, then the function F(x) = f (x)/f'(x) has a simple root at x = a. See [1] for details. 

Appendix. We present the remaining two proofs. 
Proof of Theorem 1. Suppose Xk has already been computed. By Taylor's theorem, 

together with the fact that f and many of its derivatives vanish at x = a, there exist constants 
tO and 4j between a and Xk such that 

f(xk) = f'(a)(xk-a)+ fM) (tO) (Xk - a)m and 
mr! 

f(M) (6) 1 
f'(xk) = f'(a) + J (xk -a 

(mn - 1) 
hold. Upon substitution of these expressions into Newton's formula we obtain 

Xk+I - a = Xk -a- f( ) = {f '(xk)(xk - a) - f(Xk)} 
f'(Xk) f'(Xk) 

1 f(m) (6) _ f(m)(tO) (xk-a)m 
f'(xk) l (m-i)! m! 

= rnf(m)(~i) - f(m)(~o) (Xk - a)mm 
f(Xk)Mn! 
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Now we fix a neighborhood N = [a - 1, a + 1] of a for some suitably small 1, so that the 
inequalities If'(x) I > co > 0 and I f(m) (x) I < cl hold true on N for some constants co and 
cl. If Xk E N, then 

mf(m) ( ) - f(m)) | < MCI + Cl = C 

f'(xk)m! - m!c0 

and thus 

(2) IXk+1 -al < Clxk -aLm. 

If necessary, we decrease 1 such that 1 < 1, and m -lC < 1 are satisfied. Then Xk E N implies 
lXk -a a < 1, and from (2) it follows that IXk+I -a a < C im < 1, i.e., the sequence remains in 
N and the estimate (2) holds for all subsequent terms of the sequence. O 

Proof of Theorem 2. The case m = 2 was outlined just before the theorem. We assume 
m > 3 and we proceed in two steps. 

Step1. Wedefinethefunctiong(x):= 1/mf'(x). Bydefinitionwehave 1 = g(x)mf'(x), 
and implicit differentiation yields 

0 = mg(X)m lg (x)f (x) + g(X)mf" (x), 

and thus 

(6) 0 = mg'(x) f'(x) + g(x) f"(x). 

f"(a) = 0, together with f '(a) # 0, implies g(a) = 0. Further differentiation of equation 
(6) leads to 

O = mg(k) (x) f '(x) + (m(k - 1) + 1)g(kI)(X)f (X) + * *X 

(7) + (k-1)1 (j + m(k - i))g(k-i)(x)f(i+l)(x) + 

+ (m + k - 1)gl(X)f(k)(X) + g(X)f(k+l)(x) 

Since f"(a) = * - f(m-l)(a) = 0, equation (7) implies g(k)(a) 0 for 1 < k < m - 2. 
For k = m - 1 and x = a equation (7) reduces to 

mg(ml1)(a) f'(a) + g(a) f(m) (a) = 0, 

while for k = m and x = a we obtain 

mg(m) (a) f (a) + g(a) f(m + ) (a) = 0. 

Step 2. We now investigate F(x) := f (x)g(x). Repeated application of the product rule 
yields 

F'(x) = f(x)g'(x) + f'(x)g(x) 
F"(x) = f (x)g"(x) + 2f'(x)g'(x) + f"(x)g(x) 

F(k) (X) - f(X)g(k) (X) + kf (X)g(k l)(X) + * 

+ ( k f(j) (X)g(k-j) (x) + * 

+kf(kl)(x)gf(x) + f(k)(x)g(x), 
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for any function g(x). By definition F(a) = 0, and if we choose g(x) as before and use the 
results from Step 1, we obtain for the derivatives of F at x = a 

F'(a) = f'(a)g(a) = f'(a)l-/1m > 0 
F"(a) = 2f'(a)g'(a) = 0 

F(k)(a) = kf (a)g(k-1)(a) = 0 

F(ml)(a) - (m - ) ff(a)g(m-2) (a) = 0 

F(m)(a) - mfj(a)g(m-l)(a) + f(m)(a)g(a) = 0 
F(m+l) (a) - (m + 1) f(a)g(m)(a) + f(m+l)(a)g(a) 

= ( m- + 1) f(m+l)(a)g(a) = f_ 
m f '(a) 

which proves the theorem. O 
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