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Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is
unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur
prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American
Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset
among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical
thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC
participants (age 19.3+4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated
thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions.
CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical
thickness was observed among CHR-C compared to other groups across 2.9+1.8 months, on average, in several cortical areas. ROC
analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age?,
and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that
accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals.
Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.
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INTRODUCTION

Identifying mechanisms that underlie psychosis onset is essential
for enhanced risk identification and early intervention. Prior work
has demonstrated accelerated cortical thinning among clinical
high-risk (CHR) individuals who convert to psychosis [1-6],
suggesting that disruptions in mechanisms underlying neuroma-
turation across adolescence and young adulthood may contribute
to psychosis onset [7-9]. Most notably, among a large sample of
CHR individuals in the second phase of the North American
Prodrome Longitudinal Study (NAPLS2), an accelerated rate of
thinning in right superior frontal, middle frontal, and medial

orbitofrontal regions was observed among participants who
converted to psychosis, across approximately one year between
pre- and post-onset [1].

Disrupted synaptic activity and neuronal connectivity are
posited as underlying mechanisms of psychosis [9, 10] that likely
have a progressive course that intensifies as illness develops.
These mechanisms may be indirectly observable through steeper
rates of cortical thinning pre-conversion (e.g., possibly through
dysregulated synaptic plasticity and/or complement system
activation resulting in overabundant synaptic pruning) [7, 8, 10].
However, prior investigations have not assessed changes in grey
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matter prior to psychosis onset, and thus cannot definitively state
whether grey matter reduction precedes or follows the transition
to psychosis.

Determining whether grey matter changes occur prior to
conversion is essential for elucidating illness-related neurobiolo-
gical processes potentially targetable by preventative interven-
tions. Prophylactic administration of antipsychotic medications to
CHR individuals is not recommended due to serious adverse side
effects [11], particularly given that only 15-25% of CHR individuals
will develop a psychotic disorder within two years from
ascertainment [12-14]. Validating progressive cortical thinning as
a predictive biomarker of psychosis may facilitate the develop-
ment of novel treatments that could potentially underlie this
phenomenon, such as inadequate NMDA-dependent synaptic
plasticity [7, 15-18] and/or excessive neuroinflammation (micro-
glial activation) [19-22]. It is also critical to determine the
minimum possible interval at which differential rates of grey
matter change are observable between CHR individuals who do
and do not ultimately develop a psychotic disorder, in order to
improve risk prediction and identify candidates for targeted
interventions [23].

In its third phase, NAPLS recruited new cohorts of CHR and
healthy controls (HC) for an intensive longitudinal biomarker
follow-up study. Participants completed up to five neuroimaging
and clinical assessments across approximately 8 months. Our
objectives were: (1) to determine if longitudinal trajectories of
grey matter change differed among CHR participants who
ultimately converted to psychosis (CHR-C), those who did not
convert (CHR-NC), and HG; (2) to further evaluate brain regions in
which cortical thinning rates differed by group; and (3) to
determine the shortest possible interval in which CHR-C cases
could be differentiated from CHR-NC and HC, at the individual
subject level.

M.A. Collins et al.

MATERIALS/SUBJECTS AND METHODS

NAPLS3 is a multisite cohort study conducted between 2015 and
2020 by 9 programs focusing on CHR youth. Participants included
in this report completed between 1 and 5 structural magnetic
resonance imaging (MRI) scans (targeted for baseline and 2, 4, 6,
and 8-month follow-up). If a participant converted to psychosis
during the study, a full clinical and biomarker assessment was
attempted at that time.

Participants

NAPLS3 participants included 560 CHR and 96 HC participants
enroled for longitudinal biomarker follow-up, aged between 12
and 30 at baseline. Institutional Review Board committees at each
site approved study protocols and all participants provided
informed consent.

