Accelerated convergence of numerical solution of linear
and non-linear vector field problems

By S. V. Ahamed*

The numerical solution of vector field problems on digital computers is a slow process, especially

when the characteristics of the regions investigated vary considerably.

A method for the

acceleration of the convergence of iterative procedures is described and applied to linear and

non-linear problems.

Linear and non-linear fields are common to electro-
magnetic, electrostatic, fluid-flow and heat-flow problems.
The literature on numerical solution of electromagnetic
problems is not abundant. When the iron regions are
ascribed the wusual permeabilities of ferromagnetic
materials, the numerical solutions converge extremely
slowly, necessitating prohibitive computer time. Further-
more, the solutions often become unstable if the per-
meabilities in the iron region are calculated from non-
linear algebraic relations representing the magnetization
characteristics. Recently, Mamak and Laithwaite (1960)
have solved a few simplified electromagnetic field
problems on computers. Like most of the authors
before, they have avoided the problems of slow con-
vergence and poor stability by assuming the permeability
of iron as infinite.

A method that accelerates the convergence of both
linear and non-linear vector field problems has been
developed in this paper. The method is illustrated with
electromagnetic field problems. When modified, it is
readily applicable for the acceleration of convergence of
the iterative solutions of other field problems for which
Stokes’ theorem is valid and can be stated by Poisson’s
or a non-linear equivalent of Poisson’s partial differential
equation.

The partial differential equation in two dimensions
The basic equation governing the distribution of vector
potential in a non- linear quasi-Poissonian field in which
permeabilities depend on a field quantity is
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The finite-difference form of equation (1) for a mesh of
Fig. 1 can be shown to be
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Physical considerations based on Stokes’ theorem are utilized to modify
Southwell’s relaxation technique.
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Fig. 1.—A typical non-uniform mesh point

where
Jo = current density vector assumed uniform in
the area containing the point 0

A, = vector potential at n (nis 1, 2, 3, 4)

11,2.3,4 = permeabilities at the centre of finite dis-
tances 01, 02, 03 and 04, respectively.

The mesh constants «, are
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where

hy.2.3.4 =01, 02, 03 and 04, respectively in Fig. 1.

The modified relaxation method

In the numerical solution of the partial differential
equations, using relaxation methods suggested by
Southwell (1946) and Allen (1954), equation (2) is written
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Vector field problems

for each mesh point. The convergence of the relaxation
method is reasonable for problems in which the per-
meabilities of individual regions do not vary greatly.
In electromagnetic field problems the permeabilities of
two adjoining regions like iron and air vary considerably,
and the use of relaxation methods results in an extremely
slow convergence. In non-linear problems where the
permeability is a function of magnetic induction,
successive iterates begin to oscillate about the true
solution, and in some cases this leads to divergence of
the iterative process.

The application of Stokes’ theorem to Maxwell’s
equation leads to the well-known Ampere’s law
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that must also be satisfied in the field. This relation,
equation (4), is utilized as the basis of the new method
to adjust the vector potentials between two iterations.
After each iteration the line integral of the magnetic
intensity around a suitably chosen closed path in the
region is evaluated and denoted F. The ratio of the net
current enclosed by the path of integration and of the
value of the line integral after the nth iteration, F,, is
denoted c,. Equation (4) is not generally satisfied at
the start of the iteration procedure, and the ratio ¢, will
not. be unity. The vector potentials over the entire
regions are multiplied by ¢, in order to satisfy equation (4).
The process of iterations and multiplication of vector
potentials is carried out until

0-999 < ¢, < 1-001. 4)

If the value of ¢, falls in the range of inequality (5) then
the multiplication of vector potential is discontinued,
and plain relaxation is carried out for a few more itera-
tions. At this stage one can assume that the iterations
have converged sufficiently close to the solution.

)

Explanation of modified relaxation method

Equation (2) is derived from the fundamental equa-
tion (1). When equation (2) is applied at every grid point
many times, as in Southwell’s relaxation methods, the
integral form of equation (1) written as equation (4) is
also satisfied. FEach time the iteration procedure is
carried out, the magnetic induction at the centre of the
mesh distances 01, 02, 03, and 04 in Fig. 1 changes in
the appropriate direction, making the right side of
equation (4) closer to its left side. This change of
magnetic induction is more effective in the modified
relaxation method, which is a special form of block
relaxation (1956). The magnetic induction over the entire
area is modified by multiplication of all the vector
potentials by the scalar constant c,. This constant
assumes a value greater than unity when the value of the
right side of equation (4) becomes greater than its left
side, and heace increases the magnetic induction in the
entire region. Conversely the constant assumes a value
less than unity when the value of the right side of equa-
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Fig. 2(a).—A schematic electromagnet

tion (4) becomes less than its left side, and hence decreases
the magnetic induction in the region. When the constant
becomes unity, the multiplication of the vector potentials
by ¢, has no effect, and an equilibrium condition is
reached. In local regions the repeated application of
equation (2) is adequate to govern the distribution of
flux densities and the satisfaction of equation (4) in those
regions.

Variation of permeability with saturation

In non-linear electromagnetic problems, when the
constant ¢, is greater than unity, the permeabilities
decrease due to the increased value of flux densities.
The decrease in the value of permeabilities generally
increases the line integral of the magnetic intensity, H,
far beyond the magnitude of enclosed current. This
makes the new value of ¢, less than unity. The inverse
effect of ¢, on permeability causes undamped oscillations.
To avoid these oscillations and to stabilize the solution,
an under-relaxation of permeabilities is desirable. The
new permeabilities at any mesh point in the non-linear
region will then be equal to their old value plus a fraction
of the calculated change. Experience has shown that
if the actual change in permeabilities is 10 to 15%, of
the calculated change, the computer solution exhibits
good stability and does not need many iterations to
reach the final solution.