CHR participants were help-seeking and self-referred or were
referred through medical providers, educators, and/or social
service agencies. CHR cases met the Criteria of Psychosis-Risk
Syndromes (COPS) based on the Structured Interview for
Psychosis-risk Syndromes [24]. Exclusion criteria were: a current
or lifetime history of a psychotic disorder, central nervous system
disorder, psychosis-risk symptoms that were clearly caused by
another Axis 1 disorder, or IQ less than 70. In addition, HC
participants could not have a family history of psychosis among
first degree relatives, could not have a Cluster A personality
disorder diagnosis, and could not be using psychotropic medica-
tion at the time of study. The NAPLS3 study design is described in
detail elsewhere [25].

After excluding participants with incomplete data and who did
not pass MRI quality control standards, 62 HC and 380 CHR
participants (42 CHR-C, 338 CHR-NC) were included in the present
analyses. Key participant demographics are provided in Table 1.
Demographics were similar among participants who met inclusion

Table 1. Participant characteristics by clinical group.
Characteristic HC N=62
Sex (at birth)
Male 31 (50%)
Female 31 (50%)
Race/Ethnicity®
Non-Hispanic white 26 (42%)
Racial/Ethnic minority 36 (58%)
N Taking Antipsychotic Meds® N/A
N No Antipsychotic Meds N/A
Mean (SD)
Age (first scan) 19.3 (4.3)
Number of Scans 3.7 (1.2)
Income*® 3.9 (1.9)
Total SOPSY Positive Symptoms (Baseline) 1.1 (1.7)
Total SOPS Negative Symptoms (Baseline) 1.4 (2.1)
Global Assessment of Functioning (Baseline) 88.3 (7.5)

CHR-NC N =338 CHR-C N=42 Statistic
188 (56%) 25 (60%) ¥>=1.0, ns
150 (44%) 17 (40%)

163 (48%) 21 (50%) x°70.9, ns
175 (52%) 21 (50%)

93 (28%) 22 (52%) 291, **

245 (72%) 20 (48%)

19.2 (4.1) 19.7 (4.5) F=0.24, ns
2.7 (1.5) 2.7 (1.2) F=13.2, ***
42 (1.8) 43 (1.9) F=0.7, ns

12.8 (3.4) 14.2 (3.6) F=363.8, ***

12.1 (6.1) 15.0 (6.9) F=100.6, ***

509 (11.7) 449 (11.6) F=311.1, ***

Healthy control (HC), clinical high-risk non-converter (CHR-NC) and converter (CHR-C) participants were compared on baseline demographic and clinical

indicators. P-value terms: ns >0.05; *<0.05; **<0.01; ***<0.001.

?Participants self-identified their racial background from one of ten categories: First Nations, East Asian, Southeast Asian, South Asian, Black, Central/South
American, West/Central Asia and Middle East, White, Native Hawaiian or Pacific Islander, Interracial. Participants self-identified as non-Hispanic or Hispanic. In
this report, racial/ethnic majority refers to non-Hispanic white individuals, whereas racial/ethnic minority refers to Hispanic and/or non-white individuals.
PTable reflects the number of participants taking antipsychotic medication at the time of at least one neuroimaging visit.

Participants self-identified their household income before taxes on a 1-7 scale: 1=less than $10,000, 2 =$10,000 to $19,999, 3 = $20,000 to $39,999,
4 = $40,000 to $59,999, 5 = $60,000 to $99,999, 6 = $100,000 and above, and 7=Don’t know or refused to answer. Participants who did not report their income

(N = 68) were excluded from mean/SD calculations.

%The Scale of Psychosis-risk Symptoms (SOPS) is a 19-item scale embedded within the SIPS [24] that assesses four domains of attenuated psychotic

symptoms: Positive, Negative, Disorganization, and General Symptoms.
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criteria and who completed neuroimaging but were excluded
(Table S3), with several differences (Table S4).

Procedures

MRI quality control. Each T1-weighted image underwent rigorous
visual quality control (QC) consisting of independent ratings by
2-3 highly trained investigators to assess for artifacts due to
motion, skull strip errors, segmentation failures, white and pial
surface misplacements, and/or topological defects (Table S1, S2).

MRI inter-scanner reliability. NAPLS3 included a separate travel-
ling participants study to assess the between-site and test-retest
reliability of MR scans using intraclass correlations (ICC). Each site
recruited one healthy subject (5 male, 4 female) who was scanned
on two successive days at every site. ICCs were calculated within
and across scanners. This process indicated that 2 scanners were
considerably less reliable than the other 7 scanners. The average
ICC estimate across Desikan Killiany atlas [26] cortical parcels and
subcortical/ventricular volumes increased from 0.72 when all
scanners were included to 0.88 when these 2 scanners were
removed. Due to substantial differences in reliability and
differences in data quality observed through visual QC, both of
which result in reduced power to detect change over time and
between subjects, scans from these scanners were excluded.
Scans collected on a third scanner (for which a small number of
subjects were evaluated before hardware was upgraded) were
also excluded due to concerns with reliability and poor data
quality observed during visual QC (Table S5, S6, Fig. S1).

MRI processing. T1-weighted structural MR images were pro-
cessed using the Human Connectome Project’s Minimal Prepro-
cessing Pipelines [27] with the open-source Quantitative
Neuroimaging Environment & Toolbox (QuNex, qunex.yale.edu).
Automatic whole-brain segmentation and surface-based cortical
reconstruction was run with FreeSurfer v6.0 [28, 29]. The
FreeSurfer longitudinal pipeline [30] was applied by registering
each T1 image to an unbiased within-subject template using
robust, inverse consistent registration [31]. Thickness maps were
resampled from native subject space to a common space
(fsaverage5) for group-level analyses. A 10 mm full-width half-
maximum Gaussian smoothing kernel was applied to increase the
signal-to-noise ratio and reduce the effects of inaccuracies in
spatial registration while preserving true regional effects [32, 33].

Statistical analyses

Discovery analyses were performed to determine if rates of
cortical thinning differ among CHR-C, CHR-NC, and HC. The
FreeSurfer MATLAB toolbox [34, 35] was used to build spatio-
temporal linear mixed effects (LME) models at the vertex-level to
assess the interaction effect of diagnostic group-by-time on
longitudinal cortical thickness. Vertex-wise models included time
from first scan, group (HC, CHR-NC, CHR-C), group-by-time
interaction, age, age?, sex, and scanner as fixed effect predictors
and a random subject-specific intercept, after it was determined
that model fit was not improved by including a random slope
term. 95% of participants who met inclusion criteria for this report
completed all scans within 12 months from baseline. Thus, to
avoid bias in the model due to a right skew in the data, 23 scans
collected more than 12 months from baseline were excluded from
analyses.

Group-by-time F-test maps were thresholded at p<0.01
(uncorrected) and clustered using the HCP [36] workbench
command metric-find-clusters to retain regions with an area of at
least 100 mmZ2 To empirically assess cluster significance, 1000
bootstrap replicates were created by permuting the data by group
labels only (preserving longitudinal scans within subject). For each
cluster, T-statistics were calculated for each group contrast,
applying FDR correction across all clusters.

SPRINGER NATURE

To determine the shortest time interval at which differential
changes in cortical thickness were observable among participants
who ultimately converted to psychosis, the percent change (PC) in
cortical thickness between first and second scan (PC.,n) was
calculated for participants who completed at least two scans.
PCscan, was assessed separately in a region comprised of all left
hemisphere clusters (left ROI) and right hemisphere clusters (right
ROI) obtained through LME analyses. PCscan, was calculated as:
(T,-T,/T;)/time x 100, where T,=thickness at second scan,
T, = thickness at first scan, and time = the number of months
from first to second scan. Linear regression models assessed
relationships between PC.,, and final clinical group status,
including age at first scan, agez, sex, and scanner as covariates,
applying FDR correction across ROls. PC analyses were also
performed between first and last scan (PCgjna) to assess whether
group differences become more pronounced across time.

Subsequently, logistic regression analyses were conducted to
determine if PCscana and PCrina in the left ROI could predict
whether a CHR participant ultimately converted to psychosis at
the individual level, including, age, age? sex, and scanner as
covariates. A receiver operating characteristic (ROC) curve was
then calculated based on model predictions, and the sensitivity
and specificity of the model was assessed by calculating area
under the ROC curve (AUC). Nonparametric bootstrapping
with 10,000 replications was conducted using the boot package
[37] in R to determine a 95% confidence interval for the AUC
estimate.