Application of the method and results

Fig. 2(a) shows half of the cross section of a schematic
electromagnet. It consists of an air region and two iron
regions. A uniform mesh with 36 points is chosen for
sample analysis. The relative permeability of iron was
assumed to be 1000.

The number of iterations required to reach sufficient
convergence (when the line integral of magnetic intensity
just equals the current enclosed) is shown in Fig. 2(b) by
ordinary relaxation method (curve A). The numbei of
iterations by the modified method is shown by curve B.
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Fig. 2(b).—Comparison of convergence

Fig. 3(a) depicts another sample problem representing
a synchronous generator. The field distribution has
been found by using equation (2), first by over-relaxation
method and then by the modified method. An irregular
mesh with 153 points was chosen. The relative per-
meability of iron was 15,600. The line integral of
magnetic intensity around ABCDA (Fig. 3(a)) was
plotted for the various number of iterations for the
over-relaxation method (over-relaxation factor = 1-7)
in Fig. 3(b), curve A; and for the modified relaxation
method, curve B.

The method applied to non-linear Poissonian field is
shown in Fig. 4. The permeability in the iron of Fig. 3(a)
is a non-linear function of the magnetic induction. The
non-linear relation of the magnetic intensity H and of
the magnetic induction B was chosen to represent the
experimental saturation curve. The results of the over-
relaxation method (curve A, Fig. 4) exhibits oscillations
that were more severe than the oscillations of the linear
case shown by curve A, Fig. 3(b). In a majority of the
cases with larger oscillations the solutions became
unstable and diverged.

The results obtained by the modified relaxation method
have neither exhibited large oscillations nor any tendency
to diverge. This was true even for problems that required
a large number of mesh points. Experience has shown
that problems with about five thousand mesh points
have converged satisfactorily within 200 iterations.

Conclusions

Figs. 2(b), 3(b) and 4 prove that the number of itera-
tions necessary for convergence of the modified relaxa-
tion method proposed here is a fraction of the number
of iterations necessary by usual relaxation methods.
This results in a considerable saving of computer time,
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Fig. 3(a).—Cross-section of a salient pole of a synchronous
generator
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Fig. 3(b).—Comparison of convergence

especially when the number of grid points is large. With
non-linear vector potential problems the method eli-
minates divergence and instability of results. It
accelerates considerably the rate of convergence.

The method, though illustrated for the vector potential
in electromagnetic field is generally applicable to many
linear and non-linear vector field problems. The
principle may be extended to the electrostatic field
where the electric intensity, due to net charges, is
present. In these problems Gauss’ theorem applies.
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Vector field problems

One has then to evaluate the net value of the surface
integral of the displacement and equate it to the enclosed
charge. Problems in hydrodynamics and heat flow may
be solved by this method.

The method developed here is generally applicable to
field problems which are

(a) not “curl free,” where Stokes’ theorem applies,
(b) not “source free,”” where Gauss’ theorem applies.
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Book Reviews (Continued from p. 20)

Whilst the author does not claim to have covered every
possible application, the coverage is nevertheless comprehen-
sive, and the material proceeds in a logical way. Many
references are given on specific topics for the specialized
reader.

Altogether a very readable and informative book which
should be an asset to the circuit engineer.

J. C. VICKERY

Reliable Computation in the Presence of Noise, by S.
WiNnoGrRaD and J. D. CowaN, 1964; 96 pages.
(Cambridge, Massachusetts: M.I.T. press, 38s.)

This is one of the series of Research Monographs issued by

the M.IT. Press. These monographs permit the pre-

sentation of research in a more detailed way than is reasonably
possible in a scientific journal whilst, at the same time,

obtaining earlier publication than would be possible in a

standard text-book.

The purpose of this particular publication is to extend
Shannon’s noisy-channel coding theorem to include the
case of computation with noisy modules rather than com-
munication. It then continues to show how error-correcting
codes may be employed in the construction of reliable
automata from less reliable modules.

The first two chapters give, in eighteen pages, an intro-
duction to the relevant aspects of information theory and
the theory of automata. This is followed by a discussion
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of the work of Von Neumann and others on the reliability of
automata, which is then extended in the next chapter to
computation with noisy modules. It is shown that such a
system may be decomposed into an error-free computation
module and a noisy communication channel.

Chapters 6 and 7 contain various arguments leading to the
conclusion that it is wrong to consider module networks as
separable into encoding, computing and decoding networks
in which encoding and decoding are free from error. Chapter
8 therefore considers only noisy modules at each stage,
and describes the construction of networks of varying degrees
of reliability. These designs depend on the assumption
that the probability of modular malfunction is independent
of modular complexity.

The final chapter shows that synaptic errors may be
incorporated, the effect of such errors being controlled by
the use of networks of still greater redundancy. This chapter
also discusses the effect of errors of connection in the redund-
ant networks. There is a short appendix followed by a list
of about fifty references.

The formal arguments are set out very clearly and they
are well illustrated by numerous network diagrams which
are beautifully reproduced. Whilst the detailed sections
of the book are for the specialist, the general arguments and
conclusions are of interest to anyone working in the field
of computers.

F. H. SUMNER
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