For comparison with prior work in NAPLS2 [1], supplementary
LME analyses were performed for volumetric measures, including
intracranial volume as an additional covariate (Table S10). Follow-
up analyses were conducted to examine the effects of anti-
psychotic medications on all LME and percent change statistical
tests (Tables S7-S9, Fig. S5). Additionally, PCs.any and PCg,a effect
sizes were calculated in three regions (right superior frontal,
middle frontal, and medial orbitofrontal cortex) in which CHR-C
demonstrated accelerated cortical thinning relative to CHR-NC
and HC in NAPLS2 [1] (Cohen’s d). Effect sizes in the left and right
ROI were also calculated (Table S11).

In supplementary analyses, correlations were assessed between
left and right ROl PC,c,n, and PCrip, and clinical variables of
interest (Table S12). Outcomes of interest were baseline attenu-
ated positive and negative symptoms measured on the Scale of
Prodromal Symptoms (SOPS), verbal memory on the Hopkins
Verbal Learning Test- Revised (HVLT-R) [38], and symbol coding on
the Brief Assessment of Cognition in Schizophrenia (BACS) [39], as
well as the difference in scores between baseline and final
assessment for each measure. Protective variables that may
partially account for attenuated cortical thinning among CHR-NC
relative to CHR-C were also assessed (Table S13). Protective factors
included indicators derived from the clinician-administered
Structured Assessment of Violence Risk in Youth [40] (SAVRY;
prosocial involvement, strong social support, strong attachment
and bonds, positive attitude toward intervention/authority, strong
commitment to school, resilient personality traits), as well as
maternal and paternal education. Multiple linear regression
models were conducted among CHR-NC to predict PCi,n, and
PCrinal in the left and right ROIs by each indicator (separately),
including age at first scan, age?, sex, and scanner as covariates.

RESULTS

Table 1 presents participant demographic and symptom char-
acteristics by group. Clinical groups did not significantly differ on
sex, race/ethnicity, age, or income. HC participants completed one
additional scan, on average, compared to both CHR groups. CHR-
NC participants were less impaired on baseline clinical measures
and a smaller proportion were prescribed antipsychotic medica-
tions compared with CHR-C participants.

Molecular Psychiatry (2023) 28:1182-1189
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Group-by-Time Relationship with Cortical Thickness Group-by-Time Clusters Change in Cortical Thickness Over Time

(F-test) (P<0.01) by ClinicalGroup (Average of Left Hemisphere Clusters)
‘ B @ | )
2.95
a
Wp <001 S 290
p<0.05 =
|_
Group Comparisons of Cortical Thickness Change Over Time (T-tests) @
O 2854
T-S staﬂstlc T- slat\stlc T-S stanst\c
57 3.7 43 3.7 Clinical Group
— Healthy Control
2804 — Converter
N — Non-Converter
CHR-C vs. CHR-NC CHR-C vs. HC CHR-NC vs. HC T T T T T T 1
fdr-corrected across clusters 0 2 4 5 8 10 12
Months from Baseline

Fig. 1 Linear mixed effect models of group-by-time relationships with rate of cortical thickness change. LME models described in parts
A-D include age, age?, sex, and scanner as fixed effect covariates and a random subject-specific intercept. A F-test maps of group- by-time
relationships with cortical thickness thresholded at p < 0.01 and p < 0.05 (uncorrected) indicate bilateral areas (described in the text) in which
the rate of cortical thickness differs by clinical | group. B 7 ROIs were retained for further analyses, by clustering areas from part A that pass the
p <0.01 threshold and are at least 100 mm? in area. C T-tests (two-sided) across clusters (FDR corrected) to further assess relationships
between cortical thickness change in each pair of groups indicate that cortical thinning occurs at a steeper rate in the CHR-C group, compared
to the CHR-NC and HC groups in the clusters shown in blue in the image above. In the CHR-NC group, cortical thinning occurs at a steeper
rate compared to the HC group in three clusters. D To further visualize rates of cortical thickness change by group, the average cortical
thickness of left hemisphere clusters (left ROI) is plotted by time from baseline separately for each group. Plot indicates that on average, CHR-C
participants have steeper cortical thinning compared to CHR-NC and HC participants.

Clinical outcome is associated with cortical thinning rate

In initial vertex-level LME models of longitudinal cortical
thickness change (including age, age? sex, and scanner as
covariates), applying a p<0.01 (uncorrected) threshold to the
F-test map indicated that the clinical group-by-time interaction
was significant in bilateral medial orbitofrontal and superior
frontal cortex, right posterior cingulate and middle temporal
cortex, and left caudal anterior cingulate and additional aspects
of the left lateral frontal, temporal, and parietal cortex (Fig. 1A).
Applying a more liberal p<0.05 threshold (uncorrected) indi-
cated that regions identified at p <0.01 are likely part of larger
continuous areas showing the same pattern of association with
outcome.

Clusters were derived from F-test maps thresholded at p < 0.01
with at least 100 mm? area (Fig. 1B). Permutation analyses
indicated that the p-values of all identified clusters were
significant (p<0.004 for all left hemisphere clusters and
p <0.037 for all right hemisphere clusters). The group-by-time
effect on cortical thinning was then assessed in cluster-level LME
models (Fig. 1C). Table S7 summarizes group-by-time effects in
LME analyses. CHR-C participants had a steeper rate of cortical
thinning compared to CHR-NC (in 5 of 7 clusters) and HC
participants (in 6 of 7 clusters), and a lower rate of cortical
thinning compared to these groups in the right temporal pole
cluster. Additionally, CHR-NC participants had a steeper rate of
cortical thinning compared with HC participants (in 3 of 7 clusters).
FDR-corrected group differences persisted in cluster-based
analyses at the p <0.05 threshold (Figure S2). The directionality
of group-by-time effects was the same across left hemisphere
clusters comprising the left ROL. In the left ROI, CHR-C participants
had the steepest rate of cortical thinning, followed by CHR-NC. In
the HC group, cortical thickness in these areas increased slightly
(though non-significantly; main effect of time in the HC group:
T=1.29, p=0.20) across the period of study (Fig. 1D). Left ROI

Molecular Psychiatry (2023) 28:1182-1189

cortical thickness did not differ significantly by group at baseline
(F=1.98, p=0.14).

When assessing antipsychotic medication as an additional
predictor, higher dosage (CPZ equivalents) [41] was significantly
associated with lower cortical thickness across time in two left
hemisphere clusters, as well as in the left ROI. However, including
medication as an additional covariate did not alter the strength or
significance of group-by-time effects described in Fig. 1C in 25 of
27 group-by-time comparisons (Table S7).

Accelerated cortical thinning across less than 3 months is
associated with conversion to psychosis

Percent change in thickness (PC) was assessed in the left and right
ROIs among the 57 HC, 246 CHR-NC, and 37 CHR-C participants
who completed at least two scans. Models predicting PC by
clinical group, age, age’, sex, and scanner were run separately
across first and second scans (PCgcanp; 2.93+1.81month interscan
interval) and first and last scans (PCginaj; 6.80+2.50 month interscan
interval).

Across both time points in the left ROI, thickness decreased at a
significantly steeper rate for CHR-C compared to CHR-NC (PCycan2:
T=—-212, prgr=003; PCrinai T=—4.28, psar<0.001), CHR-C
compared to HC (PCiana: T=—3.55 prar<0.001; PCrinar
T=—-5.27, prgr <0.001), and CHR-NC compared to HC (PCscano:
T=—254, p=0.02; PCrpar: T= —2.44, p = 0.03).

In the right ROIl, no group differences emerged in PCiano
analyses (Table S8). Between first and last scan, thickness
decreased at a significantly steeper rate for CHR-C compared to
CHR-NC (PCginay T= —2.17, ptgr = 0.03) and CHR-C compared to
HC (T = —2.94, p¢g; = 0.003), but not for CHR-NC compared to HC
(T=—-1.63, pggr =0.10).

PCscan2 and PCrin, values in the left ROI for each clinical group
are presented in Fig. 2A. Including antipsychotic medication
dosage as a covariate did not alter the strength or significance of

SPRINGER NATURE
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By Clinical Group
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Fig. 2 Percent change in left ROI cortical thickness predicts conversion to psychosis. A Percent change in cortical thickness in the left ROI
between first and second scan (left) and first and last scan (right) indicate a stepwise pattern in which CHR-C < CHR-NC < HC (i.e., most
negative percent change in the CHR-C group). Median (black line), mean (blue dot) and SE (blue lines) estimates are added to each box plot.

B ROC curves predictin

conversion among CHR participants from left ROl percent change in cortical thickness, scanner, and demographic

covariates (i.e. age, age®, and sex) has good classification accuracy (purple line) at second scan (left) and at last scan (right). Comparing this
ROC to models with only demographic predictors (orange), only left ROl percent change (black) and left ROl percent change and scanner
(blue) indicates that the predictive power of the model is driven primarily by percent change in the left ROl region, not demographic

predictors.

clinical group effects in either ROI, and there was no significant
effect of medication on PCiany Or PCring (see Table S8; Fig. S5).

Among CHR participants (N =283) a logistic regression model
predicting conversion based on left ROl PC,,n2, age, age?, sex, and
scanner had an AUC of 0.74 (95% Cl from 10,000 bootstrap
replications: [0.72, 0.85]). The PCgi,, model had an AUC of 0.78
(95% Cl: [0.75, 0.88]). A model predicting conversion from only left
ROI PCyc,n> and scanner had an AUC of 0.73 (PCgjna AUC =0.77),
the AUC for a model with left ROl PC,n> alone was 0.62 (PCinal
AUC=0.73), and a model predicting conversion from demo-
graphic variables alone (age, age? and sex) was 0.54 (Fig. 2B).
Taken together, models indicate that left ROl PC, not demographic
variables, are most predictive of conversion, with PCgny slightly
outperforming PC.,, in predicting conversion. See Table S14 for
all model coefficients. Mean time to conversion among CHR-C
participants included in the percent change analyses was
8.8+7.6 months from first scan. PCana and PCgina analyses
included 33 pre-conversion and 4 post-conversion CHR-C scans.
Repeating LME and percent change analyses excluding post-
conversion scans did not alter the strength or significance of the
reported results (Table S$15).

DISCUSSION
This study provides the first evidence to-date of steeper cortical
thinning among CHR-C prior to psychosis onset, a pattern that was
evident across a brief follow-up interval (<3 months) and was
predictive of psychosis conversion at the individual subject level.
Results of LME models indicated accelerated cortical thinning
among CHR-C in cortical areas previously identified as thinning at
a faster rate pre- to post-conversion in individuals who develop
psychosis [1-6, 42, 43], including medial orbitofrontal, superior
frontal, anterior cingulate, middle and inferior temporal, and
parietal cortices. That future converters show a steeper rate of
cortical thinning in these regions prior to onset argues for a role of
grey matter reduction in the emergence of psychosis, rather than
as a consequence of it. Also consistent with this interpretation is
the fact that antipsychotic medication exposure did not account
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for group differences in cortical thinning in this study. However,
future work is needed to establish if grey matter changes are a
consequence of disease-related neurobiological processes that
occur earlier in life.

The present findings point to the potential utility of considering
cortical thinning as a biomarker of psychosis-related outcomes.
Several models using clinical and demographic measures have
predicted conversion among CHR individuals [44-46], at a
performance level similar to that based on rate of cortical thinning
in this report. Symptom severity and cognitive functioning
(baseline and change over time) were not significantly associated
with PCcana Or PCrina (Table S12), suggesting that PC scores
account for unique predictive power in conversion risk above and
beyond symptom impairment. Existing psychosis risk calculators
may be improved by incorporating PC in cortical areas identified
in this report along with clinical and demographic predictors [47].

In contrast to NAPLS2 findings [1], left hemisphere effects were
more prominent in this cohort, with conversion-related cortical
thinning present in the left ROI, but not right ROI, for PCi.anz
analyses and smaller effect sizes compared to prior work in
NAPLS2 in right hemisphere regions in which PC was previously
linked with conversion [1]. However, in PCg;,, analyses, thinning
across the right ROl was significantly greater among CHR-C
compared to CHR-NC and HC. PCg,, effect sizes in the left ROI
(average interscan interval 6.8 months) were comparable but
larger than effect sizes in right hemisphere regions in NAPLS2 with
PC calculated across approximately one year. Together with
significant PC,can2 findings, this may suggest that high-frequency
neuroimaging closely following ascertainment is beneficial in
identifying individuals at highest risk for conversion.

Although prior work has observed thinner cortex in CHR-NC
compared with HC cross-sectionally [42, 43, 48], to our knowledge
this is the first study indicating accelerated cortical thinning over
time also in CHR-NC compared to HC, albeit at a rate significantly
slower than that in CHR-C cases. The difference in the CHR-NC
group'’s PC scores relative to HC did not change between PCscano
and PCg,, calculations, whereas PC slopes of CHR-C relative to
CHR-NC and HC became considerably more pronounced during
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this period. This pattern suggests that CHR-NC experience an
initial period of increased cortical thinning close to the point of
ascertainment which may subsequently stabilize, potentially
helping to explain the high prevalence of persistent subclinical
psychotic experiences or other psychiatric impairments among
many CHR-NC [49-52].

Protective factors of interest were not associated with PC scores
among CHR-NC. Notably, CHR-C and CHR-NC had similar scores on
these measures (Table S13). Given known associations between
environmental risk factors (e.g., poverty, trauma, low social
support) and psychosis-related outcomes [53-55], future in-
depth investigations are needed to identify risk and protective
factors that may exacerbate or mitigate illness-related neurode-
velopmental and symptom outcomes.

Pre-conversion differences in cortical thinning rates among
CHR-C may suggest that mechanisms underlying cortical thinning
merit investigation as targets of novel pharmaceutical treatments.
Prior work implicates atypical synaptic plasticity [7, 15-18],
excessive neuroinflammation [19-22], oxidative stress [56, 57],
and NMDAR dysfunction [15, 58, 59] as mechanisms contributing
to cortical thinning. Higher levels of proinflammatory cytokines
among NAPLS2 participants were associated with steeper rates of
prefrontal cortical thinning, and to a significantly greater extent
among CHR-C, compared to CHR-NC and HC [1]. Additionally, a
recent PET study provides direct in-vivo evidence that synaptic
density is lower among individuals with schizophrenia, compared
to healthy comparison individuals [60].

An important question remains as to the extent to which illness-
related cortical thinning can be attenuated or reversed. For
example, positive treatment outcomes among individuals with
recent onset psychosis who received targeted cognitive training
have been associated with attenuated cortical thinning, compared
to individuals who did not receive intervention [61]. Future work
may benefit from investigating if attenuated cortical thinning
among CHR could be a potential mechanism of action for
psychotherapeutic interventions.

There are several limitations to the present findings. CHR
participants enroled in the study at different points in their
prodromal symptom history and thus it was not possible to
investigate temporal patterns of cortical thinning starting at
symptom onset. The ideal interval in which cortical thickness
changes may best serve as a biomarker of psychosis onset may
also vary across the age span included in this study. Future work
will also benefit from external validation of cortical thinning
patterns identified in this report, especially in individualized
outcome prediction among CHR cases.

CONCLUSIONS

We identified several cortical areas in which accelerated grey
matter reduction across a brief period serves as a risk indicator
prior to psychosis onset. Results indicate the importance of
evaluating cortical thinning as a biomarker of conversion and
encourages further research into mechanisms underlying cortical
thinning among CHR individuals to facilitate the development of
novel, targeted drug treatments.

CODE AVAILABILITY
Results in this report are derived from publicly available statistical packages in R
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